1
|
Sylvain NJ, Salman MM, Pushie MJ, Hou H, Meher V, Herlo R, Peeling L, Kelly ME. The effects of trifluoperazine on brain edema, aquaporin-4 expression and metabolic markers during the acute phase of stroke using photothrombotic mouse model. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183573. [PMID: 33561476 DOI: 10.1016/j.bbamem.2021.183573] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 12/22/2022]
Abstract
Stroke is the second leading cause of death and the third leading cause of disability globally. Edema is a hallmark of stroke resulting from dysregulation of water homeostasis in the central nervous system (CNS) and plays the major role in stroke-associated morbidity and mortality. The overlap between cellular and vasogenic edema makes treating this condition complicated, and to date, there is no pathogenically oriented drug treatment for edema. Water balance in the brain is tightly regulated, primarily by aquaporin 4 (AQP4) channels, which are mainly expressed in perivascular astrocytic end-feet. Targeting AQP4 could be a useful therapeutic approach for treating brain edema; however, there is no approved drug for stroke treatment that can directly block AQP4. In this study, we demonstrate that the FDA-approved drug trifluoperazine (TFP) effectively reduces cerebral edema during the early acute phase in post-stroke mice using a photothrombotic stroke model. This effect was combined with an inhibition of AQP4 expression at gene and protein levels. Importantly, TFP does not appear to induce any deleterious changes on brain electrolytes or metabolic markers, including total protein or lipid levels. Our results support a possible role for TFP in providing a beneficial extra-osmotic effect on brain energy metabolism, as indicated by the increase of glycogen levels. We propose that targeting AQP4-mediated brain edema using TFP is a viable therapeutic strategy during the early and acute phase of stroke that can be further investigated during later stages to help in developing novel CNS edema therapies.
Collapse
Affiliation(s)
- Nicole J Sylvain
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Canada
| | - Mootaz M Salman
- Medical Sciences Division, Department of Physiology, Anatomy and Genetics, Oxford University, South Parks Road, Oxford OX1 3QX, UK.
| | - M Jake Pushie
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Canada
| | - Huishu Hou
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Canada
| | - Vedashree Meher
- Department of Anatomy and Cell Biology, College of Medicine University of Saskatchewan, Canada
| | - Rasmus Herlo
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Lissa Peeling
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Canada
| | - Michael E Kelly
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Canada
| |
Collapse
|
2
|
Kitchen P, Salman MM, Halsey AM, Clarke-Bland C, MacDonald JA, Ishida H, Vogel HJ, Almutiri S, Logan A, Kreida S, Al-Jubair T, Winkel Missel J, Gourdon P, Törnroth-Horsefield S, Conner MT, Ahmed Z, Conner AC, Bill RM. Targeting Aquaporin-4 Subcellular Localization to Treat Central Nervous System Edema. Cell 2020; 181:784-799.e19. [PMID: 32413299 PMCID: PMC7242911 DOI: 10.1016/j.cell.2020.03.037] [Citation(s) in RCA: 303] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/09/2020] [Accepted: 03/17/2020] [Indexed: 01/07/2023]
Abstract
Swelling of the brain or spinal cord (CNS edema) affects millions of people every year. All potential pharmacological interventions have failed in clinical trials, meaning that symptom management is the only treatment option. The water channel protein aquaporin-4 (AQP4) is expressed in astrocytes and mediates water flux across the blood-brain and blood-spinal cord barriers. Here we show that AQP4 cell-surface abundance increases in response to hypoxia-induced cell swelling in a calmodulin-dependent manner. Calmodulin directly binds the AQP4 carboxyl terminus, causing a specific conformational change and driving AQP4 cell-surface localization. Inhibition of calmodulin in a rat spinal cord injury model with the licensed drug trifluoperazine inhibited AQP4 localization to the blood-spinal cord barrier, ablated CNS edema, and led to accelerated functional recovery compared with untreated animals. We propose that targeting the mechanism of calmodulin-mediated cell-surface localization of AQP4 is a viable strategy for development of CNS edema therapies.
Collapse
Affiliation(s)
- Philip Kitchen
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Mootaz M Salman
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pharmacology, College of Pharmacy, University of Mosul, Mosul 41002, Iraq
| | - Andrea M Halsey
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Charlotte Clarke-Bland
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Justin A MacDonald
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Hiroaki Ishida
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Hans J Vogel
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Biological Sciences, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sharif Almutiri
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Department of Clinical Laboratory Science, College of Applied Medical Science, Shaqra University, Shaqra, Saudi Arabia
| | - Ann Logan
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Stefan Kreida
- Department of Biochemistry and Structural Biology, Lund University, PO Box 124, 221 00 Lund, Sweden
| | - Tamim Al-Jubair
- Department of Biochemistry and Structural Biology, Lund University, PO Box 124, 221 00 Lund, Sweden
| | - Julie Winkel Missel
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Pontus Gourdon
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Experimental Medical Science, Lund University, PO Box 118, 221 00 Lund, Sweden
| | | | - Matthew T Conner
- School of Sciences, Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Alex C Conner
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Roslyn M Bill
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
3
|
Yang L, Zhang Y, Ma Y, Du J, Gu L, Zheng L, Zhang X. Effect of melatonin on EGF- and VEGF-induced monolayer permeability of HUVECs. Am J Physiol Heart Circ Physiol 2018; 316:H1178-H1191. [PMID: 30575440 DOI: 10.1152/ajpheart.00542.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Melatonin is a natural hormone involved in the regulation of circadian rhythm, immunity, and cardiovascular function. In the present study, we focused on the mechanism of melatonin in the regulation of vascular permeability. We found that melatonin could inhibit both VEGF- and EGF-induced monolayer permeability of human umbilical vein endothelial cells (HUVECs) and change the tyrosine phosphorylation of vascular-endothelial (VE-)cadherin, which was related to endothelial barrier function. In addition, phospho-AKT (Ser473) and phospho-ERK(1/2) played significant roles in the regulation of VE-cadherin phosphorylation. Both the phosphatidylinositol 3-kinase/AKT inhibitor LY49002 and MEK/ERK inhibitor U0126 could inhibit the permeability of HUVECs, but with different effects on tyrosine phosphorylation of VE-cadherin. Melatonin can influence the two growth factor-induced phosphorylation of AKT (Ser473) but not ERK(1/2). Our results show that melatonin can inhibit growth factor-induced monolayer permeability of HUVECs by influencing the phosphorylation of AKT and VE-cadherin. Melatonin can be a potential treatment for diseases associated with abnormal vascular permeability. NEW & NOTEWORTHY We found that melatonin could inhibit both EGF- and VEGF-induced monolayer permeability of human umbilical vein endothelial cells, which is related to phosphorylation of vascular-endothelial cadherin. Blockade of phosphatidylinositol 3-kinase/AKT and MEK/ERK pathways could inhibit the permeability of human umbilical vein endothelial cells, and phosphorylation of AKT (Ser473) might be a critical event in the changing of monolayer permeability and likely has cross-talk with the MEK/ERK pathway.
Collapse
Affiliation(s)
- Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University , Changzhou, Jiangsu , China
| | - Yujie Zhang
- Department of Physiology, Nanjing Medical University , Nanjing, Jiangsu , China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University , Nanjing, Jiangsu , China
| | - Yadong Ma
- Department of Physiology, Nanjing Medical University , Nanjing, Jiangsu , China
| | - Jun Du
- Department of Physiology, Nanjing Medical University , Nanjing, Jiangsu , China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University , Nanjing, Jiangsu , China
| | - Luo Gu
- Department of Physiology, Nanjing Medical University , Nanjing, Jiangsu , China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University , Nanjing, Jiangsu , China
| | - Lu Zheng
- General Laboratory, The Third Affiliated Hospital of Soochow University , Changzhou, Jiangsu , China
| | - Xiaoying Zhang
- Department of Cardiothoracic surgery and the General Laboratory, The Third Affiliated Hospital of Soochow University , Changzhou, Jiangsu , China
| |
Collapse
|
4
|
Wang XJ, Gao YP, Lu NN, Li WS, Xu JF, Ying XY, Wu G, Liao MH, Tan C, Shao LX, Lu YM, Zhang C, Fukunaga K, Han F, Du YZ. Endogenous Polysialic Acid Based Micelles for Calmodulin Antagonist Delivery against Vascular Dementia. ACS APPLIED MATERIALS & INTERFACES 2016; 8:35045-35058. [PMID: 27750011 DOI: 10.1021/acsami.6b13052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Clinical treatment for vascular dementia still remains a challenge mainly due to the blood-brain barrier (BBB). Here, a micelle based on polysialic acid (PSA), which is a hydrophilic and endogenous carbohydrate polymer, was designed to deliver calmodulin antagonist for therapy of vascular dementia. PSA was first chemically conjugated with octadecylamine (ODA), and the obtained PSA-ODA copolymer could self-assemble into micelle in aqueous solution with a 120.0 μg/mL critical micelle concentration. The calmodulin antagonist loaded PSA-ODA micelle, featuring sustained drug release behavior over a period of 72 h with a 3.6% (w/w) drug content and a 107.0 ± 4.0 nm size was then fabricated. The PSA-ODA micelle could cross the BBB mainly via active endocytosis by brain endothelial cells followed by transcytosis. In a water maze test for spatial learning, calmodulin antagonist loaded PSA-ODA micelle significantly reduced the escape latencies of right unilateral common carotid arteries occlusion (rUCCAO) mice with dosage significantly reduced versus free drug. The decrease of hippocampal phospho-CaMKII (Thr286/287) and phospho-synapsin I (Ser603) was partially restored in rUCCAO mice following calmodulin antagonist loaded PSA-ODA micelle treatment. Consistent with the restored CaMKII phosphorylation, the elevation of BrdU/NeuN double-positive cells in the same context was also observed. Overall, the PSA-ODA micelle developed from the endogenous material might promote the development of therapeutic approaches for improving the efficacy of brain-targeted drug delivery and have great potential for vascular dementia treatment.
Collapse
Affiliation(s)
| | - Yin-Ping Gao
- School of Medicine, Zhejiang University City College , Hangzhou 310058, China
| | | | | | | | | | | | | | | | | | - Ying-Mei Lu
- School of Medicine, Zhejiang University City College , Hangzhou 310058, China
| | | | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University , Sendai 980-8574, Japan
| | | | | |
Collapse
|
5
|
Caracausi M, Rigon V, Piovesan A, Strippoli P, Vitale L, Pelleri MC. A quantitative transcriptome reference map of the normal human hippocampus. Hippocampus 2015; 26:13-26. [PMID: 26108741 DOI: 10.1002/hipo.22483] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2015] [Indexed: 01/05/2023]
Abstract
We performed an innovative systematic meta-analysis of 41 gene expression profiles of normal human hippocampus to provide a quantitative transcriptome reference map of it, i.e. a reference typical value of expression for each of the 30,739 known mapped and the 16,258 uncharacterized (unmapped) transcripts. For this aim, we used the software called TRAM (Transcriptome Mapper), which is able to generate transcriptome maps based on gene expression data from multiple sources. We also analyzed differential expression by comparing the hippocampus with the whole brain transcriptome map to identify a typical expression pattern of this subregion compared with the whole organ. Finally, due to the fact that the hippocampus is one of the main brain region to be severely affected in trisomy 21 (the best known genetic cause of intellectual disability), a particular attention was paid to the expression of chromosome 21 (chr21) genes. Data were downloaded from microarray databases, processed, and analyzed using TRAM software. Among the main findings, the most over-expressed loci in the hippocampus are the expressed sequence tag cluster Hs.732685 and the member of the calmodulin gene family CALM2. The tubulin folding cofactor B (TBCB) gene is the best gene at behaving like a housekeeping gene. The hippocampus vs. the whole brain differential transcriptome map shows the over-expression of LINC00114, a long non-coding RNA mapped on chr21. The hippocampus transcriptome map was validated in vitro by assaying gene expression through several magnitude orders by "Real-Time" reverse transcription polymerase chain reaction (RT-PCR). The highly significant agreement between in silico and experimental data suggested that our transcriptome map may be a useful quantitative reference benchmark for gene expression studies related to human hippocampus. Furthermore, our analysis yielded biological insights about those genes that have an intrinsic over-/under-expression in the hippocampus.
Collapse
Affiliation(s)
- Maria Caracausi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Vania Rigon
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Allison Piovesan
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Pierluigi Strippoli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Lorenza Vitale
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Maria Chiara Pelleri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Wang PF, Zhou Y, Fang H, Lin S, Wang YC, Liu Y, Xia J, Eslick GD, Yang QW. Treatment of acute cerebral ischemia using animal models: a meta-analysis. Transl Neurosci 2015; 6:47-58. [PMID: 28123790 PMCID: PMC4936615 DOI: 10.1515/tnsci-2015-0006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/11/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND There are numerous potential treatments assessed for acute cerebral ischemia using animal models. This study aimed to assess the effect of these treatments in terms of infarct size and neurobehavioral change. This meta-analysis was conducted to determine if any of these treatments provide a superior benefit so that they might be used on humans. METHODS A systematic search was conducted using several electronic databases for controlled animal studies using only nonsurgical interventions for acute cerebral ischemia. A random-effects model was used. RESULTS After an extensive literature search, 145 studies were included in the analysis. These studies included 1408 treated animals and 1362 control animals. Treatments that had the most significant effect on neurobehavioral scales included insulin, various antagonists, including N-methyl-D-aspartate (NMDA) receptor antagonist ACEA1021, calmodulin antagonist DY-9760e, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist YM872, and antiviral agents. Treatments providing the greatest effect on infarct size included statins, sphingosine-1-phosphate agonist (fingolimod), alcohol, angiotensin, and leukotrienes. Treatments offering the greatest reduction in brain water content included various agonists, including sphingosine-1-phosphate agonist fingolimod, statins, and peroxisome proliferator-activated receptor gamma (PPAR-γ). Treatment groups with more than one study all had high heterogeneity (I2 > 80%), however, using meta-regression we determined several sources of heterogeneity including sample size of the treatment and control groups, the occlusion time, but not the year when the study was conducted. CONCLUSIONS Some treatments stand out when compared to others for acute cerebral ischemia in animals. Greater replication of treatment studies is required before any treatments are selected for future human trials.
Collapse
Affiliation(s)
- Peng-Fei Wang
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Yu Zhou
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Huang Fang
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Sen Lin
- Department of Development and Regeneration Key Laboratory of Sichuan Province, Department of Histoembryology and Neurobiology, Chengdu Medical College, Chengdu, China
| | - Yan-Chun Wang
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Yong Liu
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Jun Xia
- Systematic Review Solutions, China
| | - Guy D. Eslick
- Department of Surgery, The University of Sydney, Nepean Hospital, Penrith, Australia
| | - Qing-Wu Yang
- Department of Neurology, Xinqiao Hospital, The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| |
Collapse
|
7
|
Mukherjee P, Cinelli MA, Kang S, Silverman RB. Development of nitric oxide synthase inhibitors for neurodegeneration and neuropathic pain. Chem Soc Rev 2014; 43:6814-38. [PMID: 24549364 PMCID: PMC4138306 DOI: 10.1039/c3cs60467e] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule in the human body, playing a crucial role in cell and neuronal communication, regulation of blood pressure, and in immune activation. However, overproduction of NO by the neuronal isoform of nitric oxide synthase (nNOS) is one of the fundamental causes underlying neurodegenerative disorders and neuropathic pain. Therefore, developing small molecules for selective inhibition of nNOS over related isoforms (eNOS and iNOS) is therapeutically desirable. The aims of this review focus on the regulation and dysregulation of NO signaling, the role of NO in neurodegeneration and pain, the structure and mechanism of nNOS, and the use of this information to design selective inhibitors of this enzyme. Structure-based drug design, the bioavailability and pharmacokinetics of these inhibitors, and extensive target validation through animal studies are addressed.
Collapse
Affiliation(s)
- Paramita Mukherjee
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | | | | | | |
Collapse
|
8
|
Reddy PVB, Rama Rao KV, Norenberg MD. Inhibitors of the mitochondrial permeability transition reduce ammonia-induced cell swelling in cultured astrocytes. J Neurosci Res 2010; 87:2677-85. [PMID: 19382208 DOI: 10.1002/jnr.22097] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ammonia is the principal neurotoxin implicated in the pathogenesis of hepatic encephalopathy, and astrocytes are the neural cells predominantly affected in this condition. Astrocyte swelling (cytotoxic edema) represents a critical component of the brain edema in acute form of hepatic encephalopathy (acute liver failure, ALF). Although mechanisms of astrocyte swelling by ammonia are not completely understood, cultured astrocytes exposed to pathophysiological levels of ammonia develop the mitochondrial permeability transition (mPT), a process that was shown to result in astrocyte swelling. Cyclosporin A (CsA), a traditional inhibitor of the mPT, was previously shown to completely block ammonia-induced astrocyte swelling in culture. However, the efficacy of CsA to protect cytotoxic brain edema in ALF is problematic because it poorly crosses the blood-brain barrier, which is relatively intact in ALF. We therefore examined the effect of agents that block the mPT but are also known to cross the blood-brain barrier, including pyruvate, magnesium, minocycline, and trifluoperazine on the ammonia-induced mPT, as well as cell swelling. Cultured astrocytes exposed to ammonia for 24 hr displayed the mPT as demonstrated by a CsA-sensitive dissipation of the mitochondrial inner membrane potential. Pyruvate, minocycline, magnesium, and trifluoperazine significantly blocked the ammonia-induced mPT. Ammonia resulted in a significant increase in cell volume, which was blocked by the above-mentioned agents to a variable degree. A regression analysis indicated a high correlation between the effectiveness of reducing the mPT and cell swelling. Our data suggest that all these agents have therapeutic potential in mitigating brain edema in ALF.
Collapse
Affiliation(s)
- Pichili V B Reddy
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida 33101, USA
| | | | | |
Collapse
|
9
|
Han F, Fukunaga K. Beta-amyloid accumulation in neurovascular units following brain embolism. J Pharmacol Sci 2009; 111:101-9. [PMID: 19783863 DOI: 10.1254/jphs.09r02cp] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Nitric oxide (NO) toxicity is in part mediated by generation of peroxynitrite with concomitant production of superoxide under pathological brain conditions such as ischemia and Alzheimer's disease. The pathophysiological relevance of endothelial nitric oxide synthase (eNOS) to brain embolism-induced neurovascular injury has not been documented. We found that microsphere embolism (ME)-induced aberrant eNOS expression in vascular endothelial cells likely mediates blood-brain barrier (BBB) disruption via peroxynitrite formation and in turn causes brain edema. We also demonstrated that a mild ME model was useful for investigating the sequential events of neurovascular injury followed by beta-amyloid accumulation and tau hyperphosphorylation. Indeed, immunoblotting of purified brain microvessels revealed that beta-amyloid accumulation significantly increased one week after ME induction and remained elevated for twelve weeks in those animals. Moreover, we also confirmed that peroxynitrite formation and eNOS uncoupling-mediated superoxide generation in microvessels are inhibited by a novel calmodulin inhibitor. Thus, peroxynitrite formation via elevated eNOS is associated with endothelial cell injury with concomitant beta-amyloid accumulation in microvessels of aged rats. In this review, we focus on the detrimental effects of eNOS expression following brain embolism and introduce an attractive model representing progressive Alzheimer's disease pathology in brain.
Collapse
Affiliation(s)
- Feng Han
- Institute of Pharmacology & Toxicology and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | | |
Collapse
|
10
|
Tachibana S, Tanaka M, Fujimaki Y, Suzuki W, Ookuma T, Ohori Y, Hayashi KI, Iwata H, Okazaki O, Sudo KI. Metabolism of the calmodulin antagonist DY-9760e in animals and humans. Xenobiotica 2008; 35:499-517. [PMID: 16012081 DOI: 10.1080/00498250500136692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The in vitro metabolism of the calmodulin antagonist DY-9760e was investigated using liver microsomes from humans and three other animal species and compared with the in vivo metabolism in rats after intravenous administration of DY-9760e. Seven major metabolites were produced by human liver microsomes by the following metabolic pathways: N-dealkylation, phenyl hydroxylation, O-demethylation and imidazole oxidation. These metabolites were also produced by liver microsomes from monkeys, dogs and rats; additionally, a hydroxylated derivative of the indazole moiety was produced only by rat microsomes. To identify the structures of two imidazole ring metabolites whose authentic compounds could not be obtained, Escherichia coli co-expressing human cytochrome P450 CYP3A4 and NADPH-P450 reductase was used to biosynthesize these metabolites. NMR spectra elucidated the precise structures; oxidation occurred at the imidazole ring, and the subsequent ring-opening resulted in the generation of amide and formylamine groups. Glucuronide conjugates of the hydroxylated and O-demethylated derivatives were major components in rat bile. Therefore, DY-9760e metabolites generated in vitro correspond to the aglycones of the major metabolites observed in rat bile.
Collapse
Affiliation(s)
- S Tachibana
- Drug Metabolism and Physicochemistry Research Laboratories, Daiichi Pharmaceutical Co. Ltd, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kanazawa Y, Makino M, Morishima Y, Yamada K, Nabeshima T, Shirasaki Y. Degradation of PEP-19, a calmodulin-binding protein, by calpain is implicated in neuronal cell death induced by intracellular Ca2+ overload. Neuroscience 2008; 154:473-81. [PMID: 18502590 DOI: 10.1016/j.neuroscience.2008.03.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 03/13/2008] [Accepted: 03/18/2008] [Indexed: 10/22/2022]
Abstract
Excessive elevation of intracellular Ca2+ levels and, subsequently, hyperactivation of Ca2+/calmodulin-dependent processes might play an important role in the pathologic events following cerebral ischemia. PEP-19 is a neuronally expressed polypeptide that acts as an endogenous negative regulator of calmodulin by inhibiting the association of calmodulin with enzymes and other proteins. The aims of the present study were to investigate the effect of PEP-19 overexpression on cell death triggered by Ca2+ overload and how the polypeptide levels are affected by glutamate-induced excitotoxicity and cerebral ischemia. Expression of PEP-19 in HEK293T cells suppressed calmodulin-dependent signaling and protected against cell death elicited by Ca2+ ionophore. Likewise, primary cortical neurons overexpressing PEP-19 became resistant to glutamate-induced cell death. In immunoprecipitation assay, wild type PEP-19 associated with calmodulin, whereas mutated PEP-19, which contains mutations within the calmodulin binding site of PEP-19, failed to associate with calmodulin. We found that the mutation abrogates both the ability to suppress calmodulin-dependent signaling and to protect cells from death. Additionally, the endogenous PEP-19 levels in neurons were significantly reduced following glutamate exposure, this reduction precedes neuronal cell death and can be blocked by treatment with calpain inhibitors. These data suggest that PEP-19 is a substrate for calpain, and that the decreased PEP-19 levels result from its degradation by calpain. A similar reduction of PEP-19 also occurred in the hippocampus of gerbils subjected to transient global ischemia. In contrast to the reduction in PEP-19, no changes in calmodulin occurred following excitotoxicity, suggesting the loss of negative regulation of calmodulin by PEP-19. Taken together, these results provide evidence that PEP-19 overexpression enhances resistance to Ca2+-mediated cytotoxicity, which might be mediated through calmodulin inhibition, and also raises the possibility that PEP-19 degradation by calpain might produce an aberrant activation of calmodulin functions, which in turn causes neuronal cell death.
Collapse
Affiliation(s)
- Y Kanazawa
- Biological Research Laboratories 1, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Han F, Fukunaga K. Brain Embolism-induced Injury of Vascular Endothelial Cells and a Novel Vasoprotective Drug. YAKUGAKU ZASSHI 2007; 127:743-8. [PMID: 17409706 DOI: 10.1248/yakushi.127.743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microsphere embolism-induced up-regulation of endothelial nitric oxide synthase (eNOS) in endothelial cells of brain microvessels was found after brain ischemia. The eNOS induction preceded disruption of the blood-brain barrier following ischemia. In vascular endothelial cells, microsphere embolism-induced eNOS expression was associated with protein tyrosine nitration, which is a marker of generation of peroxynitrite. To determine whether eNOS expression and protein tyrosine nitration in vascular endothelial cells mediates the blood-brain barrier disruption in the microsphere embolism brain, we tested the effect of a novel calmodulin-dependent NOS inhibitor, DY-9760e, which inhibits eNOS activity and in turn protein tyrosine nitration. Concomitant with inhibition of protein tyrosine nitration in vascular endothelial cells, DY-9760e significantly inhibited BBB disruption as assessed by Evans blue excretion. DY-9760e also inhibited cleavage of poly(ADP-ribose) polymerase as a marker of the apoptotic pathway in vascular endothelial cells. Taken together with previous evidence in which DY-9760e inhibited brain edema, microsphere embolism-induced eNOS expression in vascular endothelial cells likely mediates BBB disruption and in turn brain edema.
Collapse
Affiliation(s)
- Feng Han
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | | |
Collapse
|
13
|
Kuhlmann CRW, Tamaki R, Gamerdinger M, Lessmann V, Behl C, Kempski OS, Luhmann HJ. Inhibition of the myosin light chain kinase prevents hypoxia-induced blood-brain barrier disruption. J Neurochem 2007; 102:501-7. [PMID: 17419808 DOI: 10.1111/j.1471-4159.2007.04506.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Increased mortality after stroke is associated with development of brain edema. The aim of the present study was to examine the contribution of endothelial myosin light chain (MLC) phosphorylation to hypoxia-induced blood-brain barrier (BBB) opening. Measurements of trans-endothelial electrical resistance (TEER) were performed to analyse BBB integrity in an in vitro co-culture model (bovine brain microvascular endothelial cells (BEC) and rat astrocytes). Brain fluid content was analysed in rats after stroke induction using a two-vein occlusion model. Dihydroethidium was used to monitor intracellular generation of reactive oxygen species (ROS) in BEC. MLC phosphorylation was detected using immunohistochemistry and immunoblot analysis. Hypoxia caused a decrease of TEER values by more than 40%, which was prevented by inhibition of the MLC-kinase (ML-7, 10 micromol/L). In addition, ML-7 significantly reduced the brain fluid content in vivo after stroke. The NAD(P)H-oxidase inhibitor apocynin (500 micromol/L) prevented the hypoxia-induced TEER decrease. Hypoxia-dependent ROS generation was completely abolished by apocynin. Furthermore, ML-7 and apocynin blocked hypoxia-dependent phosphorylation of MLC. Our data demonstrate that hypoxia causes a breakdown of the BBB in vitro and in vivo involving ROS and the contractile machinery.
Collapse
Affiliation(s)
- Christoph R W Kuhlmann
- Institute of Physiology and Pathophysiology, Johannes Gutenberg University of Mainz, Mainz, Germany.
| | | | | | | | | | | | | |
Collapse
|
14
|
Han F, Shirasaki Y, Fukunaga K. Microsphere embolism-induced endothelial nitric oxide synthase expression mediates disruption of the blood-brain barrier in rat brain. J Neurochem 2006; 99:97-106. [PMID: 16987238 DOI: 10.1111/j.1471-4159.2006.04048.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Microsphere embolism (ME)-induced up-regulation of endothelial nitric oxide synthase (eNOS) in endothelial cells of brain microvessels was observed 2-48 h after ischemia. eNOS induction preceded disruption of the blood-brain barrier (BBB) observed 6-72 h after ischemia. In vascular endothelial cells, ME-induced eNOS expression was closely associated with protein tyrosine nitration, which is a marker of generation of peroxynitrite. Leakage of rabbit IgG from microvessels was also evident around protein tyrosine nitration-immunoreactive microvessels. To determine whether eNOS expression and protein tyrosine nitration in vascular endothelial cells mediates BBB disruption in the ME brain, we tested the effect of a novel calmodulin-dependent NOS inhibitor, 3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate (DY-9760e), which inhibits eNOS activity and, in turn, protein tyrosine nitration. Concomitant with inhibition of protein tyrosine nitration in vascular endothelial cells, DY-9760e significantly inhibited BBB disruption as assessed by Evans blue (EB) excretion. DY-9760e also inhibited cleavage of poly (ADP-ribose) polymerase as a marker of the apoptotic pathway in vascular endothelial cells. Taken together with previous evidence in which DY-9760e inhibited brain edema, ME-induced eNOS expression in vascular endothelial cells likely mediates BBB disruption and, in turn, brain edema.
Collapse
Affiliation(s)
- Feng Han
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | |
Collapse
|
15
|
Shioda N, Moriguchi S, Shirasaki Y, Fukunaga K. Generation of constitutively active calcineurin by calpain contributes to delayed neuronal death following mouse brain ischemia. J Neurochem 2006; 98:310-20. [PMID: 16805817 DOI: 10.1111/j.1471-4159.2006.03874.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Calpain, a Ca(2+)-dependent cysteine protease, in vitro converts calcineurin (CaN) to constitutively active forms of 45 kDa and 48 kDa by cleaving the autoinhibitory domain of the 60 kDa subunit. In a mouse middle cerebral artery occlusion (MCAO) model, calpain converted the CaN A subunit to the constitutively active form with 48 kDa in vivo. We also confirmed increased Ca(2+)/CaM-independent CaN activity in brain extracts. The generation of constitutively active and Ca(2+)/CaM-independent activity of CaN peaked 2 h after reperfusion in brain extracts. Increased constitutively active CaN activity was associated with dephosphorylation of dopamine-regulated phosphoprotein-32 in the brain. Generation of constitutively active CaN was accompanied by translocation of nuclear factor of activated T-cells (NFAT) into nuclei of hippocampal CA1 pyramidal neurons. In addition, a novel calmodulin antagonist, DY-9760e, blocked the generation of constitutively active CaN by calpain, thereby inhibiting NFAT nuclear translocation. Together with previous studies indicating that NFAT plays a critical role in apoptosis, we propose that calpain-induced CaN activation in part mediates delayed neuronal death in brain ischemia.
Collapse
Affiliation(s)
- Norifumi Shioda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
16
|
Shirasaki Y, Kanazawa Y, Morishima Y, Makino M. Involvement of calmodulin in neuronal cell death. Brain Res 2006; 1083:189-95. [PMID: 16545345 DOI: 10.1016/j.brainres.2006.01.123] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 01/26/2006] [Accepted: 01/28/2006] [Indexed: 12/15/2022]
Abstract
A large body of evidence indicates that disturbances of Ca(2+) homeostasis may be a causative factor in the neurotoxicity following cerebral ischemia. However, the mechanisms by which Ca(2+) overload leads to neuronal cell death have not been fully elucidated. Calmodulin, a major intracellular Ca(2+)-binding protein found mainly in the central nervous system, mediates many physiological functions in response to changes in the intracellular Ca(2+) concentration, whereas Ca(2+) overload in neurons after excitotoxic insult may induce excessive activation of calmodulin signaling pathways, leading to neuronal cell death. To determine the role of calmodulin in the induction of neuronal cell death, we generated primary rat cortical neurons that express a mutant calmodulin with a defect in Ca(2+)-binding affinity. Neurons expressing the mutant had low responses of calmodulin-dependent signaling to membrane depolarization by high KCl and became resistant to glutamate-triggered excitotoxic neuronal cell death compared with the vector or wild-type calmodulin-transfected cells, indicating that blocking calmodulin function is protective against excitotoxic insult. These results suggest that calmodulin plays a crucial role in the processes of Ca(2+)-induced neuronal cell death and the possibility that the blockage of calmodulin attenuates brain injury after cerebral ischemia.
Collapse
Affiliation(s)
- Yasufumi Shirasaki
- New Product Research Laboratories II, Daiichi Pharmaceutical Co., Ltd., 1-16-13, Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | | | | | | |
Collapse
|
17
|
Tachibana S, Fujimaki Y, Yokoyama H, Okazaki O, Sudo KI. In vitro metabolism of the calmodulin antagonist DY-9760e (3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate) by human liver microsomes: involvement of cytochromes p450 in atypical kinetics and potential drug interactions. Drug Metab Dispos 2005; 33:1628-36. [PMID: 16049129 DOI: 10.1124/dmd.105.004903] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human cytochrome P450 (P450) isozyme(s) responsible for metabolism of the calmodulin antagonist 3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate (DY-9760e) and kinetic profiles for formation of its six primary metabolites [M3, M5, M6, M7, M8, and DY-9836 (3-[2-[4-(3-chloro-2-methylphenyl)piperazinyl]ethyl]-5,6-dimethoxyindazole)] were identified using human liver microsomes and recombinant P450 enzymes. In vitro experiments, including an immunoinhibition study, correlation analysis, and reactions with recombinant P450 enzymes, revealed that CYP3A4 is the primary P450 isozyme responsible for the formation of the DY-9760e metabolites, except for M5, which is metabolized by CYP2C9. Additionally, at clinically relevant concentrations, CYP2C8 and 2C19 make some contribution to the formation of M3 and M5, respectively. The formation rates of DY-9760e metabolites except for M8 by human liver microsomes are not consistent with a Michaelis-Menten kinetics model, but are better described by a substrate inhibition model. In contrast, the enzyme kinetics for all metabolites formed by recombinant CYP3A4 can be described by an autoactivation model or a mixed model of autoactivation and biphasic kinetics. Inhibition of human P450 enzymes by DY-9760e in human liver microsomes was also investigated. DY-9760e is a very potent competitive inhibitor of CYP2C8, 2C9 and 2D6 (Ki 0.25-1.7 microM), a mixed competitive and noncompetitive inhibitor of CYP2C19 (Ki 2.4 microM) and a moderate inhibitor of CYP1A2 and 3A4 (Ki 11.4-20.1 microM), suggesting a high possibility for human drug-drug interaction.
Collapse
Affiliation(s)
- Shuko Tachibana
- Drug Metabolism & Physicochemistry Research Laboratories, R&D Division, Daiichi Pharmaceutical Co., Ltd., Toky, Japan.
| | | | | | | | | |
Collapse
|
18
|
Sugimura M, Takamori H, Fukushi H, Kitano Y, Kanazawa Y, Shirasaki Y. DY-9760e, a Calmodulin Antagonist, Reduces Brain Damage after Permanent Focal Cerebral Ischemia in Cats. Biol Pharm Bull 2005; 28:629-33. [PMID: 15802800 DOI: 10.1248/bpb.28.629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DY-9760e (3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate), a calmodulin antagonist, provides protection against Ca(2+) overload-associated cytotoxicity and brain injury after cerebral ischemia in rats. In this study, we assessed the effect of DY-9760e on ischemic infarct volume in cats subjected to permanent focal cerebral ischemia. DY-9760e was infused for 6 h, beginning 5 min after occlusion of the middle cerebral artery. The infarct volume was measured at the end of drug infusion. DY-9760e, at the dose of 0.25 but not 0.1 mg/kg/h, significantly reduced cerebral infarct volume without affecting any physiological parameters, and its protective effect was mainly evident in the cerebral cortex, where the penumbra, a salvageable zone, exists. The present study demonstrates that DY-9760e protects against brain injury after focal ischemia in a gyrencephalic animal as well as in the rodents reported previously and suggests its therapeutic value for the treatment of acute stroke.
Collapse
Affiliation(s)
- Masunobu Sugimura
- New Product Research Laboratories II, Daiichi Pharmaceutical Co., Ltd., Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Shirasaki Y, Edo N, Sato T. Serum S-100b protein as a biomarker for the assessment of neuroprotectants. Brain Res 2004; 1021:159-66. [PMID: 15342263 DOI: 10.1016/j.brainres.2004.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2004] [Indexed: 11/25/2022]
Abstract
The study of biomarkers associated with stroke has proved to be of considerable utility. The astroglial protein S-100b is a candidate marker for cerebral tissue damage. We used a rat embolic model produced by injection of microspheres to demonstrate that serum S-100b is a useful biochemical marker for ischemic brain injury. Serum S-100b levels were significantly increased following microsphere injection, which was closely correlated with the development of brain edema. We found that structurally and mechanistically independent neuroprotective agents, such as 3-[2-[4-(3-chloro-2-methylphenylmethyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate (DY-9760e), a novel calmodulin antagonist, and the N-methyl-d-aspartate (NMDA) receptor antagonist MK-801, are capable of attenuating increased serum S-100b levels and brain edema. In contrast, the hyperosmolar agent glycerol, which has no direct neuroprotective action, had little effect on serum S-100b levels, despite a significant decrease in brain water content. These results suggest that lowering of serum S-100b is mediated by neuroprotection against ischemic brain injury. Thus, serum S-100b reflects the extent of brain damage following cerebral ischemia and serves as a useful biomarker for the assessment of neuroprotectants.
Collapse
Affiliation(s)
- Yasufumi Shirasaki
- New Product Research Laboratories II, Daiichi Pharmaceutical Co., Ltd., 1-16-13 Kitakasai 1-Chome, Edogawa-ku, Tokyo 134-8630, Japan.
| | | | | |
Collapse
|
20
|
Takano H, Sugimura M, Kanazawa Y, Uchida T, Morishima Y, Shirasaki Y. Protective Effect of DY-9760e, a Calmodulin Antagonist, against Neuronal Cell Death. Biol Pharm Bull 2004; 27:1788-91. [PMID: 15516724 DOI: 10.1248/bpb.27.1788] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An excessive elevation of intracellular Ca(2+) levels is known to play a key role in the pathological events following cerebral ischemia. DY-9760e, 3-[2-[4-(3-chloro-2-methylphenylmethyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate, is a potent calmodulin antagonist that attenuates brain damage in focal ischemia models. In the present study, we investigated the effect of DY-9760e on neuronal cell death induced by a variety of cell-toxic stimuli that increase intracellular Ca(2+). Cell death was induced by the exposure of primary cultured neurons to excitotoxic agents such as glutamate and N-methyl-D-aspartate, membrane-depolarizing agents such as veratridine and high KCl, or thapsigargin an endoplasmic reticulum Ca(2+)-ATPase inhibitor. Treatment with DY-9760e resulted in a dose-dependent prevention of neuronal cell death elicited by excitotoxicity, voltage-gated channel opening, and inhibition of endoplasmic reticulum Ca(2+)-ATPase. These results indicate that DY-9760e can rescue neurons from various types of cell-toxic stimuli, which may contribute to attenuation of brain injury after cerebral ischemia.
Collapse
Affiliation(s)
- Hiromichi Takano
- New Product Research Laboratories II, Daiichi Pharmaceutical Co., Ltd., Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Hashiguchi A, Yano S, Morioka M, Hamada J, Shirasaki Y, Kochi M, Fukunaga K. The Post-ischemic Administration of 3-[2-[4-(3-Chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole Dihydrochloride 3.5 Hydrate (DY-9760e), a Novel Calmodulin Antagonist, Prevents Delayed Neuronal Death in Gerbil Hippocampus. J Pharmacol Sci 2004; 96:65-72. [PMID: 15359085 DOI: 10.1254/jphs.fp0040348] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The novel calmodulin (CaM) antagonist DY-9760e (3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate) with an apparent neuroprotective effect in vivo preferentially inhibits neuronal nitric oxide synthase (nNOS), Ca2+/CaM-dependent protein kinase IIalpha (CaMKIIalpha), and calcineurin in vitro. In the present study, we investigated the molecular mechanism underlying its neuroprotective effect with the gerbil transient forebrain ischemia model, by focusing on its inhibition of these Ca2+/CaM-dependent enzymes. Post-ischemic DY-9760e treatment (5 mg/kg, i.p.) immediately after 5-min ischemia significantly reduced the delayed neuronal death in the hippocampal CA1 region. CaMKIIalpha was transiently autophosphorylated immediately after reperfusion with concomitant sustained decrease in its total amounts in the Triton X-100-soluble fractions. Calcineurin activity, accessed by the phosphorylation state of dopamine- and cAMP-regulated phosphoprotein of Mr 32,000 (DARPP-32) at Thr34, was elevated at 6 h after reperfusion. Post-treatment of DY-9760e had no effects on both CaMKIIalpha and DARPP-32 phosphorylation at 6 h after reperfusion. However, DY-9760e significantly inhibited nitrotyrosine formation, as a biomarker of NO, and in turn, peroxynitrite (ONOO-) production. These results suggest that DY-9760e primarily inhibits Ca2+/CaM-dependent neuronal NOS, without any effects on CaMKII and calcineurin, and the inhibition of NO production possibly accounts for its neuroprotective action in brain ischemic injury.
Collapse
Affiliation(s)
- Akihito Hashiguchi
- Department of Neurosurgery, Kumamoto University School of Medicine, Kumamoto-city, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Nagase Y, Arima H, Wada K, Sugawara T, Satoh H, Hirayama F, Uekama K. Inhibitory Effect of Sulfobutyl Ether β‐cyclodextrin on DY‐9760e‐Induced Cellular Damage: In vitro and in vivo Studies. J Pharm Sci 2003; 92:2466-74. [PMID: 14603492 DOI: 10.1002/jps.10517] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The effects of water-soluble beta-cyclodextrin derivatives (beta-CyDs), such as 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CyD) and sulfobutyl ether beta-cyclodextrin (SBE7-beta-CyD) on cytotoxicity of DY-9760e (3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate) toward human umbilical vein endothelial cells (HUVECs) in vitro and vascular damage of the auricular vein of rabbits by DY-9760e in vivo were investigated. The spectroscopic study revealed that of the four beta-CyDs SBE7-beta-CyD forms the most stable inclusion complex in phosphate-buffered saline, probably because of a synergetic effect of hydrophobic and electrostatic interactions. beta-CyDs inhibited DY-9760e-induced cell death toward HUVECs in an order of G(2)-beta-CyD < beta-CyD < HP-beta-CyD < SBE7-beta-CyD, which was consistent with the order of the magnitude of stability constants. When the DY-9760e solution was infused into the auricular vein of rabbits for 24 h, SBE7-beta-CyD suppressed a DY-9760e-induced irritation such as thrombus, desquamation of the endothelium vasculitis, and perivasculitis. The present data indicated that SBE7-beta-CyD formed an inclusion complex with DY-9760e in a buffer solution and possessed the protective effect on DY-9760e-induced cytotoxicity toward HUVECs and vascular damage in rabbits. These results suggested potential use of SBE7-beta-CyD as a parenteral carrier for DY-9760e.
Collapse
Affiliation(s)
- Yukihiko Nagase
- Analytical Research Center, Chemical Technology Research Laboratories, Daiichi Pharmaceutical Co. Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | | | | | | | | | | | | |
Collapse
|