1
|
Jung SM, Zhu HJ. Regulation of Human Hydrolases and Its Implications in Pharmacokinetics and Pharmacodynamics. Drug Metab Dispos 2024; 52:1139-1151. [PMID: 38777597 PMCID: PMC11495669 DOI: 10.1124/dmd.123.001609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Hydrolases represent an essential class of enzymes indispensable for the metabolism of various clinically essential medications. Individuals exhibit marked differences in the expression and activation of hydrolases, resulting in significant variability in the pharmacokinetics (PK) and pharmacodynamics (PD) of drugs metabolized by these enzymes. The regulation of hydrolase expression and activity involves both genetic polymorphisms and nongenetic factors. This review examines the current understanding of genetic and nongenetic regulators of six clinically significant hydrolases, including carboxylesterase (CES)-1 CES2, arylacetamide deacetylase (AADAC), paraoxonase (PON)-1 PON3, and cathepsin A (CTSA). We explore genetic variants linked to the expression and activity of the hydrolases and their effects on the PK and PD of their substrate drugs. Regarding nongenetic regulators, we focus on the inhibitors and inducers of these enzymes. Additionally, we examine the developmental expression patterns and gender differences in the hydrolases when pertinent information was available. Many genetic and nongenetic regulators were found to be associated with the expression and activity of the hydrolases and PK and PD. However, hydrolases remain generally understudied compared with other drug-metabolizing enzymes, such as cytochrome P450s. The clinical significance of genetic and nongenetic regulators has not yet been firmly established for the majority of hydrolases. Comprehending the mechanisms that underpin the regulation of these enzymes holds the potential to refine therapeutic regimens, thereby enhancing the efficacy and safety of drugs metabolized by the hydrolases. SIGNIFICANCE STATEMENT: Hydrolases play a crucial role in the metabolism of numerous clinically important medications. Genetic polymorphisms and nongenetic regulators can affect hydrolases' expression and activity, consequently influencing the exposure and clinical outcomes of hydrolase substrate drugs. A comprehensive understanding of hydrolase regulation can refine therapeutic regimens, ultimately enhancing the efficacy and safety of drugs metabolized by the enzymes.
Collapse
Affiliation(s)
- Sun Min Jung
- Departments of Pharmaceutical Sciences (S.M.J.) and Clinical Pharmacy (H.-J.Z.), University of Michigan, Ann Arbor, Michigan
| | - Hao-Jie Zhu
- Departments of Pharmaceutical Sciences (S.M.J.) and Clinical Pharmacy (H.-J.Z.), University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
2
|
Hussain M, Basheer S, Khalil A, Haider QUA, Saeed H, Faizan M. Pharmacogenetic study of CES1 gene and enalapril efficacy. J Appl Genet 2024; 65:463-471. [PMID: 38261266 DOI: 10.1007/s13353-024-00831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Enalapril is an orally administered angiotensin-converting enzyme inhibitor which is widely prescribed to treat hypertension, chronic kidney disease, and heart failure. It is an ester prodrug that needs to be activated by carboxylesterase 1 (CES1). CES1 is a hepatic hydrolase that in vivo biotransforms enalapril to its active form enalaprilat in order to produce its desired pharmacological impact. Several single nucleotide polymorphisms in CES1 gene are reported to alter the catalytic activity of CES1 enzyme and influence enalapril metabolism. G143E, L40T, G142E, G147C, Y170D, and R171C can completely block the enalapril metabolism. Some polymorphisms like Q169P, E220G, and D269fs do not completely block the CES1 function; however, they reduce the catalytic activity of CES1 enzyme. The prevalence of these polymorphisms is not the same among all populations which necessitate to consider the genetic panel of respective population before prescribing enalapril. These genetic variations are also responsible for interindividual variability of CES1 enzyme activity which ultimately affects the pharmacokinetics and pharmacodynamics of enalapril. The current review summarizes the CES1 polymorphisms which influence the enalapril metabolism and efficacy. The structure of CES1 catalytic domain and important amino acids impacting the catalytic activity of CES1 enzyme are also discussed. This review also highlights the importance of pharmacogenomics in personalized medicine.
Collapse
Affiliation(s)
- Misbah Hussain
- Department of Biotechnology, University of Sargodha, Sagodha, Pakistan.
| | - Sehrish Basheer
- Department of Biotechnology, University of Sargodha, Sagodha, Pakistan
| | - Adila Khalil
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | | | - Hafsa Saeed
- Department of Biotechnology, University of Sargodha, Sagodha, Pakistan
| | - Muhammad Faizan
- Rai Medical College Sargodha, Islamabad Road, Sargodha, Pakistan
| |
Collapse
|
3
|
Hou S, Liu H, Hu Y, Zhang J, Deng X, Li Z, Zhang Y, Li X, Li Y, Ma L, Yao J, Chen X. Discovery of a novel homocysteine thiolactone hydrolase and the catalytic activity of its natural variants. Protein Sci 2024; 33:e5098. [PMID: 38980003 PMCID: PMC11232049 DOI: 10.1002/pro.5098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024]
Abstract
Homocysteine thiolactone (HTL), a toxic metabolite of homocysteine (Hcy) in hyperhomocysteinemia (HHcy), is known to modify protein structure and function, leading to protein damage through formation of N-Hcy-protein. HTL has been highly linked to HHcy-associated cardiovascular and neurodegenerative diseases. The protective role of HTL hydrolases against HTL-associated vascular toxicity and neurotoxicity have been reported. Although several endogeneous enzymes capable of hydrolyzing HTL have been identified, the primary enzyme responsible for its metabolism remains unclear. In this study, three human carboxylesterases were screened to explore new HTL hydrolase and human carboxylesterase 1 (hCES1) demonstrates the highest catalytic activity against HTL. Given the abundance of hCES1 in the liver and the clinical significance of its single-nucleotide polymorphisms (SNPs), six common hCES1 nonsynonymous coding SNP (nsSNPs) variants were examined and characterized for their kinetic parameters. Variants E220G and G143E displayed 7.3-fold and 13.2-fold lower catalytic activities than its wild-type counterpart. In addition, the detailed catalytic mechanism of hCES1 for HTL hydrolysis was computational investigated and elucidated by Quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) method. The function of residues E220 and G143 in sustaining its hydrolytic activity of hCES1 was analyzed, and the calculated energy difference aligns well with experimental-derived results, supporting the validity of our computational insights. These findings provide insights into the potential protective role of hCES1 against HTL-associated toxicity, and warrant future studies on the possible association between specific genetic variants of hCES1 with impaired catalytic function and clinical susceptibility of HTL-associated cardiovascular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Shurong Hou
- School of Pharmacy, Hangzhou Normal UniversityHangzhouZhejiangChina
| | - Huan Liu
- School of Pharmacy, Hangzhou Normal UniversityHangzhouZhejiangChina
| | - Yihui Hu
- School of Pharmacy, Hangzhou Normal UniversityHangzhouZhejiangChina
| | - Jie Zhang
- School of Pharmacy, Hangzhou Normal UniversityHangzhouZhejiangChina
| | - Xingyu Deng
- Shanghai Key Laboratory of New Drug DesignSchool of Pharmacy, East China University of Science and TechnologyShanghaiChina
| | - Zhenzhen Li
- School of Pharmacy, Hangzhou Normal UniversityHangzhouZhejiangChina
| | - Yun Zhang
- School of Pharmacy, Hangzhou Normal UniversityHangzhouZhejiangChina
| | - Xiaoxuan Li
- School of Pharmacy, Hangzhou Normal UniversityHangzhouZhejiangChina
| | - Yishuang Li
- School of Pharmacy, Hangzhou Normal UniversityHangzhouZhejiangChina
| | - Lei Ma
- Shanghai Key Laboratory of New Drug DesignSchool of Pharmacy, East China University of Science and TechnologyShanghaiChina
| | - Jianzhuang Yao
- School of Biological Science and Technology, University of JinanJinanChina
| | - Xiabin Chen
- School of Pharmacy, Hangzhou Normal UniversityHangzhouZhejiangChina
| |
Collapse
|
4
|
Liu Y, Li J, Zhu HJ. Regulation of carboxylesterases and its impact on pharmacokinetics and pharmacodynamics: an up-to-date review. Expert Opin Drug Metab Toxicol 2024; 20:377-397. [PMID: 38706437 PMCID: PMC11151177 DOI: 10.1080/17425255.2024.2348491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
INTRODUCTION Carboxylesterase 1 (CES1) and carboxylesterase 2 (CES2) are among the most abundant hydrolases in humans, catalyzing the metabolism of numerous clinically important medications, such as methylphenidate and clopidogrel. The large interindividual variability in the expression and activity of CES1 and CES2 affects the pharmacokinetics (PK) and pharmacodynamics (PD) of substrate drugs. AREAS COVERED This review provides an up-to-date overview of CES expression and activity regulations and examines their impact on the PK and PD of CES substrate drugs. The literature search was conducted on PubMed from inception to January 2024. EXPERT OPINION Current research revealed modest associations of CES genetic polymorphisms with drug exposure and response. Beyond genomic polymorphisms, transcriptional and posttranslational regulations can also significantly affect CES expression and activity and consequently alter PK and PD. Recent advances in plasma biomarkers of drug-metabolizing enzymes encourage the research of plasma protein and metabolite biomarkers for CES1 and CES2, which could lead to the establishment of precision pharmacotherapy regimens for drugs metabolized by CESs. Moreover, our understanding of tissue-specific expression and substrate selectivity of CES1 and CES2 has shed light on improving the design of CES1- and CES2-activated prodrugs.
Collapse
Affiliation(s)
- Yaping Liu
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Jiapeng Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California
| | - Hao-Jie Zhu
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
5
|
Nagaoka M, Sakai Y, Nakajima M, Fukami T. Role of carboxylesterase and arylacetamide deacetylase in drug metabolism, physiology, and pathology. Biochem Pharmacol 2024; 223:116128. [PMID: 38492781 DOI: 10.1016/j.bcp.2024.116128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/20/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Carboxylesterases (CES1 and CES2) and arylacetamide deacetylase (AADAC), which are expressed primarily in the liver and/or gastrointestinal tract, hydrolyze drugs containing ester and amide bonds in their chemical structure. These enzymes often catalyze the conversion of prodrugs, including the COVID-19 drugs remdesivir and molnupiravir, to their pharmacologically active forms. Information on the substrate specificity and inhibitory properties of these enzymes, which would be useful for drug development and toxicity avoidance, has accumulated. Recently,in vitroandin vivostudies have shown that these enzymes are involved not only in drug hydrolysis but also in lipid metabolism. CES1 and CES2 are capable of hydrolyzing triacylglycerol, and the deletion of their orthologous genes in mice has been associated with impaired lipid metabolism and hepatic steatosis. Adeno-associated virus-mediated human CES overexpression decreases hepatic triacylglycerol levels and increases fatty acid oxidation in mice. It has also been shown that overexpression of CES enzymes or AADAC in cultured cells suppresses the intracellular accumulation of triacylglycerol. Recent reports indicate that AADAC can be up- or downregulated in tumors of various organs, and its varied expression is associated with poor prognosis in patients with cancer. Thus, CES and AADAC not only determine drug efficacy and toxicity but are also involved in pathophysiology. This review summarizes recent findings on the roles of CES and AADAC in drug metabolism, physiology, and pathology.
Collapse
Affiliation(s)
- Mai Nagaoka
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yoshiyuki Sakai
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
6
|
Jiang R, Xia Y, Liu Q, Zhang H, Yang X, He L, Cheng D. Carboxylesterase-activated near-infrared fluorescence probe for highly sensitive imaging of liver tumors. J Mater Chem B 2024; 12:1530-1537. [PMID: 38251432 DOI: 10.1039/d3tb02759g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Carboxylesterases (CESs) are critical for metabolizing ester-containing biomolecules and are specifically important in liver metabolic disorders. The modulation of CESs is also an important issue in pharmacology and clinical applications. Herein, we present a near-infrared (NIR) CES fluorescent probe (NCES) based on the protection-deprotection of the hydroxyl group for monitoring CES levels in living systems. The NCES probe has good selectivity and sensitivity for CESs with a limit of detection (LOD) of 5.24 mU mL-1, which allows for tracing the fluctuation of cellular CES after treatment with anticancer drugs and under inflammation and apoptosis states. Furthermore, NCES can be successfully applied for guiding liver cancer surgery with high-contrast in vivo imaging and detecting clinical serum samples from liver cancer patients. This work showed that the NCES probe has great potential in drug development, imaging applications for medical diagnosis, and early-stage detection for clinical liver diseases.
Collapse
Affiliation(s)
- Renfeng Jiang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China.
| | - Yuqing Xia
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China.
| | - Qian Liu
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China.
| | - Hongshuai Zhang
- Department of Gastroenterology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan Province, China.
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China.
| | - Xuefeng Yang
- Department of Gastroenterology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan Province, China.
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China.
| | - Longwei He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China.
| | - Dan Cheng
- Department of Gastroenterology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan Province, China.
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China.
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China.
| |
Collapse
|
7
|
Luo HY, Gao LC, Long HZ, Zhou ZW, Xu SG, Li FJ, Li HL, Cheng Y, Li CX, Peng XY, Li L, Chen R, Deng P. Association between the NEP rs701109 polymorphism and the clinical efficacy and safety of sacubitril/valsartan in Chinese patients with heart failure. Eur J Clin Pharmacol 2023; 79:663-670. [PMID: 36976322 DOI: 10.1007/s00228-023-03484-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVE Sacubitril/valsartan is a commonly used medicine for treating heart failure (HF) patients, but the treatment effects significantly vary. Neprilysin (NEP) and carboxylesterase 1 (CES1) play an important role in the efficacy of sacubitril/valsartan. The purpose of this study was to explore the relationship between NEP and CES1 gene polymorphisms and the efficacy and safety of sacubitril/valsartan treatment in HF patients. METHODS Genotyping of 10 single nucleotide polymorphisms (SNPs) of the NEP and CES1 genes in 116 HF patients was performed by the Sequenom MassARRAY method, and logistic regression and haplotype analysis were used to evaluate the associations between SNPs and the clinical efficacy and safety of sacubitril/valsartan in HF patients. RESULTS A total of 116 Chinese patients with HF completed the whole trial, and T variations in rs701109 in NEP gene were an independent risk factor (P = 0.013, OR = 3.292, 95% CI:1.287-8.422) for the clinical efficacy of sacubitril/valsartan. Furthermore, haplotype analysis of 6 NEP SNPs (including rs701109) was performed and showed that the CGTACC and TGTACC haplotypes were significantly associated with clinical efficacy (OR = 0.095, 95%CI: 0.012-0.723, P = 0.003; OR = 5.586, 95% CI: 1.621-19.248, P = 0.005). Moreover, no association was found between SNPs of other selected genes in terms of efficacy in HF patients, and no association was observed between SNPs and symptomatic hypotension. CONCLUSION Our results suggest an association between rs701109 and sacubitril/valsartan response in HF patients. Symptomatic hypotension is not associated with the presence of NEP polymorphisms.
Collapse
Affiliation(s)
- Hong-Yu Luo
- School of Pharmacy, Department of Pharmacy, Phase I Clinical Trial Centre, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsha, 410004, China
| | - Li-Chen Gao
- School of Pharmacy, Department of Pharmacy, Phase I Clinical Trial Centre, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China.
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsha, 410004, China.
| | - Hui-Zhi Long
- School of Pharmacy, Department of Pharmacy, Phase I Clinical Trial Centre, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsha, 410004, China
| | - Zi-Wei Zhou
- School of Pharmacy, Department of Pharmacy, Phase I Clinical Trial Centre, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsha, 410004, China
| | - Shuo-Guo Xu
- School of Pharmacy, Department of Pharmacy, Phase I Clinical Trial Centre, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsha, 410004, China
| | - Feng-Jiao Li
- School of Pharmacy, Department of Pharmacy, Phase I Clinical Trial Centre, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsha, 410004, China
| | - Hong-Li Li
- School of Pharmacy, Department of Pharmacy, Phase I Clinical Trial Centre, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsha, 410004, China
| | - Yan Cheng
- School of Pharmacy, Department of Pharmacy, Phase I Clinical Trial Centre, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsha, 410004, China
| | - Cai-Xia Li
- School of Pharmacy, Department of Pharmacy, Phase I Clinical Trial Centre, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xing-Yu Peng
- School of Pharmacy, Department of Pharmacy, Phase I Clinical Trial Centre, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Liang Li
- School of Pharmacy, Department of Pharmacy, Phase I Clinical Trial Centre, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ran Chen
- School of Pharmacy, Department of Pharmacy, Phase I Clinical Trial Centre, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsha, 410004, China
| | - Ping Deng
- School of Pharmacy, Department of Pharmacy, Phase I Clinical Trial Centre, the Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsha, 410004, China
| |
Collapse
|
8
|
Her L, Shi J, Wang X, He B, Smith LS, Jiang H, Zhu H. Identification of regulatory variants of carboxylesterase 1 (CES1): A proof-of-concept study for the application of the Allele-Specific Protein Expression (ASPE) assay in identifying cis-acting regulatory genetic polymorphisms. Proteomics 2023; 23:e2200176. [PMID: 36413357 PMCID: PMC10077986 DOI: 10.1002/pmic.202200176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
It is challenging to study regulatory genetic variants as gene expression is affected by both genetic polymorphisms and non-genetic regulators. The mRNA allele-specific expression (ASE) assay has been increasingly used for the study of cis-acting regulatory variants because cis-acting variants affect gene expression in an allele-specific manner. However, poor correlations between mRNA and protein expressions were observed for many genes, highlighting the importance of studying gene expression regulation at the protein level. In the present study, we conducted a proof-of-concept study to utilize a recently developed allele-specific protein expression (ASPE) assay to identify the cis-acting regulatory variants of CES1 using a large set of human liver samples. The CES1 gene encodes for carboxylesterase 1 (CES1), the most abundant hepatic hydrolase in humans. Two cis-acting regulatory variants were found to be significantly associated with CES1 ASPE, CES1 protein expression, and its catalytic activity on enalapril hydrolysis in human livers. Compared to conventional gene expression-based approaches, ASPE demonstrated an improved statistical power to detect regulatory variants with small effect sizes since allelic protein expression ratios are less prone to the influence of non-genetic regulators (e.g., diseases and inducers). This study suggests that the ASPE approach is a powerful tool for identifying cis-regulatory variants.
Collapse
Affiliation(s)
- Lucy Her
- Eli Lilly and CompanyIndianapolisIndianaUSA
| | - Jian Shi
- Alliance Pharma, IncMalvernPennsylvaniaUSA
| | - Xinwen Wang
- Department of Pharmaceutical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Bing He
- Department of Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMichiganUSA
| | - Logan S. Smith
- Department of Clinical PharmacyUniversity of MichiganAnn ArborMichiganUSA
| | - Hui Jiang
- Department of BiostatisticsUniversity of MichiganAnn ArborMichiganUSA
| | - Hao‐Jie Zhu
- Department of Clinical PharmacyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
9
|
Singh A, Gao M, Karns CJ, Spidle TP, Beck MW. Carbonate-Based Fluorescent Chemical Tool for Uncovering Carboxylesterase 1 (CES1) Activity Variations in Live Cells. Chembiochem 2022; 23:e202200069. [PMID: 35255177 DOI: 10.1002/cbic.202200069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/05/2022] [Indexed: 11/08/2022]
Abstract
Carboxylesterase 1 (CES1) plays a key role in the metabolism of endogenous biomolecules and xenobiotics including a variety of pharmaceuticals. Despite the established importance of CES1 in drug metabolism, methods to study factors that can vary CES1 activity are limited with only a few suitable for use in live cells. Herein, we report the development of FCP1, a new CES1 specific fluorescent probe with a unique carbonate substrate constructed from commercially available reagents. We show that FCP-1 can specifically report on endogenous CES1 activity with a robust fluorescence response in live HepG2 cells through studies with inhibitors and genetic knockdowns. Subsequently, we deployed FCP-1 to develop a live cell fluorescence microscopy-based approach to identify activity differences between CES1 isoforms. To the best of our knowledge, this is the first application of a fluorescent probe to measure the activity of CES1 sequence variants in live cells.
Collapse
Affiliation(s)
- Anchal Singh
- Eastern Illinois University, Department of Chemistry and Biochemistry, 600 Lincoln Ave, 61920, Charleston, UNITED STATES
| | - Mingze Gao
- Eastern Illinois University, Department of Biological Sciences, 600 Lincoln Ave, 61920, Charleston, UNITED STATES
| | - Carolyn J Karns
- Eastern Illinois University, Department of Biological Sciences, 600 Lincoln Ave, 61920, Charleston, UNITED STATES
| | - Taylor P Spidle
- Eastern Illinois University, Department of Biological Sciences, 600 Lincoln Ave, 61920, Charleston, UNITED STATES
| | - Michael William Beck
- Eastern Illinois University, Department of Chemistry and Biochemistry, 600 Lincoln Ave, 61920, Charleston, UNITED STATES
| |
Collapse
|
10
|
Mukherjee S, Park JP, Yun JW. Carboxylesterase3 (Ces3) Interacts with Bone Morphogenetic Protein 11 and Promotes Differentiation of Osteoblasts via Smad1/5/9 Pathway. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Brown JT. The Pharmacogenetic Impact on the Pharmacokinetics of ADHD Medications. Methods Mol Biol 2022; 2547:427-436. [PMID: 36068472 DOI: 10.1007/978-1-0716-2573-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
ADHD is a common condition in both children and adults. The most prescribed medications for the treatment of ADHD include methylphenidate, mixed amphetamine salts, atomoxetine, guanfacine, and clonidine. While each of these medications have their own distinct pharmacokinetic profile, the extent to which pharmacogenetics effects their pharmacokinetic parameters is best described in atomoxetine, followed by methylphenidate. Atomoxetine is predominantly metabolized by cytochrome p450 2D6 (CYP2D6), while methylphenidate is metabolized by carboxylesterase 1 (CES1). Both CYP2D6 and CES1 have multiple variants resulting in varying levels of enzyme activity; however, to date, the functional consequence of variants and alleles for CYP2D6 is better characterized as compared to CES1. Regarding CYP2D6, individuals who are poor metabolizers prescribed atomoxetine experience up to ten-fold higher exposure as compared to normal metabolizers at comparable dosing. Additionally, individuals prescribed methylphenidate with the rs71647871 variant may experience up to 2.5-fold higher exposure as compared to those without. Having this pharmacogenetic information available may aid clinicians and patients when choosing medications and doses to treat ADHD.
Collapse
Affiliation(s)
- Jacob T Brown
- Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, College of Pharmacy, Duluth, MN, USA.
| |
Collapse
|
12
|
Uno Y, Uehara S, Yamazaki H. Drug-oxidizing and conjugating non-cytochrome P450 (non-P450) enzymes in cynomolgus monkeys and common marmosets as preclinical models for humans. Biochem Pharmacol 2021; 197:114887. [PMID: 34968483 DOI: 10.1016/j.bcp.2021.114887] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
Many drug oxidations and conjugations are mediated by a variety of cytochromes P450 (P450) and non-P450 enzymes in humans and non-human primates. These non-P450 enzymes include aldehyde oxidases (AOX), carboxylesterases (CES), flavin-containing monooxygenases (FMO), glutathione S-transferases (GST), arylamine N-acetyltransferases (NAT),sulfotransferases (SULT), and uridine 5'-diphospho-glucuronosyltransferases (UGT) and their substrates include both endobiotics and xenobiotics. Cynomolgus macaques (Macaca fascicularis, an Old-World monkey) are widely used in preclinical studies because of their genetic and physiological similarities to humans. However, many reports have indicated the usefulness of common marmosets (Callithrix jacchus, a New World monkey) as an alternative non-human primate model. Although knowledge of the drug-metabolizing properties of non-P450 enzymes in non-human primates is relatively limited, new research has started to provide an insight into the molecular characteristics of these enzymes in cynomolgus macaques and common marmosets. This mini-review provides collective information on the isoforms of non-P450 enzymes AOX, CES, FMO, GST, NAT, SULT, and UGT and their enzymatic profiles in cynomolgus macaques and common marmosets. In general, these non-P450 cynomolgus macaque and marmoset enzymes have high sequence identities and similar substrate recognitions to their human counterparts. However, these enzymes also exhibit some limited differences in function between species, just as P450 enzymes do, possibly due to small structural differences in amino acid residues. The findings summarized here provide a foundation for understanding the molecular mechanisms of polymorphic non-P450 enzymes and should contribute to the successful application of non-human primates as model animals for humans.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-8580, Japan
| | - Shotaro Uehara
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Hiroshi Yamazaki
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
13
|
Shi J, Xiao J, Wang X, Jung SM, Bleske BE, Markowitz JS, Patrick KS, Zhu HJ. Plasma Carboxylesterase 1 Predicts Methylphenidate Exposure: A Proof-of-Concept Study Using Plasma Protein Biomarker for Hepatic Drug Metabolism. Clin Pharmacol Ther 2021; 111:878-885. [PMID: 34743324 DOI: 10.1002/cpt.2486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022]
Abstract
Hepatic drug-metabolizing enzymes (DMEs) play critical roles in determining the pharmacokinetics and pharmacodynamics of numerous therapeutic agents. As such, noninvasive biomarkers capable of predicting DME expression in the liver have the potential to be used to personalize pharmacotherapy and improve drug treatment outcomes. In the present study, we quantified carboxylesterase 1 (CES1) protein concentrations in plasma samples collected during a methylphenidate pharmacokinetics study. CES1 is a prominent hepatic enzyme responsible for the metabolism of many medications containing small ester moieties, including methylphenidate. The results revealed a significant inverse correlation between plasma CES1 protein concentrations and the area under the concentration-time curves (AUCs) of plasma d-methylphenidate (P = 0.014, r = -0.617). In addition, when plasma CES1 protein levels were normalized to the plasma concentrations of 24 liver-enriched proteins to account for potential interindividual differences in hepatic protein release rate, the correlation was further improved (P = 0.003, r = -0.703), suggesting that plasma CES1 protein could explain ~ 50% of the variability in d-methylphenidate AUCs in the study participants. A physiologically-based pharmacokinetic modeling simulation revealed that the CES1-based individualized dosing strategy might significantly reduce d-methylphenidate exposure variability in pediatric patients relative to conventional trial and error fixed dosing regimens. This proof-of-concept study indicates that the plasma protein of a hepatic DME may serve as a biomarker for predicting its metabolic function and the pharmacokinetics of its substrate drugs.
Collapse
Affiliation(s)
- Jian Shi
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Jingcheng Xiao
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Xinwen Wang
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Sun Min Jung
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Barry E Bleske
- Department of Pharmacy Practice and Administrative Sciences, The University of New Mexico, Albuquerque, New Mexico, USA
| | - John S Markowitz
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, Florida, USA
| | - Kennerly S Patrick
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Hao-Jie Zhu
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Li M, Lan L, Zhang S, Xu Y, He W, Xiang D, Liu D, Ren X, Zhang C. IL-6 downregulates hepatic carboxylesterases via NF-κB activation in dextran sulfate sodium-induced colitis. Int Immunopharmacol 2021; 99:107920. [PMID: 34217990 DOI: 10.1016/j.intimp.2021.107920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/13/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
Ulcerative colitis (UC) is associated with increased levels of inflammatory factors, which is attributed to the abnormal expression and activity of enzymes and transporters in the liver, affecting drug disposition in vivo. This study aimed to examine the impact of intestinal inflammation on the expression of hepatic carboxylesterases (CESs) in a mouse model of dextran sulfate sodium (DSS)-induced colitis. Two major CESs isoforms, CES1 and CES2, were down-regulated, accompanied by decreases in hepatic microsomal metabolism of clopidogrel and irinotecan. Meanwhile, IL-6 levels significantly increased compared with other inflammatory factors in the livers of UC mice. In contrast, using IL-6 antibody simultaneously reversed the down-regulation of CES1, CES2, pregnane X receptor (PXR), and constitutive androstane receptor (CAR), as well as the nuclear translocation of NF-κB in the liver. We further confirmed that treatment with NF-κB inhibitor abolished IL-6-induced down-regulation of CES1, CES2, PXR, and CAR in vitro. Thus, it was concluded that IL-6 represses hepatic CESs via the NF-κB pathway in DSS-induced colitis. These findings indicate that caution should be exercised concerning the proper and safe use of therapeutic drugs in patients with UC.
Collapse
Affiliation(s)
- Min Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China
| | - Lulu Lan
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China
| | - Si Zhang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China
| | - Yanjiao Xu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China
| | - Wenxi He
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China
| | - Dong Xiang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China.
| | - Xiuhua Ren
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China.
| | - Chengliang Zhang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China.
| |
Collapse
|
15
|
Singh A, Gao M, Beck MW. Human carboxylesterases and fluorescent probes to image their activity in live cells. RSC Med Chem 2021; 12:1142-1153. [PMID: 34355180 PMCID: PMC8292992 DOI: 10.1039/d1md00073j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Human carboxylesterases (CESs) are serine hydrolases that are responsible for the phase I metabolism of an assortment of ester, amide, thioester, carbonate, and carbamate containing drugs. CES activity is known to be influenced by a variety of factors including single nucleotide polymorphisms, alternative splicing, and drug-drug interactions. These different factors contribute to interindividual variability of CES activity which has been demonstrated to influence clinical outcomes among people treated with CES-substrate therapeutics. Detailed exploration of the factors that influence CES activity is emerging as an important area of research. The use of fluorescent probes with live cell imaging techniques can selectively visualize the real-time activity of CESs and have the potential to be useful tools to help reveal the impacts of CES activity variations on human health. This review summarizes the properties of the five known human CESs including factors reported to or that could potentially influence their activity before discussing the design aspects and use considerations of CES fluorescent probes in general in addition to highlighting several well-characterized probes.
Collapse
Affiliation(s)
- Anchal Singh
- Department of Chemistry and Biochemistry, Eastern Illinois University Charleston IL 61920 USA +1 217 581 6227
| | - Mingze Gao
- Department of Biological Sciences, Eastern Illinois University Charleston IL 61920 USA
| | - Michael W Beck
- Department of Chemistry and Biochemistry, Eastern Illinois University Charleston IL 61920 USA +1 217 581 6227
| |
Collapse
|
16
|
Kilpatrick GJ. Remimazolam: Non-Clinical and Clinical Profile of a New Sedative/Anesthetic Agent. Front Pharmacol 2021; 12:690875. [PMID: 34354587 PMCID: PMC8329483 DOI: 10.3389/fphar.2021.690875] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/06/2021] [Indexed: 12/26/2022] Open
Abstract
A program to identify novel intravenous sedatives with a short and predictable duration of action was initiated in the late 1990's by Glaxo Wellcome. The program focussed on the identification of ester-based benzodiazepine derivatives that are rapidly broken down by esterases. Remimazolam was identified as one of the lead compounds. The project at Glaxo was shelved for strategic reasons at the late lead optimization stage. Via the GSK ventures initiative, the program was acquired by the small biotechnology company, TheraSci, and, through successive acquisitions, developed as the besylate salt at CeNeS and PAION. The development of remimazolam besylate has been slow by industry standards, primarily because of the resource limitations of these small companies. It has, however, recently been approved for anesthesia in Japan and South Korea, procedural sedation in the United States, China, and Europe, and for compassionate use in intensive care unit sedation in Belgium. A second development program of remimazolam was later initiated in China, using a slightly different salt form, remimazolam tosylate. This salt form of the compound has also recently been approved for procedural sedation in China. Remimazolam has the pharmacological profile of a classical benzodiazepine, such as midazolam, but is differentiated from other intravenous benzodiazepines by its rapid conversion to an inactive metabolite resulting in a short onset/offset profile. It is differentiated from other intravenous hypnotic agents, such as propofol, by its low liability for cardiovascular depression, respiratory depression, and injection pain. The benzodiazepine antagonist flumazenil can reverse the effects of remimazolam in case of adverse events and further shorten recovery times. The aim of this review is to provide an analysis of, and perspective on, published non-clinical and clinical information on 1) the pharmacology, metabolism, pharmacokinetics, and pharmacodynamic profile of remimazolam, 2) the profile of remimazolam compared with established agents, 3) gaps in the current understanding of remimazolam, 4) the compound's discovery and development process and 5) likely future developments in the clinical use of remimazolam.
Collapse
|
17
|
Wang X, Her L, Xiao J, Shi J, Wu AH, Bleske BE, Zhu H. Impact of carboxylesterase 1 genetic polymorphism on trandolapril activation in human liver and the pharmacokinetics and pharmacodynamics in healthy volunteers. Clin Transl Sci 2021; 14:1380-1389. [PMID: 33660934 PMCID: PMC8301577 DOI: 10.1111/cts.12989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 01/20/2023] Open
Abstract
Trandolapril, an angiotensin-converting enzyme inhibitor prodrug, needs to be activated by carboxylesterase 1 (CES1) in the liver to exert its intended therapeutic effect. A previous in vitro study demonstrated that the CES1 genetic variant G143E (rs71647871) abolished CES1-mediated trandolapril activation in cells transfected with the variant. This study aimed to determine the effect of the G143E variant on trandolapril activation in human livers and the pharmacokinetics (PKs) and pharmacodynamics (PDs) in human subjects. We performed an in vitro incubation study to assess trandolapril activation in human livers (5 G143E heterozygotes and 97 noncarriers) and conducted a single-dose (1 mg) PK and PD study of trandolapril in healthy volunteers (8 G143E heterozygotes and 11 noncarriers). The incubation study revealed that the mean trandolapril activation rate in G143E heterozygous livers was 42% of those not carrying the variant (p = 0.0015). The clinical study showed that, relative to noncarriers, G143E carriers exhibited 20% and 15% decreases, respectively, in the peak concentration (Cmax ) and area under the curve from 0 to 72 h (AUC0-72 h ) of the active metabolite trandolaprilat, although the differences were not statistically significant. Additionally, the average maximum reductions of systolic blood pressure and diastolic blood pressure in carriers were ~ 22% and 23% less than in noncarriers, respectively, but the differences did not reach a statistically significant level. In summary, the CES1 G143E variant markedly impaired trandolapril activation in the human liver under the in vitro incubation conditions; however, this variant had only a modest impact on the PK and PD of trandolapril in healthy human subjects.
Collapse
Affiliation(s)
- Xinwen Wang
- Department of Clinical PharmacyUniversity of MichiganAnn ArborMichiganUSA
- Present address:
Department of Pharmaceutical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Lucy Her
- Department of Clinical PharmacyUniversity of MichiganAnn ArborMichiganUSA
| | - Jingcheng Xiao
- Department of Clinical PharmacyUniversity of MichiganAnn ArborMichiganUSA
| | - Jian Shi
- Department of Clinical PharmacyUniversity of MichiganAnn ArborMichiganUSA
| | - Audrey H. Wu
- Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Barry E. Bleske
- Department of Pharmacy Practice and Administrative SciencesThe University of New MexicoAlbuquerqueNew MexicoUSA
| | - Hao‐Jie Zhu
- Department of Clinical PharmacyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
18
|
Her LH, Wang X, Shi J, Choi HJ, Jung SM, Smith LS, Wu AH, Bleske BE, Zhu HJ. Effect of CES1 genetic variation on enalapril steady-state pharmacokinetics and pharmacodynamics in healthy subjects. Br J Clin Pharmacol 2021; 87:4691-4700. [PMID: 33963573 DOI: 10.1111/bcp.14888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/22/2022] Open
Abstract
AIMS Enalapril is a prodrug and needs to be activated by carboxylesterase 1 (CES1). A previous in vitro study demonstrated the CES1 genetic variant, G143E (rs71647871), significantly impaired enalapril activation. Two previous clinical studies examined the impact of G143E on single-dose enalapril PK (10 mg); however, the results were inconclusive. A prospective, multi-dose, pharmacokinetics and pharmacodynamics (PK/PD) study was conducted to determine the impact of the CES1 G143E variant on enalapril steady-state PK and PD in healthy volunteers. METHODS Study participants were stratified to G143E non-carriers (n = 15) and G143E carriers (n = 6). All the carriers were G143E heterozygotes. Study subjects received enalapril 10 mg daily for seven consecutive days prior to a 72 hour PK/PD study. Plasma concentrations of enalapril and its active metabolite enalaprilat were quantified by an established liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. RESULTS The CES1 G143E carriers had 30.9% lower enalaprilat Cmax (P = 0.03) compared to the non-carriers (38.01 vs. 55.01 ng/mL). The carrier group had 27.5% lower AUC0-∞ (P = 0.02) of plasma enalaprilat compared to the non-carriers (374.29 vs. 515.91 ng*h/mL). The carriers also had a 32.3% lower enalaprilat-to-enalapril AUC0-∞ ratio (P = 0.003) relative to the non-carriers. The average maximum reduction of systolic blood pressure in the non-carrier group was approximately 12.4% at the end of the study compared to the baseline (P = 0.001). No statistically significant blood pressure reduction was observed in the G143E carriers. CONCLUSIONS The CES1 loss-of-function G143E variant significantly impaired enalapril activation and its systolic blood pressure-lowering effect in healthy volunteers.
Collapse
Affiliation(s)
- Lucy H Her
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Xinwen Wang
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Jian Shi
- Alliance Pharma, Inc, Malvern, PA, United States
| | - Hee Jae Choi
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Sun Min Jung
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Logan S Smith
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| | - Audrey H Wu
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Barry E Bleske
- Department of Pharmacy Practice and Administrative Sciences, The University of New Mexico, Albuquerque, NM, United States
| | - Hao-Jie Zhu
- College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
19
|
Lie W, Cheong EJY, Goh EML, Moy HY, Cannaert A, Stove CP, Chan ECY. Diagnosing intake and rationalizing toxicities associated with 5F-MDMB-PINACA and 4F-MDMB-BINACA abuse. Arch Toxicol 2020; 95:489-508. [PMID: 33236189 DOI: 10.1007/s00204-020-02948-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/05/2020] [Indexed: 11/25/2022]
Abstract
5F-MDMB-PINACA and 4F-MDMB-BINACA are synthetic cannabinoids (SCs) that elicit cannabinoid psychoactive effects. Defining pharmacokinetic-pharmacodynamic (PK-PD) relationships governing SCs and their metabolites are paramount to investigating their in vivo toxicological outcomes. However, the disposition kinetics and cannabinoid receptor (CB) activities of the primary metabolites of SCs are largely unknown. Additionally, reasons underlying the selection of ester hydrolysis metabolites (EHMs) as urinary biomarkers are often unclear. Here, metabolic reaction phenotyping was performed to identify key metabolizing enzymes of the parent SCs. Hepatic clearances of parent SCs and their EHMs were estimated from microsomal metabolic stability studies. Renal clearances were simulated using a mechanistic kidney model incorporating in vitro permeability and organic anionic transporter 3 (OAT3)-mediated uptake data. Overall clearances were considered in tandem with estimated volumes of distribution for in vivo biological half-lives (t1/2) predictions. Interactions of the compounds with CB1 and CB2 were investigated using a G-protein coupled receptor activation assay. We demonstrated that similar enzymatic isoforms were implicated in the metabolism of 5F-MDMB-PINACA and 4F-MDMB-BINACA. Our in vivo t1/2 determinations verified the rapid elimination of parent SCs and suggest prolonged circulation of their EHMs. The pronounced attenuation of the potencies and efficacies of the metabolites against CB1 and CB2 further suggests how toxic manifestations of SC abuse are likely precipitated by augmented exposure to parent SCs. Notably, basolateral OAT3-mediated uptake of the EHMs substantiates their higher urinary abundance. These novel insights underscore the importance of mechanistic, quantitative and systematic characterization of PK-PD relationships in rationalizing the toxicities of SCs.
Collapse
Affiliation(s)
- Wen Lie
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Eleanor Jing Yi Cheong
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Evelyn Mei Ling Goh
- Analytical Toxicology Laboratory, Applied Sciences Group, Health Sciences Authority, 11 Outram Road, Singapore, 169078, Singapore
| | - Hooi Yan Moy
- Analytical Toxicology Laboratory, Applied Sciences Group, Health Sciences Authority, 11 Outram Road, Singapore, 169078, Singapore
| | - Annelies Cannaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore.
| |
Collapse
|
20
|
Her L, Zhu HJ. Carboxylesterase 1 and Precision Pharmacotherapy: Pharmacogenetics and Nongenetic Regulators. Drug Metab Dispos 2020; 48:230-244. [PMID: 31871135 PMCID: PMC7031766 DOI: 10.1124/dmd.119.089680] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022] Open
Abstract
Carboxylesterase (CES) 1 is the most abundant drug-metabolizing enzyme in human livers, comprising approximately 1% of the entire liver proteome. CES1 is responsible for 80%-95% of total hydrolytic activity in the liver and plays a crucial role in the metabolism of a wide range of drugs (especially ester-prodrugs), pesticides, environmental pollutants, and endogenous compounds. Expression and activity of CES1 vary markedly among individuals, which is a major contributing factor to interindividual variability in the pharmacokinetics (PK) and pharmacodynamics (PD) of drugs metabolized by CES1. Both genetic and nongenetic factors contribute to CES1 variability. Here, we discuss genetic polymorphisms, including single-nucleotide polymorphisms (SNPs), and copy number variants and nongenetic contributors, such as developmental status, genders, and drug-drug interactions, that could influence CES1 functionality and the PK and PD of CES1 substrates. Currently, the loss-of-function SNP G143E (rs71647871) is the only clinically significant CES1 variant identified to date, and alcohol is the only potent CES1 inhibitor that could alter the therapeutic outcomes of CES1 substrate medications. However, G143E and alcohol can only explain a small portion of the interindividual variability in the CES1 function. A better understanding of the regulation of CES1 expression and activity and identification of biomarkers for CES1 function in vivo could lead to the development of a precision pharmacotherapy strategy to improve the efficacy and safety of many CES1 substrate drugs. SIGNIFICANCE STATEMENT: The clinical relevance of CES1 has been well demonstrated in various clinical trials. Genetic and nongenetic regulators can affect CES1 expression and activity, resulting in the alteration of the metabolism and clinical outcome of CES1 substrate drugs, such as methylphenidate and clopidogrel. Predicting the hepatic CES1 function can provide clinical guidance to optimize pharmacotherapy of numerous medications metabolized by CES1.
Collapse
Affiliation(s)
- Lucy Her
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan
| | - Hao-Jie Zhu
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
21
|
Laizure SC, Parker RB. Is genetic variability in carboxylesterase-1 and carboxylesterase-2 drug metabolism an important component of personalized medicine? Xenobiotica 2019; 50:92-100. [DOI: 10.1080/00498254.2019.1678078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- S. Casey Laizure
- Department of Clinical Pharmacy & Translational Science, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert B Parker
- Department of Clinical Pharmacy & Translational Science, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
22
|
Mukherjee S, Choi M, Yun JW. Novel regulatory roles of carboxylesterase 3 in lipid metabolism and browning in 3T3-L1 white adipocytes. Appl Physiol Nutr Metab 2019; 44:1089-1098. [DOI: 10.1139/apnm-2018-0814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The role of carboxylesterase 3 (Ces3) in the lipolysis of adipocytes has been overlooked, as 2 major lipolytic enzymes, hormone-sensitive lipase and adipose triglyceride lipase, play more powerful roles in lipolysis. In this study, we explored the effects of Ces3 in lipid metabolism by activating and inhibiting, as well as silencing, Ces3-encoding gene in 3T3-L1 cell model. Our results demonstrated that activation of Ces3 increased adipogenesis, and attenuated lipogenesis, whereas it promoted lipolysis and fatty acid oxidation. In addition, activated Ces3 led to enhanced expression of core fat browning marker genes and proteins, suggesting that Ces3 may play a pivotal role in fat browning and thermogenesis. In contrast, deficiency of Ces3 nullified the browning effect in white adipocytes, along with decreased adipogenesis in 3T3-L1 adipocytes. Interestingly, the expression pattern of adipose triglyceride lipase was in line with Ces3, whereas hormone-sensitive lipase was independently regulated irrespective of Ces3 expression levels, suggesting that Ces3 may play an important and compensatory role in the breakdown of triglycerides in white adipocytes. In conclusion, we provide the first evidence that activation of Ces3 contributes in the browning of white adipocytes, and maintains a balance in lipid metabolism, which could be a potential strategy in fighting against obesity.
Collapse
Affiliation(s)
- Sulagna Mukherjee
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Minji Choi
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| |
Collapse
|
23
|
Di L. The Impact of Carboxylesterases in Drug Metabolism and Pharmacokinetics. Curr Drug Metab 2019; 20:91-102. [PMID: 30129408 PMCID: PMC6635651 DOI: 10.2174/1389200219666180821094502] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Carboxylesterases (CES) play a critical role in catalyzing hydrolysis of esters, amides, carbamates and thioesters, as well as bioconverting prodrugs and soft drugs. The unique tissue distribution of CES enzymes provides great opportunities to design prodrugs or soft drugs for tissue targeting. Marked species differences in CES tissue distribution and catalytic activity are particularly challenging in human translation. METHODS Review and summarization of CES fundamentals and applications in drug discovery and development. RESULTS Human CES1 is one of the most highly expressed drug metabolizing enzymes in the liver, while human intestine only expresses CES2. CES enzymes have moderate to high inter-individual variability and exhibit low to no expression in the fetus, but increase substantially during the first few months of life. The CES genes are highly polymorphic and some CES genetic variants show significant influence on metabolism and clinical outcome of certain drugs. Monkeys appear to be more predictive of human pharmacokinetics for CES substrates than other species. Low risk of clinical drug-drug interaction is anticipated for CES, although they should not be overlooked, particularly interaction with alcohols. CES enzymes are moderately inducible through a number of transcription factors and can be repressed by inflammatory cytokines. CONCLUSION Although significant advances have been made in our understanding of CESs, in vitro - in vivo extrapolation of clearance is still in its infancy and further exploration is needed. In vitro and in vivo tools are continuously being developed to characterize CES substrates and inhibitors.
Collapse
Affiliation(s)
- Li Di
- Pfizer Inc., Eastern Point Road, Groton, Connecticut, CT 06354, United States
| |
Collapse
|
24
|
Wang X, Shi J, Zhu HJ. Functional Study of Carboxylesterase 1 Protein Isoforms. Proteomics 2019; 19:e1800288. [PMID: 30520264 DOI: 10.1002/pmic.201800288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/29/2018] [Indexed: 12/16/2022]
Abstract
Carboxylesterase 1 (CES1) is a primary human hepatic hydrolase involved in hydrolytic biotransformation of numerous medications. Considerable interindividual variability in CES1 expression and activity has been consistently reported. Four isoforms of the CES1 protein are produced by alternative splicing (AS). In the current study, the activity and expression of each CES1 isoform are examined using transfected cell lines, and CES1 isoform composition and its impact on CES1 activity in human livers are determined. In transfected cells, isoforms 3 and 4 show mRNA and protein expressions comparable to isoforms 1 and 2, but have significantly impaired activity when hydrolyzing enalapril and clopidogrel. In individual human liver samples, isoforms 1 and 2 are the major forms, contributing 73-90% of the total CES1 protein expression. In addition, the protein expression ratios of isoforms 1 and 2 to isoforms 3 and 4 are positively associated with CES1 activity in the liver, suggesting that CES1 isoform composition is a factor contributing to the variability in hepatic CES1 function. Further investigations of the regulation of CES1 AS would improve the understanding of CES1 variability and help develop a strategy to optimize the pharmacotherapy of many CES1 substrate medications.
Collapse
Affiliation(s)
- Xinwen Wang
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, MI, 48109-1065, USA
| | - Jian Shi
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, MI, 48109-1065, USA
| | - Hao-Jie Zhu
- Department of Clinical Pharmacy, University of Michigan, Ann Arbor, MI, 48109-1065, USA
| |
Collapse
|
25
|
Xiao Q, Zhou Q, Yang L, Tian Z, Wang X, Xiao Y, Shi D. Breed Differences in Pig Liver Esterase (PLE) between Tongcheng (Chinese Local Breed) and Large White Pigs. Sci Rep 2018; 8:16364. [PMID: 30397234 PMCID: PMC6218520 DOI: 10.1038/s41598-018-34695-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/04/2018] [Indexed: 01/24/2023] Open
Abstract
Human carboxylesterases has been proven to be age and race-related and a sound basis of clinical medication. PLE involve in signal transduction and highly catalyze hydrolysis. Therefore, the expression level of PLE most probably exist age and breed difference and lead to significant differences of pharmacology and physiology. Four age groups of Tongcheng (TC) and Large White (LW) pigs were selected to explore PLE breed and age differences, and it was found that PLE mRNA was most abundant in liver in both breeds. In liver, PLE levels and hydrolytic activities increased with age, and PLE levels (except for 3 month) and the hydrolytic activities were higher in LW than in TC across all age groups. Abundance of PLE isoenzymes was obvious different between breeds and among age groups. The most abundant PLE isoenzyme in LW and TC pigs was PLE-A1 (all age groups) and PLE-B9 (three early age groups) or PLE-G3 (adult groups), respectively. 103 new PLE isoenzymes were found, and 55 high-frequency PLE isoenzymes were accordingly classified into seven categories (A-G). The results of this research provide a necessary basis not only for clinical medication of pigs but also for pig breeding purposes.
Collapse
Affiliation(s)
- Qiling Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agricultural, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Qiongqiong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agricultural, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Lu Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agricultural, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Zhongyuan Tian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agricultural, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Xiliang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agricultural, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Yuncai Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agricultural, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Deshi Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agricultural, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China. .,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.
| |
Collapse
|
26
|
Chen F, Zhang B, Parker RB, Laizure SC. Clinical implications of genetic variation in carboxylesterase drug metabolism. Expert Opin Drug Metab Toxicol 2018; 14:131-142. [DOI: 10.1080/17425255.2018.1420164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Feng Chen
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bo Zhang
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert B. Parker
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - S. Casey Laizure
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|