1
|
Uno Y, Minami Y, Tsukiyama-Kohara K, Murayama N, Yamazaki H. Identification of cytochrome P450 2C18 and 2C76 in tree shrews: P450 2C18 effectively oxidizes typical human P450 2C9/2C19 chiral substrates warfarin and omeprazole with less stereoselectivity. Biochem Pharmacol 2024; 228:115990. [PMID: 38110158 DOI: 10.1016/j.bcp.2023.115990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
Cytochromes P450 (P450s or CYPs), especially the CYP2C family, are important drug-metabolizing enzymes that play major roles in drug metabolism. Tree shrews, a non-rodent primate-like species, are used in various fields of biomedical research, notably hepatitis virus infection; however, its drug-metabolizing enzymes have not been fully investigated. In this study, tree shrew CYP2C18, CYP2C76a, CYP2C76b, and CYP2C76c cDNAs were identified and contained open reading frames of 489 or 490 amino acids with high sequence identities (70-78 %) to human CYP2Cs. Tree shrew CYP2C76a, CYP2C76b, and CYP2C76c showed higher sequence identities (79-80 %) to cynomolgus CYP2C76 and were not orthologous to any human CYP2C. Phylogenetic analysis revealed that tree shrew CYP2C18 and CYP2C76s were closely related to rat CYP2Cs and cynomolgus CYP2C76, respectively. Tree shrew CYP2C genes formed a gene cluster similar to human CYP2C genes. All four tree shrew CYP2C mRNAs showed predominant expressions in liver, among the tissue types examined; expression of CYP2C18 mRNA was also detected in small intestine. In liver, CYP2C18 mRNA was the most abundant among the tree shrew CYP2C mRNAs. In metabolic assays using human CYP2C substrates, all tree shrew CYP2Cs showed metabolic activities toward diclofenac, R,S-omeprazole, paclitaxel, and R,S-warfarin, with the activity of CYP2C18 exceeding that of the other CYP2Cs. Moreover, tree shrew CYP2C76 enzymes metabolized progesterone more efficiently than human, cynomolgus, or marmoset CYP2Cs. Therefore, these novel tree shrew CYP2Cs are expressed abundantly in liver, encode functional enzymes that metabolize human CYP2C substrates, and are likely responsible for drug clearances.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan.
| | - Yuhki Minami
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan
| | - Kyoko Tsukiyama-Kohara
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan
| | - Norie Murayama
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Hiroshi Yamazaki
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
2
|
Uno Y, Murayama N, Yamazaki H. Novel Cytochrome P450 2C119 Enzymes in Cynomolgus and Rhesus Macaques Metabolize Progesterone, Diclofenac, and Omeprazole. Drug Metab Dispos 2024; 52:266-273. [PMID: 38123944 DOI: 10.1124/dmd.123.001583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Cynomolgus and rhesus macaques are used in drug metabolism studies due to their evolutionary and phylogenetic closeness to humans. Cytochromes P450 (P450s or CYPs), including the CYP2C family enzyme, are important endogenous and exogenous substrate-metabolizing enzymes and play major roles in drug metabolism. In cynomolgus and rhesus macaques, six CYP2Cs have been identified and characterized, namely, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2C76, and CYP2C93. In this study, CYP2C119, a new CYP2C, was identified and characterized in cynomolgus and rhesus macaques. Cynomolgus and rhesus CYP2C119 contained open reading frames of 489 amino acids with high sequence identities to human CYP2C8 and to cynomolgus and rhesus CYP2C8. Phylogenetic analysis showed that cynomolgus and rhesus CYP2C119 were closely related to cynomolgus and rhesus CYP2C8. In cynomolgus and rhesus genomes, CYP2C genes, including CYP2C119, form a cluster. Among the tissues analyzed, cynomolgus CYP2C119 mRNA was predominantly expressed in liver. Hepatic expressions of CYP2C119 mRNA in four cynomolgus and two rhesus macaques varied, with no expression in one rhesus macaque. Among the CYP2C mRNAs, CYP2C119 mRNA was expressed less abundantly than CYP2C8, CYP2C9, CYP2C19, and CYP2C76 mRNAs but more abundantly than CYP2C18 mRNA. Recombinant cynomolgus and rhesus CYP2C119 catalyzed progesterone 16α-, 17α-, and 21-hydroxylation and diclofenac and omeprazole oxidations, indicating that CYP2C119 is a functional enzyme. Therefore, the novel CYP2C119 gene, expressed in macaque liver, encodes a functional enzyme that metabolizes human CYP2C substrates and is likely responsible for drug clearances. SIGNIFICANCE STATEMENT: Cytochrome P450 2C119 was found in cynomolgus and rhesus macaques, in addition to the known P450 2C8, 2C9, 2C18, 2C19, 2C76, and 2C93. Cynomolgus and rhesus CYP2C119 contain open reading frames of 489 amino acids with high sequence identity to human CYP2C8. Cynomolgus CYP2C119 mRNA is predominantly expressed in the liver. Recombinant CYP2C119 catalyzed progesterone hydroxylation and diclofenac and omeprazole oxidations. Therefore, the novel CYP2C119 gene expressed in the macaque liver encodes a functional enzyme that metabolizes human CYP2C substrates.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima, Japan (Y.U.) and Showa Pharmaceutical University, Machida, Tokyo, Japan (N.M., H.Y.)
| | - Norie Murayama
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima, Japan (Y.U.) and Showa Pharmaceutical University, Machida, Tokyo, Japan (N.M., H.Y.)
| | - Hiroshi Yamazaki
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima, Japan (Y.U.) and Showa Pharmaceutical University, Machida, Tokyo, Japan (N.M., H.Y.)
| |
Collapse
|
3
|
Uno Y, Uehara S, Ushirozako G, Masatani T, Yamazaki H. Chronic Toxoplasma infection affects gene expression of drug-metabolizing enzymes in mouse liver. Xenobiotica 2023; 53:581-586. [PMID: 37991059 DOI: 10.1080/00498254.2023.2286597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/19/2023] [Indexed: 11/23/2023]
Abstract
Toxoplasma gondii is an intracellular protozoan parasite causing toxoplasmosis, an infectious disease affecting warm-blooded vertebrates worldwide. Many drug-metabolizing enzymes are located in the liver, a major organ of drug metabolism, and their function can be affected by pathogen infection.Using next-generation sequencing (RNA-seq) and quantitative polymerase chain reaction (qPCR), changes in the hepatic expressions of drug-metabolizing enzymes were analysed in mice chronically infected with T. gondii. The analysis found that, among drug-metabolizing enzymes, 22 genes were upregulated and 28 genes were downregulated (≥1.5-fold); of these 5 and 17 genes, respectively, were cytochromes P450 (Cyp or P450).Subsequent qPCR analysis showed that six P450 genes were upregulated significantly (≥1.5-fold, p < 0.05), namely, Cyp1b1, Cyp2c29, Cyp2c65, Cyp2d9, Cyp2d12, and Cyp3a59, whereas nine P450 genes were downregulated significantly (≥1.5-fold, p < 0.05), namely, Cyp2c38, Cyp2c39, Cyp2c44, Cyp2c69, Cyp2d40, Cyp2e1, Cyp3a11, Cyp3a41, and Cyp3a44.Moreover, metabolic assays in infected mouse liver using typical P450 substrates revealed that midazolam 1'-hydroxylation and testosterone 2-hydroxylation activities decreased significantly (≥1.5-fold, p < 0.05), whereas testosterone 16-hydroxylation activity increased significantly (≥1.5-fold, p < 0.05).Chronic Toxoplasma infection affects drug metabolism, at least partly, by altering the gene expressions of drug-metabolizing enzymes, including P450s.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Genki Ushirozako
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Tatsunori Masatani
- Faculty of Applied Biological Sciences, Laboratory of Zoonotic Diseases, Gifu University, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| |
Collapse
|
4
|
Uno Y, Morikuni S, Shiraishi M, Asano A, Murayama N, Yamazaki H. Novel Cytochrome P450 2C94 Functionally Metabolizes Diclofenac and Omeprazole in Dogs. Drug Metab Dispos 2023; 51:637-644. [PMID: 36754837 DOI: 10.1124/dmd.122.001236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/11/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Cytochromes P450 (P450s or CYPs) are important drug-metabolizing enzymes. Because dogs are frequently used in drug metabolism studies, knowledge of dog CYP2C enzymes is essential because in humans these enzymes are abundant and play major roles in liver and intestine. The present study identified and characterized novel dog CYP2C94 along with previously identified dog CYP2C21 and CYP2C41. Dog CYP2C21, CYP2C41, and CYP2C94 cDNAs, respectively, contained open reading frames of 490, 489, and 496 amino acids and shared high-sequence identities (70%, 75%, and 58%) with human CYP2Cs. Dog CYP2C94 mRNA was preferentially expressed in liver, just as dog CYP2C21 and CYP2C41 mRNAs were. In dog liver, CYP2C21 mRNA was the most abundant, followed by CYP2C94 and CYP2C41 mRNAs. Moreover, the hepatic expressions of all three dog CYP2C mRNAs varied in four individual dogs, two of which did not express CYP2C41 mRNA. The three dog CYP2C genes had similar gene structures, and CYP2C94, although located on the same chromosome, was in a genomic region far from the gene cluster containing CYP2C21 and CYP2C41 Metabolic assays with recombinant proteins showed that dog CYP2C94, along with CYP2C21 and CYP2C41, efficiently catalyzed oxidations of diclofenac, warfarin, and/or omeprazole, indicating that dog CYP2C94 is a functional enzyme. Novel dog CYP2C94 is expressed abundantly in liver and encodes a functional enzyme that metabolizes human CYP2C substrates; it is, therefore, likely responsible for drug clearances in dogs. SIGNIFICANCE STATEMENT: Novel dog cytochrome P450 2C94 (CYP2C94) was identified and characterized along with dog CYP2C21 and CYP2C41. Dog CYP2C94, isolated from liver, had 58% sequence identity and a close phylogenetic relationship with its human homologs and was expressed in liver at the mRNA level. Dog CYP2C94 (and CYP2C21 and CYP2C41) catalyzed oxidations of diclofenac and omeprazole, human CYP2C9 and CYP2C19 substrates, respectively, but CYP2C41 also hydroxylated warfarin. CYP2C94 is therefore a functional drug-metabolizing enzyme likely responsible for drug clearances in dogs.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., M.S., A.A.) and Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.M., N.M., H.Y.)
| | - Saho Morikuni
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., M.S., A.A.) and Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.M., N.M., H.Y.)
| | - Mitsuya Shiraishi
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., M.S., A.A.) and Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.M., N.M., H.Y.)
| | - Atsushi Asano
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., M.S., A.A.) and Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.M., N.M., H.Y.)
| | - Norie Murayama
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., M.S., A.A.) and Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.M., N.M., H.Y.)
| | - Hiroshi Yamazaki
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (Y.U., M.S., A.A.) and Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.M., N.M., H.Y.)
| |
Collapse
|
5
|
Uno Y, Morikuni S, Shiraishi M, Asano A, Kawaguchi H, Murayama N, Yamazaki H. A comprehensive analysis of six forms of cytochrome P450 2C (CYP2C) in pigs. Xenobiotica 2022; 52:963-972. [PMID: 36373600 DOI: 10.1080/00498254.2022.2148139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pigs are an important species used in drug metabolism studies; however, the cytochromes P450 (P450s or CYPs) have not been fully investigated in pigs.In this study, pig CYP2C32, CYP2C33, CYP2C34, CYP2C36, CYP2C42, and CYP2C49 cDNAs were isolated and found to contain open reading frames of 490 or 494 amino acids that shared 64-82% sequence identity with human CYP2C8/9/18/19.Pig CYP2C genes formed a gene cluster in a genomic region that corresponded to that of the human CYP2C cluster; an additional gene cluster was formed by pig CYP2C33a and CYP2C33b distant from the first cluster but located in the same chromosome.Among the tissues analysed, these pig CYP2C mRNAs were preferentially expressed in liver, small intestine, and/or kidney; pig CYP2C49, CYP2C32, CYP2C34, and CYP2C33 mRNAs were the most abundant CYP2C mRNAs in liver, jejunum, ileum, and kidney, respectively.Metabolic assays showed that pig CYP2C proteins (heterologously expressed in Escherichia coli) metabolised typical human CYP2C substrates diclofenac, warfarin, and/or omeprazole.The results suggest that these pig CYP2Cs are functional enzymes able to metabolise human CYP2C substrates in liver and small intestine, just as human CYP2Cs do.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Japan
| | - Saho Morikuni
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Mitsuya Shiraishi
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Japan
| | - Atsushi Asano
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Japan
| | | | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| |
Collapse
|
6
|
Humanized liver TK-NOG mice with functional deletion of hepatic murine cytochrome P450s as a model for studying human drug metabolism. Sci Rep 2022; 12:14907. [PMID: 36050438 PMCID: PMC9437039 DOI: 10.1038/s41598-022-19242-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/26/2022] [Indexed: 11/11/2022] Open
Abstract
Chimeric TK-NOG mice with a humanized liver (normal Hu-liver) are a unique animal model for predicting drug metabolism in humans. However, residual mouse hepatocytes occasionally prevent the precise evaluation of human drug metabolism. Herein, we developed a novel humanized liver TK-NOG mouse with a conditional knockout of liver-specific cytochrome P450 oxidoreductase (POR cKO Hu-liver). Immunohistochemical analysis revealed only a few POR-expressing cells around the portal vein in POR cKO mouse livers. NADPH-cytochrome c reductase and cytochrome P450 (P450)-mediated drug oxidation activity in liver microsomes from POR cKO mice was negligible. After the intravenous administration of S-warfarin, high circulating and urinary levels of S-7-hydroxywarfarin (a major human metabolite) were observed in POR cKO Hu-liver mice. Notably, the circulating and urinary levels of S-4′-hydroxywarfarin (a major warfarin metabolite in mice) were much lower in POR cKO Hu-liver mice than in normal Hu-liver mice. POR cKO Hu-liver mice with minimal interference from mouse hepatic P450 oxidation activity are a valuable model for predicting human drug metabolism.
Collapse
|
7
|
Uno Y, Uehara S, Yamazaki H. Polymorphic cytochromes P450 in non-human primates. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:329-364. [PMID: 35953160 DOI: 10.1016/bs.apha.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cynomolgus macaques (Macaca fascicularis, an Old World monkey) are widely used in drug development because of their genetic and physiological similarities to humans, and this trend has continued with the use of common marmosets (Callithrix jacchus, a New World monkey). Information on the major drug-metabolizing cytochrome P450 (CYP, P450) enzymes of these primate species indicates that multiple forms of their P450 enzymes have generally similar substrate selectivities to those of human P450 enzymes; however, some differences in isoform, activity, and substrate specificity account for limited species differences in drug oxidative metabolism. This review provides information on the P450 enzymes of cynomolgus macaques and marmosets, including cDNA, tissue expression, substrate specificity, and genetic variants, along with age differences and induction. Typical examples of important P450s to be considered in drug metabolism studies include cynomolgus CYP2C19, which is expressed abundantly in liver and metabolizes numerous drugs. Moreover, genetic variants of cynomolgus CYP2C19 affect the individual pharmacokinetic data of drugs such as R-warfarin. These findings provide a foundation for understanding each P450 enzyme and the individual pharmacokinetic and toxicological results in cynomolgus macaques and marmosets as preclinical models. In addition, the effects of induction on some drug clearances mediated by P450 enzymes are also described. In summary, this review describes genetic and acquired individual differences in cynomolgus and marmoset P450 enzymes involved in drug oxidation that may be associated with pharmacological and/or toxicological effects.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.
| | | | | |
Collapse
|
8
|
Matsumoto S, Uehara S, Kamimura H, Ikeda H, Maeda S, Hattori M, Nishiwaki M, Kato K, Yamazaki H. Human total clearance values and volumes of distribution of typical human cytochrome P450 2C9/19 substrates predicted by single-species allometric scaling using pharmacokinetic data sets from common marmosets genotyped for P450 2C19. Xenobiotica 2021; 51:479-493. [PMID: 33455494 DOI: 10.1080/00498254.2020.1871113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Common marmosets (Callithrix jacchus) are small non-human primates that genetically lack cytochrome P450 2C9 (CYP2C9). Polymorphic marmoset CYP2C19 compensates by mediating oxidations of typical human CYP2C9/19 substrates.Twenty-four probe substrates were intravenously administered in combinations to marmosets assigned to extensive or poor metaboliser (PM) groups by CYP2C19 genotyping. Eliminations from plasma of cilomilast, phenytoin, repaglinide, tolbutamide, and S-warfarin in the CYP2C19 PM group were significantly slow; these drugs are known substrates of human CYP2C8/9/19.Human total clearance values and volumes of distribution of the 24 test compounds were extrapolated using single-species allometric scaling with experimental data from marmosets and found to be mostly comparable with the reported values.Human total clearance values and volumes of distribution of 15 of the 24 test compounds similarly extrapolated using reported data sets from cynomolgus or rhesus monkeys were comparable to the present predicted results, especially to those based on data from PM marmosets.These results suggest that single-species allometric scaling using marmosets, being small, has advantages over multiple-species-based allometry and could be applicable for pharmacokinetic predictions at the discovery stage of drug development.
Collapse
Affiliation(s)
- Shogo Matsumoto
- Pharmaceutical Research Labs., Meiji Seika Pharma Co., Ltd., Yokohama, Japan
| | - Shotaro Uehara
- Central Institute for Experimental Animals, Kawasaki, Japan.,Pharmaceutical University, Machida, Tokyo, Japan
| | - Hidetaka Kamimura
- Central Institute for Experimental Animals, Kawasaki, Japan.,Business Promotion Dept., CLEA Japan, Inc., Tokyo, Japan
| | - Hiroshi Ikeda
- Tokyo Animal & Diet Dept., CLEA Japan, Inc., Tokyo, Japan
| | - Satoshi Maeda
- Yaotsu Breeding Center, CLEA Japan, Inc., Gifu, Japan
| | | | - Megumi Nishiwaki
- Fuji Technical Service Center, CLEA Japan, Inc.., Shizuoka, Japan
| | - Kazuhiko Kato
- Pharmaceutical Research Labs., Meiji Seika Pharma Co., Ltd., Yokohama, Japan
| | | |
Collapse
|
9
|
Yang Y, Zhang Y, Ren M, Wang Y, Cairang Z, Lin R, Sun H, Liu J. Association of cytochrome P450 2C19 polymorphisms with coronary heart disease risk: A protocol for systematic review and meta analysis. Medicine (Baltimore) 2020; 99:e23652. [PMID: 33327349 PMCID: PMC7738024 DOI: 10.1097/md.0000000000023652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Polymorphisms in the cytochrome P450 2C19 (CYP2C19) gene have been reported to be associated with coronary heart disease (CHD), but the results were not consistently analyzed among different patient groups. To derive a more precise estimation of these associations, we will conduct a meta-analysis to investigate the polymorphisms of CYP2C19 in all published studies. METHODS Electronic databases (Google Scholar, ISI Web of Science, Pubmed, Embase, China National Knowledge Infrastructure, Wanfang, and China Biological Medicine) will be used to search clinical case-control or cohort studies about CYP2C19 polymorphism and CHD published until November 2020. Two reviewers will independently select the study, extract the data, and evaluate the quality of the study. Odds ratios with 95% confidence interval will be used to evaluate the strength of the association between the CYP2C19 polymorphism and CHD susceptibility under 4 genetic models. Subgroup analysis will be conducted by different ethnicity and genotyping method. Sensitivity analysis will be performed via sequentially omitting each of the included studies 1 at a time. Begg funnel plots and Egger test will be used to examine the potential publication bias. All the statistical analyses will be performed using Review Manager 5.3 and Stata 12.0. RESULTS This study will provide a better understanding of the association between CYP2C19 polymorphisms and coronary heart disease risk. CONCLUSION The publication of this protocol will minimize the possibility of bias due to post hoc changes to the analysis protocol, thus helping to obtain reliable evidence. OSF REGISTRATION NUMBER DOI 10.17605/OSF.IO/R7U93.
Collapse
Affiliation(s)
- Yongxin Yang
- Department of Cardiology, The People's Hospital of Qinghai Province
| | - Yaping Zhang
- Department of Cardiology, The People's Hospital of Qinghai Province
| | - Ming Ren
- Department of Cardiology, Qinghai University Affiliated Hospital
| | - Yonglan Wang
- Department of Cardiology, The People's Hospital of Qinghai Province
| | - Zhuoma Cairang
- Department of Cardiology, The People's Hospital of Qinghai Province
| | - Rongxiang Lin
- Department of Cardiology, The People's Hospital of Qinghai Province
| | - Haixia Sun
- Echocardiography Room, The People's Hospital of Qinghai Province, Xining, China
| | - Jianju Liu
- Department of Cardiology, The People's Hospital of Qinghai Province
| |
Collapse
|
10
|
Son YW, Choi HN, Che JH, Kang BC, Yun JW. Advances in selecting appropriate non-rodent species for regulatory toxicology research: Policy, ethical, and experimental considerations. Regul Toxicol Pharmacol 2020; 116:104757. [PMID: 32758521 DOI: 10.1016/j.yrtph.2020.104757] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
In vivo animal studies are required by regulatory agencies to investigate drug safety before clinical trials. In this review, we summarize the process of selecting a relevant non-rodent species for preclinical studies. The dog is the primary, default non-rodent used in toxicology studies with multiple scientific advantages, including adequate background data and availability. Rabbit has many regulatory advantages as the first non-rodent for the evaluation of reproductive and developmental as well as local toxicity. Recently, minipigs have increasingly replaced dogs and rabbits in toxicology studies due to ethical and scientific advantages including similarity to humans and breeding habits. When these species are not relevant, nonhuman primates (NHPs) can be used as the available animal models, especially in toxicology studies investigating biotherapeutics. Particularly, based on the phylogenetic relationships, the use of New-World marmosets can be considered before Old-World monkeys, especially cynomolgus with robust historical data. Importantly, the use of NHPs should be justified in terms of scientific benefits considering target affinity, expression pattern, and pharmacological cross-reactivity. Strict standards are required for the use of animals. Therefore, this review is helpful for the selection of appropriate non-rodent in regulatory toxicology studies by providing sufficient regulatory, ethical, and scientific data for each species.
Collapse
Affiliation(s)
- Yong-Wook Son
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Ha-Ni Choi
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea
| | - Jeong-Hwan Che
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Byeong-Cheol Kang
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Jun-Won Yun
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, South Korea.
| |
Collapse
|
11
|
Wang T, Du H, Ma J, Shen L, Wei M, Zhao X, Chen L, Li M, Li G, Xing Q, He L, Qin S. Functional characterization of the chlorzoxazone 6-hydroxylation activity of human cytochrome P450 2E1 allelic variants in Han Chinese. PeerJ 2020; 8:e9628. [PMID: 32821545 PMCID: PMC7397980 DOI: 10.7717/peerj.9628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/08/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUNDS Cytochrome P450 (P450) 2E1 is one of the primary enzymes responsible for the metabolism of xenobiotics, such as drugs and environmental carcinogens. The genetic polymorphisms of the CYP2E1 gene in promoter and coding regions have been identified previously in the Han Chinese population from four different geographic areas of Mainland China. METHODS To investigate whether genetic variants identified in the CYP2E1 coding region affect enzyme function, the enzymes of four single nucleotide polymorphism (SNP) variants in the coding region (novel c.1009C>T, causing p.Arg337X, where X represents the translational stop codon; c.227G>A, causing p.Arg76His; c.517G>A, yielding p.Gly173Ser; and c.1263C>T, presenting the highest allele frequency), two novel alleles (c.[227G>A;1263C>T] and c.[517G>A;1263C>T]), and the wild-type CYP2E1 were heterologously expressed in COS-7 cells and functionally characterized in terms of expression level and chlorzoxazone 6-hydroxylation activity. The impact of the CYP2E1 variant sequence on enzyme activity was predicted with three programs: Polyphen 2, PROVEAN and SIFT. RESULTS The prematurely terminated p.Arg337X variant enzyme was undetectable by western blotting and inactive toward chlorzoxazone 6-hydroxylation. The c.1263C>T and c.[517G>A;1263C>T] variant enzymes exhibited properties similar to those of the wild-type CYP2E1. The CYP2E1 variants c.227G>A and c.[227G>A;1263C>T] displayed significantly reduced enzyme activity relative to that of the wild-type enzyme (decreased by 42.8% and 32.8%, respectively; P < 0.01). The chlorzoxazone 6-hydroxylation activity of the c.517G>A transfectant was increased by 31% compared with the wild-type CYP2E1 enzyme (P < 0.01). Positive correlations were observed between the protein content and enzyme activity for CYP2E1 (P = 0.0005, r 2 = 0.8833). The characterization of enzyme function allelic variants in vitro was consistent with the potentially deleterious effect of the amino acid changes as determined by prediction tools. CONCLUSIONS These findings indicate that the genetic polymorphisms of CYP2E1, i.e., c.1009C>T (p.Arg337X), c.227G>A (p.Arg76His), and c.517G>A (p.Gly173Ser), could influence the metabolism of CYP2E1 substrates, such as chlorzoxazone.
Collapse
Affiliation(s)
- Ting Wang
- Bio-X Institutes, Shanghai Jiaotong University, Shanghai, China
| | - Huihui Du
- Bio-X Institutes, Shanghai Jiaotong University, Shanghai, China
| | - Jingsong Ma
- Bio-X Institutes, Shanghai Jiaotong University, Shanghai, China
| | - Lu Shen
- Bio-X Institutes, Shanghai Jiaotong University, Shanghai, China
| | - Muyun Wei
- Bio-X Institutes, Shanghai Jiaotong University, Shanghai, China
| | - Xianglong Zhao
- Bio-X Institutes, Shanghai Jiaotong University, Shanghai, China
| | - Luan Chen
- Bio-X Institutes, Shanghai Jiaotong University, Shanghai, China
| | - Mo Li
- Bio-X Institutes, Shanghai Jiaotong University, Shanghai, China
| | - Guorong Li
- School of Life Sciences, Shandong Normal University, Shandong, China
| | - Qinghe Xing
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lin He
- Bio-X Institutes, Shanghai Jiaotong University, Shanghai, China
- Baoan Maternal and Child Health Hospital, Jinan University, Guangdong, China
| | - Shengying Qin
- Bio-X Institutes, Shanghai Jiaotong University, Shanghai, China
- Collaborative Innovation Center, Jining Medical University, Shandong, China
| |
Collapse
|
12
|
Miura T, Uehara S, Shimizu M, Murayama N, Utoh M, Suemizu H, Yamazaki H. Different Roles of Human Cytochrome P450 2C9 and 3A Enzymes in Diclofenac 4'- and 5-Hydroxylations Mediated by Metabolically Inactivated Human Hepatocytes in Previously Transplanted Chimeric Mice. Chem Res Toxicol 2019; 33:634-639. [PMID: 31854189 DOI: 10.1021/acs.chemrestox.9b00446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To investigate the respective roles of cytochromes P450 2C9 and 3A in drug oxidation in human livers, the in vivo pharmacokinetics of S-warfarin and diclofenac were analyzed after intravenous administrations in chimeric mice that had been transplanted with human hepatocytes. P450 2C9 was metabolically inactivated in the humanized mice by orally pretreating them with tienilic acid. After intravenous administration of S-warfarin, a significant difference in the concentration-time profiles of the primary metabolite 7-hydroxywarfarin between untreated mice and mice treated with tienilic acid was observed. In contrast, there were no apparent differences in the profiles for S-warfarin between the treated and untreated groups. The mean values of the maximum concentrations (Cmax) and the areas under the plasma concentration versus time curves (AUCinfinity) for 7-hydroxywarfarin were significantly lower (22 and 16% of the untreated values, respectively) in the treated group. This presumably resulted from suppressed P450 2C9 activity in the primary oxidative metabolism in vivo in the treated group. After diclofenac administration, plasma levels of diclofenac, 5-hydroxydiclofenac, and diclofenac acylglucuronide were roughly similar in pretreated and untreated mice. However, the mean Cmax and AUCinfinity values for 4'-hydroxydiclofenac were significantly lower (38 and 53% of the untreated group, respectively) in the treated group. The reported value of ∼0.8 for the fraction of S-warfarin metabolized to 7-hydroxywarfarin mediated by P450 2C9 in in vitro systems was similar to the value implied by the present humanized-liver mouse model pretreated with tienilic acid in which the AUC of 7-hydroxywarfarin was reduced by 84%. In contrast, the fractions of diclofenac metabolized to 4'-hydroxydiclofenac in in vitro and in vivo experiments were inconsistent. These results suggested that humanized-liver mice orally treated with tienilic acid might constitute an in vivo model for metabolically inactivated P450 2C9 in human hepatocytes transplanted into chimeric mice. Moreover, diclofenac, a typical in vitro P450 2C9 probe substrate, was cleared differently in vitro and in humanized-liver mice in vivo.
Collapse
Affiliation(s)
- Tomonori Miura
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Tokyo 194-8543 , Japan
| | - Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Tokyo 194-8543 , Japan.,Laboratory Animal Research Department , Central Institute for Experimental Animals , Kawasaki 210-0821 , Japan
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Tokyo 194-8543 , Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Tokyo 194-8543 , Japan
| | - Masahiro Utoh
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Tokyo 194-8543 , Japan
| | - Hiroshi Suemizu
- Laboratory Animal Research Department , Central Institute for Experimental Animals , Kawasaki 210-0821 , Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Tokyo 194-8543 , Japan
| |
Collapse
|
13
|
Uehara S, Uno Y, Yamazaki H. The marmoset cytochrome P450 superfamily: Sequence/phylogenetic analyses, genomic structure, and catalytic function. Biochem Pharmacol 2019; 171:113721. [PMID: 31751534 DOI: 10.1016/j.bcp.2019.113721] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/14/2019] [Indexed: 12/23/2022]
Abstract
The common marmoset (Callithrix jacchus) is a New World monkey that has attracted much attention as a potentially useful primate model for preclinical testing. A total of 36 marmoset cytochrome P450 (P450) isoforms in the P450 1-51 subfamilies have been identified and characterized by the application of genome analysis and molecular functional characterization. In this mini-review, we provide an overview of the genomic structures, sequence identities, and substrate selectivities of marmoset P450s compared with those of human P450s. Based on the sequence identity, phylogeny, and genomic organization of marmoset P450s, orthologous relationships were established between human and marmoset P450s. Twenty-four members of the marmoset P450 1A, 2A, 2B, 2C, 2D, 2E, 3A, 4A, and 4F subfamilies shared high degrees of homology in terms of cDNA (>89%) and amino acid sequences (>85%) with the corresponding human P450s; P450 2C76 was among the exceptions. Phylogenetic analysis using amino acid sequences revealed that marmoset P450s in the P450 1-51 families were located in the same clades as their human and macaque P450 homologs. This finding underlines the evolutionary closeness of marmoset P450s to their human and macaque homologs. Most marmoset P450 1-4 enzymes catalyzed the typical drug-metabolizing reactions of the corresponding human P450 homologs, except for some differences of P450 2A6 and 2B6. Consequently, it appears that the substrate specificities of enzymes in the P450 1-4 families are generally similar in marmosets and humans. The information presented here supports a better understanding of the functional characteristics of marmoset P450s and their similarities and differences with human P450s. It is hoped that this mini-review will facilitate the successful use of marmosets as primate models in drug metabolism and pharmacokinetic studies.
Collapse
Affiliation(s)
- Shotaro Uehara
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-8580, Japan
| | - Hiroshi Yamazaki
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
14
|
Uehara S, Oshio T, Nakanishi K, Tomioka E, Suzuki M, Inoue T, Uno Y, Sasaki E, Yamazaki H. Survey of Drug Oxidation Activities in Hepatic and Intestinal Microsomes of Individual Common Marmosets, a New Nonhuman Primate Animal Model. Curr Drug Metab 2019; 20:103-113. [PMID: 30280664 PMCID: PMC6635653 DOI: 10.2174/1389200219666181003143312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Common marmosets (Callithrix jacchus) are potentially useful nonhuman primate models for preclinical studies. Information for major drug-metabolizing cytochrome P450 (P450) enzymes is now available that supports the use of this primate species as an animal model for drug development. Here, we collect and provide an overview of information on the activities of common marmoset hepatic and intestinal microsomes with respect to 28 typical human P450 probe oxidations. RESULTS Marmoset P450 2D6/8-dependent R-metoprolol O-demethylation activities in hepatic microsomes were significantly correlated with those of midazolam 1'- and 4-hydroxylations, testosterone 6β-hydroxylation, and progesterone 6β-hydroxylation, which are probe reactions for marmoset P450 3A4/5/90. In marmosets, the oxidation activities of hepatic microsomes and intestinal microsomes were roughly comparable for midazolam and terfenadine. Overall, multiple forms of marmoset P450 enzymes in livers and intestines had generally similar substrate recognition functionalities to those of human and/or cynomolgus monkey P450 enzymes. CONCLUSION The marmoset could be a model animal for humans with respect to the first-pass extraction of terfenadine and related substrates. These findings provide a foundation for understanding individual pharmacokinetic and toxicological results in nonhuman primates as preclinical models and will help to further support understanding of the molecular mechanisms of human P450 function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hiroshi Yamazaki
- Address correspondence to this author at the Showa Pharmaceutical University, 3-3165 Higashi-Tamagawa Gakuen, Machida, Tokyo 194-8543, Japan; Tel/Fax: +81-42-721-1406; E-mail:
| |
Collapse
|
15
|
Elfaki I, Mir R, Almutairi FM, Duhier FMA. Cytochrome P450: Polymorphisms and Roles in Cancer, Diabetes and Atherosclerosis. Asian Pac J Cancer Prev 2018; 19:2057-2070. [PMID: 30139042 PMCID: PMC6171375 DOI: 10.22034/apjcp.2018.19.8.2057] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cytochromes P450s (CYPs) constitute a superfamily of enzymes that catalyze the metabolism of drugs and other substances. Endogenous substrates of CYPs include eicosanoids, estradiol, arachidonic acids, cholesterol, vitamin D and neurotransmitters. Exogenous substrates of CYPs include the polycyclic aromatic hydrocarbons and about 80% of currently used drugs. Some isoforms can activate procarcinogens to ultimate carcinogens. Genetic polymorphisms of CYPs may affect the enzyme catalytic activity and have been reported among different populations to be associated with various diseases and adverse drug reactions. With regard of drug metabolism, phenotypes for CYP polymorphism range from ultrarapid to poor metabolizers. In this review, we discuss some of the most clinically important CYPs isoforms (CYP2D6, CYP2A6, CYP2C19, CYP2C9, CYP1B1 and CYP1A2) with respect to gene polymorphisms and drug metabolism. Moreover, we review the role of CYPs in renal, lung, breast and prostate cancers and also discuss their significance for atherosclerosis and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Kingdom of Saudi Arabia.
| | | | | | | |
Collapse
|
16
|
Ono Y, Sugiyama S, Matsushita M, Kitazawa T, Amano T, Uno Y, Ikushiro S, Teraoka H. Limited expression of functional cytochrome p450 2c subtypes in the liver and small intestine of domestic cats. Xenobiotica 2018; 49:627-635. [PMID: 29848168 DOI: 10.1080/00498254.2018.1483543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. Compared to information for herbivores and omnivores, knowledge on xenobiotic metabolism in carnivores is limited. The cytochrome P450 2C (CYP2C) subfamily is recognized as one of the most important CYP groups in human and dog. We identified and characterized CYP2C isoforms and variants in cat, which is an obligate carnivore. 2. Quantitative RT-PCR and immunoblot analyses were carried out to evaluate the expression of CYP2C in the liver and small intestine. A functional CYP2C isoform was heterologously expressed in yeast microsomes to determine the enzymatic activity. 3. Cat had two CYP2C genes, 21 and 41, in the genome; however, CYP2C21P was a pseudogene that had many stop codons. Three splicing variants of CYP2C41 were identified (v1-v3), but only one of them (v1) showed a complete deduced amino acid sequence as CYP2C protein. Transcripts of feline CYP2C41v1 were detected but the amounts were negligible or very small in the liver and small intestine. Immunoreactivity to an antihuman CYP2C antibody was confirmed in the recombinant feline CYP2C41v1 but not in the feline liver. 4. Recombinant feline CYP2C41v1 metabolized several substrates, including dibenzylfluorescein that is specific to human CYP2C. 5. The results suggest a limited role of functional CYP2C isoforms in xenobiotic metabolism in cat.
Collapse
Affiliation(s)
- Yuka Ono
- a School of Veterinary Medicine , Rakuno Gakuen University , Ebetsu , Hokkaido , Japan
| | - Souta Sugiyama
- a School of Veterinary Medicine , Rakuno Gakuen University , Ebetsu , Hokkaido , Japan
| | - Mayu Matsushita
- a School of Veterinary Medicine , Rakuno Gakuen University , Ebetsu , Hokkaido , Japan
| | - Takio Kitazawa
- a School of Veterinary Medicine , Rakuno Gakuen University , Ebetsu , Hokkaido , Japan
| | - Tomoko Amano
- b College of Agriculture Food and Environment Sciences , Rakuno Gakuen University , Ebetsu , Hokkaido , Japan
| | - Yasuhiro Uno
- c Pharmacokinetics and Bioanalysis Center , Shin Nippon Biomedical Laboratories Ltd , Kainan , Wakayama , Japan
| | - Shinichi Ikushiro
- d Department of Biotechnology Faculty of Engineering , Toyama Prefectural University , Imizu , Toyama , Japan
| | - Hiroki Teraoka
- a School of Veterinary Medicine , Rakuno Gakuen University , Ebetsu , Hokkaido , Japan
| |
Collapse
|
17
|
Uno Y, Uehara S, Yamazaki H. Genetic polymorphisms of drug-metabolizing cytochrome P450 enzymes in cynomolgus and rhesus monkeys and common marmosets in preclinical studies for humans. Biochem Pharmacol 2018; 153:184-195. [DOI: 10.1016/j.bcp.2017.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
|
18
|
Shimura K, Murayama N, Tanaka S, Onozeki S, Yamazaki H. Suitable albumin concentrations for enhanced drug oxidation activities mediated by human liver microsomal cytochrome P450 2C9 and other forms predicted with unbound fractions and partition/distribution coefficients of model substrates. Xenobiotica 2018; 49:557-562. [PMID: 29808734 DOI: 10.1080/00498254.2018.1482576] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Albumin has reportedly enhanced cytochrome P450 (P450)-mediated drug oxidation rates in human liver microsomes. Consequently, measurements of clearances and fractions metabolized could vary depending on the experimental albumin concentrations used. In this study, the oxidation rates of diclofenac and warfarin by human liver microsomes were significantly enhanced in the presence of 0.10% (w/v) bovine serum albumin, whereas those of tolbutamide and phenytoin required 1.0% and 2.0% of albumin for significant enhancement. Values of the fractions metabolized by P450 2C9 for four substrates did not markedly change in the presence of albumin at the above-mentioned concentrations. The oxidation rates of bupropion, omeprazole, chlorzoxazone and phenacetin in human liver microsomes were reportedly enhanced by 0.5%, 1%, 2% and 2% of albumin, respectively. Analysis of reported intrinsic clearance values and suitable albumin concentrations for the currently analyzed substrates and the reported substrates revealed an inverse correlation, with warfarin as an outlier. Suitable albumin concentrations were multivariately correlated with physicochemical properties, that is, the plasma unbound fractions, octanol-water partition coefficient and acid dissociation constant (r = 0.98, p<.0001, n = 10). Therefore, multiple physicochemical properties may be determinants of suitable albumin concentrations for substrate oxidations in human liver microsomes.
Collapse
Affiliation(s)
- Kanami Shimura
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| | - Norie Murayama
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| | - Saki Tanaka
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| | - Shunsuke Onozeki
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| | - Hiroshi Yamazaki
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| |
Collapse
|
19
|
In vivo and in vitro diclofenac 5-hydroxylation mediated primarily by cytochrome P450 3A enzymes in common marmoset livers genotyped for P450 2C19 variants. Biochem Pharmacol 2018; 152:272-278. [DOI: 10.1016/j.bcp.2018.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/02/2018] [Indexed: 11/18/2022]
|
20
|
Uno Y, Uehara S, Yamazaki H. Polymorphisms of cytochrome P450 2B6 (CYP2B6) in cynomolgus and rhesus macaques. J Med Primatol 2018; 47:232-237. [PMID: 29468688 DOI: 10.1111/jmp.12336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cytochrome P450 2B6 (CYP2B6) is an important drug-metabolizing enzyme and is expressed in liver. Although human CYP2B6 variants account for variable enzyme properties among individuals and populations, CYP2B6 genetic variants have not been investigated in cynomolgus macaques, widely used in drug metabolism studies. METHODS CYP2B6 was resequenced in 120 cynomolgus macaques and 23 rhesus macaques by direct sequencing. RESULTS Twenty-three non-synonymous variants were found, of which 12 and 3 were unique to cynomolgus macaques and rhesus macaques, respectively. By functional characterization using the 14 variant proteins, 8 variants (V114I, R253C, M435I, V459M, L465P, C475S, R487C, and R487H) showed different rate (>1.5-fold) of testosterone 16β-hydroxylation to wild type. However, the four variants (M435I, L465P, C475S, and R487H) were analyzed in liver microsomes, and the catalytic rates were not substantially different from wild type. CONCLUSIONS Macaque CYP2B6 was polymorphic, and the genotype could partly account for variable enzyme activities of macaque CYP2B6.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Japan
| | - Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| |
Collapse
|
21
|
Oshio T, Uehara S, Uno Y, Inoue T, Sasaki E, Yamazaki H. Marmoset cytochrome P450 2B6, a propofol hydroxylase expressed in liver. Xenobiotica 2018; 49:265-269. [DOI: 10.1080/00498254.2018.1439204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Toru Oshio
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Yasuhiro Uno
- Shin Nippon Biomedical Laboratories, Ltd, Kainan Wakayama, Japan
| | - Takashi Inoue
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Erika Sasaki
- Center of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki, Japan
- Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| |
Collapse
|
22
|
Bi YA, Lin J, Mathialagan S, Tylaska L, Callegari E, Rodrigues AD, Varma MVS. Role of Hepatic Organic Anion Transporter 2 in the Pharmacokinetics of R- and S-Warfarin: In Vitro Studies and Mechanistic Evaluation. Mol Pharm 2018; 15:1284-1295. [DOI: 10.1021/acs.molpharmaceut.7b01108] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yi-an Bi
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research and Development, MS 8220-2451, Groton, Connecticut 06340, United States
| | - Jian Lin
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research and Development, MS 8220-2451, Groton, Connecticut 06340, United States
| | - Sumathy Mathialagan
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research and Development, MS 8220-2451, Groton, Connecticut 06340, United States
| | - Laurie Tylaska
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research and Development, MS 8220-2451, Groton, Connecticut 06340, United States
| | - Ernesto Callegari
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research and Development, MS 8220-2451, Groton, Connecticut 06340, United States
| | - A. David Rodrigues
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research and Development, MS 8220-2451, Groton, Connecticut 06340, United States
| | - Manthena V. S. Varma
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research and Development, MS 8220-2451, Groton, Connecticut 06340, United States
| |
Collapse
|
23
|
Zhu L, He Y, Niu F, Yan M, Li J, Yuan D, Jin T. Polymorphisms of drug-metabolizing enzyme CYP2E1 in Chinese Uygur population. Medicine (Baltimore) 2018; 97:e9970. [PMID: 29443789 PMCID: PMC5839839 DOI: 10.1097/md.0000000000009970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/05/2017] [Accepted: 01/30/2018] [Indexed: 12/14/2022] Open
Abstract
Pharmacogenetics is the genetic basis of pharmacokinetics, genetic testing, and clinical management in diseases. Evaluation about genetic alterations of drug metabolizing enzymes in human genome contributes toward understanding the interindividual and interethnic variability for clinical response to potential toxicants. CYP2E1 gene encodes a drug-metabolizing enzyme that metabolizes mostly small, polar molecules, including toxic laboratory chemicals. The aim of this study was to investigate CYP2E1 polymorphisms and gene profile in a Chinese Uygur population. Frequencies for the CYP2E1 mutated alleles and genotypes were screened in 100 unrelated random healthy Uygur volunteers. PCR and direct sequencing revealed a total of 32 polymorphisms, of which 5 novel mutations were presented. Rs 943975 was the most common single nucleotide polymorphism (SNP). The allele frequencies of CYP2E11A, 4, 7A, and 7C were 65.5, 2, 19.5, and 13%, respectively. The most common genotype combinations were CYP2C191A/1A (43%) and 1A/7C (24%). Functional prediction for 2 nonsynonymous mutations G173S and V179I was performed using MutationTaster, sorting intolerant from tolerant, and PolyPhen-2. The observations of the present study give rise to useful information on CYP2E1 polymorphisms in Chinese Uygur individuals. The results suggest important clinical implications for the use of medications metabolized by CYP2E1 among Uygurs.
Collapse
Affiliation(s)
- Linhao Zhu
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang
| | - Yongjun He
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang
| | - Fanglin Niu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Mengdan Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Jing Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Dongya Yuan
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang
| | - Tianbo Jin
- Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region
- Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region
- Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
24
|
Murayama N, Yajima K, Hikawa M, Shimura K, Ishii Y, Takada M, Uno Y, Utoh M, Iwasaki K, Yamazaki H. Assessment of multiple cytochrome P450 activities in metabolically inactivated human liver microsomes and roles of P450 2C isoforms in reaction phenotyping studies. Biopharm Drug Dispos 2017; 39:116-121. [DOI: 10.1002/bdd.2115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/15/2017] [Accepted: 11/01/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics; Showa Pharmaceutical University; Machida Tokyo 194-8543 Japan
| | - Kanako Yajima
- Laboratory of Drug Metabolism and Pharmacokinetics; Showa Pharmaceutical University; Machida Tokyo 194-8543 Japan
- Pharmacokinetics and Bioanalysis Center; Shin Nippon Biomedical Laboratories, Ltd; Kainan Wakayama Japan
| | - Mikiko Hikawa
- Laboratory of Drug Metabolism and Pharmacokinetics; Showa Pharmaceutical University; Machida Tokyo 194-8543 Japan
| | - Kanami Shimura
- Laboratory of Drug Metabolism and Pharmacokinetics; Showa Pharmaceutical University; Machida Tokyo 194-8543 Japan
| | - Yu Ishii
- Laboratory of Drug Metabolism and Pharmacokinetics; Showa Pharmaceutical University; Machida Tokyo 194-8543 Japan
| | - Masaki Takada
- Laboratory of Drug Metabolism and Pharmacokinetics; Showa Pharmaceutical University; Machida Tokyo 194-8543 Japan
| | - Yasuhiro Uno
- Pharmacokinetics and Bioanalysis Center; Shin Nippon Biomedical Laboratories, Ltd; Kainan Wakayama Japan
| | - Masahiro Utoh
- Laboratory of Drug Metabolism and Pharmacokinetics; Showa Pharmaceutical University; Machida Tokyo 194-8543 Japan
- Pharmacokinetics and Bioanalysis Center; Shin Nippon Biomedical Laboratories, Ltd; Kainan Wakayama Japan
| | - Kazuhide Iwasaki
- Pharmacokinetics and Bioanalysis Center; Shin Nippon Biomedical Laboratories, Ltd; Kainan Wakayama Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics; Showa Pharmaceutical University; Machida Tokyo 194-8543 Japan
| |
Collapse
|
25
|
Kusama T, Toda A, Shimizu M, Uehara S, Inoue T, Uno Y, Utoh M, Sasaki E, Yamazaki H. Association with polymorphic marmoset cytochrome P450 2C19 of in vivo hepatic clearances of chirally separated R-omeprazole and S-warfarin using individual marmoset physiologically based pharmacokinetic models. Xenobiotica 2017; 48:1072-1077. [DOI: 10.1080/00498254.2017.1393121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Akiko Toda
- Shin Nippon Biomedical Laboratories Ltd, Kainan, Wakayama, Japan,
| | | | | | - Takashi Inoue
- Department of Marmoset Research, Central Institute for Experimental Animals, Kawasaki, Japan, and
| | - Yasuhiro Uno
- Shin Nippon Biomedical Laboratories Ltd, Kainan, Wakayama, Japan,
| | - Masahiro Utoh
- Showa Pharmaceutical University, Machida, Tokyo, Japan,
- Shin Nippon Biomedical Laboratories Ltd, Kainan, Wakayama, Japan,
| | - Erika Sasaki
- Department of Marmoset Research, Central Institute for Experimental Animals, Kawasaki, Japan, and
- Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan
| | | |
Collapse
|
26
|
Uehara S, Ishii S, Uno Y, Inoue T, Sasaki E, Yamazaki H. Regio- and Stereo-Selective Oxidation of a Cardiovascular Drug, Metoprolol, Mediated by Cytochrome P450 2D and 3A Enzymes in Marmoset Livers. Drug Metab Dispos 2017; 45:896-899. [PMID: 28495902 DOI: 10.1124/dmd.117.075630] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/10/2017] [Indexed: 02/13/2025] Open
Abstract
A β-blocker, metoprolol, is one of the in vivo probes for human cytochrome P450 (P450) 2D6. Investigation of nonhuman primate P450 enzymes helps to improve the accuracy of the extrapolation of pharmacokinetic data from animals into humans. Common marmosets (Callithrix jacchus) are a potential primate model for preclinical research, but the detailed roles of marmoset P450 enzymes in metoprolol oxidation remain unknown. In this study, regio- and stereo-selectivity of metoprolol oxidations by a variety of P450 enzymes in marmoset and human livers were investigated in vitro. Although liver microsomes from cynomolgus monkeys and rats preferentially mediated S-metoprolol O-demethylation and R-metoprolol α-hydroxylation, respectively, those from humans, marmosets, minipigs, and dogs preferentially mediated R-metoprolol O-demethylation, in contrast to the slow rates of R- and S-metoprolol oxidation in mouse liver microsomes. R- and S-metoprolol O-demethylation activities in marmoset livers were strongly inhibited by quinidine and ketoconazole, and were significantly correlated with bufuralol 1'-hydroxylation and midazolam 1'-hydroxylation activities and also with P450 2D and 3A4 contents, which is different from the case in human livers that did not have any correlations with P450 3A-mediated midazolam 1'-hydroxylation. Recombinant human P450 2D6 enzyme and marmoset P450 2D6/3A4 enzymes effectively catalyzed R-metoprolol O-demethylation, comparable to the activities of human and marmoset liver microsomes, respectively. These results indicated that the major roles of P450 2D enzymes for the regio- and stereo-selectivity of metoprolol oxidation were similar between human and marmoset livers, but the minor roles of P450 3A enzymes were unique to marmosets.
Collapse
Affiliation(s)
- Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., S.I., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Sakura Ishii
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., S.I., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Yasuhiro Uno
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., S.I., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Takashi Inoue
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., S.I., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Erika Sasaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., S.I., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., S.I., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| |
Collapse
|
27
|
Toda A, Uehara S, Inoue T, Utoh M, Kusama T, Shimizu M, Uno Y, Mogi M, Sasaki E, Yamazaki H. Effects of aging and rifampicin pretreatment on the pharmacokinetics of human cytochrome P450 probes caffeine, warfarin, omeprazole, metoprolol and midazolam in common marmosets genotyped for cytochrome P450 2C19. Xenobiotica 2017; 48:720-726. [PMID: 28686070 DOI: 10.1080/00498254.2017.1353716] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
1. The pharmacokinetics were investigated for human cytochrome P450 probes after single intravenous and oral administrations of 0.20 and 1.0 mg/kg, respectively, of caffeine, warfarin, omeprazole, metoprolol and midazolam to aged (10-14 years old, n = 4) or rifampicin-treated/young (3 years old, n = 3) male common marmosets all genotyped as heterozygous for a cytochrome P450 2C19 variant. 2. Slopes of the plasma concentration-time curves after intravenous administration of warfarin and midazolam were slightly, but significantly (two-way analysis of variance), decreased in aged marmosets compared with young marmosets. The mean hepatic clearances determined by in silico fitting for individual pharmacokinetic models of warfarin and midazolam in the aged group were, respectively, 23% and 56% smaller than those for the young group. 3. Significantly enhanced plasma clearances of caffeine, warfarin, omeprazole and midazolam were evident in young marmosets pretreated with rifampicin (25 mg/kg daily for 4 days). Two- to three-fold increases in hepatic intrinsic clearance values were observed in the individual pharmacokinetic models. 4. The in vivo dispositions of multiple simultaneously administered drugs in old, young and P450-enzyme-induced marmosets were elucidated. The results suggest that common marmosets could be experimental models for aged, induced or polymorphic P450 enzymes in P450-dependent drug metabolism studies.
Collapse
Affiliation(s)
- Akiko Toda
- a Shin Nippon Biomedical Laboratories Ltd. , Kainan , Japan
| | - Shotaro Uehara
- b Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Tokyo , Japan
| | - Takashi Inoue
- c Marmoset Research Department, Central Institute for Experimental Animals , Kawasaki , Japan
| | - Masahiro Utoh
- a Shin Nippon Biomedical Laboratories Ltd. , Kainan , Japan.,b Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Tokyo , Japan
| | - Takashi Kusama
- b Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Tokyo , Japan
| | - Makiko Shimizu
- b Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Tokyo , Japan
| | - Yasuhiro Uno
- a Shin Nippon Biomedical Laboratories Ltd. , Kainan , Japan
| | - Masayuki Mogi
- a Shin Nippon Biomedical Laboratories Ltd. , Kainan , Japan
| | - Erika Sasaki
- d Center of Applied Developmental Biology, Central Institute for Experimental Animals , Kawasaki , Japan , and.,e Keio Advanced Research Center, Keio University , Tokyo , Japan
| | - Hiroshi Yamazaki
- b Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Tokyo , Japan
| |
Collapse
|
28
|
Uehara S, Uno Y, Oshio T, Inoue T, Sasaki E, Yamazaki H. Marmoset pulmonary cytochrome P450 2F1 oxidizes biphenyl and 7-ethoxycoumarin and hepatic human P450 substrates. Xenobiotica 2017; 48:656-662. [DOI: 10.1080/00498254.2017.1354138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan,
| | - Yasuhiro Uno
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd, Kainan, Wakayama, Japan,
| | - Toru Oshio
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan,
| | - Takashi Inoue
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki, Japan, and
| | - Erika Sasaki
- Department of Applied Developmental Biology, Central Institute for Experimental Animals, Kawasaki, Japan, and
- Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan,
| |
Collapse
|
29
|
Uehara S, Uno Y, Yamazaki H. Hepatic expression of cytochrome P450 enzymes in non-human primate species. J Med Primatol 2017; 46:347-351. [PMID: 28664555 DOI: 10.1111/jmp.12288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2017] [Indexed: 12/15/2022]
Abstract
Cytochromes P450 (P450) largely remain to be characterized in great apes. Comparative immunochemical detection of drug metabolizing forms of P450s 1A, 2A, 2B, 2C, 2D, 2E, 2J, 3A, 4A, and 4F in liver microsomes from chimpanzees, gorillas, orangutans, gibbons, cynomolgus and rhesus macaques, and common marmosets were carried out.
Collapse
Affiliation(s)
- Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Yasuhiro Uno
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan.,Laboratory of Translational Research, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| |
Collapse
|
30
|
Uehara S, Uno Y, Tomioka E, Inoue T, Sasaki E, Yamazaki H. Functional characterization and tissue expression of marmoset cytochrome P450 2E1. Biopharm Drug Dispos 2017; 38:394-397. [DOI: 10.1002/bdd.2080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/22/2017] [Accepted: 04/30/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics; Showa Pharmaceutical University; Machida Tokyo 194-8543 Japan
| | - Yasuhiro Uno
- Pharmacokinetics and Bioanalysis Center; Shin Nippon Biomedical Laboratories, Ltd.; Kainan Wakayama Japan
| | - Etsuko Tomioka
- Laboratory of Drug Metabolism and Pharmacokinetics; Showa Pharmaceutical University; Machida Tokyo 194-8543 Japan
| | - Takashi Inoue
- Department of marmoset research; Central Institute for Experimental Animals; Kawasaki Japan
| | - Erika Sasaki
- Department of marmoset research; Central Institute for Experimental Animals; Kawasaki Japan
- Keio Advanced Research Center; Keio University; Minato-ku Tokyo Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics; Showa Pharmaceutical University; Machida Tokyo 194-8543 Japan
| |
Collapse
|
31
|
Uehara S, Uno Y, Nakanishi K, Ishii S, Inoue T, Sasaki E, Yamazaki H. Marmoset Cytochrome P450 3A4 Ortholog Expressed in Liver and Small-Intestine Tissues Efficiently Metabolizes Midazolam, Alprazolam, Nifedipine, and Testosterone. Drug Metab Dispos 2017; 45:457-467. [PMID: 28196829 DOI: 10.1124/dmd.116.074898] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/10/2017] [Indexed: 01/31/2023] Open
Abstract
Common marmosets (Callithrix jacchus), small New World primates, are increasingly attracting attention as potentially useful animal models for drug development. However, characterization of cytochrome P450 (P450) 3A enzymes involved in the metabolism of a wide variety of drugs has not investigated in marmosets. In this study, sequence homology, tissue distribution, and enzymatic properties of marmoset P450 3A4 ortholog, 3A5 ortholog, and 3A90 were investigated. Marmoset P450 3A forms exhibited high amino acid sequence identities (88-90%) to the human and cynomolgus monkey P450 3A orthologs and evolutionary closeness to human and cynomolgus monkey P450 3A orthologs compared with other P450 3A enzymes. Among the five marmoset tissues examined, P450 3A4 ortholog mRNA was abundant in livers and small intestines where P450 3A4 ortholog proteins were immunologically detected. Three marmoset P450 3A proteins heterologously expressed in Escherichia coli membranes catalyzed midazolam 1'- and 4-hydroxylation, alprazolam 4-hydroxylation, nifedipine oxidation, and testosterone 6β-hydroxylation, similar to cynomolgus monkey and human P450 3A enzymes. Among the marmoset P450 3A enzymes, P450 3A4 ortholog effectively catalyzed midazolam 1'-hydroxylation, comparable to microsomes from marmoset livers and small intestines. Correlation analyses with 23 individual marmoset liver microsomes suggested contributions of P450 3A enzymes to 1'-hydroxylation of both midazolam (human P450 3A probe) and bufuralol (human P450 2D6 probe), similar to cynomolgus monkey P450 3A enzymes. These results indicated that marmoset P450 3A forms had functional characteristics roughly similar to cynomolgus monkeys and humans in terms of tissue expression patterns and catalytic activities, suggesting marmosets as suitable animal models for P450 3A-dependent drug metabolism.
Collapse
Affiliation(s)
- Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., K.N., S.I., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology (T.I.), and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Yasuhiro Uno
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., K.N., S.I., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology (T.I.), and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Kazuyuki Nakanishi
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., K.N., S.I., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology (T.I.), and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Sakura Ishii
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., K.N., S.I., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology (T.I.), and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Takashi Inoue
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., K.N., S.I., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology (T.I.), and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Erika Sasaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., K.N., S.I., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology (T.I.), and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., K.N., S.I., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology (T.I.), and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| |
Collapse
|
32
|
Uno Y, Uehara S, Yamazaki H. Utility of non-human primates in drug development: Comparison of non-human primate and human drug-metabolizing cytochrome P450 enzymes. Biochem Pharmacol 2016; 121:1-7. [DOI: 10.1016/j.bcp.2016.06.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/14/2016] [Indexed: 01/15/2023]
|
33
|
Uehara S, Kawano M, Murayama N, Uno Y, Utoh M, Inoue T, Sasaki E, Yamazaki H. Oxidation of R- and S-omeprazole stereoselectively mediated by liver microsomal cytochrome P450 2C19 enzymes from cynomolgus monkeys and common marmosets. Biochem Pharmacol 2016; 120:56-62. [DOI: 10.1016/j.bcp.2016.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/14/2016] [Indexed: 10/21/2022]
|
34
|
Yamazaki H. Differences in Toxicological and Pharmacological Responses Mediated by Polymorphic Cytochromes P450 and Related Drug-Metabolizing Enzymes. Chem Res Toxicol 2016; 30:53-60. [PMID: 27750412 DOI: 10.1021/acs.chemrestox.6b00286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Research over the past 30 years has elucidated the roles of polymorphic human liver cytochrome P450 (P450) enzymes associated with toxicological and/or pharmacological actions. Thalidomide exerts its various pharmacological and toxic actions in primates through multiple mechanisms, including nonspecific modification of many protein networks after bioactivation by autoinduced human P450 enzymes. To overcome species differences between rodents, currently, nonhuman primates and/or mouse models with transplanted human hepatocytes are used. Interindividual variability of P450-dependent drug clearances in cynomolgus monkeys and common marmosets is partly accounted for by polymorphic P450 variants and/or aging, just as it is in humans with increased prevalence of polypharmacy. Genotyping of P450 genes in nonhuman primates would be beneficial before and/or after drug metabolism and toxicity testing and evaluation as well in humans. Genome-wide association studies in humans have been rapidly advanced; however, unique whole-gene deletion of P450 2A6 was subsequently developed to cover nicotine-related lung cancer risk study. Regarding polypharmacy, toxicological research should generally be aimed at identifying the risk of adverse drug events following specific potential drug exposures by examining single or multiple metabolic pathways involving single or multiple drug-metabolizing enzymes. Current and next-generation research of drug metabolism and disposition resulting in drug toxicity would be addressed under advanced knowledge of polymorphic and age-related intra- and/or interspecies differences of drug-metabolizing enzymes. In the near future, humanized animal models combining transplanted hepatocytes and a humanized immune system may be available to study human immune reactions caused by human-type drug metabolites. Such sophisticated models should provide preclinical predictions of human drug metabolism and potential toxicity.
Collapse
Affiliation(s)
- Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University , 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
35
|
Uehara S, Uno Y, Ishii S, Inoue T, Sasaki E, Yamazaki H. Marmoset cytochrome P450 4A11, a novel arachidonic acid and lauric acid ω-hydroxylase expressed in liver and kidney tissues. Xenobiotica 2016; 47:553-561. [PMID: 27435360 DOI: 10.1080/00498254.2016.1206673] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. A cDNA encoding novel cytochrome P450 (P450) 4A enzyme was cloned from marmoset livers by reverse transcription (RT)-polymerase chain reaction (PCR) based on the marmoset genome sequences. The amino acid sequence deduced from P450 4A11 cDNA contained consensus sequences of six substrate recognition sites and one heme-binding domain. 2. Marmoset P450 4A11, highly identical (85-88%) to cynomolgus monkey and human P450 4A enzymes, was grouped into the same cluster as cynomolgus monkey and human P450 4A enzymes by phylogenetic analysis. 3. The tissue distribution analyses by real-time RT PCR and immunoblotting demonstrated that marmoset P450 4A11 mRNA and proteins were expressed in kidneys and livers. Marmoset P450 4A11 enzyme heterologously expressed in Escherichia coli preferentially catalyzed the ω-hydroxylation of arachidonic acid and lauric acid, similar to cynomolgus monkey and human P450 4A11 enzymes. However, lauric acid ω-hydroxylation activity of marmoset P450 4A11 was low compared with those of marmoset liver microsomes. 4. These results indicated that novel marmoset P450 4A11 was also a fatty acid ω-hydroxylase expressed in kidneys and livers, with the same regioselectivity (at ω-position of fatty acid) as cynomolgus monkey and human P450 4A enzymes.
Collapse
Affiliation(s)
- Shotaro Uehara
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| | - Yasuhiro Uno
- b Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd , Kainan , Wakayama , Japan
| | - Sakura Ishii
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| | - Takashi Inoue
- c Central Institute for Experimental Animals , Kawasaki , Japan , and
| | - Erika Sasaki
- c Central Institute for Experimental Animals , Kawasaki , Japan , and.,d Keio Advanced Research Center, Keio University , Minato-ku, Tokyo , Japan
| | - Hiroshi Yamazaki
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| |
Collapse
|
36
|
Uehara S, Uno Y, Inoue T, Kawano M, Shimizu M, Toda A, Utoh M, Sasaki E, Yamazaki H. Individual Differences in Metabolic Clearance of S-Warfarin Efficiently Mediated by Polymorphic Marmoset Cytochrome P450 2C19 in Livers. Drug Metab Dispos 2016; 44:911-5. [PMID: 27098744 DOI: 10.1124/dmd.116.070383] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/19/2016] [Indexed: 02/13/2025] Open
Abstract
Marmoset cytochrome P450 2C19, highly homologous to human P450 2C9 and 2C19, has been identified in common marmosets (Callithrix jacchus), a nonhuman primate species used in drug metabolism studies. Although genetic variants in human and macaque P450 2C genes account for the interindividual variability in drug metabolism, genetic variants have not been investigated in the marmoset P450 2C19 In this study, sequencing of P450 2C19 in 24 marmosets identified three variants p.[(Phe7Leu; Ser254Leu; Ile469Thr)], which showed substantially reduced metabolic capacity of S-warfarin compared with the wild-type group in vivo and in vitro. Although mean plasma concentrations of R-warfarin in marmosets determined after chiral separation were similar between the homozygous mutant and wild-type groups up to 24 hours after the intravenous and oral administrations of racemic warfarin, S-warfarin depletion from plasma was significantly faster in the three wild-type marmosets compared with the three homozygous mutant marmosets. These variants, cosegregating in the marmosets analyzed, influenced metabolic activities in 18 marmoset liver microsomes because the homozygotes and heterozygotes showed significantly reduced catalytic activities in liver microsomes toward S-warfarin 7-hydroxylation compared with the wild-type group. Kinetic analysis for S-warfarin 7-hydroxylation indicated that the recombinant P450 2C19 Ser254Leu variant would change the metabolic capacity. These results indicated that the interindividual variability of P450 2C-dependent drug metabolism such as S-warfarin clearance is at least partly accounted for by P450 2C19 variants in marmosets, suggesting that polymorphic P450 2C-dependent catalytic functions are relatively similar between marmosets and humans.
Collapse
Affiliation(s)
- Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., M.K., M.S., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U., A.T., M.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Yasuhiro Uno
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., M.K., M.S., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U., A.T., M.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Takashi Inoue
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., M.K., M.S., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U., A.T., M.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Mirai Kawano
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., M.K., M.S., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U., A.T., M.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., M.K., M.S., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U., A.T., M.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Akiko Toda
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., M.K., M.S., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U., A.T., M.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Masahiro Utoh
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., M.K., M.S., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U., A.T., M.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Erika Sasaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., M.K., M.S., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U., A.T., M.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., M.K., M.S., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U., A.T., M.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| |
Collapse
|
37
|
Uehara S, Uno Y, Yuki Y, Inoue T, Sasaki E, Yamazaki H. A New Marmoset P450 4F12 Enzyme Expressed in Small Intestines and Livers Efficiently Metabolizes Antihistaminic Drug Ebastine. Drug Metab Dispos 2016; 44:833-41. [PMID: 27044800 DOI: 10.1124/dmd.116.070367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/01/2016] [Indexed: 01/08/2023] Open
Abstract
Common marmosets (Callithrix jacchus) are attracting attention as animal models in preclinical studies for drug development. However, cytochrome P450s (P450s), major drug-metabolizing enzymes, have not been fully identified and characterized in marmosets. In this study, based on the four novel P450 4F genes found on the marmoset genome, we successfully isolated P450 4F2, 4F3B, 4F11, and 4F12 cDNAs in marmoset livers. Deduced amino acid sequences of the four marmoset P450 4F forms exhibited high sequence identities (87%-93%) to the human and cynomolgus monkey P450 4F homologs. Marmoset P450 4F3B and 4F11 mRNAs were predominantly expressed in livers, whereas marmoset P450 4F2 and 4F12 mRNAs were highly expressed in small intestines and livers. Four marmoset P450 4F proteins heterologously expressed in Escherichia coli catalyzed the ω-hydroxylation of leukotriene B4 In addition, marmoset P450 4F12 effectively catalyzed the hydroxylation of antiallergy drug ebastine, a human P450 2J/4F probe substrate. Ebastine hydroxylation activities by small intestine and liver microsomes from marmosets and cynomolgus monkeys showed greatly higher values than those of humans. Ebastine hydroxylation activities by marmoset and cynomolgus monkey small intestine microsomes were inhibited (approximately 60%) by anti-P450 4F antibodies, unlike human small intestine microsomes, suggesting that contribution of P450 4F enzymes for ebastine hydroxylation in the small intestine might be different between marmosets/cynomolgus monkeys and humans. These results indicated that marmoset P450 4F2, 4F3B, 4F11, and 4F12 were expressed in livers and/or small intestines and were functional in the metabolism of endogenous and exogenous compounds, similar to those of cynomolgus monkeys and humans.
Collapse
Affiliation(s)
- Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., Y.Y., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Yasuhiro Uno
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., Y.Y., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Yukako Yuki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., Y.Y., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Takashi Inoue
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., Y.Y., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Erika Sasaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., Y.Y., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan (S.U., Y.Y., H.Y.); Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan (Y.U.); Department of Applied Developmental Biology (T.I.) and Center of Applied Developmental Biology (E.S.), Central Institute for Experimental Animals, Kawasaki, Japan; and Keio Advanced Research Center, Keio University, Minato-ku, Tokyo, Japan (E.S.)
| |
Collapse
|
38
|
Uehara S, Uno Y, Inoue T, Okamoto E, Sasaki E, Yamazaki H. Marmoset cytochrome P450 2J2 mainly expressed in small intestines and livers effectively metabolizes human P450 2J2 probe substrates, astemizole and terfenadine. Xenobiotica 2016; 46:977-85. [PMID: 26899760 DOI: 10.3109/00498254.2016.1146366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. Common marmoset (Callithrix jacchus), a New World Monkey, has potential to be a useful animal model in preclinical studies. However, drug metabolizing properties have not been fully understood due to insufficient information on cytochrome P450 (P450), major drug metabolizing enzymes. 2. Marmoset P450 2J2 cDNA was isolated from marmoset livers. The deduced amino acid sequence showed a high-sequence identity (91%) with cynomolgus monkey and human P450 2J2 enzymes. A phylogenetic tree revealed that marmoset P450 2J2 was evolutionarily closer to cynomolgus monkey and human P450 2J2 enzymes, than P450 2J forms in pigs, rabbits, rats or mice. 3. Marmoset P450 2J2 mRNA was abundantly expressed in the small intestine and liver, and to a lesser extent in the brain, lung and kidney. Immunoblot analysis also showed expression of marmoset P450 2J2 protein in the small intestine and liver. 4. Enzyme assays using marmoset P450 2J2 protein heterologously expressed in Escherichia coli indicated that marmoset P450 2J2 effectively catalyzed astemizole O-demethylation and terfenadine t-butyl hydroxylation, similar to human and cynomolgus monkey P450 2J2 enzymes. 5. These results suggest the functional characteristics of P450 2J2 enzymes are similar among marmosets, cynomolgus monkeys and humans.
Collapse
Affiliation(s)
- Shotaro Uehara
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| | - Yasuhiro Uno
- b Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd , Kainan , Wakayama , Japan
| | - Takashi Inoue
- c Department of Applied Developmental Biology , Central Institute for Experimental Animals , Kawasaki , Japan , and
| | - Eriko Okamoto
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| | - Erika Sasaki
- c Department of Applied Developmental Biology , Central Institute for Experimental Animals , Kawasaki , Japan , and.,d Keio Advanced Research Center, Keio University , Minato-Ku, Tokyo , Japan
| | - Hiroshi Yamazaki
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| |
Collapse
|
39
|
Uehara S, Uno Y, Inoue T, Sasaki E, Yamazaki H. Molecular Cloning, Tissue Distribution, and Functional Characterization of Marmoset Cytochrome P450 1A1, 1A2, and 1B1. Drug Metab Dispos 2016; 44:8-15. [PMID: 26502772 DOI: 10.1124/dmd.115.067561] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/23/2015] [Indexed: 11/22/2022] Open
Abstract
The common marmoset (Callithrix jacchus), a New World monkey, has potential to be an animal model for drug metabolism studies. In this study, we identified and characterized cytochrome P450 (P450) 1A1 and 1B1 in addition to the known P450 1A2 in marmosets. Marmoset P450 1A1 and 1B1 cDNA contained open reading frames encoding 512 and 543 amino acids, respectively, with high sequence identities (90%-93%) to other primate P450 1A1s and 1B1s. A phylogenetic tree based on amino acid sequences showed close evolutionary relationships among marmoset, macaque, and human P450 1A and 1B enzymes. By mRNA quantification and immunoblot analyses in five marmoset tissues, P450 1A1 was mainly expressed in lungs and small intestines, and P450 1A2 was expressed predominantly in livers. In contrast, P450 1B1 was expressed in all tissues tested. Marmoset P450 1A1, 1A2, and 1B1 heterologously expressed in Escherichia coli catalyzed 7-ethoxyresorufin O-deethylation, 7-ethoxycoumarin O-deethylation, and phenacetin O-deethylation, similar to those of humans and cynomolgus monkeys. Notably, marmoset P450 1A1 and 1A2 more efficiently catalyzed 7-ethoxyresorufin O-deethylation than those of the human homologs, but were comparable to those of the cynomolgus monkey homologs. Additionally, marmoset P450 1B1 preferentially catalyzed estradiol 4-hydroxylation; however, rat P450 1B1 more favorably catalyzed estradiol 2-hydroxylation, indicating that the estradiol hydroxylation specificity of marmoset P450 1B1 was similar to those of human and cynomolgus monkey P450 1B1. These results indicated that marmoset P450 1A and 1B enzymes had functional characteristics similar to those of humans and cynomolgus monkeys, suggesting that P450 1A and 1B-dependent metabolism was similar among marmosets, cynomolgus monkeys, and humans.
Collapse
|
40
|
Uehara S, Uno Y, Inoue T, Suzuki T, Utoh M, Sasaki E, Yamazaki H. Caffeine 7-N-demethylation andC-8-oxidation mediated by liver microsomal cytochrome P450 enzymes in common marmosets. Xenobiotica 2015; 46:573-578. [DOI: 10.3109/00498254.2015.1096980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|