1
|
Fashe MM, Tiley JB, Lee CR. Mechanisms of altered hepatic drug disposition during pregnancy: small molecules. Expert Opin Drug Metab Toxicol 2025; 21:445-462. [PMID: 39992297 PMCID: PMC11961323 DOI: 10.1080/17425255.2025.2470792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/01/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
INTRODUCTION Pregnancy alters the systemic exposure and clearance of many hepatically cleared drugs that are commonly used by obstetric patients. Understanding the molecular mechanisms underlying the changes in factors that affect hepatic drug clearance (blood flow, protein binding, and intrinsic clearance) is essential to more precisely predict systemic drug exposure and dose requirements in obstetric patients. AREAS COVERED This review (1) summarizes the anatomic, physiologic, and biochemical changes in maternal hepatic, cardiovascular, endocrine, and renal systems relevant to hepatic drug clearance and (2) reviews the molecular mechanisms underlying the altered hepatic metabolism and intrinsic clearance of drugs during pregnancy via a comprehensive PubMed search. It also identifies knowledge gaps in the molecular mechanisms and factors that modulate hepatic drug clearance during pregnancy. EXPERT OPINION Pharmacokinetic studies have shown that pregnancy alters systemic exposure, protein binding, and clearance of many drugs during gestation in part due to pregnancy-associated decreases in plasma albumin, increases in organ blood flow, and changes in the activity of drug-metabolizing enzymes (DMEs) and transporters. The changes in the activity of certain DMEs and transporters during pregnancy are likely driven by hormonal-changes that inhibit their activity or alter the expression of these proteins through activation of transcription factors.
Collapse
Affiliation(s)
- Muluneh M. Fashe
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill
| | - Jacqueline B. Tiley
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill
| | - Craig R. Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill
| |
Collapse
|
2
|
Yue M, Kus L, Katta S, Su I, Li L, Haas DM, Quinney SK. Pharmacokinetics of Antidepressants in Pregnancy. J Clin Pharmacol 2023; 63 Suppl 1:S137-S158. [PMID: 37317494 PMCID: PMC10442696 DOI: 10.1002/jcph.2282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/08/2023] [Indexed: 06/16/2023]
Abstract
Depression is common in pregnant women. However, the rate of antidepressant treatment in pregnancy is significantly lower than in nonpregnant women. Although some antidepressants may cause potential risks to the fetus, not treating or withdrawing the treatment is associated with relapsing and adverse pregnancy outcomes such as preterm birth. Pregnancy-associated physiologic changes can alter pharmacokinetics (PK) and may impact dosing requirements during pregnancy. However, pregnant women are largely excluded from PK studies. Dose extrapolation from the nonpregnant population could lead to ineffective doses or increased risk of adverse events. To better understand PK changes during pregnancy and guide dosing decisions, we conducted a literature review to catalog PK studies of antidepressants in pregnancy, with a focus on maternal PK differences from the nonpregnant population and fetal exposure. We identified 40 studies on 15 drugs, with most data from patients taking selective serotonin reuptake inhibitors and venlafaxine. Most of the studies have relatively poor quality, with small sample sizes, reporting concentrations at delivery only, a large amount of missing data, and not including times and adequate dose information. Only four studies collected multiple samples following a dose and reported PK parameters. In general, there are limited data available regarding PK of antidepressants in pregnancy and deficiencies in data reporting. Future studies should provide accurate information on drug dosing and timing of dose, PK sample collection, and individual-level PK data.
Collapse
Affiliation(s)
- Min Yue
- Purdue University College of Pharmacy, Indianapolis, IN
| | - Lauren Kus
- Indiana University School of Medicine, Indianapolis, IN
| | - Shilpa Katta
- School of Informatics and Computing, Indiana University, Purdue University Indianapolis, Indianapolis, IN
| | - Isaac Su
- Indiana University School of Medicine, Indianapolis, IN
| | - Lang Li
- The Ohio State University College of Medicine, Columbus, OH
| | - David M. Haas
- Indiana University School of Medicine, Indianapolis, IN
| | | |
Collapse
|
3
|
Fay EE, Czuba LC, Sager JE, Shum S, Stephenson-Famy A, Isoherranen N. Pregnancy Has No Clinically Significant Effect on the Pharmacokinetics of Bupropion or Its Metabolites. Ther Drug Monit 2021; 43:780-788. [PMID: 33814540 PMCID: PMC8426418 DOI: 10.1097/ftd.0000000000000885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/16/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Bupropion (BUP) is a chiral antidepressant and smoking cessation aide with benefits and side effects correlated with parent and active metabolite concentrations. BUP is metabolized by CYP2B6, CYP2C19, and CYP3A4 to hydroxy-BUP (OH-BUP) as well as by 11β-hydroxysteroid dehydrogenase-1 and aldo-keto reductases to threohydrobupropion (Threo) and erythrohydrobupropion (Erythro), respectively. As pregnancy alters the activity of drug-metabolizing enzymes, the authors hypothesized that BUP metabolism and BUP metabolite concentrations would be altered during pregnancy, potentially affecting the efficacy and safety of BUP in pregnant women. METHODS Pregnant women (n = 8) taking BUP chronically were enrolled, and steady-state plasma samples and dosing interval urine samples were collected during pregnancy and postpartum. Maternal and umbilical cord venous blood samples were collected at delivery from 3 subjects, and cord blood/maternal plasma concentration ratios were calculated. The concentrations of BUP stereoisomers and their metabolites were measured. Paired t tests were used to compare pharmacokinetic parameters during pregnancy and postpartum. RESULTS No significant changes were observed in the steady-state plasma concentrations, metabolite to parent ratios, formation clearances, or renal clearance of any of the compounds during pregnancy when compared with postpartum. The umbilical cord venous plasma concentrations of BUP and its metabolites were 30%-60% lower than maternal plasma concentrations. CONCLUSIONS This study showed that there are no clinically meaningful differences in the stereoselective disposition of BUP or its metabolites during pregnancy, indicating that dose adjustment during pregnancy may not be necessary. The results also showed that the placenta provides a partial barrier for bupropion and its metabolite distribution to the fetus, with possible placental efflux transport of bupropion and its metabolites.
Collapse
Affiliation(s)
- Emily E. Fay
- Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA
| | - Lindsay C. Czuba
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, WA
| | - Jennifer E Sager
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, WA
| | - Sara Shum
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, WA
| | - Alyssa Stephenson-Famy
- Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, WA
| |
Collapse
|
4
|
Eum S, Sayre F, Lee AM, Stingl JC, Bishop JR. Association of CYP2B6 genetic polymorphisms with bupropion and hydroxybupropion exposure: A systematic review and meta-analysis. Pharmacotherapy 2021; 42:34-44. [PMID: 34752647 DOI: 10.1002/phar.2644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Bupropion is metabolized to its active metabolite, hydroxybupropion (HB), by the genetically polymorphic cytochrome P450 2B6 (CYP2B6) enzyme. Despite its significant role in bupropion metabolism, the magnitude of the impact of CYP2B6 genotype on the exposure of bupropion has not been quantified. OBJECTIVES A systematic review and meta-analysis was conducted to quantify the association of bupropion and HB exposure with CYP2B6 variant alleles and genotype-defined metabolizer phenotypes. METHODS MEDLINE, EMBASE, Web of Science, Scifinder, PsycINFO, and CENTRAL were screened to identify studies that met the following inclusion criteria (search updated on February 2021): (1) area under the plasma drug concentration-time curve (AUC) of bupropion and/or HB in relation to CYP2B6 genotypes was studied, and (2) study participants were genotyped for common CYP2B6 variant alleles including at least CYP2B6*6. The Newcastle Ottawa Scale was used to assess risk of bias in each included study. The ratio of means (RoM) between CYP2B6 genotype or genotype-defined phenotype groups for bupropion exposure was calculated for each study and combined in a meta-analysis. RESULTS Eleven studies met the inclusion criteria for this systematic review, and 10 (including N = 413 participants) were included in the meta-analysis. All 10 studies involved healthy adult volunteers, where other medications were not allowed. The AUCs of HB and the active moiety (bupropion + HB) were significantly reduced in CYP2B6*6 carriers compared with the non-carriers (HB: RoM 0.77, 95% CI 0.71-0.83; active moiety: RoM 0.81, 95% CI 0.75-0.88). Both CYP2B6 poor and intermediate metabolizers had significantly decreased exposures to HB and the active moiety than normal metabolizers. CONCLUSION The CYP2B6*6 allele and genotype-determined CYP2B6 poor and intermediate metabolizer phenotypes are associated with significantly lower exposures to HB and the total active moiety. The findings of this study suggest opportunities to further study precision dosing strategies for bupropion therapy based on CYP2B6 genotype.
Collapse
Affiliation(s)
- Seenae Eum
- Department of Pharmacogenomics, School of Pharmacy, Shenandoah University, Fairfax, Virginia, USA
| | - Franklin Sayre
- Librarian Department, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Adam M Lee
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julia C Stingl
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Psychiatry and Behavioral Sciences, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Desta Z, El-Boraie A, Gong L, Somogyi AA, Lauschke VM, Dandara C, Klein K, Miller NA, Klein TE, Tyndale RF, Whirl-Carrillo M, Gaedigk A. PharmVar GeneFocus: CYP2B6. Clin Pharmacol Ther 2021; 110:82-97. [PMID: 33448339 DOI: 10.1002/cpt.2166] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
The Pharmacogene Variation Consortium (PharmVar) catalogs star (*) allele nomenclature for the polymorphic human CYP2B6 gene. Genetic variation within the CYP2B6 gene locus impacts the metabolism or bioactivation of clinically important drugs. Of particular importance are efficacy and safety concerns regarding: efavirenz, which is used for the treatment of HIV type-1 infection; methadone, a mainstay in the treatment of opioid use disorder and as an analgesic; ketamine, used as an antidepressant and analgesic; and bupropion, which is prescribed to treat depression and for smoking cessation. This GeneFocus provides a comprehensive overview and summary of CYP2B6 and describes how haplotype information catalogued by PharmVar is utilized by the Pharmacogenomics Knowledgebase (PharmGKB) and the Clinical Pharmacogenetics Implementation Consortium (CPIC).
Collapse
Affiliation(s)
- Zeruesenay Desta
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ahmed El-Boraie
- Centre for Addiction and Mental Health and Departments of Pharmacology & Toxicology, and Psychiatry, University of Toronto, Toronto, Canada
| | - Li Gong
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Andrew A Somogyi
- Discipline of Pharmacology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology & Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kathrin Klein
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Neil A Miller
- Genomic Medicine Center, Children's Mercy, Kansas City, Missouri, USA.,School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Teri E Klein
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Rachel F Tyndale
- Centre for Addiction and Mental Health and Departments of Pharmacology & Toxicology, and Psychiatry, University of Toronto, Toronto, Canada
| | | | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy, Kansas City, Missouri, USA.,School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
6
|
Marok FZ, Fuhr LM, Hanke N, Selzer D, Lehr T. Physiologically Based Pharmacokinetic Modeling of Bupropion and Its Metabolites in a CYP2B6 Drug-Drug-Gene Interaction Network. Pharmaceutics 2021; 13:331. [PMID: 33806634 PMCID: PMC8001859 DOI: 10.3390/pharmaceutics13030331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/22/2021] [Accepted: 02/27/2021] [Indexed: 12/22/2022] Open
Abstract
The noradrenaline and dopamine reuptake inhibitor bupropion is metabolized by CYP2B6 and recommended by the FDA as the only sensitive substrate for clinical CYP2B6 drug-drug interaction (DDI) studies. The aim of this study was to build a whole-body physiologically based pharmacokinetic (PBPK) model of bupropion including its DDI-relevant metabolites, and to qualify the model using clinical drug-gene interaction (DGI) and DDI data. The model was built in PK-Sim® applying clinical data of 67 studies. It incorporates CYP2B6-mediated hydroxylation of bupropion, metabolism via CYP2C19 and 11β-HSD, as well as binding to pharmacological targets. The impact of CYP2B6 polymorphisms is described for normal, poor, intermediate, and rapid metabolizers, with various allele combinations of the genetic variants CYP2B6*1, *4, *5 and *6. DDI model performance was evaluated by prediction of clinical studies with rifampicin (CYP2B6 and CYP2C19 inducer), fluvoxamine (CYP2C19 inhibitor) and voriconazole (CYP2B6 and CYP2C19 inhibitor). Model performance quantification showed 20/20 DGI ratios of hydroxybupropion to bupropion AUC ratios (DGI AUCHBup/Bup ratios), 12/13 DDI AUCHBup/Bup ratios, and 7/7 DDGI AUCHBup/Bup ratios within 2-fold of observed values. The developed model is freely available in the Open Systems Pharmacology model repository.
Collapse
Affiliation(s)
| | | | | | | | - Thorsten Lehr
- Clinical Pharmacy, Saarland University, 66123 Saarbrücken, Germany; (F.Z.M.); (L.M.F.); (N.H.); (D.S.)
| |
Collapse
|
7
|
Mohamed MF, Minocha M, Trueman S, Feng T, Enejosa J, Fisniku O, Othman AA. Characterization of the Effect of Upadacitinib on the Pharmacokinetics of Bupropion, a Sensitive Cytochrome P450 2B6 Probe Substrate. Clin Pharmacol Drug Dev 2021; 10:299-306. [PMID: 32648334 PMCID: PMC7984436 DOI: 10.1002/cpdd.844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/01/2020] [Indexed: 01/30/2023]
Abstract
This phase 1 study characterized the effect of multiple doses of upadacitinib, an oral Janus kinase 1 selective inhibitor, on the pharmacokinetics of the cytochrome P450 (CYP) 2B6 substrate bupropion. Healthy subjects (n = 22) received a single oral dose of bupropion 150 mg alone (study period 1) and on day 12 of a 16-day regimen of upadacitinib 30 mg once daily (study period 2). Serial blood samples for measurement of bupropion and hydroxybupropion plasma concentrations were collected in each study period. The central values (90% confidence intervals) for the ratios of change were 0.87 (0.79-0.96) for bupropion maximum plasma concentration (Cmax ), 0.92 (0.87-0.98) for bupropion area under the plasma-concentration time curve from time 0 to infinity (AUCinf ), 0.78 (0.72-0.85) for hydroxybupropion Cmax , and 0.72 (0.67-0.78) for hydroxybupropion AUCinf when administered with, relative to when administered without, upadacitinib. After multiple-dose administration of upadacitinib 30 mg once daily, upadacitinib mean ± SD AUC0-24 was 641 ± 177 ng·h/mL, and Cmax was 83.3 ± 30.7 ng/mL. These results confirm that upadacitinib has no relevant effect on pharmacokinetics of substrates metabolized by CYP2B6.
Collapse
|
8
|
Lin YS, Thummel KE, Thompson BD, Totah RA, Cho CW. Sources of Interindividual Variability. Methods Mol Biol 2021; 2342:481-550. [PMID: 34272705 DOI: 10.1007/978-1-0716-1554-6_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The efficacy, safety, and tolerability of drugs are dependent on numerous factors that influence their disposition. A dose that is efficacious and safe for one individual may result in sub-therapeutic or toxic blood concentrations in others. A significant source of this variability in drug response is drug metabolism, where differences in presystemic and systemic biotransformation efficiency result in variable degrees of systemic exposure (e.g., AUC, Cmax, and/or Cmin) following administration of a fixed dose.Interindividual differences in drug biotransformation have been studied extensively. It is recognized that both intrinsic factors (e.g., genetics, age, sex, and disease states) and extrinsic factors (e.g., diet , chemical exposures from the environment, and the microbiome) play a significant role. For drug-metabolizing enzymes, genetic variation can result in the complete absence or enhanced expression of a functional enzyme. In addition, upregulation and downregulation of gene expression, in response to an altered cellular environment, can achieve the same range of metabolic function (phenotype), but often in a less predictable and time-dependent manner. Understanding the mechanistic basis for variability in drug disposition and response is essential if we are to move beyond the era of empirical, trial-and-error dose selection and into an age of personalized medicine that will improve outcomes in maintaining health and treating disease.
Collapse
Affiliation(s)
- Yvonne S Lin
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA.
| | - Kenneth E Thummel
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Brice D Thompson
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Rheem A Totah
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Christi W Cho
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Stäuble CK, Lampert ML, Mikoteit T, Hatzinger M, Hersberger KE, Meyer Zu Schwabedissen HE. Nonresponse to high-dose bupropion for depression in a patient carrying CYP2B6*6 and CYP2C19*17 variants: a case report. Pharmacogenomics 2020; 21:1145-1150. [PMID: 33124517 DOI: 10.2217/pgs-2020-0087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report the case of a patient with major depression treated with high-dose bupropion due to prior detected subtherapeutic blood concentrations at standard dosing. Pharmacogenetic panel testing identified the patient as a carrier of the CYP2B6*6 allele, which has been associated with reduced bupropion metabolism and decreased concentrations of the pharmacologically active metabolite hydroxybupropion. Interestingly, we also found the patient to be homozygous for the CYP2C19*17 allele, predicting an ultra rapid metabolizer phenotype. We propose a combined effect of the detected CYP2C19 and CYP2B6 genetic variants on bupropion metabolism. This case underlines the potential benefit of pre-emptive pharmacogenotyping but also the yet still fragmentary evidence making precise pharmacogenotype guided antidepressant selection and dosing challenging.
Collapse
Affiliation(s)
- Céline K Stäuble
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, 4056, Basel, Switzerland.,Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, 4001, Basel, Switzerland
| | - Markus L Lampert
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, 4001, Basel, Switzerland.,Institute of Hospital Pharmacy, Solothurner Spitäler, 4600, Olten, Switzerland
| | - Thorsten Mikoteit
- Psychiatric Services Solothurn, Solothurner Spitäler, 4503, Solothurn, Switzerland
| | - Martin Hatzinger
- Psychiatric Services Solothurn, Solothurner Spitäler, 4503, Solothurn, Switzerland
| | - Kurt E Hersberger
- Pharmaceutical Care, Department of Pharmaceutical Sciences, University of Basel, 4001, Basel, Switzerland
| | | |
Collapse
|
10
|
Gaebler AJ, Schneider KL, Stingl JC, Paulzen M. Subtherapeutic bupropion and hydroxybupropion serum concentrations in a patient with CYP2C19*1/*17 genotype suggesting a rapid metabolizer status. THE PHARMACOGENOMICS JOURNAL 2020; 20:840-844. [PMID: 32475982 DOI: 10.1038/s41397-020-0169-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 05/09/2020] [Accepted: 05/18/2020] [Indexed: 11/09/2022]
Abstract
Bupropion is hydroxylated to its primary active metabolite hydroxybupropion by cytochrome P450 enzyme CYP2B6. In vitro data suggest the existence of alternative hydroxylation pathways mediated by the highly polymorphic enzyme CYP2C19. However, the impact of its genetic variants on bupropion metabolism in vivo is still under investigation. We report the case of a 28-year-old male Caucasian outpatient suffering from major depressive disorder who did not respond to a treatment with bupropion. Therapeutic drug monitoring revealed very low serum concentrations of both bupropion and hydroxybupropion. Genotyping identified a heterozygous status for the gain-of-function allele with the genotype CYP2C19*1/*17 predicting enhanced enzymatic activity. The present case shows a reduced bupropion efficacy, which may be explained by a reduced active moiety of bupropion and its active metabolite hydroxybupropion, due to alternative hydroxylation pathways mediated by CYP2C19 in an individual with CYP2C19 rapid metabolizer status. The case report thus illustrates the clinical relevance of therapeutic drug monitoring in combination with pharmacogenetics diagnostics for a personalized treatment approach.
Collapse
Affiliation(s)
- Arnim Johannes Gaebler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany. .,JARA-Translational Brain Medicine, Aachen, Germany.
| | - Katharina Luise Schneider
- Research Division, Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany.,Centre for Translational Medicine, Medical Faculty of the University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Julia Carolin Stingl
- Institute of Clinical Pharmacology, Medical Faculty, RWTH Aachen, Wendlingweg 2, 52074, Aachen, Germany
| | - Michael Paulzen
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.,JARA-Translational Brain Medicine, Aachen, Germany.,Alexianer Hospital Aachen, Alexianergraben 33, 52062, Aachen, Germany
| |
Collapse
|
11
|
Naves MPC, de Morais CR, Spanó MA, de Rezende AAA. Mutagenicity and recombinogenicity evaluation of bupropion hydrochloride and trazodone hydrochloride in somatic cells of Drosophila melanogaster. Food Chem Toxicol 2019; 131:110557. [DOI: 10.1016/j.fct.2019.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 12/15/2022]
|
12
|
Balta G, Dalla C, Kokras N. Women's Psychiatry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1192:225-249. [PMID: 31705497 DOI: 10.1007/978-981-32-9721-0_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Brain disorders and mental diseases, in particular, are common and considered as a top global health challenge for the twenty-first century. Interestingly, women suffer more frequently from mental disorders than men. Moreover, women may respond to psychotropic drugs differently than men, and, through their lifespan, they endure sex-orientated social stressors. In this chapter, we present how women may differ in the development and manifestation of mental health issues and how they differ from men in pharmacokinetics and pharmacodynamics. We discuss issues in clinical trials regarding women participation, issues in the use of psychotropic medications in pregnancy, and challenges that psychiatry faces as a result of the wider use of contraceptives, of childbearing at older age, and of menopause. Such issues, among others, demand further women-oriented psychiatric research that can improve the care for women during the course of their lives. Indeed, despite all these known sex differences, psychiatry for both men and women patients uses the same approach. Thereby, a modified paradigm for women's psychiatry, which takes into account all these differences, emerges as a necessity, and psychiatric research should take more vigorously into account sex differences.
Collapse
Affiliation(s)
- Georgia Balta
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece. .,First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
13
|
Abstract
Introduction: Tobacco use is the most preventable cause of death worldwide, with over 7 million deaths per year. Smoking during pregnancy causes harm to the mother, fetus, and can result in problems for the infant from childhood into adulthood. Practitioners should ask all expectant mothers about tobacco use. For expectant mothers who smoke or recently quit, practitioners should advice to quit and provide psychosocial interventions. Rates of smoking during pregnancy differ between geographical locations, with estimates of 10.8% in the UK and 7.2% in the US. Practitioners should provide expectant mothers unable to quit smoking with information about the risks and benefits of pharmacotherapy and use a patient-centered approach to determine the use. Although there is no definitive evidence on birth outcomes, nicotine replacement therapy and bupropion are adequate pharmacotherapies to help those unable to quit. Areas covered: Herein, this author looks at the various pharmaceutical strategies to help patients cease smoking and provides expert perspectives on the subject. Expert opinion: Additional research on pharmacotherapy is warranted, especially with varenicline. Practitioners working with pregnant patients should be familiar with the evidence for pharmacotherapy in smoking cessation during pregnancy. This evidence can be difficult to navigate due to conflicting results and limitations with the trials.
Collapse
Affiliation(s)
- Jose Barboza
- a Department of Pharmacotherapeutics & Clinical Research , University of South Florida College of Pharmacy , Tampa , FL , USA
| |
Collapse
|
14
|
Baraona LK, Lovelace D, Daniels JL, McDaniel L. Tobacco Harms, Nicotine Pharmacology, and Pharmacologic Tobacco Cessation Interventions for Women. J Midwifery Womens Health 2017; 62:253-269. [PMID: 28556464 DOI: 10.1111/jmwh.12616] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/25/2017] [Accepted: 02/02/2017] [Indexed: 01/13/2023]
Abstract
Firsthand and secondhand tobacco use is linked to a multitude of harmful illnesses, adverse perinatal outcomes, and death. Cessation attempts among women may be hampered by their unique biologic response to nicotine. Current research has revealed epigenetic changes from intrauterine nicotine exposure that have intergenerational consequences. Multiple studies have demonstrated the efficacy of various pharmacologic tobacco cessation interventions in conjunction with behavioral counseling. Based on this evidence, the US Preventative Services Task Force (USPSTF) 2015 guideline recommends pharmacologic therapy for all nonpregnant persons who smoke in addition to behavioral counseling. The effectiveness of pharmacologic treatments among pregnant women is less clear, with far fewer studies evaluating potential benefits and harms. While exposure to pharmacologic therapies raises concerns for fetal safety, these potential risks must be weighed against those of continued tobacco use, which guarantees fetal exposure to nicotine. First-line tobacco cessation medications include nicotine replacement therapy (NRT), bupropion, and varenicline. Second-line medications include nortriptyline and clonidine. Pharmacokinetics, effectiveness, regimens, and safety profiles for nonpregnant, pregnant, and lactating women are reviewed. Alternative tobacco cessation options and potential new pharmacologic tobacco cessation agents are discussed. Initiating brief interventions, using the 5A's and 5R's model is described.
Collapse
|
15
|
Nanovskaya TN, Oncken C, Fokina VM, Feinn RS, Clark SM, West H, Jain SK, Ahmed MS, Hankins GDV. Bupropion sustained release for pregnant smokers: a randomized, placebo-controlled trial. Am J Obstet Gynecol 2017; 216:420.e1-420.e9. [PMID: 27890648 PMCID: PMC5376363 DOI: 10.1016/j.ajog.2016.11.1036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/02/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Bupropion is used to treat depression during pregnancy. However, its usefulness as a smoking cessation aid for pregnant women is not fully known. OBJECTIVE The objective of the study was to evaluate the preliminary efficacy of bupropion sustained release for smoking cessation during pregnancy. STUDY DESIGN We conducted a randomized, prospective, double-blind, placebo-controlled, pilot trial. Pregnant women who smoked daily received individualized behavior counseling and were randomly assigned to a 12 week, twice-a-day treatment with 150 mg bupropion sustained release or placebo. The primary study objectives were to determine whether bupropion sustained release reduces nicotine withdrawal symptoms on the quit date and during the treatment period compared with placebo and whether it increases 7 day point prevalence abstinence at the end of the treatment period and at the end of pregnancy. RESULTS Subjects in the bupropion (n = 30) and placebo (n = 35) groups were comparable in age, smoking history, number of daily smoked cigarettes, and nicotine dependence. After controlling for maternal age and race, bupropion sustained release reduced cigarette cravings (1.5 ± 1.1 vs 2.1 ± 1.2, P = .02) and total nicotine withdrawal symptoms (3.8 ± 4.3 vs 5.4 ± 5.1, P = .028) during the treatment period. Administration of bupropion sustained release reduced tobacco exposure, as determined by levels of carbon monoxide in exhaled air (7.4 ± 6.4 vs 9.1 ± 5.8, P = .053) and concentrations of cotinine in urine (348 ± 384 ng/mL vs 831 ± 727 ng/mL, P = .007) and increased overall abstinence rates during treatment (19% vs 2%, P = .003). However, there was no significant difference in 7 day point prevalence abstinence rates between the 2 groups at the end of medication treatment (17% vs 3%, P = .087) and at the end of pregnancy (10% vs 3%, P = .328). CONCLUSION Individual smoking cessation counseling along with the twice-daily use of 150 mg bupropion sustained release increased smoking cessation rates and reduced cravings and total nicotine withdrawal symptoms during the treatment period. However, there was no significant difference in abstinence rates between groups at the end of medication treatment and at the end of pregnancy, likely because of the small sample size. A larger study is needed to confirm these findings and to examine the potential benefit/ risk ratio of bupropion sustained release for smoking cessation during pregnancy.
Collapse
Affiliation(s)
- Tatiana N Nanovskaya
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, TX
| | - Cheryl Oncken
- University of Connecticut School of Medicine, Farmington, CT
| | - Valentina M Fokina
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, TX
| | - Richard S Feinn
- Quinnipiac University, Frank H Netter, MD, School of Medicine, North Haven, CT
| | - Shannon M Clark
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, TX
| | - Holly West
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, TX
| | - Sunil K Jain
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, TX
- Department of Pediatrics, The University of Texas Medical Branch at Galveston, TX
| | - Mahmoud S Ahmed
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, TX
| | - Gary D V Hankins
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, TX
| |
Collapse
|