1
|
Zhang J, Sandroni PB, Huang W, Gao X, Oswalt L, Schroder MA, Lee S, Shih YYI, Huang HYS, Swigart PM, Myagmar BE, Simpson PC, Rossi JS, Schisler JC, Jensen BC. Cardiomyocyte Alpha-1A Adrenergic Receptors Mitigate Postinfarct Remodeling and Mortality by Constraining Necroptosis. JACC Basic Transl Sci 2024; 9:78-96. [PMID: 38362342 PMCID: PMC10864988 DOI: 10.1016/j.jacbts.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 02/17/2024]
Abstract
Clinical studies have shown that α1-adrenergic receptor antagonists (α-blockers) are associated with increased heart failure risk. The mechanism underlying that hazard and whether it arises from direct inhibition of cardiomyocyte α1-ARs or from systemic effects remain unclear. To address these issues, we created a mouse with cardiomyocyte-specific deletion of the α1A-AR subtype and found that it experienced 70% mortality within 7 days of myocardial infarction driven, in part, by excessive activation of necroptosis. We also found that patients taking α-blockers at our center were at increased risk of death after myocardial infarction, providing clinical correlation for our translational animal models.
Collapse
Affiliation(s)
- Jiandong Zhang
- Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- UNC McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Peyton B. Sandroni
- UNC McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
| | - Wei Huang
- UNC McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Xiaohua Gao
- Department of Epidemiology, University of North Carolina Gillings School of Public Health, Chapel Hill, North Carolina, USA
| | - Leah Oswalt
- UNC McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Melissa A. Schroder
- UNC McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - SungHo Lee
- Center for Animal MRI, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Yen-Yu I. Shih
- Center for Animal MRI, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Hsiao-Ying S. Huang
- Mechanical and Aerospace Engineering Department, North Carolina State University, Raleigh, North Carolina, USA
| | - Philip M. Swigart
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
- San Francisco VA Medical Center, San Francisco, California, USA
| | - Bat E. Myagmar
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
- San Francisco VA Medical Center, San Francisco, California, USA
| | - Paul C. Simpson
- Department of Medicine, University of California-San Francisco, San Francisco, California, USA
- San Francisco VA Medical Center, San Francisco, California, USA
| | - Joseph S. Rossi
- Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jonathan C. Schisler
- UNC McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Brian C. Jensen
- Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- UNC McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Vafadar Ghasemi L, Behnam Rassouli M, Matin MM, Mahdavi-Shahri N. Benfotiamine reduced collagen IV contents of sciatic nerve in hyperglycemic rats. J Diabetes Metab Disord 2021; 20:21-30. [PMID: 34222057 PMCID: PMC8212243 DOI: 10.1007/s40200-020-00666-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 10/19/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Neuropathy as a common complication of hyperglycemia in diabetic patients is probably caused by metabolic and structural changes in extracellular matrix (ECM) of peripheral nerves. This study was designed to evaluate the effects of benfotiamine (BT) on the structural, biological and mechanical characteristics of rat sciatic nerve in hyperglycemic condition. MATERIALS AND METHODS Forty eight adult male Wistar rats were assigned to 6 groups (n = 8): control (healthy rats with no treatment; C), positive control (healthy rats received BT treatment; B), negative control groups 1&2 (hyperglycemic rats kept for 4 and/or 8 weeks; 4WD and 8WD, respectively) and experimental groups 1&2 (hyperglycemic rats treated by daily oral gavage of 100 mg kg- 1 body weight BT for 4 and/or 8 weeks; 4WD + BT and 8WD + BT, respectively). Hyperglycemia was induced by a single intraperitoneal injection of of streptozotocin (55 mg kg- 1 body weight). After a period of experimental period (4 and/or 8 weeks) rats were sacrificed and from each two segments (1 cm length) of left sciatic nerve were sampled. These samples were prepared for histological examinations (light and electron microscopy), collagen IV immunohistochemistry and strength tensile test. RESULTS In comparison to control groups, in 4WD and 8WD groups the amount of type IV collagen was increased, the structure of myelin sheath and nerve fibers were extensively altered and the tensile strength was significantly decreased (p < 0.05) while in 4WD + BT and 8WD + BT groups these abnormalities were attenuated. CONCLUSIONS It seems that BT treatment may rescue the sciatic nerve from the hyperglycemic-induced ECM structural abnormality. This beneficial advantage of BT is likely exerted through the modification of glucose metabolism pathways.
Collapse
Affiliation(s)
- Leila Vafadar Ghasemi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Morteza Behnam Rassouli
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
| | - Maryam M. Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Naser Mahdavi-Shahri
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran
| |
Collapse
|
3
|
Perez DM. Current Developments on the Role of α 1-Adrenergic Receptors in Cognition, Cardioprotection, and Metabolism. Front Cell Dev Biol 2021; 9:652152. [PMID: 34113612 PMCID: PMC8185284 DOI: 10.3389/fcell.2021.652152] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
The α1-adrenergic receptors (ARs) are G-protein coupled receptors that bind the endogenous catecholamines, norepinephrine, and epinephrine. They play a key role in the regulation of the sympathetic nervous system along with β and α2-AR family members. While all of the adrenergic receptors bind with similar affinity to the catecholamines, they can regulate different physiologies and pathophysiologies in the body because they couple to different G-proteins and signal transduction pathways, commonly in opposition to one another. While α1-AR subtypes (α1A, α1B, α1C) have long been known to be primary regulators of vascular smooth muscle contraction, blood pressure, and cardiac hypertrophy, their role in neurotransmission, improving cognition, protecting the heart during ischemia and failure, and regulating whole body and organ metabolism are not well known and are more recent developments. These advancements have been made possible through the development of transgenic and knockout mouse models and more selective ligands to advance their research. Here, we will review the recent literature to provide new insights into these physiological functions and possible use as a therapeutic target.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
4
|
Zhang J, Simpson PC, Jensen BC. Cardiac α1A-adrenergic receptors: emerging protective roles in cardiovascular diseases. Am J Physiol Heart Circ Physiol 2020; 320:H725-H733. [PMID: 33275531 DOI: 10.1152/ajpheart.00621.2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
α1-Adrenergic receptors (ARs) are catecholamine-activated G protein-coupled receptors (GPCRs) that are expressed in mouse and human myocardium and vasculature, and play essential roles in the regulation of cardiovascular physiology. Though α1-ARs are less abundant in the heart than β1-ARs, activation of cardiac α1-ARs results in important biologic processes such as hypertrophy, positive inotropy, ischemic preconditioning, and protection from cell death. Data from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) indicate that nonselectively blocking α1-ARs is associated with a twofold increase in adverse cardiac events, including heart failure and angina, suggesting that α1-AR activation might also be cardioprotective in humans. Mounting evidence implicates the α1A-AR subtype in these adaptive effects, including prevention and reversal of heart failure in animal models by α1A agonists. In this review, we summarize recent advances in our understanding of cardiac α1A-ARs.
Collapse
Affiliation(s)
- Jiandong Zhang
- McAllister Heart Institute, University of North Carolina, School of Medicine, Chapel Hill, North Carolina
| | - Paul C Simpson
- Department of Medicine and Research Service, San Francisco Veterans Affairs Medical Center and Cardiovascular Research Institute, University of California, San Francisco, California
| | - Brian C Jensen
- McAllister Heart Institute, University of North Carolina, School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
5
|
Kaykı-Mutlu G, Papazisi O, Palmen M, Danser AHJ, Michel MC, Arioglu-Inan E. Cardiac and Vascular α 1-Adrenoceptors in Congestive Heart Failure: A Systematic Review. Cells 2020; 9:E2412. [PMID: 33158106 PMCID: PMC7694190 DOI: 10.3390/cells9112412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
As heart failure (HF) is a devastating health problem worldwide, a better understanding and the development of more effective therapeutic approaches are required. HF is characterized by sympathetic system activation which stimulates α- and β-adrenoceptors (ARs). The exposure of the cardiovascular system to the increased locally released and circulating levels of catecholamines leads to a well-described downregulation and desensitization of β-ARs. However, information on the role of α-AR is limited. We have performed a systematic literature review examining the role of both cardiac and vascular α1-ARs in HF using 5 databases for our search. All three α1-AR subtypes (α1A, α1B and α1D) are expressed in human and animal hearts and blood vessels in a tissue-dependent manner. We summarize the changes observed in HF regarding the density, signaling and responses of α1-ARs. Conflicting findings arise from different studies concerning the influence that HF has on α1-AR expression and function; in contrast to β-ARs there is no consistent evidence for down-regulation or desensitization of cardiac or vascular α1-ARs. Whether α1-ARs are a therapeutic target in HF remains a matter of debate.
Collapse
Affiliation(s)
- Gizem Kaykı-Mutlu
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey; (G.K.-M.); (E.A.-I.)
| | - Olga Papazisi
- Department of Cardiothoracic Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (O.P.); (M.P.)
| | - Meindert Palmen
- Department of Cardiothoracic Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (O.P.); (M.P.)
| | - A. H. Jan Danser
- Department of Internal Medicine, Division of Pharmacology, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands;
| | - Martin C. Michel
- Department of Pharmacology, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey; (G.K.-M.); (E.A.-I.)
| |
Collapse
|
6
|
Abstract
The term uraemic cardiomyopathy refers to the cardiac abnormalities that are seen in patients with chronic kidney disease (CKD). Historically, this term was used to describe a severe cardiomyopathy that was associated with end-stage renal disease and characterized by severe functional abnormalities that could be reversed following renal transplantation. In a modern context, uraemic cardiomyopathy describes the clinical phenotype of cardiac disease that accompanies CKD and is perhaps best characterized as diastolic dysfunction seen in conjunction with left ventricular hypertrophy and fibrosis. A multitude of factors may contribute to the pathogenesis of uraemic cardiomyopathy, and current treatments only modestly improve outcomes. In this Review, we focus on evolving concepts regarding the roles of fibroblast growth factor 23 (FGF23), inflammation and systemic oxidant stress and their interactions with more established mechanisms such as pressure and volume overload resulting from hypertension and anaemia, respectively, activation of the renin-angiotensin and sympathetic nervous systems, activation of the transforming growth factor-β (TGFβ) pathway, abnormal mineral metabolism and increased levels of endogenous cardiotonic steroids.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Joseph I Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA.
| |
Collapse
|
7
|
Ruegsegger GN, Toedebusch RG, Braselton JF, Childs TE, Booth FW. Left ventricle transcriptomic analysis reveals connective tissue accumulation associates with initial age-dependent decline in V̇o2peak from its lifetime apex. Physiol Genomics 2016; 49:53-66. [PMID: 27913688 DOI: 10.1152/physiolgenomics.00083.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/08/2016] [Accepted: 11/28/2016] [Indexed: 12/17/2022] Open
Abstract
Peak oxygen consumption (V̇o2peak) strongly predicts morbidity and mortality better than other established risk factors, yet mechanisms associated with its age-associated decline are unknown. Our laboratory has shown that V̇o2peak first begins to decrease at the same age of 19-20 wk in both sedentary and wheel-running, female Wistar rats (Toedebusch et al., Physiol Genomics 48: 101-115, 2016). Here, we employed a total systemic approach using unsupervised interrogation of mRNA with RNA sequencing. The purpose of our study was to analyze transcriptomic profiles from both sedentary (SED) and wheel-running (RUN) conditions as a strategy to identify pathways in the left ventricle that may contribute to the initial reductions in V̇o2peak occurring between 19 and 27 wk of age. Transcriptomic comparisons were made within both SED and RUN rats between 19 and 27 wk (n = 5-8). Analysis of mRNAs shared in SED and RUN between 19 and 27 wk found 17 upregulated (e.g., Adra1d, Rpl17, Xpo7) and 8 downregulated (e.g., Cdo1, Ctfg, Sfrp1) mRNAs, at 19 wk, respectively. Furthermore, bioinformatics analysis of mRNAs common to SED and RUN produced networks suggestive of increased connective tissue development at 27 vs. 19 wk. Additionally, Ctfg mRNA was negatively associated with V̇o2peak in both SED and RUN (P < 0.05). In summary, transcriptomic analysis revealed mRNAs and networks associated with increased connective tissue development, decreased α-adrenergic activity, and decreased protein translation in the left ventricle that could, in part, potentially influence the initiation of the lifelong reduction in V̇o2peak, independent of physical activity levels.
Collapse
Affiliation(s)
| | - Ryan G Toedebusch
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Joshua F Braselton
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Thomas E Childs
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; .,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; and.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
8
|
Pytka K, Lustyk K, Żmudzka E, Kotańska M, Siwek A, Zygmunt M, Dziedziczak A, Śniecikowska J, Olczyk A, Gałuszka A, Śmieja J, Waszkielewicz AM, Marona H, Filipek B, Sapa J, Mogilski S. Chemically Homogenous Compounds with Antagonistic Properties at All α1-Adrenoceptor Subtypes but not β1-Adrenoceptor Attenuate Adrenaline-Induced Arrhythmia in Rats. Front Pharmacol 2016; 7:229. [PMID: 27536240 PMCID: PMC4971072 DOI: 10.3389/fphar.2016.00229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/15/2016] [Indexed: 01/11/2023] Open
Abstract
Studies proved that among all α1-adrenoceptors, cardiac myocytes functionally express only α1A- and α1B-subtype. Scientists indicated that α1A-subtype blockade might be beneficial in restoring normal heart rhythm. Therefore, we aimed to determine the role of α1-adrenoceptors subtypes (i.e., α1A and α1B) in antiarrhythmic effect of six structurally similar derivatives of 2-methoxyphenylpiperazine. We compared the activity of studied compounds with carvedilol, which is β1- and α1-adrenoceptors blocker with antioxidant properties. To evaluate the affinity for adrenergic receptors, we used radioligand methods. We investigated selectivity at α1-adrenoceptors subtypes using functional bioassays. We tested antiarrhythmic activity in adrenaline-induced (20 μg/kg i.v.), calcium chloride-induced (140 and 25 mg/kg i.v.) and barium chloride-induced (32 and 10 mg/kg i.v.) arrhythmia models in rats. We also evaluated the influence of studied compounds on blood pressure in rats, as well as lipid peroxidation. All studied compounds showed high affinity toward α1-adrenoceptors but no affinity for β1 receptors. Biofunctional studies revealed that the tested compounds blocked α1A-stronger than α1B-adrenoceptors, but except for HBK-19 they antagonized α1A-adrenoceptor weaker than α1D-subtype. HBK-19 showed the greatest difference in pA2 values-it blocked α1A-adrenoceptors around seven-fold stronger than α1B subtype. All compounds showed prophylactic antiarrhythmic properties in adrenaline-induced arrhythmia, but only the activity of HBK-16, HBK-17, HBK-18, and HBK-19 (ED50 = 0.18-0.21) was comparable to that of carvedilol (ED50 = 0.36). All compounds reduced mortality in adrenaline-induced arrhythmia. HBK-16, HBK-17, HBK-18, and HBK-19 showed therapeutic antiarrhythmic properties in adrenaline-induced arrhythmia. None of the compounds showed activity in calcium chloride- or barium chloride-induced arrhythmias. HBK-16, HBK-17, HBK-18, and HBK-19 decreased heart rhythm at ED84. All compounds significantly lowered blood pressure in normotensive rats. HBK-18 showed the strongest hypotensive properties (the lowest active dose: 0.01 mg/kg). HBK-19 was the only compound in the group, which did not show hypotensive effect at antiarrhythmic doses. HBK-16, HBK-17, HBK-18, HBK-19 showed weak antioxidant properties. Our results indicate that the studied 2-methoxyphenylpiperazine derivatives that possessed stronger α1A-adrenolytic properties (i.e., HBK-16, HBK-17, HBK-18, and HBK-19) were the most active compounds in adrenaline-induced arrhythmia. Thus, we suggest that the potent blockade of α1A-receptor subtype is essential to attenuate adrenaline-induced arrhythmia.
Collapse
Affiliation(s)
- Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College Krakow, Poland
| | - Klaudia Lustyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College Krakow, Poland
| | - Elżbieta Żmudzka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College Krakow, Poland
| | - Magdalena Kotańska
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College Krakow, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College Krakow, Poland
| | - Małgorzata Zygmunt
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College Krakow, Poland
| | - Agnieszka Dziedziczak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College Krakow, Poland
| | - Joanna Śniecikowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College Krakow, Poland
| | - Adrian Olczyk
- Control and Robotics Group, Institute of Automatic Control, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology Gliwice, Poland
| | - Adam Gałuszka
- Control and Robotics Group, Institute of Automatic Control, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology Gliwice, Poland
| | - Jarosław Śmieja
- Systems Engineering Group, Institute of Automatic Control, Faculty of Automatic Control, Electronics and Informatics, Silesian University of Technology Gliwice, Poland
| | - Anna M Waszkielewicz
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College Krakow, Poland
| | - Henryk Marona
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College Krakow, Poland
| | - Barbara Filipek
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College Krakow, Poland
| | - Jacek Sapa
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College Krakow, Poland
| | - Szczepan Mogilski
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College Krakow, Poland
| |
Collapse
|
9
|
Abstract
Background. Phenylephrine (PE) is a α-adrenergic agent commonly administered by perfusion and anesthesia. It is important to identify the effect of PE, especially on cardiac function. This study was intended to show the effects of PE on cardiac function in the murine model via pressure-volume loops. Methods. Six C57BL/6J twelve-week-old female mice were studied prior to and following PE administration at 50 μg/kg IV. In vivo pressure-volume loops were recorded at both time points. Results. There was an expected increase in maximum arterial pressure by 30% (p < 0.001) and end-systolic pressure by 34% (p < 0.001). However, there was a decrease in cardiac output by 30% (p = 0.0006), ejection fraction by 36% (p = 0.0003) and stroke volume by 25% (p < 0.004). Conclusions. This study demonstrates that PE has an effect on cardiac function beyond increasing vascular resistance. The data suggest the negative effects of PE on cardiac function may be related to stimulation of cardiac α-adrenergic receptors. Perfusion (2007) 22, 289—292.
Collapse
|
10
|
Cotecchia S, Del Vescovo CD, Colella M, Caso S, Diviani D. The alpha1-adrenergic receptors in cardiac hypertrophy: signaling mechanisms and functional implications. Cell Signal 2015; 27:1984-93. [PMID: 26169957 DOI: 10.1016/j.cellsig.2015.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 01/05/2023]
Abstract
Cardiac hypertrophy is a complex remodeling process of the heart induced by physiological or pathological stimuli resulting in increased cardiomyocyte size and myocardial mass. Whereas cardiac hypertrophy can be an adaptive mechanism to stressful conditions of the heart, prolonged hypertrophy can lead to heart failure which represents the primary cause of human morbidity and mortality. Among G protein-coupled receptors, the α1-adrenergic receptors (α1-ARs) play an important role in the development of cardiac hypertrophy as demonstrated by numerous studies in the past decades, both in primary cardiomyocyte cultures and genetically modified mice. The results of these studies have provided evidence of a large variety of α1-AR-induced signaling events contributing to the defining molecular and cellular features of cardiac hypertrophy. Recently, novel signaling mechanisms have been identified and new hypotheses have emerged concerning the functional role of the α1-adrenergic receptors in the heart. This review will summarize the main signaling pathways activated by the α1-AR in the heart and their functional implications in cardiac hypertrophy.
Collapse
Affiliation(s)
- Susanna Cotecchia
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari, Via Orabona 4, 70125 Bari, Italy.
| | - Cosmo Damiano Del Vescovo
- Department de Pharmacologie et de de Toxicologie, Université de Lausanne, Rue du Bugnon 27, 1005, Lausanne, Switzerland
| | - Matilde Colella
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari, Via Orabona 4, 70125 Bari, Italy
| | - Stefania Caso
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari, Via Orabona 4, 70125 Bari, Italy; Department de Pharmacologie et de de Toxicologie, Université de Lausanne, Rue du Bugnon 27, 1005, Lausanne, Switzerland
| | - Dario Diviani
- Department de Pharmacologie et de de Toxicologie, Université de Lausanne, Rue du Bugnon 27, 1005, Lausanne, Switzerland
| |
Collapse
|
11
|
Böhmer T, Manicam C, Steege A, Michel MC, Pfeiffer N, Gericke A. The α₁B -adrenoceptor subtype mediates adrenergic vasoconstriction in mouse retinal arterioles with damaged endothelium. Br J Pharmacol 2015; 171:3858-67. [PMID: 24749494 DOI: 10.1111/bph.12743] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/22/2014] [Accepted: 04/15/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND PURPOSE The α₁-adrenoceptor family plays a critical role in regulating ocular perfusion by mediating responses to catecholamines. The purpose of the present study was to determine the contribution of individual α₁-adrenoceptor subtypes to adrenergic vasoconstriction of retinal arterioles using gene-targeted mice deficient in one of the three adrenoceptor subtypes (α₁A-AR(-/-), α₁B-AR(-/-) and α₁D-AR(-/-) respectively). EXPERIMENTAL APPROACH Using real-time PCR, mRNA expression for individual α₁-adrenoceptor subtypes was determined in murine retinal arterioles. To assess the functional relevance of the three α₁-adrenoceptor subtypes for mediating vascular responses, retinal vascular preparations from wild-type mice and mice deficient in individual α₁-adrenoceptor subtypes were studied in vitro using video microscopy. KEY RESULTS Retinal arterioles expressed mRNA for all three α₁-adrenoceptor subtypes. In functional studies, arterioles from wild-type mice with intact endothelium responded only negligibly to the α₁-adrenoceptor agonist phenylephrine. In endothelium-damaged arterioles from wild-type mice, phenylephrine evoked concentration-dependent constriction that was attenuated by the α₁-adrenoceptor blocker prazosin. Strikingly, phenylephrine only minimally constricted endothelium-damaged retinal arterioles from α₁B-AR(-/-) mice, whereas arterioles from α₁A -AR(-/-) and α₁D-AR(-/-) mice constricted similarly to arterioles from wild-type mice. Constriction to U46619 was similar in endothelium-damaged retinal arterioles from all four mouse genotypes. CONCLUSIONS AND IMPLICATIONS The present study is the first to demonstrate that α₁-adrenoceptor-mediated vasoconstriction in murine retinal arterioles is buffered by the endothelium. When the endothelium is damaged, a vasoconstricting role of the α₁B-adrenoceptor subtype is unveiled. Hence, the α₁B-adrenoceptor may represent a target to selectively modulate retinal blood flow in ocular diseases associated with endothelial dysfunction.
Collapse
Affiliation(s)
- Tobias Böhmer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Alpha-1-adrenergic receptors in heart failure: the adaptive arm of the cardiac response to chronic catecholamine stimulation. J Cardiovasc Pharmacol 2014; 63:291-301. [PMID: 24145181 DOI: 10.1097/fjc.0000000000000032] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alpha-1-adrenergic receptors (ARs) are G protein-coupled receptors activated by catecholamines. The alpha-1A and alpha-1B subtypes are expressed in mouse and human myocardium, whereas the alpha-1D protein is found only in coronary arteries. There are far fewer alpha-1-ARs than beta-ARs in the nonfailing heart, but their abundance is maintained or increased in the setting of heart failure, which is characterized by pronounced chronic elevation of catecholamines and beta-AR dysfunction. Decades of evidence from gain and loss-of-function studies in isolated cardiac myocytes and numerous animal models demonstrate important adaptive functions for cardiac alpha-1-ARs to include physiological hypertrophy, positive inotropy, ischemic preconditioning, and protection from cell death. Clinical trial data indicate that blocking alpha-1-ARs is associated with incident heart failure in patients with hypertension. Collectively, these findings suggest that alpha-1-AR activation might mitigate the well-recognized toxic effects of beta-ARs in the hyperadrenergic setting of chronic heart failure. Thus, exogenous cardioselective activation of alpha-1-ARs might represent a novel and viable approach to the treatment of heart failure.
Collapse
|
13
|
Three commercial antibodies against α1-adrenergic receptor subtypes lack specificity in paraffin-embedded sections of murine tissues. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:703-6. [PMID: 24866500 DOI: 10.1007/s00210-014-0992-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 05/15/2014] [Indexed: 10/25/2022]
Abstract
We tested the specificity of three commercially available antibodies (AB) against individual α1-adrenergic receptor subtypes (α1-ARST). We used these ABs to localize the α1-ARST proteins by immunohistochemistry in paraffin-embedded murine tissues. The specificity of the ABs was tested by comparing staining patterns in tissues from wild-type mice with those in corresponding tissues from mice with gene-targeted disruption of the respective α1-ARST, one of the most rigorous negative controls. None of the tested ABs proved to be specific for the indicated target antigen. We conclude that the tested ABs are unsuitable for immunohistochemistry in paraffin-embedded murine tissues.
Collapse
|
14
|
O'Connell TD, Jensen BC, Baker AJ, Simpson PC. Cardiac alpha1-adrenergic receptors: novel aspects of expression, signaling mechanisms, physiologic function, and clinical importance. Pharmacol Rev 2013; 66:308-33. [PMID: 24368739 PMCID: PMC3880467 DOI: 10.1124/pr.112.007203] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adrenergic receptors (AR) are G-protein-coupled receptors (GPCRs) that have a crucial role in cardiac physiology in health and disease. Alpha1-ARs signal through Gαq, and signaling through Gq, for example, by endothelin and angiotensin receptors, is thought to be detrimental to the heart. In contrast, cardiac alpha1-ARs mediate important protective and adaptive functions in the heart, although alpha1-ARs are only a minor fraction of total cardiac ARs. Cardiac alpha1-ARs activate pleiotropic downstream signaling to prevent pathologic remodeling in heart failure. Mechanisms defined in animal and cell models include activation of adaptive hypertrophy, prevention of cardiac myocyte death, augmentation of contractility, and induction of ischemic preconditioning. Surprisingly, at the molecular level, alpha1-ARs localize to and signal at the nucleus in cardiac myocytes, and, unlike most GPCRs, activate "inside-out" signaling to cause cardioprotection. Contrary to past opinion, human cardiac alpha1-AR expression is similar to that in the mouse, where alpha1-AR effects are seen most convincingly in knockout models. Human clinical studies show that alpha1-blockade worsens heart failure in hypertension and does not improve outcomes in heart failure, implying a cardioprotective role for human alpha1-ARs. In summary, these findings identify novel functional and mechanistic aspects of cardiac alpha1-AR function and suggest that activation of cardiac alpha1-AR might be a viable therapeutic strategy in heart failure.
Collapse
Affiliation(s)
- Timothy D O'Connell
- VA Medical Center (111-C-8), 4150 Clement St., San Francisco, CA 94121. ; or Dr. Timothy D. O'Connell, E-mail:
| | | | | | | |
Collapse
|
15
|
Kurosawa H, Seto Y, Wakamatsu H, Sato Y, Takase S, Omata S, Yokoyama H. Effects of phenylephrine and noradrenaline on coronary artery motion in an open-chest porcine beating heart model. Surg Today 2013; 44:1128-37. [PMID: 23812899 DOI: 10.1007/s00595-013-0639-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE During off-pump coronary artery bypass (OPCAB), surgeons are required to perform a precise anastomosis on the beating heart. The hypotension caused by vertical displacement of the heart during OPCAB is usually treated with vasopressors, such as noradrenaline and phenylephrine. However, the effects of these agents on coronary artery motion are unknown. The present study analyzed the motion of the target coronary arteries during noradrenaline or phenylephrine infusion using three-dimensional motion capture and reconstruction technology. METHODS The left anterior descending (LAD) artery, left circumflex (LCX) artery and right coronary artery (RCA) of 12 female landrace pigs (weight 50 ± 1 kg) were stabilized using a tissue stabilizer. The motions in the regions were captured before and during noradrenaline (n = 5) and phenylephrine (n = 7) infusion. RESULTS Noradrenaline (0.15 μg/kg/min) and phenylephrine (1.1 μg/kg/min) significantly increased the blood pressure. Noradrenaline significantly increased the motion parameters, such as the distance moved, maximum velocity, acceleration and deceleration at the LAD (4.2 vs. 7.9 mm, P = 0.025; 95.7 vs. 215.5 mm/s, P = 0.0074; 35.3 vs. 83.6 m/s(2), P = 0.0096 and -35.6 vs. -83.6 m/s(2), P = 0.005, respectively). The values during phenylephrine infusion did not change except for the distance moved at the LAD (3.8 vs. 7.7 mm, P = 0.042). The motion parameters at the LCX and RCA during noradrenaline and phenylephrine infusion did not change significantly. CONCLUSIONS The effect of phenylephrine on the coronary artery motion was less dramatic than that of noradrenaline.
Collapse
Affiliation(s)
- Hiroyuki Kurosawa
- Department of Cardiovascular Surgery, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan,
| | | | | | | | | | | | | |
Collapse
|
16
|
Ziyatdinova NI, Dementieva RE, Fashutdinov LI, Zefirov TL. Blockade of different subtypes of α(1)-adrenoceptors produces opposite effect on heart chronotropy in newborn rats. Bull Exp Biol Med 2013; 154:184-5. [PMID: 23330119 DOI: 10.1007/s10517-012-1906-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We compared the effects of blockade of α(1A)-, α(1B)-, and α(1D)-subtypes of α(1)-adrenoceptors on the cardiac rhythm in newborn rats. Different responses of the heart were observed after blockade of several subtypes of α(1)-adrenoceptors. Administration of WB 4101, a selective blocker of α(1A)-adrenoceptors, increased heart rate, while blockade of α(1AD)-adrenoceptors with BMY 7378 decelerated of heart rhythm. Blockade of α(1B)-adrenoceptors with chloroethylclonidine produced no significant effects on heart chronotropy.
Collapse
Affiliation(s)
- N I Ziyatdinova
- Department of Anatomy, Physiology, and Human Health Protection, Kazan (Privolzhskii) Federal University, Russia
| | | | | | | |
Collapse
|
17
|
Romeo G, Materia L, Modica MN, Pittalà V, Salerno L, Siracusa MA, Manetti F, Botta M, Minneman KP. Novel 4-phenylpiperidine-2,6-dione derivatives. Ligands for α1-adrenoceptor subtypes. Eur J Med Chem 2011; 46:2676-90. [DOI: 10.1016/j.ejmech.2011.03.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/16/2011] [Accepted: 03/25/2011] [Indexed: 10/18/2022]
|
18
|
Jensen BC, O'Connell TD, Simpson PC. Alpha-1-adrenergic receptors: targets for agonist drugs to treat heart failure. J Mol Cell Cardiol 2010; 51:518-28. [PMID: 21118696 DOI: 10.1016/j.yjmcc.2010.11.014] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 11/12/2010] [Indexed: 12/19/2022]
Abstract
Evidence from cell, animal, and human studies demonstrates that α1-adrenergic receptors mediate adaptive and protective effects in the heart. These effects may be particularly important in chronic heart failure, when catecholamine levels are elevated and β-adrenergic receptors are down-regulated and dysfunctional. This review summarizes these data and proposes that selectively activating α1-adrenergic receptors in the heart might represent a novel and effective way to treat heart failure. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure."
Collapse
Affiliation(s)
- Brian C Jensen
- Cardiology Division, VA Medical Center, San Francisco, CA, USA.
| | | | | |
Collapse
|
19
|
Vacher B, Funes P, Chopin P, Cussac D, Heusler P, Tourette A, Marien M. Rigid analogues of the α2-adrenergic blocker atipamezole: small changes, big consequences. J Med Chem 2010; 53:6986-95. [PMID: 20809632 DOI: 10.1021/jm1006269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the discovery of a new family of α(2) adrenergic receptor antagonists derived from atipamezole. Affinities of the compounds at human α(2) and α(1b) receptors as well as their functional activities at hα(2A) receptors were determined in competition binding and G-protein activation assays, respectively. Central α(2) antagonist activities were confirmed in mice after oral administration. Further studies on a selected example: (+)-4-(1a,6-dihydro-1H-cyclopropa[a]inden-6a-yl)-1H-imidazole, (+)-1 (F 14805), were undertaken to probe the potential of the series. On the one hand, (+)-1 increased the release of noradrenaline in mouse frontal cortex following acute systemic administration, the magnitude of this effect being much larger than that obtained with reference agents. On the other, (+)-1 produced minimal cardiovascular effects in intact, anesthetized rat, a surprising outcome that might be explained by its differential action at peripheral and central α(2) receptors. A strategy for improving the therapeutic window of α(2) antagonists is put forward.
Collapse
Affiliation(s)
- Bernard Vacher
- Medicinal Chemistry 1 Division, Pierre Fabre Research Center,17 Avenue Jean Moulin, 81106 Castres Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
20
|
Jensen BC, Swigart PM, Montgomery MD, Simpson PC. Functional alpha-1B adrenergic receptors on human epicardial coronary artery endothelial cells. Naunyn Schmiedebergs Arch Pharmacol 2010; 382:475-82. [PMID: 20857090 PMCID: PMC2991196 DOI: 10.1007/s00210-010-0558-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 08/30/2010] [Indexed: 11/25/2022]
Abstract
Alpha-1-adrenergic receptors (α1-ARs) regulate coronary arterial blood flow by binding catecholamines, norepinephrine (NE), and epinephrine (EPI), causing vasoconstriction when the endothelium is disrupted. Among the three α1-AR subtypes (α1A, α1B, and α1D), the α1D subtype predominates in human epicardial coronary arteries and is functional in human coronary smooth muscle cells (SMCs). However, the presence or function of α1-ARs on human coronary endothelial cells (ECs) is unknown. Here we tested the hypothesis that human epicardial coronary ECs express functional α1-ARs. Cultured human epicardial coronary artery ECs were studied using quantitative real-time reverse transcription polymerase chain reaction, radioligand binding, immunoblot, and (3)H-thymidine incorporation. The α1B-subtype messenger ribonucleic acid (mRNA) was predominant in cultured human epicardial coronary ECs (90-95% of total α1-AR mRNA), and total α1-AR binding density in ECs was twice that in coronary SMCs. Functionally, NE and EPI through the α1B subtype activated extracellular signal-regulated kinase (ERK) in ECs, stimulated phosphorylation of EC endothelial nitric oxide synthase (eNOS), and increased deoxyribonucleic acid (DNA) synthesis. These results are the first to demonstrate α1-ARs on human coronary ECs and indicate that the α1B subtype is predominant. Our findings provide another potential mechanism for adverse cardiac effects of drug antagonists that nonselectively inhibit all three α1-AR subtypes.
Collapse
Affiliation(s)
- Brian C Jensen
- Cardiology Division, VA Medical Center, University of California, San Francisco, San Francisco, CA, USA
| | | | | | | |
Collapse
|
21
|
Chen WQ, Cai H, Zhang C, Ji XP, Zhang Y. Is overall blockade superior to selective blockade of adrenergic receptor subtypes in suppressing left ventricular remodeling in spontaneously hypertensive rats? Hypertens Res 2010; 33:1071-81. [PMID: 20668454 DOI: 10.1038/hr.2010.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To test the hypothesis that nonselective blockade of adrenergic receptor (AR) subtypes is superior to selective blockade of AR subtypes in suppressing left ventricular (LV) remodeling induced by hypertension. Sixty-four spontaneously hypertensive rats (SHR) were randomly divided into four groups: bisoprolol-treated, propranolol-treated, carvedilol-treated and no treatment groups (n=16, each). Sixteen Wistar-Kyoto (WKY) rats served as a control group. Echocardiography and cardiac catheterization were carried out to record the mitral flow velocity ratio of E wave to A wave (E/A), LV mass index (LVMI), maximal rising (dp/dt(max)) and falling (-dp/dt(max)) rate of the LV pressure and LV relaxation time constant (τ). The mRNA and protein expression levels of AR, protein kinase(PK) and G-protein subtypes, intracellular free calcium (Ca) concentration and cardiocyte apoptoisis rate were determined. Three drug-treated groups showed higher velocity ratio of E wave to A wave (E/A) and -dp/dt(max) and lower systolic blood pressure (SBP), LVMI, τ, apoptosis rate and intracellular free Ca(2+) concentration than the no treatment group. The mRNA expression levels of AR-α(1B) in the carvedilol group were significantly lower than the other two drug-treated groups. The mRNA expression levels of AR-β(1), AR-β(2) and Gsα were significantly higher in the three drug-treated groups than in the no treatment group, with the expression levels of AR-β(2) being the highest in the carvedilol-treated group. The protein expression levels of PKA and PKC subtype α and δ were lower in the three drug-treated groups than in the no treatment group. Overall blockade of AR subtypes is not superior to selective blockade of AR subtypes in suppressing LV remodeling in SHR. Although carvedilol is the most effective in attenuating cardiocyte apoptosis, normalizing AR-α(1B) and Gsα expression and increasing AR-β(2) expression.
Collapse
Affiliation(s)
- Wen Qiang Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Shandong, PR China
| | | | | | | | | |
Collapse
|
22
|
Barreto F, Rezende D, Scaramello C, Silva C, Cunha V, Caricati-Neto A, Jurkiewicz A, Noël F, Quintas L. Lack of evidence for regulation of cardiac P-type ATPases and MAP kinases in transgenic mice with cardiac-specific overexpression of constitutively active α1B-adrenoceptors. Braz J Med Biol Res 2010; 43:500-5. [DOI: 10.1590/s0100-879x2010007500028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 04/01/2010] [Indexed: 11/21/2022] Open
Affiliation(s)
- F. Barreto
- Universidade Federal do Rio de Janeiro, Brasil
| | | | | | | | | | | | | | - F. Noël
- Universidade Federal do Rio de Janeiro, Brasil
| | | |
Collapse
|
23
|
Reply. J Am Coll Cardiol 2010. [DOI: 10.1016/j.jacc.2009.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Ziolkowski N, Grover AK. Functional linkage as a direction for studies in oxidative stress: α-adrenergic receptorsThis review is one of a selection of papers published in a Special Issue on Oxidative Stress in Health and Disease. Can J Physiol Pharmacol 2010; 88:220-32. [PMID: 20393587 DOI: 10.1139/y10-013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The α-adrenergic receptors (adrenoceptors) are activated by the endogenous agonists epinephrine and norepinephrine. They are G protein-coupled receptors that may be broadly classified into α1 (subclasses α1A, α1B, α1D) and α2 (subclasses α2A, α2B, α2C). The α1-adrenoceptors act by binding to Gαq subunits of the G proteins, causing activation of phospholipase C (PLC). PLC converts phosphatidylinositol 4,5-bisphosphate into inositol trisphosphate (IP3) and diacylglycerol (DAG), which have downstream effects on cytosolic Ca2+ concentration. The α2-adrenoceptors bind to Gαi thus inhibiting adenylyl cyclase and decreasing cAMP levels. DAG alters protein kinase C activity and cAMP activates protein kinase A. The downstream pathways of the two receptors may also interact. Activation of α1- and α2-adrenoceptors in vascular smooth muscle results in vasoconstriction. However, the densities of individual receptor subclasses vary between vessel beds or between vessels of various sizes within the same bed. In vasculature, the densities of adrenoceptor subclasses differ between conduit arteries and arterioles. These differences, along with differences in coupling mechanisms, allow for fine regulation of arterial blood flow. This diversity is enhanced by interactions resulting from homo- and heterodimer formation of the receptors, metabolic pathways, and kinases. Reactive oxygen species generated in pathologies may alter α1- and α2-adrenoceptor cascades, change vascular contractility, or cause remodeling of blood vessels. This review emphasizes the need for understanding the functional linkage between α-adrenoceptor subtypes, coupling, cross talk, and oxidative stress in cardiovascular pathologies.
Collapse
Affiliation(s)
- Natalia Ziolkowski
- Departments of Medicine and Biology, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Ashok K. Grover
- Departments of Medicine and Biology, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| |
Collapse
|
25
|
Docherty JR. Subtypes of functional alpha1-adrenoceptor. Cell Mol Life Sci 2010; 67:405-17. [PMID: 19862476 PMCID: PMC11115521 DOI: 10.1007/s00018-009-0174-4] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/11/2009] [Accepted: 10/05/2009] [Indexed: 11/29/2022]
Abstract
In this review, subtypes of functional alpha1-adrenoceptor are discussed. These are cell membrane receptors, belonging to the seven-transmembrane-spanning G-protein-linked family of receptors, which respond to the physiological agonist noradrenaline. alpha1-Adrenoceptors can be divided into alpha1A-, alpha1B- and alpha1D-adrenoceptors, all of which mediate contractile responses involving Gq/11 and inositol phosphate turnover. A fourth alpha1-adrenoceptor, the alpha1L-, represents a functional phenotype of the alpha1A-adrenoceptor. alpha1-Adrenoceptor subtype knock-out mice have refined our knowledge of the functions of alpha-adrenoceptor subtypes, particuarly as subtype-selective agonists and antagonists are not available for all subtypes. alpha1-Adrenoceptors function as stimulatory receptors involved particularly in smooth muscle contraction, especially contraction of vascular smooth muscle, both in local vasoconstriction and in the control of blood pressure and temperature, and contraction of the prostate and bladder neck. Central actions are now being elucidated.
Collapse
MESH Headings
- Animals
- Blood Pressure/physiology
- Body Temperature Regulation
- Drug Inverse Agonism
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Inositol Phosphates/metabolism
- Mice
- Mice, Knockout
- Muscle, Smooth/physiology
- Muscle, Smooth, Vascular/physiology
- Receptors, Adrenergic, alpha-1/classification
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, alpha-1/physiology
- Second Messenger Systems/physiology
- Vasoconstriction/physiology
Collapse
Affiliation(s)
- James R Docherty
- Department of Physiology, Royal College of Surgeons in Ireland, 123, St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
26
|
Jensen BC, Swigart PM, Laden ME, DeMarco T, Hoopes C, Simpson PC. The alpha-1D Is the predominant alpha-1-adrenergic receptor subtype in human epicardial coronary arteries. J Am Coll Cardiol 2009; 54:1137-45. [PMID: 19761933 DOI: 10.1016/j.jacc.2009.05.056] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 05/13/2009] [Accepted: 05/19/2009] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The goal was to identify alpha-1-adrenergic receptor (AR) subtypes in human coronary arteries. BACKGROUND The alpha1-ARs regulate human coronary blood flow. The alpha1-ARs exist as 3 molecular subtypes, alpha1A, alpha1B, and alpha1D, and the alpha1D subtype mediates coronary vasoconstriction in the mouse. However, the alpha1A is thought to be the only subtype in human coronary arteries. METHODS We obtained human epicardial coronary arteries and left ventricular (LV) myocardium from 19 transplant recipients and 6 unused donors (age 19 to 70 years; 68% male; 32% with coronary artery disease). We cultured coronary rings and human coronary smooth muscle cells. We assayed alpha1- and beta-AR subtype messenger ribonucleic acid (mRNA) by quantitative real-time reverse transcription polymerase chain reaction and subtype proteins by radioligand binding and extracellular signal-regulated kinase (ERK) activation. RESULTS The alpha1D subtype was 85% of total coronary alpha1-AR mRNA and 75% of total alpha1-AR protein, and alpha1D stimulation activated ERK. In contrast, the alpha1D was low in LV myocardium. Total coronary alpha1-AR levels were one-third of beta-ARs, which were 99% the beta2 subtype. CONCLUSIONS The alpha1D subtype is predominant and functional in human epicardial coronary arteries, whereas the alpha1A and alpha1B are present at very low levels. This distribution is similar to the mouse, where myocardial alpha1A- and alpha1B-ARs mediate beneficial functional responses and coronary alpha1Ds mediate vasoconstriction. Thus, alpha1D-selective antagonists might mediate coronary vasodilation, without the negative cardiac effects of nonselective alpha1-AR antagonists in current use. Furthermore, it could be possible to selectively activate beneficial myocardial alpha1A- and/or alpha1B-AR signaling without causing coronary vasoconstriction.
Collapse
|
27
|
Conlon K, Christy C, Westbrook S, Whitlock G, Roberts L, Stobie A, McMurray G. Pharmacological properties of 2-((R-5-chloro-4-methoxymethylindan-1-yl)-1H-imidazole (PF-3774076), a novel and selective alpha1A-adrenergic partial agonist, in in vitro and in vivo models of urethral function. J Pharmacol Exp Ther 2009; 330:892-901. [PMID: 19498105 DOI: 10.1124/jpet.109.154963] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
2-((R-5-chloro-4-methoxymethyl-indan-1-yl)-1H-imidazole (PF-3774076) is a central nervous system (CNS) penetrant, potent, selective, partial agonist at the human alpha1(A)-adrenoceptor, demonstrating efficacy and selectivity in a range of binding and functional assays. In vivo, PF-3774076 increases peak urethral pressure in anesthetized female dogs in a dose-dependent manner, inducing changes in both the proximal and distal portions of the urethra via a central mechanism of action. The profile of this compound suggests that a CNS penetrant partial agonist at the alpha1(A)-adrenoceptor may offer significant benefit in stress urinary incontinence (SUI). However, despite partial agonism at the alpha1(A)-adrenoceptor and selectivity over alpha1(B)- and alpha1(D)-adrenoceptors, PF-3774076 did not offer the necessary degree of separation over cardiovascular events when assessed in in vivo models of cardiovascular function. This may be due to activation of both peripheral and central alpha1(A)-adrenoceptors. These data indicate that although central, partial alpha1(A)-agonists may offer significant benefit in the treatment of SUI, it may not be possible to achieve the desired level of urethral selectivity over cardiovascular events with this class of agent.
Collapse
Affiliation(s)
- Kelly Conlon
- Department of Genitourinary Biology, Pfizer Global Research and Development, Ramsgate Road, Sandwich, Kent, CT13 9NJ.
| | | | | | | | | | | | | |
Collapse
|
28
|
Jensen BC, Swigart PM, De Marco T, Hoopes C, Simpson PC. {alpha}1-Adrenergic receptor subtypes in nonfailing and failing human myocardium. Circ Heart Fail 2009; 2:654-63. [PMID: 19919991 DOI: 10.1161/circheartfailure.108.846212] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND alpha1-adrenergic receptors (alpha1-ARs) play adaptive roles in the heart and protect against the development of heart failure. The 3 alpha1-AR subtypes, alpha1A, alpha1B, and alpha1D, have distinct physiological roles in mouse heart, but very little is known about alpha1 subtypes in human heart. Here, we test the hypothesis that the alpha1A and alpha1B subtypes are present in human myocardium, similar to the mouse, and are not downregulated in heart failure. METHODS AND RESULTS Hearts from transplant recipients and unused donors were failing (n=12; mean ejection fraction, 24%) or nonfailing (n=9; mean ejection fraction, 59%) and similar in age ( approximately 44 years) and sex ( approximately 70% male). We measured the alpha1-AR subtypes in multiple regions of both ventricles by quantitative real-time reverse-transcription polymerase chain reaction and radioligand binding. All 3 alpha1-AR subtype mRNAs were present, and alpha1A mRNA was most abundant ( approximately 65% of total alpha1-AR mRNA). However, only alpha1A and alpha1B binding were present, and the alpha1B was most abundant (60% of total). In failing hearts, alpha1A and alpha1B binding was not downregulated, in contrast with beta1-ARs. CONCLUSIONS Our data show for the first time that the alpha1A and alpha1B subtypes are both present in human myocardium, but alpha1D binding is not, and the alpha1 subtypes are not downregulated in heart failure. Because alpha1 subtypes in the human heart are similar to those in the mouse, where adaptive and protective effects of alpha1 subtypes are most convincing, it might become feasible to treat heart failure with a drug targeting the alpha1A and/or alpha1B.
Collapse
Affiliation(s)
- Brian C Jensen
- Cardiology Section and Research Service, San Francisco VA Medical Center, San Francisco, Calif, USA
| | | | | | | | | |
Collapse
|
29
|
|
30
|
Momoi N, Tinney JP, Liu LJ, Elshershari H, Hoffmann PJ, Ralphe JC, Keller BB, Tobita K. Modest maternal caffeine exposure affects developing embryonic cardiovascular function and growth. Am J Physiol Heart Circ Physiol 2008; 294:H2248-56. [PMID: 18359892 DOI: 10.1152/ajpheart.91469.2007] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Caffeine consumption during pregnancy is reported to increase the risk of in utero growth restriction and spontaneous abortion. In the present study, we tested the hypothesis that modest maternal caffeine exposure affects in utero developing embryonic cardiovascular (CV) function and growth without altering maternal hemodynamics. Caffeine (10 mg.kg(-1).day(-1) subcutaneous) was administered daily to pregnant CD-1 mice from embryonic days (EDs) 9.5 to 18.5 of a 21-day gestation. We assessed maternal and embryonic CV function at baseline and at peak maternal serum caffeine concentration using high-resolution echocardiography on EDs 9.5, 11.5, 13.5, and 18.5. Maternal caffeine exposure did not influence maternal body weight gain, maternal CV function, or embryo resorption. However, crown-rump length and body weight were reduced in maternal caffeine treated embryos by ED 18.5 (P < 0.05). At peak maternal serum caffeine concentration, embryonic carotid artery, dorsal aorta, and umbilical artery flows transiently decreased from baseline at ED 11.5 (P < 0.05). By ED 13.5, embryonic aortic and umbilical artery flows were insensitive to the peak maternal caffeine concentration; however, the carotid artery flow remained affected. By ED 18.5, baseline embryonic carotid artery flow increased and descending aortic flow decreased versus non-caffeine-exposed embryos. Maternal treatment with the adenosine A(2A) receptor inhibitor reproduced the embryonic hemodynamic effects of maternal caffeine exposure. Adenosine A(2A) receptor gene expression levels of ED 11.5 embryo and ED 18.5 uterus were decreased. Results suggest that modest maternal caffeine exposure has adverse effects on developing embryonic CV function and growth, possibly mediated via adenosine A(2A) receptor blockade.
Collapse
Affiliation(s)
- Nobuo Momoi
- Cardiovascular Development Research Program, Children's Hospital of Pittsburgh of UPMC, and Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
García-Cazarín ML, Smith JL, Olszewski KA, McCune DF, Simmerman LA, Hadley RW, Kraner SD, Piascik MT. The alpha1D-adrenergic receptor is expressed intracellularly and coupled to increases in intracellular calcium and reactive oxygen species in human aortic smooth muscle cells. J Mol Signal 2008; 3:6. [PMID: 18304336 PMCID: PMC2294121 DOI: 10.1186/1750-2187-3-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 02/27/2008] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The cellular localization of the alpha1D-adrenergic receptor (alpha1D-AR) is controversial. Studies in heterologous cell systems have shown that this receptor is expressed in intracellular compartments. Other studies show that dimerization with other ARs promotes the cell surface expression of the alpha1D-AR. To assess the cellular localization in vascular smooth muscle cells, we developed an adenoviral vector for the efficient expression of a GFP labeled alpha1D-AR. We also measured cellular localization with immunocytochemistry. Intracellular calcium levels, measurement of reactive oxygen species and contraction of the rat aorta were used as measures of functional activity. RESULTS The adenovirally expressed alpha1D-AR was expressed in intracellular compartments in human aortic smooth muscle cells. The intracellular localization of the alpha1D-AR was also demonstrated with immunocytochemistry using an alpha1D-AR specific antibody. RT-PCR analysis detected mRNA transcripts corresponding to the alpha1A-alpha1B- and alpha1D-ARs in these aortic smooth muscle cells. Therefore, the presence of the other alpha1-ARs, and the potential for dimerization with these receptors, does not alter the intracellular expression of the alpha1D-AR. Despite the predominant intracellular localization in vascular smooth muscle cells, the alpha1D-AR remained signaling competent and mediated the phenylephrine-induced increases in intracellular calcium. The alpha1D-AR also was coupled to the generation of reactive oxygen species in smooth muscle cells. There is evidence from heterologous systems that the alpha1D-AR heterodimerizes with the beta2-AR and that desensitization of the beta2-AR results in alpha1D-AR desensitization. In the rat aorta, desensitization of the beta2-AR had no effect on contractile responses mediated by the alpha1D-AR. CONCLUSION Our results suggest that the dimerization of the alpha1D-AR with other ARs does not alter the cellular expression or functional response characteristics of the alpha1D-AR.
Collapse
Affiliation(s)
- Mary L García-Cazarín
- Department of Molecular and Biomedical Pharmacology, University of Kentucky; Lexington, KY USA
| | - Jennifer L Smith
- Department of Molecular and Biomedical Pharmacology, University of Kentucky; Lexington, KY USA
| | - Kyle A Olszewski
- The Nesbitt School of Pharmacy, Department of Pharmaceutical Sciences, Wilkes University; Wilkes, PA USA
| | - Dan F McCune
- The Nesbitt School of Pharmacy, Department of Pharmaceutical Sciences, Wilkes University; Wilkes, PA USA
| | - Linda A Simmerman
- Department of Molecular and Biomedical Pharmacology, University of Kentucky; Lexington, KY USA
| | - Robert W Hadley
- Department of Molecular and Biomedical Pharmacology, University of Kentucky; Lexington, KY USA
| | - Susan D Kraner
- Department of Molecular and Biomedical Pharmacology, University of Kentucky; Lexington, KY USA
| | - Michael T Piascik
- Department of Molecular and Biomedical Pharmacology, University of Kentucky; Lexington, KY USA
| |
Collapse
|
32
|
Long KM, Kirby R. An update on cardiovascular adrenergic receptor physiology and potential pharmacological applications in veterinary critical care. J Vet Emerg Crit Care (San Antonio) 2008. [DOI: 10.1111/j.1476-4431.2007.00266.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
|
34
|
Nonen S, Okamoto H, Fujio Y, Takemoto Y, Yoshiyama M, Hamaguchi T, Matsui Y, Yoshikawa J, Kitabatake A, Azuma J. Polymorphisms of norepinephrine transporter and adrenergic receptor alpha1D are associated with the response to beta-blockers in dilated cardiomyopathy. THE PHARMACOGENOMICS JOURNAL 2007; 8:78-84. [PMID: 17404580 DOI: 10.1038/sj.tpj.6500450] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent clinical trials have clearly demonstrated that the administration with beta-blockers decreases the mortality in the patients with chronic heart failure (CHF). However, significant heterogeneity exists in the effectiveness of beta-blockers among individual cases. We focused on 39 polymorphisms in 16 genes related to adrenergic system and investigated their association with the response to beta-blockers among 80 patients with CHF owing to idiopathic dilated cardiomyopathy. The polymorphisms of NET T-182C (P=0.019), ADRA1D T1848A (P=0.023) and ADRA1D A1905G (P=0.029) were associated with the improvement of left ventricular fractional shortening (LVFS) by beta-blockers. Furthermore, combined genotype analysis of NET T-182C and ADRA1D T1848A revealed a significant difference in LVFS improvement among genotype groups (P=0.011). These results suggest that NET (T-182C) and ADRA1D (T1848A and A1905G) polymorphisms are predictive markers of the response to beta-blockers. Genotyping of these polymorphisms may provide clinical insights into an individual difference in the response to the beta-blocker therapy in CHF.
Collapse
Affiliation(s)
- S Nonen
- Department of Clinical Evaluation of Medicines and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Romeo G, Materia L, Pittalà V, Modica M, Salerno L, Siracusa M, Russo F, Minneman KP. New 1,2,3,9-tetrahydro-4H-carbazol-4-one derivatives: analogues of HEAT as ligands for the alpha1-adrenergic receptor subtypes. Bioorg Med Chem 2006; 14:5211-9. [PMID: 16647264 DOI: 10.1016/j.bmc.2006.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 03/28/2006] [Accepted: 04/04/2006] [Indexed: 11/19/2022]
Abstract
With the aim to develop new ligands able to discriminate among the three subtypes of alpha1-adrenergic receptors (alpha1A-AR, alpha1B-AR, and alpha1D-AR), a series of new 1,2,3,9-tetrahydro-4H-carbazol-4-ones bearing a 3-[[[2-(4-hydroxyphenyl)ethyl]amino]methyl] or a 3-[[4-(2-substitutedphenyl)piperazin-1-yl]methyl] side chain were synthesized. The general structure of the new compounds is reminiscent of HEAT and RN5, two potent alpha1-AR antagonists which show high affinities for all three alpha1-AR subtypes. Some derivatives in which one ring of the tetrahydrocarbazolone system was opened were also prepared. Compounds were tested in radioligand binding assays on human cloned alpha1A-AR, alpha1B-AR, and alpha1D-AR subtypes stably expressed in HEK293 cells. They showed moderate to good affinities, although their selectivity among the receptor subtypes hardly reached one order of magnitude.
Collapse
Affiliation(s)
- Giuseppe Romeo
- Dipartimento di Scienze Farmaceutiche, Università di Catania, viale A. Doria 6, 95125 Catania, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Maccari L, Magnani M, Strappaghetti G, Corelli F, Botta M, Manetti F. A Genetic-Function-Approximation-Based QSAR Model for the Affinity of Arylpiperazines toward α1 Adrenoceptors. J Chem Inf Model 2006; 46:1466-78. [PMID: 16711766 DOI: 10.1021/ci060031z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The genetic function approximation (GFA) algorithm has been used to derive a three-term QSAR equation able to correlate the structural properties of arylpiperazine derivatives with their affinity toward the alpha1 adrenoceptor (alpha1-AR). The number of rotatable bonds, the hydrogen-bond properties, and a variable belonging to a topological family of descriptors (chi) showed significant roles in the binding process toward alpha1-AR. The new model was also compared to a previous pharmacophore for alpha1-AR antagonists and a QSAR model for alpha2-AR antagonists with the aim of finding common or different key determinants influencing both affinity and selectivity toward alpha1- and alpha2-AR.
Collapse
Affiliation(s)
- Laura Maccari
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via Alcide de Gasperi, 2, I-53100 Siena, Italy
| | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Pérez-Rivera AA, Fink GD, Galligan JJ. Alpha-1B adrenoceptors mediate neurogenic constriction in mesenteric arteries of normotensive and DOCA-salt hypertensive mice. Auton Neurosci 2005; 121:64-73. [PMID: 16095979 DOI: 10.1016/j.autneu.2005.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2005] [Revised: 06/29/2005] [Accepted: 07/09/2005] [Indexed: 11/18/2022]
Abstract
The contribution of alpha-1 adrenergic receptor (alpha1-AR) subtypes to neurogenic constrictions of mesenteric resistance arteries from SHAM and deoxycorticosterone acetate-salt (DOCA-salt) hypertensive mice was assessed. Frequency-response curves (0.5-30 Hz) for transmural stimulation-evoked contractions were examined in SHAM and DOCA-salt arteries in vitro in the absence (control) and presence of prazosin (0.1 microM), PPADS (10 microM), yohimbine (1 microM), 5-methylurapidil (5-MU; 0.1 microM), L-765,314 (1 microM) and BMY-7378 (0.3 microM); selective antagonists at alpha1-, P2X, alpha2-, alpha1A-, alpha1B-, and alpha1D-AR, respectively. In SHAM arteries, prazosin but not PPADS inhibited neurogenic responses. L-765,314 substantially inhibited neurogenic responses while 5-MU had a small inhibitory effect. BMY-7378 did not alter contractile responses at all. In DOCA-salt arteries, prazosin reduced neurogenic responses with no further significant inhibition seen with PPADS. L-765,314 antagonized neurogenic constrictions to a level similar to that seen in SHAM arteries. Furthermore, 5-MU and BMY-7378 did not affect these responses. The density of noradrenergic nerves (assessed using glyoxylic acid-induced fluorescence) or norepinephrine (NE) content was not altered by DOCA-salt hypertension. These results indicate that NE is the primary mediator of neurogenic constriction of murine mesenteric arteries. Nerve-released NE acts primarily at alpha1B-and to a lesser extent at alpha1A-ARs in SHAM arteries whereas NE mediates neurogenic constrictions in DOCA-salt arteries by acting at alpha1B-ARs.
Collapse
Affiliation(s)
- Alex A Pérez-Rivera
- Department of Pharmacology and Toxicology, Michigan State University, B 328 Life Sciences Building, East Lansing, MI 48824, USA.
| | | | | |
Collapse
|
39
|
Hosoda C, Koshimizu TA, Tanoue A, Nasa Y, Oikawa R, Tomabechi T, Fukuda S, Shinoura H, Oshikawa S, Takeo S, Kitamura T, Cotecchia S, Tsujimoto G. Two alpha1-adrenergic receptor subtypes regulating the vasopressor response have differential roles in blood pressure regulation. Mol Pharmacol 2005; 67:912-22. [PMID: 15598970 DOI: 10.1124/mol.104.007500] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To study the functional role of individual alpha1-adrenergic (AR) subtypes in blood pressure (BP) regulation, we used mice lacking the alpha1B-AR and/or alpha1D-AR with the same genetic background and further studied their hemodynamic and vasoconstrictive responses. Both the alpha1D-AR knockout and alpha1B-/alpha1D-AR double knockout mice, but not the alpha1B-AR knockout mice, had significantly (p < 0.05) lower levels of basal systolic and mean arterial BP than wild-type mice in nonanesthetized condition, and they showed no significant change in heart rate or in cardiac function, as assessed by echocardiogram. All mutants showed a significantly (p < 0.05) reduced catecholamine-induced pressor and vasoconstriction responses. It is noteworthy that the infusion of norepinephrine did not elicit any pressor response at all in alpha1B-/alpha1D-AR double knockout mice. In an attempt to further examine alpha1-AR subtype, which is involved in the genesis or maintenance of hypertension, BP after salt loading was monitored by tail-cuff readings and confirmed at the endpoint by direct intra-arterial recording. After salt loading, alpha1B-AR knockout mice developed a comparable level of hypertension to wild-type mice, whereas mice lacking alpha1D-AR had significantly (p < 0.05) attenuated BP and lower levels of circulating catecholamines. Our data indicated that alpha1B- and alpha1D-AR subtypes participate cooperatively in BP regulation; however, the deletion of the functional alpha1D-AR, not alpha1B-AR, leads to an antihypertensive effect. The study shows differential contributions of alpha1B- and alpha1D-ARs in BP regulation.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/physiology
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Cloning, Molecular
- Heart Rate/drug effects
- Heart Rate/physiology
- In Vitro Techniques
- Mice
- Mice, Knockout
- Potassium Chloride/pharmacology
- Prazosin/pharmacokinetics
- Radioligand Assay
- Receptors, Adrenergic, alpha-1/deficiency
- Receptors, Adrenergic, alpha-1/drug effects
- Receptors, Adrenergic, alpha-1/genetics
- Receptors, Adrenergic, alpha-1/physiology
- Recombinant Proteins/drug effects
- Recombinant Proteins/metabolism
- Vasoconstriction/drug effects
- Vasoconstriction/physiology
Collapse
Affiliation(s)
- Chihiro Hosoda
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University Faculty of Pharmaceutical Sciences, Kyoto University, Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhang Y, Yan J, Chen K, Song Y, Lu Z, Chen M, Han C, Zhang Y. Different roles of alpha1-adrenoceptor subtypes in mediating cardiomyocyte protein synthesis in neonatal rats. Clin Exp Pharmacol Physiol 2005; 31:626-33. [PMID: 15479171 DOI: 10.1111/j.1440-1681.2004.04063.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
1. Three different alpha1-adrenoceptor subtypes, designated alpha1A, alpha1B and alpha1D, have been cloned and identified pharmacologically in cardiomyocytes. In vitro studies have suggested that alpha1-adrenoceptors play an important role in facilitating cardiac hypertrophy. However, it remains controversial as to which subtype of alpha1-adrenoceptors is involved in this response. In the present study, we investigated the different role of each alpha1-adrenoceptor subtype in mediating cardiomyocyte protein synthesis, which is a most important characteristic of cardiac hypertrophy in cultured neonatal rat cardiomyocytes. 2. Cardiomyocyte hypertrophy was monitored by the following characteristic phenotypic changes: (i) an increase in protein synthesis; (ii) an increase in total protein content; and (iii) an increase in cardiomyocyte size. 3. The role of each alpha1-adrenoceptor subtype in mediating cardiomyocyte protein synthesis was investigated by the effect of specific alpha1-adrenoceptor subtype-selective antagonists on noradrenaline-induced [3H]-leucine incorporation. In addition, pKB values for alpha1-adrenoceptor subtype-selective antagonists were calculated and compared with the corresponding pKi values to further identify their effects. 4. Activation of alpha1-adrenoceptors by phenylephrine or noradrenaline in the presence of propranolol significantly increased [3H]-leucine incorporation, protein content and cell size. 5. Pre-incubating cardiomyocytes with 5-methyl-urapidil, RS 17053 or WB 4101 significantly inhibited noradrenaline-induced [3H]-leucine incorporation. However, there was no effect when cardiomyocytes were pre-incubated with BMY 7378. The correlation coefficients between pKB values for alpha1-adrenoceptor subtype-selective antagonists and pKi values obtained from cloned alpha1A-, alpha1B- or alpha1D-adrenoceptors were 0.92 (P <0.01), 0.66 (P >0.05) and 0.24 (P >0.05), respectively. 6. Our results suggest that the alpha1-adrenoceptor is dominantly responsible for adrenergic hypertrophy of cultured cardiomyocytes in neonatal rats. The efficiency in mediating cardiomyocyte protein synthesis is alpha1A > alpha1B >> alpha1D.
Collapse
Affiliation(s)
- Yongzhen Zhang
- Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
McGinty SJ, Finch A, Griffith R, Graham RM, Bremner JB. Synthesis and biological evaluation of bicyclic and tricyclic substituted nortropane derivatives: discovery of a novel selective α1D-adrenergic receptor ligand. Bioorg Med Chem 2004; 12:5639-50. [PMID: 15465342 DOI: 10.1016/j.bmc.2004.07.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 07/28/2004] [Accepted: 07/28/2004] [Indexed: 11/22/2022]
Abstract
A range of 3,6,6-trisubstituted nortropane derivatives based upon 6beta-phenyltropane-3beta,6 alpha-diol have been synthesised from 6beta-hydroxytropinone, including some novel related tricyclic hemi-ketal and tricyclic ketal compounds. Derivatives were assessed for pharmacological affinity and selectivity at alpha(1)-adrenergic receptors, and 6beta-phenyl-8-azabicyclo[3.2.1]octan-3-spiro-2'-(1',3'-dioxolane)-6-ol, a novel lead compound selective for the alpha(1D)-adrenergic receptor, is reported.
Collapse
Affiliation(s)
- Susan J McGinty
- Institute for Biomolecular Science and Department of Chemistry, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia.
| | | | | | | | | |
Collapse
|
42
|
Abstract
Adrenoceptors (ARs), members of the G protein-coupled receptor superfamily, form the interface between the sympathetic nervous system and the cardiovascular system, with integral roles in the rapid regulation of myocardial function. However, in heart failure, chronic catecholamine stimulation of adrenoceptors has been linked to pathologic cardiac remodeling, including myocyte apoptosis and hypertrophy. In cardiac myocytes, activation of AR subtypes results in coupling to different G proteins and induction of specific signaling pathways, which is partly regulated by the subtype-specific distribution of receptors in plasma membrane compartments containing distinct complexes of signaling molecules. The Connections Maps of the Adrenergic and Myocyte Adrenergic Signaling Pathways bring into focus the specific signaling pathways of individual AR subtypes and their relevant functions in vivo.
Collapse
Affiliation(s)
- Yang Xiang
- Department of Molecular and Cellular Physiology, Stanford Medical Center, Palo Alto, CA 94305, USA
| | | |
Collapse
|