1
|
Nakajima M, Yamazaki H, Yoshinari K, Kobayashi K, Ishii Y, Nakai D, Kamimura H, Kume T, Saito Y, Maeda K, Kusuhara H, Tamai I. Contribution of Japanese scientists to drug metabolism and disposition. Drug Metab Dispos 2025; 53:100071. [PMID: 40245580 DOI: 10.1016/j.dmd.2025.100071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/19/2025] Open
Abstract
Japanese researchers have played a pivotal role in advancing the field of drug metabolism and disposition, as demonstrated by their substantial contributions to the journal Drug Metabolism and Disposition (DMD) over the past 5 decades. This review highlights the historical and ongoing impact of Japanese scientists on DMD, celebrating their achievements in elucidating drug metabolism, membrane transport, pharmacokinetics, and toxicology. From the discovery of cytochrome P450 by Tsuneo Omura and Ryo Sato in 1962 to subsequent advances in drug transport research, Japan has maintained a leading position in the field. A geographical analysis of DMD publications reveals a notable increase in contributions from Japan during the 1980s, ranking second globally and maintaining this position through the 2000s. However, recent years have seen a slight decline in output, likely influenced by the COVID-19 pandemic and increased online journals as well as structural changes within academia and industry. Importantly, this trend is not unique to Japan. To sustain excellence and innovation in this field, it is crucial to strengthen funding for absorption, distribution, metabolism, excretion, and toxicity research and promote collaborations between academia, industry, and regulatory agencies. By prioritizing the translation of fundamental discoveries into drug development and clinical applications, scientists in this area can further advance global efforts toward achieving optimal drug efficacy and safety. This review underscores the enduring contributions of Japanese researchers to DMD and calls for renewed efforts to drive innovation and progress in this vital area of science. SIGNIFICANCE STATEMENT: Over the past 5 decades, Japanese scientists have made significant contributions to Drug Metabolism and Disposition through groundbreaking discoveries and advancements in the study of drug-metabolizing enzymes, transporters, pharmacokinetics analysis, and related areas. These contributions continue to shape the field, offering a foundation for future innovation in this area. We hope that the next generation of Japanese scientists will further solidify their global leadership in this area to advance drug development and proper pharmacotherapy.
Collapse
Affiliation(s)
- Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Japan.
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kaoru Kobayashi
- Department of Biopharmaceutics, Graduate School of Clinical Pharmacy, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yuji Ishii
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Daisuke Nakai
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co, Ltd, Tokyo, Japan
| | | | | | - Yoshiro Saito
- National Institute of Health Sciences, Kanagawa, Japan
| | - Kazuya Maeda
- School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
2
|
Miyake T, Mochizuki T, Nakagawa T, Nakamura M, Emoto C, Komiyama N, Hirabayashi M, Tsuruta S, Shimojo T, Terao K, Tachibana T. Quantitative prediction of CYP3A-mediated drug-drug interactions by correctly estimating fraction metabolized using human liver chimeric mice. Br J Pharmacol 2024; 181:1091-1106. [PMID: 37872109 DOI: 10.1111/bph.16270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/13/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND AND PURPOSE Fraction metabolized (fm ) and fraction transported (ft ) are important for understanding drug-drug interactions (DDIs) in drug discovery and development. However, current in vitro systems cannot accurately estimate in vivo fm due to inability to reflect the ft by efflux transporters (ft,efflux ). This study demonstrates how CYP3A-mediated DDI for CYP3A/P-gp substrates can be predicted using Hu-PXB mice as human liver chimeric mice. EXPERIMENTAL APPROACH For estimating human in vitro fm by CYP3A enzyme (fm,CYP3A,in vitro ), six drugs, including CYP3A/P-gp substrates (alprazolam, cyclosporine, docetaxel, midazolam, prednisolone, and theophylline) and human hepatocytes were incubated with or without ketoconazole as a CYP3A inhibitor. We calculated fm,CYP3A,in vitro based on hepatic intrinsic clearance. To estimate human in vivo fm,CYP3A (fm,CYP3A,in vivo ), we collected information on clinical DDI caused by ketoconazole for these six drugs. We calculated fm,CYP3A,in vivo using the change of total clearance (CLtotal ). For evaluating the human DDI predictability, the six drugs were administered intravenously to Hu-PXB and SCID mice with or without ketoconazole. We calculated the change of CLtotal caused by ketoconazole. We compared the CLtotal change in humans with that in Hu-PXB and SCID mice. KEY RESULTS The fm,CYP3A,in vitro was overestimated compared to the fm,CYP3A,in vivo . Hu-PXB mice showed much better correlation in the change of CLtotal with humans (R2 = 0.95) compared to SCID mice (R2 = 0.0058). CONCLUSIONS AND IMPLICATIONS CYP3A-mediated DDI can be predicted by correctly estimating human fm,CYP3A,in vivo using Hu-PXB mice. These mice could be useful predicting hepatic fm and ft,efflux .
Collapse
Affiliation(s)
- Taiji Miyake
- Pharmaceutical Science Department, Translational Research Div., Chugai Pharmaceutical Co., Ltd., Yokohama, Kanagawa, Japan
| | - Tatsuki Mochizuki
- Pharmaceutical Science Department, Translational Research Div., Chugai Pharmaceutical Co., Ltd., Yokohama, Kanagawa, Japan
| | - Toshito Nakagawa
- Pharmaceutical Science Department, Translational Research Div., Chugai Pharmaceutical Co., Ltd., Yokohama, Kanagawa, Japan
| | - Mikiko Nakamura
- Pharmaceutical Science Department, Translational Research Div., Chugai Pharmaceutical Co., Ltd., Yokohama, Kanagawa, Japan
| | - Chie Emoto
- Pharmaceutical Science Department, Translational Research Div., Chugai Pharmaceutical Co., Ltd., Yokohama, Kanagawa, Japan
| | - Natsuko Komiyama
- Chugai Research Institute for Medical Science Inc., Yokohama, Kanagawa, Japan
| | - Manabu Hirabayashi
- Chugai Research Institute for Medical Science Inc., Yokohama, Kanagawa, Japan
| | - Satoshi Tsuruta
- Pharmaceutical Science Department, Translational Research Div., Chugai Pharmaceutical Co., Ltd., Yokohama, Kanagawa, Japan
| | - Tomofumi Shimojo
- Pharmaceutical Science Department, Translational Research Div., Chugai Pharmaceutical Co., Ltd., Yokohama, Kanagawa, Japan
| | - Kimio Terao
- Pharmaceutical Science Department, Translational Research Div., Chugai Pharmaceutical Co., Ltd., Yokohama, Kanagawa, Japan
| | - Tatsuhiko Tachibana
- Pharmaceutical Science Department, Translational Research Div., Chugai Pharmaceutical Co., Ltd., Yokohama, Kanagawa, Japan
| |
Collapse
|
3
|
Miyake T, Tsutsui H, Hirabayashi M, Tachibana T. Quantitative Prediction of OATP-Mediated Disposition and Biliary Clearance Using Human Liver Chimeric Mice. J Pharmacol Exp Ther 2023; 387:135-149. [PMID: 37142442 DOI: 10.1124/jpet.123.001595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
Drug biliary clearance (CLbile) in vivo is among the most difficult pharmacokinetic parameters to predict accurately and quantitatively because biliary excretion is influenced by metabolic enzymes, transporters, and passive diffusion across hepatocyte membranes. The purpose of this study is to demonstrate the use of Hu-FRG mice [Fah-/-/Rag2-/-/Il2rg-/- (FRG) mice transplanted with human-derived hepatocytes] to quantitatively predict human organic anion transporting polypeptide (OATP)-mediated drug disposition and CLbile To predict OATP-mediated disposition, six OATP substrates (atorvastatin, fexofenadine, glibenclamide, pitavastatin, pravastatin, and rosuvastatin) were administered intravenously to Hu-FRG and Mu-FRG mice (FRG mice transplanted with mouse hepatocytes) with or without rifampicin as an OATP inhibitor. We calculated the hepatic intrinsic clearance (CLh,int) and the change of hepatic clearance (CLh) caused by rifampicin (CLh ratio). We compared the CLh,int of humans with that of Hu-FRG mice and the CLh ratio of humans with that of Hu-FRG and Mu-FRG mice. For predicting CLbile, 20 compounds (two cassette doses of 10 compounds) were administered intravenously to gallbladder-cannulated Hu-FRG and Mu-FRG mice. We evaluated the CLbile and investigated the correlation of human CLbile with that of Hu-FRG and Mu-FRG mice. We found good correlations between humans and Hu-FRG mice in CLh,int (100% within threefold) and CLh ratio (R2 = 0.94). Moreover, we observed a much better relationship between humans and Hu-FRG mice in CLbile (75% within threefold). Our results suggest that OATP-mediated disposition and CLbile can be predicted using Hu-FRG mice, making them a useful in vivo drug discovery tool for quantitatively predicting human liver disposition. SIGNIFICANCE STATEMENT: OATP-mediated disposition and biliary clearance of drugs are likely quantitatively predictable using Hu-FRG mice. The findings can enable the selection of better drug candidates and the development of more effective strategies for managing OATP-mediated DDIs in clinical studies.
Collapse
Affiliation(s)
- Taiji Miyake
- Pharmaceutical Science Department, Translational Research Division (T.M., T.T.) and Discovery Biologics Department, Research Division (H.T.), Chugai Pharmaceutical Co., Ltd., Shizuoka, Gotemba, Japan and Chugai Research Institute for Medical Science Inc., Shizuoka, Gotemba, Japan (M.H.)
| | - Haruka Tsutsui
- Pharmaceutical Science Department, Translational Research Division (T.M., T.T.) and Discovery Biologics Department, Research Division (H.T.), Chugai Pharmaceutical Co., Ltd., Shizuoka, Gotemba, Japan and Chugai Research Institute for Medical Science Inc., Shizuoka, Gotemba, Japan (M.H.)
| | - Manabu Hirabayashi
- Pharmaceutical Science Department, Translational Research Division (T.M., T.T.) and Discovery Biologics Department, Research Division (H.T.), Chugai Pharmaceutical Co., Ltd., Shizuoka, Gotemba, Japan and Chugai Research Institute for Medical Science Inc., Shizuoka, Gotemba, Japan (M.H.)
| | - Tatsuhiko Tachibana
- Pharmaceutical Science Department, Translational Research Division (T.M., T.T.) and Discovery Biologics Department, Research Division (H.T.), Chugai Pharmaceutical Co., Ltd., Shizuoka, Gotemba, Japan and Chugai Research Institute for Medical Science Inc., Shizuoka, Gotemba, Japan (M.H.)
| |
Collapse
|
4
|
Fujino C, Sanoh S, Katsura T. Variation in Expression of Cytochrome P450 3A Isoforms and Toxicological Effects: Endo- and Exogenous Substances as Regulatory Factors and Substrates. Biol Pharm Bull 2021; 44:1617-1634. [PMID: 34719640 DOI: 10.1248/bpb.b21-00332] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The CYP3A subfamily, which includes isoforms CYP3A4, CYP3A5, and CYP3A7 in humans, plays important roles in the metabolism of various endogenous and exogenous substances. Gene and protein expression of CYP3A4, CYP3A5, and CYP3A7 show large inter-individual differences, which are caused by many endogenous and exogenous factors. Inter-individual differences can cause negative outcomes, such as adverse drug events and disease development. Therefore, it is important to understand the variations in CYP3A expression caused by endo- and exogenous factors, as well as the variation in the metabolism and kinetics of endo- and exogenous substrates. In this review, we summarize the factors regulating CYP3A expression, such as bile acids, hormones, microRNA, inflammatory cytokines, drugs, environmental chemicals, and dietary factors. In addition, variations in CYP3A expression under pathological conditions, such as coronavirus disease 2019 and liver diseases, are described as examples of the physiological effects of endogenous factors. We also summarize endogenous and exogenous substrates metabolized by CYP3A isoforms, such as cholesterol, bile acids, hormones, arachidonic acid, vitamin D, and drugs. The relationship between the changes in the kinetics of these substrates and the toxicological effects in our bodies are discussed. The usefulness of these substrates and metabolites as endogenous biomarkers for CYP3A activity is also discussed. Notably, we focused on discrimination between CYP3A4, CYP3A5, and CYP3A7 to understand inter-individual differences in CYP3A expression and function.
Collapse
Affiliation(s)
- Chieri Fujino
- Laboratory of Clinical Pharmaceutics and Therapeutics, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University.,School of Pharmaceutical Sciences, Wakayama Medical University
| | - Toshiya Katsura
- Laboratory of Clinical Pharmaceutics and Therapeutics, College of Pharmaceutical Sciences, Ritsumeikan University
| |
Collapse
|
5
|
Miyake T, Tsutsui H, Haraya K, Tachibana T, Morimoto K, Takehara S, Ayabe M, Kobayashi K, Kazuki Y. Quantitative prediction of P-glycoprotein-mediated drug-drug interactions and intestinal absorption using humanized mice. Br J Pharmacol 2021; 178:4335-4351. [PMID: 34232502 DOI: 10.1111/bph.15612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/12/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE P-glycoprotein (P-gp) exhibits a broad substrate specificity and affects pharmacokinetics, especially intestinal absorption. However, prediction, in vivo, of P-gp-mediated drug-drug interaction (DDI) and non-linear absorption at the preclinical stage, is challenging. Here we evaluate the use of human MDR1 mouse artificial chromosome (hMDR1-MAC) mice carrying human P-gp and lacking their own murine P-gp to quantitatively predict human P-gp-mediated DDI and non-linear absorption. EXPERIMENTAL APPROACH The P-gp substrates (aliskiren, betrixaban, celiprolol, digoxin, fexofenadine and talinolol) were administered orally to wild-type, Mdr1a/b-knockout (KO) and hMDR1-MAC mice, and their plasma concentrations were measured. We calculated the ratio of area under the curve (AUCR) in mice (AUCMdr1a/b-KO /AUCwild-type or AUCMdr1a/b-KO /AUChMDR1-MAC ) estimated as attributable to complete P-gp inhibition and the human AUCR with and without P-gp inhibitor administration. The correlations of AUCRhuman with AUCRwild-type and AUCRhMDR1-MAC were investigated. For aliskiren, betrixaban and celiprolol, the Km and Vmax values for P-gp in hMDR1-MAC mice and humans were optimized from different dosing studies using GastroPlus. The correlations of Km and Vmax for P-gp between human and hMDR1-MAC mice were investigated. KEY RESULTS A better correlation between AUCRhuman and AUCRhMDR1-MAC (R2 = 0.88) was observed. Moreover, good relationships of Km (R2 = 1.00) and Vmax (R2 = 0.98) for P-gp between humans and hMDR1-MAC mice were observed. CONCLUSIONS AND IMPLICATIONS These results suggest that P-gp-mediated DDI and non-linear absorption can be predicted using hMDR1-MAC mice. These mice are a useful in vivo tool for quantitatively predicting P-gp-mediated disposition in drug discovery and development.
Collapse
Affiliation(s)
- Taiji Miyake
- Discovery ADMET Department, Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Japan
| | - Haruka Tsutsui
- Discovery ADMET Department, Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Japan
| | - Kenta Haraya
- Discovery ADMET Department, Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Japan
| | - Tatsuhiko Tachibana
- Discovery ADMET Department, Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Japan
| | - Kayoko Morimoto
- Research and Development Department, Trans Chromosomics, Inc., Yonago, Japan
| | - Shoko Takehara
- Research and Development Department, Trans Chromosomics, Inc., Yonago, Japan
| | - Miho Ayabe
- Discovery Technology Research Department, Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Japan
| | - Kaoru Kobayashi
- Department of Biopharmaceutics, Meiji Pharmaceutical University, Kiyose, Japan
| | - Yasuhiro Kazuki
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Japan.,Chromosome Engineering Research Center, Tottori University, Yonago, Japan
| |
Collapse
|
6
|
Bissig KD, Han W, Barzi M, Kovalchuk N, Ding L, Fan X, Pankowicz FP, Zhang QY, Ding X. P450-Humanized and Human Liver Chimeric Mouse Models for Studying Xenobiotic Metabolism and Toxicity. Drug Metab Dispos 2018; 46:1734-1744. [PMID: 30093418 PMCID: PMC6199624 DOI: 10.1124/dmd.118.083303] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023] Open
Abstract
Preclinical evaluation of drug candidates in experimental animal models is an essential step in drug development. Humanized mouse models have emerged as a promising alternative to traditional animal models. The purpose of this mini-review is to provide a brief survey of currently available mouse models for studying human xenobiotic metabolism. Here, we describe both genetic humanization and human liver chimeric mouse models, focusing on the advantages and limitations while outlining their key features and applications. Although this field of biomedical science is relatively young, these humanized mouse models have the potential to transform preclinical drug testing and eventually lead to a more cost-effective and rapid development of new therapies.
Collapse
Affiliation(s)
- Karl-Dimiter Bissig
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Weiguo Han
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Mercedes Barzi
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Nataliia Kovalchuk
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Liang Ding
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Xiaoyu Fan
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Francis P Pankowicz
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Qing-Yu Zhang
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| | - Xinxin Ding
- Baylor College of Medicine, Houston, Texas (K.-D.B., M.B., F.P.P.); and Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona (W.H., N.K., L.D., X.F., Q.-Y.Z., X.D.)
| |
Collapse
|
7
|
Haraya K, Tachibana T, Nezu J. Quantitative prediction of therapeutic antibody pharmacokinetics after intravenous and subcutaneous injection in human. Drug Metab Pharmacokinet 2017; 32:208-217. [DOI: 10.1016/j.dmpk.2017.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 01/29/2023]
|
8
|
Chang JH, Chen J, Liu L, Messick K, Ly J. Rifampin-Mediated Induction of Tamoxifen Metabolism in a Humanized PXR-CAR-CYP3A4/3A7-CYP2D6 Mouse Model. Drug Metab Dispos 2016; 44:1736-1741. [PMID: 27538915 DOI: 10.1124/dmd.116.072132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/17/2016] [Indexed: 01/14/2023] Open
Abstract
Animals are not commonly used to assess drug-drug interactions due to poor clinical translatability arising from species differences that may exist in drug-metabolizing enzymes and transporters, and their regulation pathways. In this study, a transgenic mouse model expressing human pregnane X receptor (PXR), constitutive androstane receptor (CAR), CYP3A4/CYP3A7, and CYP2D6 (Tg-composite) was used to investigate the effect of induction mediated by rifampin on the pharmacokinetics of tamoxifen and its metabolites. In humans, tamoxifen is metabolized primarily by CYP3A4 and CYP2D6, and multiple-day treatment with rifampin decreased tamoxifen exposure by 6.2-fold. Interestingly, exposure of tamoxifen metabolites 4-hydroxytamoxifen (4OHT), N-desmethyltamoxifen (NDM), and endoxifen also decreased. In the Tg-composite model, pretreatment with rifampin decreased tamoxifen area under the time-concentration curve between 0 and 8 hours (AUC0-8) from 0.82 to 0.20 µM*h, whereas AUC0-8 of 4OHT, NDM, and endoxifen decreased by 3.4-, 4.7-, and 1.3-fold, respectively, mirroring the clinic observations. In the humanized PXR-CAR (hPXR-CAR) model, rifampin decreased AUC0-8 of tamoxifen and its metabolites by approximately 2-fold. In contrast, no significant modulation by rifampin was observed in the nonhumanized C57BL/6 (wild-type) animals. In vitro kinetics determined in microsomes prepared from livers of the Tg-composite animals showed that, although Km values were not different between vehicle- and rifampin-treated groups, rifampin increased the Vmax for the CYP3A4-mediated pathways. These data demonstrate that, although the hPXR-CAR model is responsive to rifampin, the extent of the clinical rifampin-tamoxifen interaction is better represented by the Tg-composite model. Consequently, the Tg-composite model may be a suitable tool to examine the extent of rifampin-mediated induction for other compounds whose metabolism is mediated by CYP3A4 and/or CYP2D6.
Collapse
Affiliation(s)
- Jae H Chang
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California
| | - John Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California
| | - Liling Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California
| | - Kirsten Messick
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California
| | - Justin Ly
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California
| |
Collapse
|
9
|
Scheer N, Wilson ID. A comparison between genetically humanized and chimeric liver humanized mouse models for studies in drug metabolism and toxicity. Drug Discov Today 2015; 21:250-63. [PMID: 26360054 DOI: 10.1016/j.drudis.2015.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/07/2015] [Accepted: 09/01/2015] [Indexed: 12/12/2022]
Abstract
Mice that have been genetically humanized for proteins involved in drug metabolism and toxicity and mice engrafted with human hepatocytes are emerging and promising in vivo models for an improved prediction of the pharmacokinetic, drug-drug interaction and safety characteristics of compounds in humans. The specific advantages and disadvantages of these models should be carefully considered when using them for studies in drug discovery and development. Here, an overview on the corresponding genetically humanized and chimeric liver humanized mouse models described to date is provided and illustrated with examples of their utility in drug metabolism and toxicity studies. We compare the strength and weaknesses of the two different approaches, give guidance for the selection of the appropriate model for various applications and discuss future trends and perspectives.
Collapse
Affiliation(s)
| | - Ian D Wilson
- Imperial College London, South Kensington, London SW7 2AZ, UK.
| |
Collapse
|
10
|
Choo EF, Woolsey S, DeMent K, Ly J, Messick K, Qin A, Takahashi R. Use of transgenic mouse models to understand the oral disposition and drug-drug interaction potential of cobimetinib, a MEK inhibitor. Drug Metab Dispos 2015; 43:864-9. [PMID: 25813936 DOI: 10.1124/dmd.115.063743] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 03/26/2015] [Indexed: 02/13/2025] Open
Abstract
Data from the clinical absolute bioavailability (F) study with cobimetinib suggested that F was lower than predicted based on its low hepatic extraction and good absorption. The CYP3A4 transgenic (Tg) mouse model with differential expression of CYP3A4 in the liver (Cyp3a(-/-)Tg-3A4Hep) or intestine (Cyp3a(-/-)Tg-3A4Int) and both liver and intestine (Cyp3a(-/-)Tg-3A4Hep/Int) were used to study the contribution of intestinal metabolism to the F of cobimetinib. In addition, the effect of CYP3A4 inhibition and induction on cobimetinib exposures was tested in the Cyp3a(-/-)Tg-3A4Hep/Int and PXR-CAR-CYP3A4/CYP3A7 mouse models, respectively. After i.v. administration of 1 mg/kg cobimetinib to wild-type [(WT) FVB], Cyp3a(-/-)Tg-3A4Hep, Cyp3a(-/-)Tg-3A4Int, or Cyp3a(-/-)Tg-3A4Hep/Int mice, clearance (CL) (26-35 ml/min/kg) was similar in the CYP3A4 transgenic and WT mice. After oral administration of 5 mg/kg cobimetinib, the area under the curve (AUC) values of cobimetinib in WT, Cyp3a(-/-)Tg-3A4Hep, Cyp3a(-/-)Tg-3A4Int, or Cyp3a(-/-)Tg-3A4Hep/Int mice were 1.35, 3.39, 1.04, and 0.701 μM⋅h, respectively. The approximately 80% lower AUC of cobimetinib in transgenic mice when intestinal CYP3A4 was present suggested that the intestinal first pass contributed to the oral CL of cobimetinib. Oxidative metabolites observed in human circulation were also observed in the transgenic mice. In drug-drug interaction (DDI) studies using Cyp3a(-/-)Tg-3A4Hep/Int mice, 8- and 4-fold increases in oral and i.v. cobimetinib exposure, respectively, were observed with itraconazole co-administration. In PXR-CAR-CYP3A4/CYP3A7 mice, rifampin induction decreased cobimetinib oral exposure by approximately 80%. Collectively, these data support the conclusion that CYP3A4 intestinal metabolism contributes to the oral disposition of cobimetinib and suggest that under certain circumstances the transgenic model may be useful in predicting clinical DDIs.
Collapse
Affiliation(s)
- Edna F Choo
- Genentech Inc., South San Francisco, California
| | | | | | - Justin Ly
- Genentech Inc., South San Francisco, California
| | | | - Ann Qin
- Genentech Inc., South San Francisco, California
| | | |
Collapse
|