1
|
Lauro G, Aliberti M, De Nisco M, Pedatella S, Pepe G, Basilicata MG, Chini MG, Fischer K, Hofstetter RK, Werz O, Ferraro MG, Piccolo M, Irace C, Saviano A, Campiglia P, Bertamino A, Ostacolo C, Ciaglia T, Manfra M, Bifulco G. Furazanopyrazine-based novel promising anticancer agents interfering with the eicosanoid biosynthesis pathways by dual mPGES-1 and sEH inhibition. Eur J Med Chem 2025; 289:117402. [PMID: 40010271 DOI: 10.1016/j.ejmech.2025.117402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/28/2025]
Abstract
We report the identification of a new set of compounds based on the furazanopyrazine core interfering with eicosanoid biosynthesis and acting as potentially effective anti-inflammatory and anticancer agents. Based on our previous promising results on a set of furazanopyrazine-based compounds against the microsomal prostaglandin E2 synthase-1 (mPGES-1) enzyme, we here identified derivatives with improved pharmacokinetic properties by replacing the ester moiety with a more stable ether group. A focused virtual library of 1 × 104 molecules was built and screened against mPGES-1 through molecular docking experiments, leading to the selection of 10 candidates for synthesis and biological evaluation. Several molecules were found to inhibit mPGES-1 and, among them, two items featured IC50 values in the low micromolar range. Additional computational studies on the collection of synthesized compounds demonstrated that compound 3b, previously emerged as an mPGES-1 inhibitor, interfered with soluble epoxide hydrolase (sEH) activity, thus emerging as a valuable dual mPGES-1/sEH inhibitor. The pharmacokinetic features of the most potent compounds were accurately estimated. Unfortunately, poor outcomes were obtained for 3b; on the other hand, compound 7e exhibited promising mPGES-1 inhibition and excellent pharmacokinetic profile, demonstrating that the novel furazanopyrazine-based items with ether moiety possess improved pharmacokinetic properties compared to the ester-based compounds reported in our previous study. Additionally, the anticancer properties of 7e and 7d, the latter emerged as the most active mPGES-1 inhibitor, were evaluated and both compounds showed promising activities against HCT-116 human colorectal cancer (CRC) cells. These findings highlight the furazanopyrazine core as a promising scaffold for disclosing new anti-inflammatory drugs with the ability to inhibit targets belonging to arachidonic acid cascade.
Collapse
Affiliation(s)
- Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Michela Aliberti
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Mauro De Nisco
- Department of Health Sciences, University of Basilicata, Viale dell'Ateneo Lucano, Potenza, I-85100, Italy
| | - Silvana Pedatella
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, I-80126, Napoli, Italy
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Manuela Giovanna Basilicata
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", P.zza L. Miraglia 2, 80138, Naples, Italy
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, C.da Fonte Lappone, Pesche, 86090, Italy
| | - Katrin Fischer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, Jena, 07743, Germany
| | - Robert K Hofstetter
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, Jena, 07743, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, Jena, 07743, Germany
| | - Maria Grazia Ferraro
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine and Surgery, University of Naples, Via Domenico Montesano 49, Naples, 80131, Italy
| | - Marialuisa Piccolo
- BioChem Lab, Department of Pharmacy, School of Medicine and Surgery, University of Naples, Via Domenico Montesano 49, Naples, 80131, Italy
| | - Carlo Irace
- BioChem Lab, Department of Pharmacy, School of Medicine and Surgery, University of Naples, Via Domenico Montesano 49, Naples, 80131, Italy
| | - Anella Saviano
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy
| | - Michele Manfra
- Department of Health Sciences, University of Basilicata, Viale dell'Ateneo Lucano, Potenza, I-85100, Italy.
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Italy.
| |
Collapse
|
2
|
Olğaç A, Jordan PM, Kretzer C, Werz O, Banoglu E. Discovery of novel microsomal prostaglandin E 2 synthase 1 (mPGES-1) inhibitors by a structurally inspired virtual screening study. J Mol Graph Model 2025; 136:108962. [PMID: 39893902 DOI: 10.1016/j.jmgm.2025.108962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/11/2024] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Prostaglandin (PG) E2 is a pro-inflammatory lipid mediator derived from the metabolism of arachidonic acid (AA) by cyclooxygenases (COX) and PGE2 synthases. Nonsteroidal anti-inflammatory drugs (NSAIDs), commonly used in the treatment of inflammation, nonselectively inhibit COX activity and decrease PGE2 production. However, these drugs cause gastrointestinal bleeding and several cardiovascular complications. Therefore, inhibiting microsomal PGE2 Synthase-1 (mPGES-1) to block PGE2 production downstream of COX is expected to yield safer and more effective treatments for inflammation, cancer, and cardiovascular diseases. At present, there are no mPGES-1 inhibitors available on the market, but ongoing research continuously evaluates new compounds in both preclinical and clinical stages. Here, we conducted a high throughput virtual screening campaign to discover novel mPGES-1 inhibitor scaffolds. This campaign utilized physicochemical filtering alongside both structure-aware ligand-based approaches (shape screening templates and pharmacophore models, which were generated based on the 3D binding modes of the co-crystallized mPGES-1 inhibitors) and structure-based strategies (refinement with docking and molecular dynamics). Thirty-four compounds were selected and biologically tested for mPGES-1 inhibition in a cell-free assay using microsomes from interleukin-1β-stimulated A549 cells as the source of mPGES-1. The most potent compound inhibited the remaining enzyme activity with an IC50 value of 6.46 μM in a cell-free assay for PGE2 production. We also compared the binding patterns of the most active compounds identified in this study with those of co-crystallized inhibitors using molecular dynamics simulations. This comparison underscored the crucial role of ionic interactions, π-π interactions, hydrogen bonds, and water bridges involving specific amino acids. Our results highlight the importance of these interaction networks within the binding cavity in various binding scenarios. Ultimately, the insights gained from this study could assist in designing and developing new mPGES-1 inhibitors.
Collapse
Affiliation(s)
- Abdurrahman Olğaç
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06560, Ankara, Turkey; Department of Drug Discovery, Evias Pharmaceutical R&D Ltd., Gazi Teknopark, 06830, Ankara, Turkey
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Christian Kretzer
- Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06560, Ankara, Turkey.
| |
Collapse
|
3
|
Yalçın T, Jordan PM, Olğaç A, Dahlke P, Maz TG, Banoglu E, Werz O, Çalışkan B. 2-Phenylbenzothiazoles featuring heteroaryl sulfonamide end-capping substructures as developable mPGES-1 inhibitors. Arch Pharm (Weinheim) 2025; 358:e2400756. [PMID: 39817627 DOI: 10.1002/ardp.202400756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025]
Abstract
The inhibition of human microsomal prostaglandin E2 (PGE2) synthase-1 (mPGES-1) is a promising therapeutic modality for developing next-generation anti-inflammatory medications. In this study, we present novel 2-phenylbenzothiazole derivatives featuring heteroaryl sulfonamide end-capping substructures as inhibitors of human mPGES-1, with IC50 values in the range of 0.72-3.40 µM in a cell-free assay of PGE2 formation. Notably, compound 21, featuring a quinoxalinedione ring in its sulfonamide segment, effectively suppresses PGE2 biosynthesis at a low micromolar concentration (IC50 = 0.72 µM) with exceptional selectivity against cyclooxygenase (COX)-1, COX-2, 5-lipoxygenase (5-LOX), and FLAP. This compound offers a novel chemical scaffold for developing safer and more effective anti-inflammatory agents.
Collapse
Affiliation(s)
- Tansu Yalçın
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Abdurrahman Olğaç
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Philipp Dahlke
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Tuğçe Gür Maz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Burcu Çalışkan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
4
|
Colarusso E, Lauro G, Potenza M, Galatello P, Garigliota MLD, Ferraro MG, Piccolo M, Chini MG, Irace C, Campiglia P, Hoffstetter RK, Werz O, Ramunno A, Bifulco G. 5-methyl-2-carboxamidepyrrole-based novel dual mPGES-1/sEH inhibitors as promising anticancer candidates. Arch Pharm (Weinheim) 2025; 358:e2400708. [PMID: 39692230 DOI: 10.1002/ardp.202400708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
Inhibiting microsomal prostaglandin E2 synthase-1 (mPGES-1), an inducible enzyme involved in prostaglandin E2 (PGE2) biosynthesis and tumor microenvironment (TME) homeostasis, is a valuable strategy for treating inflammation and cancer. In this work, 5-methylcarboxamidepyrrole-based molecules were designed and synthesized as new compounds targeting mPGES-1. Remarkably, compounds 1f, 2b, 2c, and 2d were able to significantly reduce the activity of the isolated enzyme, showing IC50 values in the low micromolar range. With the aim of further profiling the synthesized molecules, their ability to interfere with the activity of soluble epoxide hydrolase (sEH), whose inhibition blocks the loss of the anti-inflammatory mediators epoxyeicosatrienoic acids (EETs or epoxyicosatrienoic acids), was investigated in silico and by employing specific biological assays. Among the set of tested compounds, 1f, 2b, 2c, and 2d emerged as mPGES-1/sEH dual inhibitors. Moreover, given that overexpression of mPGES-1 has been observed in many human tumors, we finally explored the biological effect of our compounds in an in vitro model of human colorectal cancer (CRC). The obtained outcomes pave the way for future investigation to optimize and further characterize anticancer pharmacological profile of the carboxamidepyrrole-based molecules.
Collapse
Affiliation(s)
- Ester Colarusso
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Marianna Potenza
- Department of Pharmacy, University of Salerno, Fisciano, Italy
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Paola Galatello
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | | | - Maria Grazia Ferraro
- Department of Molecular Medicine and Medical Biotechnologies, School of Medicine and Surgery, University of Naples, Naples, Italy
| | - Marialuisa Piccolo
- BioChem Lab, Department of Pharmacy, School of Medicine and Surgery, University of Naples, Naples, Italy
| | | | - Carlo Irace
- BioChem Lab, Department of Pharmacy, School of Medicine and Surgery, University of Naples, Naples, Italy
| | | | - Robert Klaus Hoffstetter
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Anna Ramunno
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | | |
Collapse
|
5
|
Ergül AG, Jordan PM, Dahlke P, Bal NB, Olğaç A, Uludağ O, Werz O, Çalışkan B, Banoglu E. Novel Benzimidazole Derivatives as Potent Inhibitors of Microsomal Prostaglandin E 2 Synthase 1 for the Potential Treatment of Inflammation, Pain, and Fever. J Med Chem 2024; 67:21143-21162. [PMID: 39622054 DOI: 10.1021/acs.jmedchem.4c01883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Microsomal prostaglandin E2 synthase 1 (mPGES-1) is a promising target for treating inflammatory diseases and pain. This study introduces a novel series of benzimidazoles, with the most potent analogs exhibiting IC50 values of 0.27-7.0 nM in a cell-free assay for prostaglandin (PG)E2 production. Compound 44 (AGU654) demonstrated remarkable selectivity for mPGES-1 (IC50 = 2.9 nM) over COX-1, COX-2, 5-LOX, and FLAP, along with excellent bioavailability. Metabololipidomics analysis with activated human monocyte-derived macrophages and human whole blood revealed that AGU654 selectively suppresses PGE2 production triggered by bacterial exotoxins while sparing other prostaglandins. Furthermore, in vivo studies showed that AGU654 significantly alleviated fever, inflammation, and inflammatory pain in preclinical guinea pig models, suggesting that it could be an effective strategy for managing inflammatory diseases. In conclusion, these benzimidazole derivatives warrant further exploration into new and alternative analogs, potentially uncovering novel compounds with a favorable pharmacological profile possessing significant anti-inflammatory and analgesic properties.
Collapse
Affiliation(s)
- Azize Gizem Ergül
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06560 Ankara, Turkey
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-7743 Jena, Germany
| | - Philipp Dahlke
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-7743 Jena, Germany
| | - Nur Banu Bal
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, 06560 Ankara, Turkey
| | - Abdurrahman Olğaç
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06560 Ankara, Turkey
| | - Orhan Uludağ
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, 06560 Ankara, Turkey
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-7743 Jena, Germany
| | - Burcu Çalışkan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06560 Ankara, Turkey
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06560 Ankara, Turkey
| |
Collapse
|
6
|
Gür Maz T, Dahlke P, Gizem Ergül A, Olğaç A, Jordan PM, Çalışkan B, Werz O, Banoglu E. Novel 1,3,4-oxadiazole derivatives as highly potent microsomal prostaglandin E 2 synthase-1 (mPGES-1) inhibitors. Bioorg Chem 2024; 147:107383. [PMID: 38653151 DOI: 10.1016/j.bioorg.2024.107383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Selective inhibition of microsomal prostaglandin E2 synthase-1 (mPGES-1) is implicated as a new therapeutic modality for the development of new-generation anti-inflammatory drugs. Here, we present the discovery of new and potent inhibitors of human mPGES-1, i.e., compounds 13, 15-25, 29-30 with IC50 values in the range of 5.6-82.3 nM in a cell-free assay of prostaglandin (PG)E2 formation. We also demonstrate that 20 (TG554, IC50 = 5.6 nM) suppresses leukotriene (LT) biosynthesis at low µM concentrations, providing a benchmark compound that dually intervenes with inflammatory PGE2 and LT biosynthesis. Comprehensive lipid mediator (LM) metabololipidomics with activated human monocyte-derived macrophages showed that TG554 selectively inhibits inflammatory PGE2 formation over all cyclooxygenase (COX)-derived prostanoids, does not cause substrate shunting towards 5-lipoxygenase (5-LOX) pathway, and does not interfere with the biosynthesis of the specialized pro-resolving mediators as observed with COX inhibitors, providing a new chemotype for effective and safer anti-inflammatory drug development.
Collapse
Affiliation(s)
- Tuğçe Gür Maz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Taç Sok. No:3 Yenimahalle 06560 Ankara, Turkey
| | - Philipp Dahlke
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-7743 Jena, Germany
| | - Azize Gizem Ergül
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Taç Sok. No:3 Yenimahalle 06560 Ankara, Turkey
| | - Abdurrahman Olğaç
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Taç Sok. No:3 Yenimahalle 06560 Ankara, Turkey
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-7743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany
| | - Burcu Çalışkan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Taç Sok. No:3 Yenimahalle 06560 Ankara, Turkey
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-7743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Taç Sok. No:3 Yenimahalle 06560 Ankara, Turkey.
| |
Collapse
|
7
|
Al-Wahaibi LH, Elshamsy AM, Ali TFS, Youssif BGM, Bräse S, Abdel-Aziz M, El-Koussi NA. Design and synthesis of new dihydropyrimidine/sulphonamide hybrids as promising anti-inflammatory agents via dual mPGES-1/5-LOX inhibition. Front Chem 2024; 12:1387923. [PMID: 38800576 PMCID: PMC11117333 DOI: 10.3389/fchem.2024.1387923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
A novel series of dihydropyrimidine/sulphonamide hybrids 3a-j with anti-inflammatory properties have been developed and tested as dual mPGES-1/5-LOX inhibitors. In vitro assay, results showed that compounds 3c, 3e, 3h, and 3j were the most effective dual inhibitors of mPGES-1 and 5-LOX activities. Compound 3j was the most potent dual inhibitor with IC50 values of 0.92 µM and 1.98 µM, respectively. In vivo, anti-inflammatory studies demonstrated that compounds 3c, 3e, 3h, and 3e had considerable anti-inflammatory activity, with EI% ranging from 29% to 71%. Compounds 3e and 3j were equivalent to celecoxib after the first hour but exhibited stronger anti-inflammatory effects than celecoxib after the third and fifth hours. Moreover, compounds 3e and 3j significantly reduced the levels of pro-inflammatory cytokines (PGE2, TNF-α, and IL-6) with gastrointestinal safety profiles. Molecular docking simulations explored the most potent derivatives' binding affinities and interaction patterns within mPGES-1 and 5-LOX active sites. This study disclosed that compound 3j is a promising anti-inflammatory lead with dual mPGES-1/5-LOX inhibition that deserves further preclinical investigation.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ali M. Elshamsy
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University, Minya, Egypt
| | - Taha F. S. Ali
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Bahaa G. M. Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Minya, Egypt
| | - S. Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Nawal A. El-Koussi
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University, Minya, Egypt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
8
|
Cerchia C, Küfner L, Werz O, Lavecchia A. Identification of selective 5-LOX and FLAP inhibitors as novel anti-inflammatory agents by ligand-based virtual screening. Eur J Med Chem 2024; 263:115932. [PMID: 37976708 DOI: 10.1016/j.ejmech.2023.115932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Inflammation is a multifaceted biological process in which the conversion of arachidonic acid to eicosanoids, including prostaglandins and leukotrienes (LTs), plays a crucial role. 5-Lipoxygenase (5-LOX) is a key enzyme in cellular LT biosynthesis, and it is supported by the accessory protein 5-lipoxygenase-activating protein (FLAP). Pharmacological interventions to modulate LTs aim at either decreasing their biosynthesis or at mitigating their biological effects. Therefore, inhibiting 5-LOX or FLAP represents a useful strategy to reduce inflammation. Herein we present the identification and pharmacological evaluation of novel inhibitors targeting 5-LOX or FLAP. By means of a ligand-based virtual screening approach, we selected 38 compounds for in vitro assays. Among them, ALR-38 exhibits direct 5-LOX inhibition, while ALR-6 and ALR-27 showed potential as FLAP inhibitors. These latter not only reduced LT production but also promoted the generation of specialized pro-resolving mediators in specific human macrophage phenotypes. Interestingly, the identified compounds turned out to be selective for their respective targets, as none of them displayed activity towards microsomal prostaglandin E2 synthase-1 and soluble epoxide hydrolase, which are other proteins involved in eicosanoid biosynthesis. Thus, these compounds are endowed with potential therapeutic utility in mitigating inflammatory responses and might offer a venue for tackling inflammation-based disorders.
Collapse
Affiliation(s)
- Carmen Cerchia
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Naples "Federico II", Via D. Montesano 49, 80131, Napoli, Italy
| | - Laura Küfner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-07743, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, D-07743, Jena, Germany.
| | - Antonio Lavecchia
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Naples "Federico II", Via D. Montesano 49, 80131, Napoli, Italy.
| |
Collapse
|
9
|
Peltner LK, Gluthmann L, Börner F, Pace S, Hoffstetter RK, Kretzer C, Bilancia R, Pollastro F, Koeberle A, Appendino G, Rossi A, Newcomer ME, Gilbert NC, Werz O, Jordan PM. Cannabidiol acts as molecular switch in innate immune cells to promote the biosynthesis of inflammation-resolving lipid mediators. Cell Chem Biol 2023; 30:1508-1524.e7. [PMID: 37647900 DOI: 10.1016/j.chembiol.2023.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/26/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023]
Abstract
Cannabinoids are phytochemicals from cannabis with anti-inflammatory actions in immune cells. Lipid mediators (LM), produced from polyunsaturated fatty acids (PUFA), are potent regulators of the immune response and impact all stages of inflammation. How cannabinoids influence LM biosynthetic networks is unknown. Here, we reveal cannabidiol (CBD) as a potent LM class-switching agent that stimulates the production of specialized pro-resolving mediators (SPMs) but suppresses pro-inflammatory eicosanoid biosynthesis. Detailed metabololipidomics analysis in human monocyte-derived macrophages showed that CBD (i) upregulates exotoxin-stimulated generation of SPMs, (ii) suppresses 5-lipoxygenase (LOX)-mediated leukotriene production, and (iii) strongly induces SPM and 12/15-LOX product formation in resting cells by stimulation of phospholipase A2-dependent PUFA release and through Ca2+-independent, allosteric 15-LOX-1 activation. Finally, in zymosan-induced murine peritonitis, CBD increased SPM and 12/15-LOX products and suppressed pro-inflammatory eicosanoid levels in vivo. Switching eicosanoid to SPM production is a plausible mode of action of CBD and a promising inflammation-resolving strategy.
Collapse
Affiliation(s)
- Lukas K Peltner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany
| | - Lars Gluthmann
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany
| | - Friedemann Börner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany
| | - Robert K Hoffstetter
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany
| | - Christian Kretzer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany
| | - Rosella Bilancia
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Federica Pollastro
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany; Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Mitterweg 24, 6020 Innsbruck, Austria
| | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Marcia E Newcomer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Nathaniel C Gilbert
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Philosophenweg 14, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| |
Collapse
|
10
|
Krauth V, Bruno F, Pace S, Jordan PM, Temml V, Preziosa Romano M, Khan H, Schuster D, Rossi A, Filosa R, Werz O. Highly potent and selective 5-lipoxygenase inhibition by new, simple heteroaryl-substituted catechols for treatment of inflammation. Biochem Pharmacol 2023; 208:115385. [PMID: 36535528 DOI: 10.1016/j.bcp.2022.115385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
5-Lipoxygenase (LO) catalyzes the first steps in the formation of pro-inflammatory leukotrienes (LT) that are pivotal lipid mediators contributing to allergic reactions and inflammatory disorders. Based on its key role in LT biosynthesis, 5-LO is an attractive drug target, demanding for effective and selective inhibitors with efficacy in vivo, which however, are still rare. Encouraged by the recent identification of the catechol 4-(3,4-dihydroxyphenyl)dibenzofuran 1 as 5-LO inhibitor, simple structural modifications were made to yield even more effective and selective catechol derivatives. Within this new series, the two most potent compounds 3,4-dihydroxy-3'-phenoxybiphenyl (6b) and 2-(3,4-dihydroxyphenyl)benzo[b]thiophene (6d) potently inhibited human 5-LO in cell-free (IC506b and 6d = 20 nM) and cell-based assays (IC506b = 70 nM, 6d = 60 nM). Inhibition of 5-LO was reversible, unaffected by exogenously added substrate arachidonic acid, and not primarily mediated via radical scavenging and antioxidant activities. Functional 5-LO mutants expressed in HEK293 cells were still prone to inhibition by 6b and 6d, and docking simulations revealed distinct binding of the catechol moiety to 5-LO at an allosteric site. Analysis of 5-LO nuclear membrane translocation and intracellular Ca2+ mobilization revealed that these 5-LO-activating events are hardly affected by the catechols. Importantly, the high inhibitory potency of 6b and 6d was confirmed in human blood and in a murine zymosan-induced peritonitis model in vivo. Our results enclose these novel catechol derivatives as highly potent, novel type inhibitors of 5-LO with high selectivity and with marked effectiveness under pathophysiological conditions.
Collapse
Affiliation(s)
- Verena Krauth
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Ferdinando Bruno
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy; Advanced Medical Pharma, (AMP-BIOTEC) Healthcare Research and Innovation Center, 82030 San Salvatore Telesino, (BN), Italy
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Veronika Temml
- Department of Pharmaceutical Chemistry, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Maria Preziosa Romano
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy; Advanced Medical Pharma, (AMP-BIOTEC) Healthcare Research and Innovation Center, 82030 San Salvatore Telesino, (BN), Italy
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Daniela Schuster
- Department of Pharmaceutical Chemistry, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, I-80131 Naples, Italy
| | - Rosanna Filosa
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy; Advanced Medical Pharma, (AMP-BIOTEC) Healthcare Research and Innovation Center, 82030 San Salvatore Telesino, (BN), Italy; Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, Italy.
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, 07743 Jena, Germany.
| |
Collapse
|
11
|
Potenza M, Giordano A, Chini MG, Saviano A, Kretzer C, Raucci F, Russo M, Lauro G, Terracciano S, Bruno I, Iorizzi M, Hofstetter RK, Pace S, Maione F, Werz O, Bifulco G. Identification of 2-Aminoacyl-1,3,4-thiadiazoles as Prostaglandin E 2 and Leukotriene Biosynthesis Inhibitors. ACS Med Chem Lett 2022; 14:26-34. [PMID: 36655121 PMCID: PMC9841589 DOI: 10.1021/acsmedchemlett.2c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
The application of a multi-step scientific workflow revealed an unprecedented class of PGE2/leukotriene biosynthesis inhibitors with in vivo activity. Specifically, starting from a combinatorial virtual library of ∼4.2 × 105 molecules, a small set of compounds was identified for the synthesis. Among these, four novel 2-aminoacyl-1,3,4-thiadiazole derivatives (3, 6, 7, and 9) displayed marked anti-inflammatory properties in vitro by strongly inhibiting PGE2 biosynthesis, with IC50 values in the nanomolar range. The hit compounds also efficiently interfered with leukotriene biosynthesis in cell-based systems and modulated IL-6 and PGE2 biosynthesis in a lipopolysaccharide-stimulated J774A.1 macrophage cell line. The most promising compound 3 showed prominent in vivo anti-inflammatory activity in a mouse model, with efficacy comparable to that of dexamethasone, attenuating zymosan-induced leukocyte migration in mouse peritoneum with considerable modulation of the levels of typical pro-/anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Marianna Potenza
- Department
of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy,The
FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Assunta Giordano
- Department
of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy,Institute
of Biomolecular Chemistry (ICB), Consiglio
Nazionale delle Ricerche (CNR), Via Campi Flegrei 34, Pozzuoli, 80078 Napoli, Italy
| | - Maria G. Chini
- Department
of Biosciences and Territory, University
of Molise, Contrada Fonte Lappone, Pesche, 86090 Isernia, Italy
| | - Anella Saviano
- ImmunoPharmaLab,
Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Christian Kretzer
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Federica Raucci
- ImmunoPharmaLab,
Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Marina Russo
- ImmunoPharmaLab,
Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Gianluigi Lauro
- Department
of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Stefania Terracciano
- Department
of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Ines Bruno
- Department
of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Maria Iorizzi
- Department
of Biosciences and Territory, University
of Molise, Contrada Fonte Lappone, Pesche, 86090 Isernia, Italy
| | - Robert K. Hofstetter
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Simona Pace
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Francesco Maione
- ImmunoPharmaLab,
Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Oliver Werz
- Department
of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany,
| | - Giuseppe Bifulco
- Department
of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, Italy,
| |
Collapse
|
12
|
Rao Z, Caprioglio D, Gollowitzer A, Kretzer C, Imperio D, Collado JA, Waltl L, Lackner S, Appendino G, Muñoz E, Temml V, Werz O, Minassi A, Koeberle A. Rotational constriction of curcuminoids impacts 5-lipoxygenase and mPGES-1 inhibition and evokes a lipid mediator class switch in macrophages. Biochem Pharmacol 2022; 203:115202. [PMID: 35932797 DOI: 10.1016/j.bcp.2022.115202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/31/2022]
Abstract
Polypharmacological targeting of lipid mediator networks offers potential for efficient and safe anti-inflammatory therapy. Because of the diversity of its biological targets, curcumin (1a) has been viewed as a privileged structure for bioactivity or, alternatively, as a pan-assay interference (PAIN) compound. Curcumin has actually few high-affinity targets, the most remarkable ones being 5-lipoxygenase (5-LOX) and microsomal prostaglandin E2 synthase (mPGES)-1. These enzymes are critical for the production of pro-inflammatory leukotrienes and prostaglandin (PG)E2, and previous structure-activity-relationship studies in this area have focused on the enolized 1,3-diketone motif, the alkyl-linker and the aryl-moieties, neglecting the rotational state of curcumin, which can adopt twisted conformations in solution and at target sites. To explore how the conformation of curcuminoids impacts 5-LOX and mPGES-1 inhibition, we have synthesized rotationally constrained analogues of the natural product and its pyrazole analogue by alkylation of the linker and/or of the ortho aromatic position(s). These modifications strongly impacted 5-LOX and mPGES-1 inhibition and their systematic analysis led to the identification of potent and selective 5-LOX (3b, IC50 = 0.038 µM, 44.7-fold selectivity over mPGES-1) and mPGES-1 inhibitors (2f, IC50 = 0.11 µM, 4.6-fold selectivity over 5-LOX). Molecular docking experiments suggest that the C2-methylated pyrazolocurcuminoid 3b targets an allosteric binding site at the interface between catalytic and regulatory 5-LOX domain, while the o, o'-dimethylated desmethoxycurcumin 2f likely binds between two monomers of the trimeric mPGES-1 structure. Both compounds trigger a lipid mediator class switch from pro-inflammatory leukotrienes to PG and specialized pro-resolving lipid mediators in activated human macrophages.
Collapse
Affiliation(s)
- Zhigang Rao
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
| | - Diego Caprioglio
- Department of Drug Science, University of Piemonte Orientale, 28100 Novara, Italy
| | - André Gollowitzer
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
| | - Christian Kretzer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Daniela Imperio
- Department of Drug Science, University of Piemonte Orientale, 28100 Novara, Italy
| | - Juan A Collado
- Department of Cellular Biology, Physiology and Immunology, University of Cordoba, 14071, Cordoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004, Cordoba, Spain; Hospital Universitario Reina Sofia, 14004, Cordoba, Spain
| | - Lorenz Waltl
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
| | - Sandra Lackner
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
| | - Giovanni Appendino
- Department of Drug Science, University of Piemonte Orientale, 28100 Novara, Italy
| | - Eduardo Muñoz
- Department of Cellular Biology, Physiology and Immunology, University of Cordoba, 14071, Cordoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004, Cordoba, Spain; Hospital Universitario Reina Sofia, 14004, Cordoba, Spain
| | - Veronika Temml
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University Salzburg, Salzburg 5020, Austria
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Alberto Minassi
- Department of Drug Science, University of Piemonte Orientale, 28100 Novara, Italy.
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
13
|
Çapan İ, Jordan PM, Olğaç A, Çalışkan B, Kretzer C, Werz O, Banoglu E. Discovery and optimization of piperazine urea derivatives as soluble epoxide hydrolase (sEH) inhibitors. ChemMedChem 2022; 17:e202200137. [DOI: 10.1002/cmdc.202200137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/21/2022] [Indexed: 11/05/2022]
Affiliation(s)
- İrfan Çapan
- Gazi University: Gazi Universitesi Department of Material and Material Processing Technologies TURKEY
| | - Paul M. Jordan
- Friedrich Schiller University Jena: Friedrich-Schiller-Universitat Jena Medicinal Chemsitry GERMANY
| | | | - Burcu Çalışkan
- Gazi University: Gazi Universitesi Pharmaceutical Chemistry TURKEY
| | | | - Oliver Werz
- Friedrich Schiller University Jena: Friedrich-Schiller-Universitat Jena Medicinal Chemistry GERMANY
| | - Erden Banoglu
- Gazi Universitesi Eczacilik Fakultesi Pharmaceutical Chemistry Tac Sokak No 3 06580 Ankara TURKEY
| |
Collapse
|
14
|
Ergül AG, Maz TG, Kretzer C, Olğaç A, Jordan PM, Çalışkan B, Werz O, Banoglu E. Novel potent benzimidazole-based microsomal prostaglandin E2 Synthase-1 (mPGES-1) inhibitors derived from BRP-201 that also inhibit leukotriene C4 synthase. Eur J Med Chem 2022; 231:114167. [DOI: 10.1016/j.ejmech.2022.114167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/22/2022] [Accepted: 01/29/2022] [Indexed: 01/27/2023]
|
15
|
In Silico, In Vitro, and In Vivo Analysis of Tanshinone IIA and Cryptotanshinone from Salvia miltiorrhiza as Modulators of Cyclooxygenase-2/mPGES-1/Endothelial Prostaglandin EP3 Pathway. Biomolecules 2022; 12:biom12010099. [PMID: 35053247 PMCID: PMC8774285 DOI: 10.3390/biom12010099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 12/26/2022] Open
Abstract
Tanshinone IIA (TIIA) and cryptotanshinone (CRY) from Salvia miltiorrhiza Bunge were investigated for their inhibitory activity against the cyclooxygenase-2 (COX-2)/microsomal prostaglandin E synthase-1 (mPGES-1)/endothelial prostaglandin 3 (EP3) pathway using in silico, in vitro, in vivo, and ex vivo assays. From the analysis of the docking poses, both diterpenoids were able to interact significantly with COX-2, 5-lipoxygenase (5-LO), platelet-activating factor receptor (PAFR), and mPGES-1. This evidence was further corroborated by data obtained from a cell-free assay, where CRY displayed a significant inhibitory potency against mPGES-1 (IC50 = 1.9 ± 0.4 µM) and 5-LO (IC50 = 7.1 µM), while TIIA showed no relevant inhibition of these targets. This was consistent with their activity to increase mice bleeding time (CRY: 2.44 ± 0.13 min, p ≤ 0.001; TIIA: 2.07 ± 0.17 min p ≤ 0.01) and with the capability to modulate mouse clot retraction (CRY: 0.048 ± 0.011 g, p ≤ 0.01; TIIA: 0.068 ± 0.009 g, p ≤ 0.05). For the first time, our results show that TIIA and, in particular, CRY are able to interact significantly with the key proteins involved not only in the onset of inflammation but also in platelet activity (and hyper-reactivity). Future preclinical and clinical investigations, together with this evidence, could provide the scientific basis to consider these compounds as an alternative therapeutic approach for thrombotic- and thromboembolic-based diseases.
Collapse
|
16
|
Razavi SM, Khayatan D, Arab ZN, Momtaz S, Zare K, Jafari RM, Dehpour AR, Abdolghaffari AH. Licofelone, a potent COX/5-LOX inhibitor and a novel option for treatment of neurological disorders. Prostaglandins Other Lipid Mediat 2021; 157:106587. [PMID: 34517113 DOI: 10.1016/j.prostaglandins.2021.106587] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/17/2021] [Accepted: 09/04/2021] [Indexed: 12/13/2022]
Abstract
Neurological disorders result in disability and morbidity. Neuroinflammation is a key factor involved in progression or resolution of a series of neurological disorders like Huntington disease (HD), Parkinson's disease (PD), Alzheimer's disease (AD), Spinal Cord Injury (SCI), and Seizure. Thereby, anti-inflammatory drugs have been developed to improve the neurodegenerative impairments. Licofelone is an approved osteoarthritis drug that inhibits both the COX (cyclooxygenase) and 5-LOX (lipoxygenase) pathways. Licofelone has pain-relieving and anti-inflammatory effects and it was shown to have neuroprotective properties in the central nervous system, which is implicated in its regulatory effect on the COX/5-LOX pathway, inflammatory cytokines, and immune responses. In this study, we briefly review the various features of neurological disorders and the function of COX/LOX in their flare up and current pharmacological products for their management. Moreover, this review attempts to summarize potential therapeutics that target the immune responses within the central nervous system. A better understanding of the interactions between Licofelone and the nervous systems will be crucial to demonstrate the possible efficacy of Licofelone in neurological disorders.
Collapse
Affiliation(s)
- Seyed Mehrad Razavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Danial Khayatan
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Najafi Arab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kimia Zare
- School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
17
|
Zhang YY, Yao YD, Luo JF, Liu ZQ, Huang YM, Wu FC, Sun QH, Liu JX, Zhou H. Microsomal prostaglandin E 2 synthase-1 and its inhibitors: Molecular mechanisms and therapeutic significance. Pharmacol Res 2021; 175:105977. [PMID: 34798265 DOI: 10.1016/j.phrs.2021.105977] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 12/17/2022]
Abstract
Inflammation is closely linked to the abnormal phospholipid metabolism chain of cyclooxygenase-2/microsomal prostaglandin E2 synthase-1/prostaglandin E2 (COX-2/mPGES-1/PGE2). In clinical practice, non-steroidal anti-inflammatory drugs (NSAIDs) as upstream COX-2 enzyme activity inhibitors are widely used to block COX-2 cascade to relieve inflammatory response. However, NSAIDs could also cause cardiovascular and gastrointestinal side effects due to its inhibition on other prostaglandins generation. To avoid this, targeting downstream mPGES-1 instead of upstream COX is preferable to selectively block overexpressed PGE2 in inflammatory diseases. Some mPGES-1 inhibitor candidates including synthetic compounds, natural products and existing anti-inflammatory drugs have been proved to be effective in in vitro experiments. After 20 years of in-depth research on mPGES-1 and its inhibitors, ISC 27864 have completed phase II clinical trial. In this review, we intend to summarize mPGES-1 inhibitors focused on their inhibitory specificity with perspectives for future drug development.
Collapse
Affiliation(s)
- Yan-Yu Zhang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Yun-Da Yao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Jin-Fang Luo
- Guizhou University of Traditional Chinese Medicine, Huaxi District, Guiyang City, Guizhou Province 550025, PR China
| | - Zhong-Qiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 510006, PR China
| | - Yu-Ming Huang
- Hunan Zhengqing Pharmaceutical Company Group Ltd, Huaihua City, Hunan Province, PR China
| | - Fei-Chi Wu
- Hunan Zhengqing Pharmaceutical Company Group Ltd, Huaihua City, Hunan Province, PR China
| | - Qin-Hua Sun
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua City, Hunan Province 418000, PR China.
| | - Jian-Xin Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province 310053, PR China.
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 510006, PR China; Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai City, Guangdong Province 519000, PR China.
| |
Collapse
|
18
|
Structure-based screening for the discovery of 1,2,4-oxadiazoles as promising hits for the development of new anti-inflammatory agents interfering with eicosanoid biosynthesis pathways. Eur J Med Chem 2021; 224:113693. [PMID: 34315041 DOI: 10.1016/j.ejmech.2021.113693] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/20/2023]
Abstract
The multiple inhibition of biological targets involved in pro-inflammatory eicosanoid biosynthesis represents an innovative strategy for treating inflammatory disorders in light of higher efficacy and safety. Herein, following a multidisciplinary protocol involving virtual combinatorial screening, chemical synthesis, and in vitro and in vivo validation of the biological activities, we report the identification of 1,2,4-oxadiazole-based eicosanoid biosynthesis multi-target inhibitors. The multidisciplinary scientific approach led to the identification of three 1,2,4-oxadiazole hits (compounds 1, 2 and 5), all endowed with IC50 values in the low micromolar range, acting as 5-lipoxygenase-activating protein (FLAP) antagonists (compounds 1 and 2), and as a multi-target inhibitor (compound 5) of arachidonic acid cascade enzymes, namely cyclooxygenase-1 (COX-1), 5-lipoxygenase (5-LO) and microsomal prostaglandin E2 synthase-1 (mPGES-1). Moreover, our in vivo results demonstrate that compound 5 is able to attenuate leukocyte migration in a model of zymosan-induced peritonitis and to modulate the production of IL-1β and TNF-α. These results are of interest for further expanding the chemical diversity around the 1,2,4-oxadiazole central core, enabling the identification of novel anti-inflammatory agents characterized by a favorable pharmacological profile and considering that moderate interference with multiple targets might have advantages in re-adjusting homeostasis.
Collapse
|
19
|
Van Anh TT, Mostafa A, Rao Z, Pace S, Schwaiger S, Kretzer C, Temml V, Giesel C, Jordan PM, Bilancia R, Weinigel C, Rummler S, Waltenberger B, Hung T, Rossi A, Stuppner H, Werz O, Koeberle A. From Vietnamese plants to a biflavonoid that relieves inflammation by triggering the lipid mediator class switch to resolution. Acta Pharm Sin B 2021; 11:1629-1647. [PMID: 34221873 PMCID: PMC8245855 DOI: 10.1016/j.apsb.2021.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammation results from excessive pro-inflammatory signaling and the failure to resolve the inflammatory reaction. Lipid mediators orchestrate both the initiation and resolution of inflammation. Switching from pro-inflammatory to pro-resolving lipid mediator biosynthesis is considered as efficient strategy to relieve chronic inflammation, though drug candidates exhibiting such features are unknown. Starting from a library of Vietnamese medical plant extracts, we identified isomers of the biflavanoid 8-methylsocotrin-4'-ol from Dracaena cambodiana, which limit inflammation by targeting 5-lipoxygenase and switching the lipid mediator profile from leukotrienes to specialized pro-resolving mediators (SPM). Elucidation of the absolute configurations of 8-methylsocotrin-4'-ol revealed the 2S,γS-isomer being most active, and molecular docking studies suggest that the compound binds to an allosteric site between the 5-lipoxygenase subdomains. We identified additional subordinate targets within lipid mediator biosynthesis, including microsomal prostaglandin E2 synthase-1. Leukotriene production is efficiently suppressed in activated human neutrophils, macrophages, and blood, while the induction of SPM biosynthesis is restricted to M2 macrophages. The shift from leukotrienes to SPM was also evident in mouse peritonitis in vivo and accompanied by a substantial decrease in immune cell infiltration. In summary, we disclose a promising drug candidate that combines potent 5-lipoxygenase inhibition with the favorable reprogramming of lipid mediator profiles.
Collapse
Key Words
- 12-HHT, 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid
- 5-H(p)ETE, 5-hydro(pero)xy-eicosatetraenoic acid
- COX, cyclooxygenase
- DAD, diode array detector
- DPPH, 2,2-diphenyl-1-picrylhydrazyl
- ECD, electronic circular dichroism
- ESI, electrospray ionization
- FCS, fetal calf serum
- HPLC, high performance liquid chromatography
- HR, high resolution
- IFN, interferon
- IL, interleukin
- Inflammation
- LOX, lipoxygenase
- LT, leukotriene
- LTC4S, leukotriene C4 synthase
- Lipid mediator
- Lipidomics
- Lipoxygenase
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- MaR, maresin
- Natural product
- PBMC, peripheral blood mononuclear cells
- PD, protectin
- PG, prostaglandin
- PMNL, polymorphonuclear neutrophils
- RP, reversed phase
- Resolution
- Rv, resolvin
- SPE, solid phase extraction
- SPM, specialized pro-resolving mediators
- TX, thromboxane
- UPLC‒MS/MS, ultra-performance liquid chromatography–tandem mass spectrometry
- mPGES-1, microsomal prostaglandin E2 synthase 1
- sEH, soluble epoxide hydrolase
Collapse
Affiliation(s)
- Tran Thi Van Anh
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Alilou Mostafa
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
| | - Zhigang Rao
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Stefan Schwaiger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
| | - Christian Kretzer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Veronika Temml
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University Salzburg, Salzburg 5020, Austria
| | - Carsten Giesel
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Paul M. Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Rossella Bilancia
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| | - Christina Weinigel
- Institute of Transfusion Medicine, University Hospital Jena, Jena 07747, Germany
| | - Silke Rummler
- Institute of Transfusion Medicine, University Hospital Jena, Jena 07747, Germany
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
| | - Tran Hung
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples 80131, Italy
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena 07743, Germany
| |
Collapse
|
20
|
Kim M, Kim G, Kang M, Ko D, Nam Y, Moon CS, Kang HM, Shin JS, Werz O, Lee KT, Lee JY. Discovery of N-amido-phenylsulfonamide derivatives as novel microsomal prostaglandin E 2 synthase-1 (mPGES-1) inhibitors. Bioorg Med Chem Lett 2021; 41:127992. [PMID: 33775835 DOI: 10.1016/j.bmcl.2021.127992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 11/25/2022]
Abstract
Our previous research showed that N-carboxy-phenylsulfonyl hydrazide (scaffold A) could reduce LPS-stimulated PGE2 levels in RAW 264.7 macrophage cells by an inhibition of mPGES-1 enzyme. However, a number of scaffold A derivatives showed the drawbacks such as the formation of regioisomers and poor liver metabolic stability. In order to overcome these synthetic and metabolic problems, therefore, we decided to replace N-carboxy-phenylsulfonyl hydrazide (scaffold A) with N-carboxy-phenylsulfonamide (scaffold B) or N-amido-phenylsulfonamide frameworks (scaffold C) as a bioisosteric replacement. Among them, MPO-0186 (scaffold C) inhibited the production of PGE2 (IC50: 0.24 μM) in A549 cells via inhibition of mPGES-1 (IC50: 0.49 μM in a cell-free assay) and was found to be approximately 9- and 8-fold more potent than MK-886 as a reference inhibitor, respectively. A molecular docking study theoretically suggests that MPO-0186 could inhibit PGE2 production by blocking the PGH2 binding site of mPGES-1 enzyme. Furthermore, MPO-0186 demonstrated good liver metabolic stability and no significant inhibition observed in clinically relevant CYP isoforms except CYP2C19. This result provides a potential starting point for the development of selective and potent mPGES-1 inhibitor with a novel scaffold.
Collapse
Affiliation(s)
- Misong Kim
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Geuntae Kim
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Minji Kang
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dohyeong Ko
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yunchan Nam
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chang Sang Moon
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Heung Mo Kang
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji-Sun Shin
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Kyung-Tae Lee
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Jae Yeol Lee
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
21
|
Beneficial Modulation of Lipid Mediator Biosynthesis in Innate Immune Cells by Antirheumatic Tripterygium wilfordii Glycosides. Biomolecules 2021; 11:biom11050746. [PMID: 34067705 PMCID: PMC8155965 DOI: 10.3390/biom11050746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/31/2022] Open
Abstract
Tripterygium wilfordii glycosides (TWG) is a traditional Chinese medicine with effectiveness against rheumatoid arthritis (RA), supported by numerous clinical trials. Lipid mediators (LM) are biomolecules produced from polyunsaturated fatty acids mainly by cyclooxygenases (COX) and lipoxygenases (LOX) in complex networks which regulate inflammation and immune responses and are strongly linked to RA. The mechanism by which TWG affects LM networks in RA treatment remains elusive. Employing LM metabololipidomics using ultra-performance liquid chromatography-tandem mass spectrometry revealed striking modulation of LM pathways by TWG in human monocyte-derived macrophage (MDM) phenotypes. In inflammatory M1-MDM, TWG (30 µg/mL) potently suppressed agonist-induced formation of 5-LOX products which was confirmed in human PMNL and traced back to direct inhibition of 5-LOX (IC50 = 2.9 µg/mL). TWG also efficiently blocked thromboxane formation in M1-MDM without inhibiting other prostanoids and COX enzymes. Importantly, in anti-inflammatory M2-MDM, TWG (30 µg/mL) induced pronounced formation of specialized pro-resolving mediators (SPM) and related 12/15-LOX-derived SPM precursors, without COX and 5-LOX activation. During MDM polarization, TWG (1 µg/mL) decreased the capacity to generate pro-inflammatory 5-LOX and COX products, cytokines and markers for M1 phenotypes. Together, suppression of pro-inflammatory LM but SPM induction may contribute to the antirheumatic properties of TWG.
Collapse
|
22
|
Di Micco S, Terracciano S, Ruggiero D, Potenza M, Vaccaro MC, Fischer K, Werz O, Bruno I, Bifulco G. Identification of 2-(thiophen-2-yl)acetic Acid-Based Lead Compound for mPGES-1 Inhibition. Front Chem 2021; 9:676631. [PMID: 34046398 PMCID: PMC8144515 DOI: 10.3389/fchem.2021.676631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
We report the implementation of our in silico/synthesis pipeline by targeting the glutathione-dependent enzyme mPGES-1, a valuable macromolecular target in both cancer therapy and inflammation therapy. Specifically, by using a virtual fragment screening approach of aromatic bromides, straightforwardly modifiable by the Suzuki-Miyaura reaction, we identified 3-phenylpropanoic acid and 2-(thiophen-2-yl)acetic acid to be suitable chemical platforms to develop tighter mPGES-1 inhibitors. Among these, compounds 1c and 2c showed selective inhibitory activity against mPGES-1 in the low micromolar range in accordance with molecular modeling calculations. Moreover, 1c and 2c exhibited interesting IC50 values on A549 cell lines compared to CAY10526, selected as reference compound. The most promising compound 2c induced the cycle arrest in the G0/G1 phase at 24 h of exposure, whereas at 48 and 72 h, it caused an increase of subG0/G1 fraction, suggesting an apoptosis/necrosis effect.
Collapse
Affiliation(s)
- Simone Di Micco
- European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | | | - Dafne Ruggiero
- Dipartimento di Farmacia, University degli Studi di Salerno, Fisciano, Italy
| | - Marianna Potenza
- Dipartimento di Farmacia, University degli Studi di Salerno, Fisciano, Italy
| | - Maria C Vaccaro
- Dipartimento di Farmacia, University degli Studi di Salerno, Fisciano, Italy
| | - Katrin Fischer
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Oliver Werz
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Ines Bruno
- Dipartimento di Farmacia, University degli Studi di Salerno, Fisciano, Italy
| | - Giuseppe Bifulco
- Dipartimento di Farmacia, University degli Studi di Salerno, Fisciano, Italy
| |
Collapse
|
23
|
Anti-inflammatory celastrol promotes a switch from leukotriene biosynthesis to formation of specialized pro-resolving lipid mediators. Pharmacol Res 2021; 167:105556. [PMID: 33812006 DOI: 10.1016/j.phrs.2021.105556] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
The pentacyclic triterpenoid quinone methide celastrol (CS) from Tripterygium wilfordii Hook. F. effectively ameliorates inflammation with potential as therapeutics for inflammatory diseases. However, the molecular mechanisms underlying the anti-inflammatory and inflammation-resolving features of CS are incompletely understood. Here we demonstrate that CS potently inhibits the activity of human 5-lipoxygenase (5-LOX), the key enzyme in pro-inflammatory leukotriene (LT) formation, in cell-free assays with IC50 = 0.19-0.49 µM. Employing metabololipidomics using ultra-performance liquid chromatography coupled to tandem mass spectrometry in activated human polymorphonuclear leukocytes or M1 macrophages we found that CS (1 µM) potently suppresses 5-LOX-derived products without impairing the formation of lipid mediators (LM) formed by 12-/15-LOXs as well as fatty acid substrate release. Intriguingly, CS induced the generation of 12-/15-LOX-derived LM including the specialized pro-resolving mediator (SPM) resolvin D5 in human M2 macrophages. Finally, intraperitoneal pre-treatment of mice with 10 mg/kg CS strongly impaired zymosan-induced LT formation and simultaneously elevated the levels of SPM and related 12-/15-LOX-derived LM in peritoneal exudates, spleen and plasma in vivo. Conclusively, CS promotes a switch from LT biosynthesis to formation of SPM which may underlie the anti-inflammatory and inflammation-resolving effects of CS, representing an interesting pharmacological strategy for intervention with inflammatory disorders.
Collapse
|
24
|
Gürses T, Olğaç A, Garscha U, Gür Maz T, Bal NB, Uludağ O, Çalışkan B, Schubert US, Werz O, Banoglu E. Simple heteroaryl modifications in the 4,5-diarylisoxazol-3-carboxylic acid scaffold favorably modulates the activity as dual mPGES-1/5-LO inhibitors with in vivo efficacy. Bioorg Chem 2021; 112:104861. [PMID: 33826984 DOI: 10.1016/j.bioorg.2021.104861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/02/2021] [Accepted: 03/21/2021] [Indexed: 11/26/2022]
Abstract
Microsomal prostaglandin E2 synthase-1 (mPGES-1), 5-lipoxygenase (5-LO) and 5- lipoxygenase-activating protein (FLAP) are key for biosynthesis of proinflammatory lipid mediators and pharmacologically relevant drug targets. In the present study, we made an attempt to explore the role of small heteroaromatic fragments on the 4,5-diarylisoxazol-3-carboxylic acid scaffold, which are selected to interact with focused regions in the active sites of mPGES-1, 5-LO and FLAP. We report that the simple structural variations on the benzyloxyaryl side-arm of the scaffold significantly influence the selectivity against mPGES-1, 5-LO and FLAP, enabling to produce multi-target inhibitors of these protein targets, exemplified by compound 18 (IC50 mPGES-1 = 0.16 µM; IC50 5-LO = 0.39 µM) with in vivo efficacy in animal model of inflammation. The computationally modeled binding structures of these new inhibitors for three targets provide clues for rational design of modified structures as multi-target inhibitors. In conclusion, the simple synthetic procedure, and the possibility of enhancing the potency of this class of inhibitors through structural modifications pave the way for further development of new multi-target inhibitors against mPGES-1, 5-LO and FLAP, with potential application as anti-inflammatory agents.
Collapse
Affiliation(s)
- Tuğba Gürses
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Yenimahalle, 06560 Ankara, Turkey
| | - Abdurrahman Olğaç
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Yenimahalle, 06560 Ankara, Turkey
| | - Ulrike Garscha
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, D-7743 Jena, Germany
| | - Tuğçe Gür Maz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Yenimahalle, 06560 Ankara, Turkey
| | - Nur Banu Bal
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Yenimahalle, 06560 Ankara, Turkey
| | - Orhan Uludağ
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Yenimahalle, 06560 Ankara, Turkey
| | - Burcu Çalışkan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Yenimahalle, 06560 Ankara, Turkey
| | - Ulrich S Schubert
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany; Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, D-07743 Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, D-7743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Yenimahalle, 06560 Ankara, Turkey.
| |
Collapse
|
25
|
Mahesh G, Anil Kumar K, Reddanna P. Overview on the Discovery and Development of Anti-Inflammatory Drugs: Should the Focus Be on Synthesis or Degradation of PGE 2? J Inflamm Res 2021; 14:253-263. [PMID: 33568930 PMCID: PMC7868279 DOI: 10.2147/jir.s278514] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a protective response that develops against tissue injury and infection. Chronic inflammation, on the other hand, is the key player in the pathogenesis of many inflammatory disorders including cancer. The cytokine storm, an inflammatory response flaring out of control, is mostly responsible for the mortality in COVID-19 patients. Anti-inflammatory drugs inhibit cyclooxygenases (COX), which are involved in the biosynthesis of prostaglandins that promote inflammation. The conventional non-steroidal anti-inflammatory drugs (NSAIDs) are associated with gastric and renal side-effects, as they inhibit both the constitutive COX-1 and the inducible COX-2. The majority of selective COX-2 inhibitors (COXIBs) are without gastric side-effects but are associated with cardiac side-effects on long-term use. The search for anti-inflammatory drugs without side-effects, therefore, has become a dream and ongoing effort of the Pharma companies. As PGE2 is the key mediator of inflammatory disorders, coming up with a strategy to reduce the levels of PGE2 alone without affecting other metabolites may form a better choice for the development of next generation anti-inflammatory drugs. In this direction the options being explored are on synthesis of PGE2-mPGES-1; PGE2 degradation through a specific PG dehydrogenase, 15-PGDH, and by blocking its activity mediated through a specific PGE receptor, EP4. As leukotrienes formed via the 5-lipoxygenase (5-LOX) pathway also play an important role in the mediation of inflammation, efforts are also being made to target both COX and LOX pathways. This review focuses on addressing the following three points: 1) How NSAIDs and COXIBs are associated with gastric, renal and cardiac side-effects; 2) Should the focus be on the targets upstream or downstream of PGE2; and 3) the status of alternative targets being explored for the discovery and development of anti-inflammatory drugs without side-effects. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/8Uufep6ipBQ
Collapse
Affiliation(s)
- Gopa Mahesh
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Kotha Anil Kumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Pallu Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
26
|
Yarla NS, Pathuri G, Gali H, Terzyan S, Panneerselvam J, Chandrakesan P, Scotti MT, Houchen C, Madka V, Rao CV. Discovery and Development of a Novel mPGES-1/5-LOX Dual Inhibitor LFA-9 for Prevention and Treatment of Chronic Inflammatory Diseases. J Inflamm Res 2021; 13:1261-1278. [PMID: 33408499 PMCID: PMC7781011 DOI: 10.2147/jir.s286110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/01/2020] [Indexed: 01/22/2023] Open
Abstract
Background Non-steroidal anti-inflammatory drugs, cyclooxygenase (COX)-2 selective inhibitors, have been explored for prevention and treatment of several inflammatory chronic conditions including arthritis, and cancer. However, the long-term use of these drugs is associated with gastrointestinal, renal, and cardiovascular side effects. Later, COX/5-lipoxygenase (5-LOX) dual inhibitors (eg, licofelone) have been developed but did not enter into the market from the clinical trails due to COX-1/2 inhibition-associated side effects. Hence, targeting microsomal prostaglandin E synthase-1 (mPGES-1) and 5-LOX can be an ideal approach while sparing COX-1/2 activities for development of the next generation of anti-inflammatory drugs with better efficacy and safety. Materials and Methods In silico (molecular modelling) studies were used to design a mPGES-1/5-LOX dual inhibitory and COX-1/2 sparing lead molecule licofelone analogue-9 (LFA-9) by modifying the pharmacophore of licofelone. In vitro cell-free enzymatic (mPGES-1, 5-LOX, COX-1/2) assays using fluorometric/colorimetric methods and cell-based assays (LPS-induced PGE2, LTB4, and PGI2 productions from macrophages) using ELISA technique, isothermal calorimetry, and circular dichroism techniques were performed to determine the mPGES-1/5-LOX inhibitory efficacy and selectivity. Anti-inflammatory efficacy of LFA-9 was evaluated using a carrageenan (inflammogen)-induced rat paw edema model. Infiltration/expression of CD68 immune cells and TNF-α in paw tissues were evaluated using confocal microscope and immunoblot analysis. Anti-cancer effect of LFA-9 was evaluated using colon spheroids in vitro. Results LFA-9 inhibited mPGES-1/5-LOX and their products PGE2 and LTB4, spared COX-1/2 and its product PGI2. LFA-9 bound strongly with human mPGES-1/5-LOX enzymes and induced changes in their secondary structure, thereby inhibited their enzymatic activities. LFA-9 inhibited carrageenan-induced inflammation (70.4%) in rats and suppressed CD68 immune cell infiltration (P ≤ 0.0001) and TNF-α expression. LFA-9 suppressed colon tumor stemness (60.2%) in vitro through inhibition of PGE2 (82%) levels. Conclusion Overall study results suggest that LFA-9 is a mPGES-1/5-LOX dual inhibitor and showed anti-inflammatory and colorectal cancer preventive activities, and warranted detailed studies.
Collapse
Affiliation(s)
- Nagendra Sastri Yarla
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Gopal Pathuri
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Hariprasad Gali
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Simon Terzyan
- Laboratory of Biomolecular Structure and Function; Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Janani Panneerselvam
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Parthasarathy Chandrakesan
- Division of Digestive Diseases and Nutrition, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Marcus Tullius Scotti
- Laboratory of Cheminformatics, Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Courtney Houchen
- Division of Digestive Diseases and Nutrition, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,VA Medical Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
27
|
Ho JD, Lee MR, Rauch CT, Aznavour K, Park JS, Luz JG, Antonysamy S, Condon B, Maletic M, Zhang A, Hickey MJ, Hughes NE, Chandrasekhar S, Sloan AV, Gooding K, Harvey A, Yu XP, Kahl SD, Norman BH. Structure-based, multi-targeted drug discovery approach to eicosanoid inhibition: Dual inhibitors of mPGES-1 and 5-lipoxygenase activating protein (FLAP). Biochim Biophys Acta Gen Subj 2020; 1865:129800. [PMID: 33246032 DOI: 10.1016/j.bbagen.2020.129800] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/27/2020] [Accepted: 11/20/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND Due to the importance of both prostaglandins (PGs) and leukotrienes (LTs) as pro-inflammatory mediators, and the potential for eicosanoid shunting in the presence of pathway target inhibitors, we have investigated an approach to inhibiting the formation of both PGs and LTs as part of a multi-targeted drug discovery effort. METHODS We generated ligand-protein X-ray crystal structures of known inhibitors of microsomal prostaglandin E2 synthase-1 (mPGES-1) and the 5-Lipoxygenase Activating Protein (FLAP), with their respective proteins, to understand the overlapping pharmacophores. We subsequently used molecular modeling and structure-based drug design (SBDD) to identify hybrid structures intended to inhibit both targets. RESULTS This work enabled the preparation of compounds 4 and 5, which showed potent in vitro inhibition of both targets. SIGNIFICANCE Our findings enhance the structural understanding of mPGES-1 and FLAP's unique ligand binding pockets and should accelerate the discovery of additional dual inhibitors for these two important integral membrane protein drug targets.
Collapse
Affiliation(s)
- Joseph D Ho
- Lilly Biotechnology Center, San Diego, CA 92121, USA.
| | - Matthew R Lee
- Lilly Biotechnology Center, San Diego, CA 92121, USA
| | | | | | | | - John G Luz
- Lilly Biotechnology Center, San Diego, CA 92121, USA
| | | | | | - Milan Maletic
- Lilly Biotechnology Center, San Diego, CA 92121, USA
| | - Aiping Zhang
- Lilly Biotechnology Center, San Diego, CA 92121, USA
| | | | | | | | - Ashley V Sloan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | - Karen Gooding
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | - Anita Harvey
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | - Xiao-Peng Yu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | - Steven D Kahl
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | - Bryan H Norman
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA.
| |
Collapse
|
28
|
Mayr F, Möller G, Garscha U, Fischer J, Rodríguez Castaño P, Inderbinen SG, Temml V, Waltenberger B, Schwaiger S, Hartmann RW, Gege C, Martens S, Odermatt A, Pandey AV, Werz O, Adamski J, Stuppner H, Schuster D. Finding New Molecular Targets of Familiar Natural Products Using In Silico Target Prediction. Int J Mol Sci 2020; 21:E7102. [PMID: 32993084 PMCID: PMC7582679 DOI: 10.3390/ijms21197102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/01/2022] Open
Abstract
Natural products comprise a rich reservoir for innovative drug leads and are a constant source of bioactive compounds. To find pharmacological targets for new or already known natural products using modern computer-aided methods is a current endeavor in drug discovery. Nature's treasures, however, could be used more effectively. Yet, reliable pipelines for the large-scale target prediction of natural products are still rare. We developed an in silico workflow consisting of four independent, stand-alone target prediction tools and evaluated its performance on dihydrochalcones (DHCs)-a well-known class of natural products. Thereby, we revealed four previously unreported protein targets for DHCs, namely 5-lipoxygenase, cyclooxygenase-1, 17β-hydroxysteroid dehydrogenase 3, and aldo-keto reductase 1C3. Moreover, we provide a thorough strategy on how to perform computational target predictions and guidance on using the respective tools.
Collapse
Affiliation(s)
- Fabian Mayr
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (F.M.); (V.T.); (B.W.); (S.S.); (H.S.)
| | - Gabriele Möller
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; (G.M.); (J.A.)
| | - Ulrike Garscha
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, Germany; (U.G.); (J.F.)
| | - Jana Fischer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, University Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, Germany; (U.G.); (J.F.)
| | - Patricia Rodríguez Castaño
- Pediatric Endocrinology, Diabetology and Metabolism, University Children’s Hospital Bern, Freiburgstrasse 15, 3010 Bern, Switzerland; (P.R.C.); (A.V.P.)
- Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Silvia G. Inderbinen
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; (S.G.I.); (A.O.)
| | - Veronika Temml
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (F.M.); (V.T.); (B.W.); (S.S.); (H.S.)
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (F.M.); (V.T.); (B.W.); (S.S.); (H.S.)
| | - Stefan Schwaiger
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (F.M.); (V.T.); (B.W.); (S.S.); (H.S.)
| | - Rolf W. Hartmann
- Helmholtz Institute of Pharmaceutical Research Saarland (HIPS), Department for Drug Design and Optimization, Campus E8.1, 66123 Saarbrücken, Germany;
- Saarland University, Pharmaceutical and Medicinal Chemistry, Campus E8.1, 66123 Saarbrücken, Germany
| | - Christian Gege
- University of Heidelberg, Institute of Pharmacy and Molecular Biotechnology (IPMB), Medicinal Chemistry, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany;
| | - Stefan Martens
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via Mach 1, 38010 San Michele all’Adige, Italy;
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; (S.G.I.); (A.O.)
| | - Amit V. Pandey
- Pediatric Endocrinology, Diabetology and Metabolism, University Children’s Hospital Bern, Freiburgstrasse 15, 3010 Bern, Switzerland; (P.R.C.); (A.V.P.)
- Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany;
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; (G.M.); (J.A.)
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85356 Freising-Weihenstephan, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (F.M.); (V.T.); (B.W.); (S.S.); (H.S.)
| | - Daniela Schuster
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University Salzburg, Strubergasse 21, 5020 Salzburg, Austria
- Institute of Pharmacy/Pharmaceutical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
29
|
Bülbül B, Küçükgüzel İ. Microsomal Prostaglandin E2 Synthase-1 as a New Macromolecular Drug Target in the Prevention of Inflammation and Cancer. Anticancer Agents Med Chem 2020; 19:1205-1222. [PMID: 30827263 DOI: 10.2174/1871520619666190227174137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/29/2019] [Accepted: 02/05/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cancer is one of the most life-threatening diseases worldwide. Since inflammation is considered to be one of the known characteristics of cancer, the activity of PGE2 has been paired with different tumorigenic steps such as increased tumor cell proliferation, resistance to apoptosis, increased invasiveness, angiogenesis and immunosuppression. OBJECTIVE It has been successfully demonstrated that inhibition of mPGES-1 prevented inflammation in preclinical studies. However, despite the crucial roles of mPGEs-1 and PGE2 in tumorigenesis, there is not much in vivo study on mPGES-1 inhibition in cancer therapy. The specificity of mPGEs-1 enzyme and its low expression level under normal conditions makes it a promising drug target with a low risk of side effects. METHODS A comprehensive literature search was performed for writing this review. An updated view on PGE2 biosynthesis, PGES isoenzyme family and its pharmacology and the latest information about inhibitors of mPGES-1 have been discussed. RESULTS In this study, it was aimed to highlight the importance of mPGES-1 and its inhibition in inflammationrelated cancer and other inflammatory conditions. Information about PGE2 biosynthesis, its role in inflammationrelated pathologies were also provided. We kept the noncancer-related inflammatory part short and tried to bring together promising molecules or scaffolds. CONCLUSION The information provided in this review might be useful to researchers in designing novel and potent mPGES-1 inhibitors for the treatment of cancer and inflammation.
Collapse
Affiliation(s)
- Bahadır Bülbül
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - İlkay Küçükgüzel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| |
Collapse
|
30
|
Lauro G, Terracciano S, Cantone V, Ruggiero D, Fischer K, Pace S, Werz O, Bruno I, Bifulco G. A Combinatorial Virtual Screening Approach Driving the Synthesis of 2,4-Thiazolidinedione-Based Molecules as New Dual mPGES-1/5-LO Inhibitors. ChemMedChem 2020; 15:481-489. [PMID: 32022480 DOI: 10.1002/cmdc.201900694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/24/2020] [Indexed: 12/13/2022]
Abstract
Dual inhibition of microsomal prostaglandin E2 synthase-1 (mPGES-1) and 5-lipoxygenase (5-LO), two key enzymes involved in pro-inflammatory eicosanoid biosynthesis, represents a new strategy for treating inflammatory disorders. Herein we report the discovery of 2,4-thiazolidinedione-based mPGES-1/5-LO dual inhibitors following a multidisciplinary protocol, involving virtual combinatorial screening, chemical synthesis, and validation of the biological activities for the selected compounds. Following the multicomponent-based chemical route for the decoration of the 2,4-thiazolidinedione core, a large library of virtual compounds was built (∼2.0×104 items) and submitted to virtual screening. Nine selected molecules were synthesized and biologically evaluated, disclosing among them four compounds able to reduce the activity of both enzymes in the mid- and low- micromolar range of activities. These results are of interest for further expanding the chemical diversity around the 2,4-thiazolidinedione central core, facilitating the identification of novel anti-inflammatory agents endowed with a promising and safer pharmacological profile.
Collapse
Affiliation(s)
- Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Stefania Terracciano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Vincenza Cantone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Dafne Ruggiero
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy.,PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Katrin Fischer
- Department of Pharmaceutical/Medicinal Chemistry Institute of Pharmacy, University of Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry Institute of Pharmacy, University of Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry Institute of Pharmacy, University of Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Ines Bruno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| |
Collapse
|
31
|
Lange M, Zi Y, Vilotijevic I. Enantioselective Synthesis of Pyrrolizin-1-ones via Lewis Base Catalyzed N-Allylation of N-Silyl Pyrrole Latent Nucleophiles. J Org Chem 2020; 85:1259-1269. [PMID: 31802664 DOI: 10.1021/acs.joc.9b02819] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Pyrrolizidine alkaloids and their derivatives often feature interesting biological activities. A class of substituted 2,3-dihydro-1H-pyrrolizin-1-one derivatives has been explored as a potential treatment for Alzheimer's disease, but enantioselective synthesis of these molecules is still elusive. We report that enantioselective N-allylation of N-silyl pyrrole latent nucleophiles with allylic fluorides followed by hydrogenation and diastereoselective Friedel-Crafts cyclization constitute an efficient synthetic route to access enantioenriched substituted 2,3-dihydro-1H-pyrrolizin-1-ones.
Collapse
Affiliation(s)
- Markus Lange
- Institute of Organic Chemistry and Macromolecular Chemistry , Friedrich Schiller University Jena , Humboldtstr.10 , 07743 Jena , Germany
| | - You Zi
- Institute of Organic Chemistry and Macromolecular Chemistry , Friedrich Schiller University Jena , Humboldtstr.10 , 07743 Jena , Germany
| | - Ivan Vilotijevic
- Institute of Organic Chemistry and Macromolecular Chemistry , Friedrich Schiller University Jena , Humboldtstr.10 , 07743 Jena , Germany
| |
Collapse
|
32
|
Vo NNQ, Nomura Y, Muranaka T, Fukushima EO. Structure-Activity Relationships of Pentacyclic Triterpenoids as Inhibitors of Cyclooxygenase and Lipoxygenase Enzymes. JOURNAL OF NATURAL PRODUCTS 2019; 82:3311-3320. [PMID: 31774676 DOI: 10.1021/acs.jnatprod.9b00538] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pentacyclic triterpenes may be active agents and provide a rich natural resource of promising compounds for drug development. The inhibitory activities of 29 natural oleanane and ursane pentacyclic triterpenes were evaluated against four major enzymes involved in the inflammatory process: 5-LOX, 15-LOX-2, COX-1, and COX-2. It was found that 3-O-acetyl-β-boswellic acid potently inhibited human 15-LOX-2 (IC50 = 12.2 ± 0.47 μM). Analysis of the structure-activity relationships revealed that the presence of a hydroxy group at position 24 was beneficial in terms of both 5-LOX and COX-1 inhibition. Notably, the introduction of a carboxylic acid group at position 30 was important for dual 5-LOX/COX inhibitory activity; furthermore, its combination with a carbonyl group at C-11 considerably increased 5-LOX inhibition. Also, the presence of an α-hydroxy group at C-2 or a carboxylic acid group at C-23 markedly suppressed the 5-LOX activity. The present findings reveal that the types and configurations of polar moieties at positions C-2, -3, -11, -24, and -30 are important structural aspects of pentacyclic triterpenes for their potential as anti-inflammatory lead compounds.
Collapse
Affiliation(s)
- Nhu Ngoc Quynh Vo
- Department of Biotechnology, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Yuhta Nomura
- Department of Biotechnology, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita , Osaka 565-0871 , Japan
- RIKEN Center for Sustainable Resource Science , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Ery Odette Fukushima
- Department of Biotechnology, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita , Osaka 565-0871 , Japan
- Center for Open Innovation Research and Education, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita , Osaka 565-0871 , Japan
- Department of Biotechnology, Faculty of Life Sciences , Universidad Regional Amazónica IKIAM , Vía Muyuna Km 7 , Tena , Ecuador
| |
Collapse
|
33
|
Miyamoto DK, Flaxman HA, Wu HY, Gao J, Woo CM. Discovery of a Celecoxib Binding Site on Prostaglandin E Synthase (PTGES) with a Cleavable Chelation-Assisted Biotin Probe. ACS Chem Biol 2019; 14:2527-2532. [PMID: 31650837 DOI: 10.1021/acschembio.9b00511] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The coxibs are a subset of nonsteroidal anti-inflammatory drugs (NSAIDs) that primarily target cyclooxygenase-2 (COX-2) to inhibit prostaglandin signaling and reduce inflammation. However, mechanisms to inhibit other members of the prostaglandin signaling pathway may improve selectivity and reduce off-target toxicity. Here, we report a novel binding site for celecoxib on prostaglandin E synthase (PTGES), which is an enzyme downstream of COX-2 in the prostaglandin signaling pathway, using a cleavable chelation-assisted biotin probe 6. Evaluation of the multifunctional probe 6 revealed significantly improved tagging efficiencies attributable to the embedded picolyl functional group. Application of the probe 6 within the small molecule interactome mapping by photoaffinity labeling (SIM-PAL) platform using photo-celecoxib as a reporter for celecoxib identified PTGES and other membrane proteins in the top eight enriched proteins from A549 cells. Four binding sites to photo-celecoxib were mapped by the probe 6, including a binding site with PTGES. The binding interaction with PTGES was validated by competitive displacement with celecoxib and licofelone, which is a known PTGES inhibitor, and was used to generate a structural model of the interaction. The identification of photo-celecoxib interactions with membrane proteins, including the direct binding site on the membrane protein PTGES, will inform further functional followup and the design of new selective inhibitors of the prostaglandin signaling pathway.
Collapse
Affiliation(s)
- David K. Miyamoto
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| | - Hope A. Flaxman
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| | - Hung-Yi Wu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| | - Jinxu Gao
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| | - Christina M. Woo
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| |
Collapse
|
34
|
A review on mPGES-1 inhibitors: From preclinical studies to clinical applications. Prostaglandins Other Lipid Mediat 2019; 147:106383. [PMID: 31698145 DOI: 10.1016/j.prostaglandins.2019.106383] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/16/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
Prostaglandin E2 (PGE2) is a lipid mediator of inflammation and cancer progression. It is mainly formed via metabolism of arachidonic acid by cyclooxygenases (COX) and the terminal enzyme microsomal prostaglandin E synthase-1 (mPGES-1). Widely used non-steroidal anti-inflammatory drugs (NSAIDs) inhibit COX activity, resulting in decreased PGE2 production and symptomatic relief. However, NSAIDs block the production of many other lipid mediators that have important physiological and resolving actions, and these drugs cause gastrointestinal bleeding and/or increase the risk for severe cardiovascular events. Selective inhibition of downstream mPGES-1 for reduction in only PGE2 biosynthesis is suggested as a safer therapeutic strategy. This review covers the recent advances in characterization of new mPGES-1 inhibitors in preclinical models and their future clinical applications.
Collapse
|
35
|
Design and synthesis of a novel mPGES-1 lead inhibitor guided by 3D-QSAR CoMFA. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Gerstmeier J, Seegers J, Witt F, Waltenberger B, Temml V, Rollinger JM, Stuppner H, Koeberle A, Schuster D, Werz O. Ginkgolic Acid is a Multi-Target Inhibitor of Key Enzymes in Pro-Inflammatory Lipid Mediator Biosynthesis. Front Pharmacol 2019; 10:797. [PMID: 31379572 PMCID: PMC6650749 DOI: 10.3389/fphar.2019.00797] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/20/2019] [Indexed: 12/19/2022] Open
Abstract
Introduction: Lipid mediators (LMs) comprise bioactive metabolites of polyunsaturated fatty acids, including pro-inflammatory prostaglandins (PGs), thromboxanes (TXs), and leukotrienes (LTs), as well as specialized pro-resolving mediators (SPMs). They are essentially biosynthesized via cyclooxygenase (COX) and lipoxygenase (LO) pathways in complex networks and regulate the progression as well as the resolution of inflammatory disorders including inflammation-triggered cancer. Ginkgolic acid (GA) is a phenolic acid contained in Ginkgo biloba L. with neuroprotective, antimicrobial, and antitumoral properties. Although LMs regulate microbial infections and tumor progression, whether GA affects LM biosynthesis is unknown and was investigated here in detail. Methods: Pharmacophore-based virtual screening was performed along with docking simulations. Activity assays were conducted for isolated human recombinant 5-LO, cytosolic phospholipase (PLA)2α, COX-2, and ovine COX-1. The activity of human mPGES-1 and thromboxane A2 synthase (TXAS) was determined in crude cellular fractions. Cellular LM formation was studied using human monocytes, neutrophils, platelets, and M1- and M2-like macrophages. LMs were identified after (ultra)high-performance liquid chromatography by UV detection or ESI-tandem mass spectrometry. Results: GA was identified as virtual hit in an mPGES-1 pharmacophore-based virtual screening. Cell-free assays revealed potent suppression of mPGES-1 activity (IC50 = 0.7 µM) that is fully reversible and essentially independent of the substrate concentration. Moreover, cell-free assays revealed COX-1 and TXAS as additional targets of GA with lower affinity (IC50 = 8.1 and 5.2 µM). Notably, 5-LO, the key enzyme in LT biosynthesis, was potently inhibited by GA (IC50 = 0.2 µM) in a reversible and substrate-independent manner. Docking simulations support the molecular interaction of GA with mPGES-1 and 5-LO and suggest concrete binding sites. Interestingly, interference of GA with mPGES-1, COX-1, TXAS, and 5-LO was evident also in intact cells with IC50 values of 2.1-3.8 µM; no radical scavenging or cytotoxic properties were obvious. Analysis of LM profiles from bacteria-stimulated human M1- and M2-like macrophages confirmed the multi-target features of GA and revealed LM redirection towards the formation of 12-/15-LO products including SPM. Conclusions: We reveal GA as potent multi-target inhibitor of key enzymes in the biosynthesis of pro-inflammatory LMs that contribute to the complex pharmacological and toxicological properties of GA.
Collapse
Affiliation(s)
- Jana Gerstmeier
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Julia Seegers
- Department of Pharmaceutical Analytics, Pharmaceutical Institute, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Finja Witt
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Veronika Temml
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Judith M. Rollinger
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Andreas Koeberle
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Daniela Schuster
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
37
|
Sinha S, Doble M, Manju SL. 5-Lipoxygenase as a drug target: A review on trends in inhibitors structural design, SAR and mechanism based approach. Bioorg Med Chem 2019; 27:3745-3759. [PMID: 31331653 DOI: 10.1016/j.bmc.2019.06.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 01/22/2023]
Abstract
The most common inflammatory disease of the airways is asthma among children affecting around 235 million people worldwide. 5-Lipoxygenase (5-LOX) is a crucial enzyme which helps in the conversion of arachidonic acid (AA) to leukotrienes (LTs), the lipid mediators. It is associated with several inflammation related disorders such as asthma, allergy, and atherosclerosis. Therefore, it is considered as a promising target against inflammation and asthma. Currently, the only drug against 5-LOX which is available is Zileuton, while a few inhibitors are in clinical trial stages such as Atreleuton and Setileuton. So, there is a dire requirement in the area of progress of novel 5-LOX inhibitors which necessitates an understanding of their structure activity relationship and mode of action. In this review, novel 5-LOX inhibitors reported so far, their structural design, SAR and developmental strategies along with clinical updates are discussed over the last two decades.
Collapse
Affiliation(s)
- Shweta Sinha
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India; Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Tamil Nadu 600036, India
| | - Mukesh Doble
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Tamil Nadu 600036, India.
| | - S L Manju
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
38
|
Nausch B, Pace S, Pein H, Koeberle A, Rossi A, Künstle G, Werz O. The standardized herbal combination BNO 2103 contained in Canephron ® N alleviates inflammatory pain in experimental cystitis and prostatitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 60:152987. [PMID: 31257118 DOI: 10.1016/j.phymed.2019.152987] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/03/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Urinary tract infections are among the most common types of infections and give rise to inflammation with pain as one of the main symptoms. The herbal medicinal product Canephron® N contains BNO 2103, a defined mixture of pulverized rosemary leaves, centaury herb, and lovage root, and has been used in the treatment of urinary tract infections for more than 25 years. PURPOSE To test the hypothesis that BNO 2103 reduces pain in cystitis and prostatitis by virtue of anti-inflammatory properties, and to reveal potential mechanisms underlying the anti-inflammatory features. STUDY DESIGN BNO 2103 was studied for anti-inflammatory and analgesic properties in three animal models in vivo, and the mode of action underlying the anti-inflammatory features was investigated in human leukocytes and cell-free assays in vitro. METHODS To assess the anti-inflammatory and analgesic efficacy of BNO 2103 we employed cyclophosphamide-induced cystitis and carrageenan-induced prostatitis in rats, and zymosan-induced peritonitis in mice. Human neutrophils and monocytes as well as isolated human 5-lipoxygenase and microsomal prostaglandin E2 synthase-1-containing microsomes were utilized to assess inhibition of leukotriene and/or prostaglandin E2 production by HPLC and/or ELISA. RESULTS When given orally, BNO 2103 reduced inflammation and hyperalgesia in experimental cystitis in rats, while individual components of BNO 2103 also reduced hyperalgesia. Furthermore, BNO 2103 reduced hyperalgesia in rats with carrageenan-induced prostatitis. Cell-based and cell-free studies implicate inhibition of prostaglandin E2 and leukotriene B4 biosynthesis as potential mechanisms underlying the analgesic and anti-inflammatory effects. CONCLUSION Our data support the hypothesis that BNO 2103 reduces pain by virtue of its anti-inflammatory properties, possibly related to suppression of prostaglandin E2 and leukotriene B4 formation, and suggest that this combination has the potential to treat clinical symptoms such as inflammatory pain. Thus BNO 2103 may represent an alternative to reduce the use of antibiotics in urinary tract infections.
Collapse
Affiliation(s)
- Bernhard Nausch
- Bionorica SE, Kerschensteinerstrasse 11-15, 92318 Neumarkt, Germany.
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Helmut Pein
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano 49, I-80131 Naples, Italy
| | - Gerald Künstle
- Bionorica SE, Kerschensteinerstrasse 11-15, 92318 Neumarkt, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany.
| |
Collapse
|
39
|
Novel benzoxanthene lignans that favorably modulate lipid mediator biosynthesis: A promising pharmacological strategy for anti-inflammatory therapy. Biochem Pharmacol 2019; 165:263-274. [PMID: 30836057 DOI: 10.1016/j.bcp.2019.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/01/2019] [Indexed: 02/08/2023]
Abstract
Lipid mediators (LM) encompass pro-inflammatory prostaglandins (PG) and leukotrienes (LT) but also specialized pro-resolving mediators (SPM) which display pivotal bioactivities in health and disease. Pharmacological intervention with inflammatory disorders such as osteoarthritis and rheumatoid arthritis commonly employs anti-inflammatory drugs that can suppress PG and LT formation, which however, possess limited effectiveness and side effects. Here, we report on the discovery and characterization of the two novel benzoxanthene lignans 1 and 2 that modulate select LM biosynthetic enzymes enabling the switch from pro-inflammatory LT to SPM biosynthesis as potential pharmacological strategy to intervene with inflammation. In cell-free assays, compound 1 and 2 inhibit microsomal prostaglandin E2 synthase-1 and leukotriene C4 synthase (IC50 ∼ 0.6-3.4 µM) and potently interfere with 5-lipoxygenase (5-LOX), the key enzyme in LT biosynthesis (IC50 = 0.04 and 0.09 µM). In human neutrophils, monocytes and M1 and M2 macrophages, compound 1 and 2 efficiently suppress LT biosynthesis (IC50 < 1 µM), accompanied by elevation of 15-LOX-derived LM including SPM. In zymosan-induced murine peritonitis, compound 1 and 2 ameliorated self-limited inflammation along with suppression of early LT formation and elevation of subsequent SPM biosynthesis in vivo. Together, these novel benzoxanthene lignans promote the LM class switch from pro-inflammatory towards pro-resolving LM to terminate inflammation, suggesting their suitability as novel leads for pharmacotherapy of arthritis and related inflammatory disorders.
Collapse
|
40
|
Vieider L, Romp E, Temml V, Fischer J, Kretzer C, Schoenthaler M, Taha A, Hernández-Olmos V, Sturm S, Schuster D, Werz O, Garscha U, Matuszczak B. Synthesis, Biological Evaluation and Structure-Activity Relationships of Diflapolin Analogues as Dual sEH/FLAP Inhibitors. ACS Med Chem Lett 2019; 10:62-66. [PMID: 30655948 PMCID: PMC6331193 DOI: 10.1021/acsmedchemlett.8b00415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/29/2018] [Indexed: 01/25/2023] Open
Abstract
A series of derivatives of the potent dual soluble epoxide hydrolase (sEH)/5-lipoxygenase-activating protein (FLAP) inhibitor diflapolin was designed, synthesized, and characterized by 1H NMR, 13C NMR, and elemental analysis. These novel compounds were biologically evaluated for their inhibitory activity against sEH and FLAP. Molecular modeling tools were applied to analyze structure-activity relationships (SAR) on both targets. Results show that even small modifications on the lead compound diflapolin markedly influence the inhibitory potential, especially on FLAP, suggesting very narrow SAR.
Collapse
Affiliation(s)
- Lisa Vieider
- Institute
of Pharmacy, Department of Pharmaceutical Chemistry, Center for Chemistry
and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Erik Romp
- Chair
of Pharmaceutical/Medicinal Chemistry, Friedrich-Schiller
University Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Veronika Temml
- Institute
of Pharmacy, Department of Pharmacognosy, Center for Chemistry and
Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Jana Fischer
- Chair
of Pharmaceutical/Medicinal Chemistry, Friedrich-Schiller
University Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Christian Kretzer
- Chair
of Pharmaceutical/Medicinal Chemistry, Friedrich-Schiller
University Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Martin Schoenthaler
- Institute
of Pharmacy, Department of Pharmaceutical Chemistry, Center for Chemistry
and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Abdulla Taha
- Chair
of Pharmaceutical/Medicinal Chemistry, Friedrich-Schiller
University Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Victor Hernández-Olmos
- Fraunhofer
Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology
TMP, Theodor-Stern-Kai
7, 60596 Frankfurt
am Main, Germany
| | - Sonja Sturm
- Institute
of Pharmacy, Department of Pharmacognosy, Center for Chemistry and
Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Daniela Schuster
- Institute
of Pharmacy, Department of Pharmaceutical Chemistry, Center for Chemistry
and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
- Institute
of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University Salzburg, Strubergasse 21, A-5020 Salzburg, Austria
| | - Oliver Werz
- Chair
of Pharmaceutical/Medicinal Chemistry, Friedrich-Schiller
University Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Ulrike Garscha
- Chair
of Pharmaceutical/Medicinal Chemistry, Friedrich-Schiller
University Jena, Philosophenweg 14, D-07743 Jena, Germany
| | - Barbara Matuszczak
- Institute
of Pharmacy, Department of Pharmaceutical Chemistry, Center for Chemistry
and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| |
Collapse
|
41
|
Kar S, Ramamoorthy G, Sinha S, Ramanan M, Pola JK, Golakoti NR, Nanubolu JB, Sahoo SK, Dandamudi RB, Doble M. Synthesis of diarylidenecyclohexanone derivatives as potential anti-inflammatory leads against COX-2/mPGES1 and 5-LOX. NEW J CHEM 2019. [DOI: 10.1039/c9nj00726a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study establishes the diarylidenecyclohexanones as good anti-inflammatory pharmacophores with selective high potency against PGE2and 5-LOX without toxicity towards healthy human cells.
Collapse
Affiliation(s)
- Swayamsiddha Kar
- Department of Chemistry
- Sri Sathya Sai Institute of Higher Learning
- India
| | - Gayathri Ramamoorthy
- Bioengineering and Drug Design Lab
- Department of Biotechnology
- Bhupat and Jyoti Mehta School of Biosciences
- Indian Institute of Technology
- Madras
| | - Shweta Sinha
- Bioengineering and Drug Design Lab
- Department of Biotechnology
- Bhupat and Jyoti Mehta School of Biosciences
- Indian Institute of Technology
- Madras
| | - Meera Ramanan
- Bioengineering and Drug Design Lab
- Department of Biotechnology
- Bhupat and Jyoti Mehta School of Biosciences
- Indian Institute of Technology
- Madras
| | - Jeevan Kumar Pola
- Department of Chemistry
- Sri Sathya Sai Institute of Higher Learning
- India
| | | | | | - Suraj Kumar Sahoo
- Department of Chemistry
- Sri Sathya Sai Institute of Higher Learning
- India
| | | | - Mukesh Doble
- Bioengineering and Drug Design Lab
- Department of Biotechnology
- Bhupat and Jyoti Mehta School of Biosciences
- Indian Institute of Technology
- Madras
| |
Collapse
|
42
|
Sala A, Proschak E, Steinhilber D, Rovati GE. Two-pronged approach to anti-inflammatory therapy through the modulation of the arachidonic acid cascade. Biochem Pharmacol 2018; 158:161-173. [DOI: 10.1016/j.bcp.2018.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022]
|
43
|
Lauro G, Cantone V, Potenza M, Fischer K, Koeberle A, Werz O, Riccio R, Bifulco G. Discovery of 3-hydroxy-3-pyrrolin-2-one-based mPGES-1 inhibitors using a multi-step virtual screening protocol. MEDCHEMCOMM 2018; 9:2028-2036. [PMID: 30746063 DOI: 10.1039/c8md00497h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/17/2018] [Indexed: 12/20/2022]
Abstract
Targeting microsomal prostaglandin E2 synthase-1 (mPGES-1) represents an efficient strategy for the development of novel drugs against inflammation and cancer with potentially reduced side effects. With this aim, a virtual screening was performed on a large library of commercially available molecules using the X-ray structure of mPGES-1 co-complexed with a potent inhibitor. Combining fast ligand-based shape alignment, molecular docking experiments, and qualitative analysis of the binding poses, a small set of molecules was selected for the subsequent steps of validation of the biological activity. Compounds 2 and 3, bearing the 3-hydroxy-3-pyrrolin-2-one nucleus, showed mPGES-1-inhibitory activity in the low micromolar range. These data highlighted the applicability of the reported virtual screening protocol for the selection of new mPGES-1 inhibitors as promising anti-inflammatory/anti-cancer drugs.
Collapse
Affiliation(s)
- Gianluigi Lauro
- Department of Pharmacy , University of Salerno , via Giovanni Paolo II 132 , 84084 Fisciano , Italy . ; ; Tel: +39 (0)89 969741
| | - Vincenza Cantone
- Department of Pharmacy , University of Salerno , via Giovanni Paolo II 132 , 84084 Fisciano , Italy . ; ; Tel: +39 (0)89 969741
| | - Marianna Potenza
- Department of Pharmacy , University of Salerno , via Giovanni Paolo II 132 , 84084 Fisciano , Italy . ; ; Tel: +39 (0)89 969741
| | - Katrin Fischer
- Department of Pharmaceutical/Medicinal Chemistry , Institute of Pharmacy , Friedrich-Schiller-University Jena , Philosophenweg 14 , D-07743 Jena , Germany
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal Chemistry , Institute of Pharmacy , Friedrich-Schiller-University Jena , Philosophenweg 14 , D-07743 Jena , Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry , Institute of Pharmacy , Friedrich-Schiller-University Jena , Philosophenweg 14 , D-07743 Jena , Germany
| | - Raffaele Riccio
- Department of Pharmacy , University of Salerno , via Giovanni Paolo II 132 , 84084 Fisciano , Italy . ; ; Tel: +39 (0)89 969741
| | - Giuseppe Bifulco
- Department of Pharmacy , University of Salerno , via Giovanni Paolo II 132 , 84084 Fisciano , Italy . ; ; Tel: +39 (0)89 969741
| |
Collapse
|
44
|
König S, Romp E, Krauth V, Rühl M, Dörfer M, Liening S, Hofmann B, Häfner AK, Steinhilber D, Karas M, Garscha U, Hoffmeister D, Werz O. Melleolides from Honey Mushroom Inhibit 5-Lipoxygenase via Cys159. Cell Chem Biol 2018; 26:60-70.e4. [PMID: 30415966 DOI: 10.1016/j.chembiol.2018.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/25/2018] [Accepted: 10/05/2018] [Indexed: 12/14/2022]
Abstract
5-Lipoxygenase (5-LO) initiates the biosynthesis of pro-inflammatory leukotrienes from arachidonic acid, which requires the nuclear membrane-bound 5-LO-activating protein (FLAP) for substrate transfer. Here, we identified human 5-LO as a molecular target of melleolides from honey mushroom (Armillaria mellea). Melleolides inhibit 5-LO via an α,β-unsaturated aldehyde serving as Michael acceptor for surface cysteines at the substrate entrance that are revealed as molecular determinants for 5-LO activity. Experiments with 5-LO mutants, where select cysteines had been replaced by serine, indicated that the investigated melleolides suppress 5-LO product formation via two distinct modes of action: (1) by direct interference with 5-LO activity involving two or more of the cysteines 159, 300, 416, and 418, and (2) by preventing 5-LO/FLAP assemblies involving selectively Cys159 in 5-LO. Interestingly, replacement of Cys159 by serine prevented 5-LO/FLAP assemblies as well, implying Cys159 as determinant for 5-LO/FLAP complex formation at the nuclear membrane required for leukotriene biosynthesis.
Collapse
Affiliation(s)
- Stefanie König
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Erik Romp
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Verena Krauth
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Michael Rühl
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Maximilian Dörfer
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - Stefanie Liening
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Bettina Hofmann
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Ann-Kathrin Häfner
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Michael Karas
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Ulrike Garscha
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
| |
Collapse
|
45
|
Identification of multi-target inhibitors of leukotriene and prostaglandin E2 biosynthesis by structural tuning of the FLAP inhibitor BRP-7. Eur J Med Chem 2018; 150:876-899. [DOI: 10.1016/j.ejmech.2018.03.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 11/19/2022]
|
46
|
Liaras K, Fesatidou M, Geronikaki A. Thiazoles and Thiazolidinones as COX/LOX Inhibitors. Molecules 2018; 23:E685. [PMID: 29562646 PMCID: PMC6017610 DOI: 10.3390/molecules23030685] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022] Open
Abstract
Inflammation is a natural process that is connected to various conditions and disorders such as arthritis, psoriasis, cancer, infections, asthma, etc. Based on the fact that cyclooxygenase isoenzymes (COX-1, COX-2) are responsible for the production of prostaglandins that play an important role in inflammation, traditional treatment approaches include administration of non-steroidal anti-inflammatory drugs (NSAIDs), which act as selective or non-selective COX inhibitors. Almost all of them present a number of unwanted, often serious, side effects as a consequence of interference with the arachidonic acid cascade. In search for new drugs to avoid side effects, while maintaining high potency over inflammation, scientists turned their interest to the synthesis of dual COX/LOX inhibitors, which could provide numerous therapeutic advantages in terms of anti-inflammatory activity, improved gastric protection and safer cardiovascular profile compared to conventional NSAIDs. Τhiazole and thiazolidinone moieties can be found in numerous biologically active compounds of natural origin, as well as synthetic molecules that possess a wide range of pharmacological activities. This review focuses on the biological activity of several thiazole and thiazolidinone derivatives as COX-1/COX-2 and LOX inhibitors.
Collapse
Affiliation(s)
- Konstantinos Liaras
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University, 54124 Thessaloniki, Greece.
| | - Maria Fesatidou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University, 54124 Thessaloniki, Greece.
| | - Athina Geronikaki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University, 54124 Thessaloniki, Greece.
| |
Collapse
|
47
|
Koeberle A, Werz O. Natural products as inhibitors of prostaglandin E 2 and pro-inflammatory 5-lipoxygenase-derived lipid mediator biosynthesis. Biotechnol Adv 2018; 36:1709-1723. [PMID: 29454981 DOI: 10.1016/j.biotechadv.2018.02.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/19/2018] [Accepted: 02/14/2018] [Indexed: 12/31/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit prostanoid formation and represent prevalent therapeutics for treatment of inflammatory disorders. However, NSAIDs are afflicted with severe side effects, which might be circumvented by more selective suppression of pro-inflammatory eicosanoid biosynthesis. This concept led to dual inhibitors of microsomal prostaglandin E2 synthase (mPGES)-1 and 5-lipoxygenase that are crucial enzymes in the biosynthesis of pro-inflammatory prostaglandin E2 and leukotrienes. The potential of their dual inhibition in light of superior efficacy and safety is discussed. Focus is placed on natural products, for which direct inhibition of mPGES-1 and leukotriene biosynthesis has been confirmed.
Collapse
Affiliation(s)
- Andreas Koeberle
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, Jena 07743, Germany.
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, Jena 07743, Germany.
| |
Collapse
|
48
|
Abstract
Prostaglandins and leukotrienes are produced in the COX and 5-LOX pathways of the inflammatory process. The current drugs target the upstream enzymes of either of the two pathways, leading to side effects. We have attempted to target the downstream enzymes simultaneously. Two compounds 2 and 3 (10 μM), identified by virtual screening, inhibited mPGES-1 activity by 53.4 ± 4.0 and 53.9 ± 8.1%, respectively. Structural and pharmacophore studies revealed a set of common residues between LTC4S and mPGES-1 as well as four-point pharmacophore mapping onto the inhibitors of both these enzymes as well as 2 and 3. These structural and pharmacophoric features may be exploited for ligand- and structure-based screening of inhibitors and designing of dual inhibitors.
Collapse
|
49
|
Lopatriello A, Previtera R, Pace S, Werner M, Rubino L, Werz O, Taglialatela-Scafati O, Forino M. NMR-based identification of the major bioactive molecules from an Italian cultivar of Lycium barbarum. PHYTOCHEMISTRY 2017; 144:52-57. [PMID: 28888145 DOI: 10.1016/j.phytochem.2017.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/28/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
Lycium barbarum (Solanaceae), long known to the traditional Chinese medicine because of its many health-promoting effects, has of late spread widely across the Western hemisphere, mainly on account of the nutritional richness in vitamins, minerals and antioxidant metabolites of its fruits. Data on bioactive metabolites from fruits and leaves, which are commonly consumed in soups and salads, are scarce and sometimes even contradictory. By means of NMR, the present study identified the specialised products contained in an Italian cultivar of L. barbarum. Kaempeferol, caffeic acid, 3,4,5-trihydroxycinnamic acid and 5-hydroxyferulic acid were found in fresh fruits; rutin and chlorogenic acid were detected in leaves and flowers; also, a previously undescribed N,N-dicaffeoylspermidine derivative was identified in flowers, while N-feruloyltyramine derivatives, for which interesting anti-inflammatory properties have been reported, turned out to be the major bioactive molecules in stems. The plethora of the detected bioactive molecules amplifies the nutraceutical value of berries and leaves and prompts the exploitation of L. barbarum flowers and pruned stems as sources of beneficial compounds.
Collapse
Affiliation(s)
- Annalisa Lopatriello
- Department of Pharmacy, University of Napoli "Federico II", via D. Montesano, 49, 80131, Napoli, Italy
| | - Rosario Previtera
- "LYKION" for the "GOJI ITALIANO", Via Nazionale, 668, 89018, Villa San Giovanni, RC, Italy
| | - Simona Pace
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller- University, Philosophenweg 14, D-07743, Jena, Germany
| | - Markus Werner
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller- University, Philosophenweg 14, D-07743, Jena, Germany
| | - Luigi Rubino
- Via S. D'Acquisto, 31, 87032, Amantea, CS, Italy
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller- University, Philosophenweg 14, D-07743, Jena, Germany
| | | | - Martino Forino
- Department of Pharmacy, University of Napoli "Federico II", via D. Montesano, 49, 80131, Napoli, Italy.
| |
Collapse
|
50
|
Liu X, Li T, Wang D, Yang Y, Sun W, Liu J, Sun S. Synergistic Antifungal Effect of Fluconazole Combined with Licofelone against Resistant Candida albicans. Front Microbiol 2017; 8:2101. [PMID: 29163396 PMCID: PMC5681995 DOI: 10.3389/fmicb.2017.02101] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/13/2017] [Indexed: 11/23/2022] Open
Abstract
Candida albicans (C. albicans) is one of the important opportunistic fungal pathogens that is closely associated with disseminated or chronic infections. The objective of this study is to evaluate the synergistic antifungal effect of licofelone, which is dual microsomal prostaglandin E2 synthase/lipoxygenase (mPGES-1/LOX) inhibitor in combination with fluconazole against C. albicans. Here our results showed that licofelone (16 μg/mL) can synergistically work with fluconazole (1 μg/mL) against planktonic cells of fluconazole-resistant C. albicans. The two-drug combination inhibited the C. albicans biofilm formation over 12 h, and reduced the expression of extracellular phospholipase genes, biofilm-specific genes and RAS/cAMP/PKA pathway related genes. In addition, the two-drug combination inhibited the transition from yeast to hyphal growth form, and decreased the secreted aspartyl proteinase activity, while not affecting the drug efflux pumps activity. Galleria mellonella model was also used to confirm the antifungal activity of the drug combination in vivo. This study first indicates that the combination of fluconazole and licofelone has synergistic effect against resistant C. albicans and could be a promising therapeutic strategy for the antifungal treatment.
Collapse
Affiliation(s)
- Xinning Liu
- Department of Clinical Pharmacy, Taishan Medical University, Taian, China.,Department of Microbial and Biochemical Pharmacy, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Tao Li
- Intensive Care Unit, Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Decai Wang
- Department of Clinical Pharmacy, Taishan Medical University, Taian, China
| | - Yilei Yang
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| | - Wenwen Sun
- Department of Clinical Pharmacy, Taishan Medical University, Taian, China
| | - Jianqiao Liu
- General Practice, Shandong Provincial Hospital, Jinan, China
| | - Shujuan Sun
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|