1
|
Laudermilk LT, Schlosburg JE, Gay EA, Decker AM, Williams A, Runton R, Vasukuttan V, Kotiya A, Amato GS, Maitra R. Novel Peripherally Selective Cannabinoid Receptor 1 Neutral Antagonist Improves Metabolic Dysfunction-Associated Steatotic Liver Disease in Mice. ACS Pharmacol Transl Sci 2024; 7:2856-2868. [PMID: 39296275 PMCID: PMC11406686 DOI: 10.1021/acsptsci.4c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/21/2024]
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing globally. MASLD is characterized by clinically significant liver steatosis, and a subset of patients progress to more severe metabolic-disorder-associated steatohepatitis (MASH) with liver inflammation and fibrosis. Cannabinoid receptor 1 (CB1) antagonism is a proven therapeutic strategy for the treatment of the phenotypes that underlie MASLD, though work on early centrally penetrant compounds largely ceased following adverse psychiatric indications in humans. We present here preclinical testing of a CB1 neutral antagonist, N-[1-[8-(2-Chlorophenyl)-9-(4-chlorophenyl)-9H-purin-6-yl]-4-phenylpiperidin-4l]methanesulfonamide (RTI-348), with minimal brain exposure when administered to mice. In a diet-induced model of MASLD-induced MASH, administration of RTI-348 decreased the total body and liver weight gain. Animals treated with RTI-348 showed reduced steatosis. Furthermore, they produced lower plasma alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH), biomarkers associated with liver damage. Mice maintained on the MASH diet had elevated expression of genes associated with profibrogenesis, immune response, and extracellular matrix remodeling, and treatment with RTI-348 mitigated these diet-induced changes in gene expression. Using an intracranial electrical self-stimulation model, we also demonstrated that RTI-348 does not produce an anhedonia response, as seen with the first-generation CB1 inverse agonist rimonabant. Altogether, the results herein point to RTI-348 as a promising neutral antagonist for MASH.
Collapse
Affiliation(s)
- Lucas T Laudermilk
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709-2194, United States
| | - Joel E Schlosburg
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298-0565, United States
| | - Elaine A Gay
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709-2194, United States
| | - Ann M Decker
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709-2194, United States
| | - Aaron Williams
- Undergraduate Studies, Clemson University, Clemson, South Carolina 29634, United States
| | - Rubica Runton
- Undergraduate Studies, Georgia Institute of Technology, Atlanta, Georgia 30332-0002, United States
| | - Vineetha Vasukuttan
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709-2194, United States
| | - Archana Kotiya
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709-2194, United States
| | - George S Amato
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709-2194, United States
| | - Rangan Maitra
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709-2194, United States
- Artiam Bio Inc., Cary, North Carolina 27513-2754, United States
| |
Collapse
|
2
|
Shivshankar S, Nimely J, Puhl H, Iyer MR. Pharmacological Evaluation of Cannabinoid Receptor Modulators Using GRAB eCB2.0 Sensor. Int J Mol Sci 2024; 25:5012. [PMID: 38732230 PMCID: PMC11084632 DOI: 10.3390/ijms25095012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/08/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Cannabinoid receptors CB1R and CB2R are G-protein coupled receptors acted upon by endocannabinoids (eCBs), namely 2-arachidonoylglycerol (2-AG) and N-arachidonoyl ethanolamine (AEA), with unique pharmacology and modulate disparate physiological processes. A genetically encoded GPCR activation-based sensor that was developed recently-GRABeCB2.0-has been shown to be capable of monitoring real-time changes in eCB levels in cultured cells and preclinical models. However, its responsiveness to exogenous synthetic cannabinoid agents, particularly antagonists and allosteric modulators, has not been extensively characterized. This current study expands upon the pharmacological characteristics of GRABeCB2.0 to enhance the understanding of fluorescent signal alterations in response to various functionally indiscriminate cannabinoid ligands. The results from this study could enhance the utility of the GRABeCB2.0 sensor for in vitro as well as in vivo studies of cannabinoid action and may aid in the development of novel ligands.
Collapse
Affiliation(s)
- Samay Shivshankar
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, MD 20852, USA
| | - Josephine Nimely
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, MD 20852, USA
| | - Henry Puhl
- Laboratory of Biophotonics and Quantum Biology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, MD 20852, USA;
| | - Malliga R. Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, MD 20852, USA
| |
Collapse
|
3
|
Chen S, Kim JK. The Role of Cannabidiol in Liver Disease: A Systemic Review. Int J Mol Sci 2024; 25:2370. [PMID: 38397045 PMCID: PMC10888697 DOI: 10.3390/ijms25042370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Cannabidiol (CBD), a non-psychoactive phytocannabinoid abundant in Cannabis sativa, has gained considerable attention for its anti-inflammatory, antioxidant, analgesic, and neuroprotective properties. It exhibits the potential to prevent or slow the progression of various diseases, ranging from malignant tumors and viral infections to neurodegenerative disorders and ischemic diseases. Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease, and viral hepatitis stand as prominent causes of morbidity and mortality in chronic liver diseases globally. The literature has substantiated CBD's potential therapeutic effects across diverse liver diseases in in vivo and in vitro models. However, the precise mechanism of action remains elusive, and an absence of evidence hinders its translation into clinical practice. This comprehensive review emphasizes the wealth of data linking CBD to liver diseases. Importantly, we delve into a detailed discussion of the receptors through which CBD might exert its effects, including cannabinoid receptors, CB1 and CB2, peroxisome proliferator-activated receptors (PPARs), G protein-coupled receptor 55 (GPR55), transient receptor potential channels (TRPs), and their intricate connections with liver diseases. In conclusion, we address new questions that warrant further investigation in this evolving field.
Collapse
Affiliation(s)
- Si Chen
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea;
| | - Jeon-Kyung Kim
- Institute of New Drug Development, School of Pharmacy, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea
| |
Collapse
|
4
|
Moreira FP, Wiener CD, Oliveira JFD, Souza LDM, da Silva RA, Portela LV, Lara DR, Jansen K, Oses JP. Gender differences of cannabis smoking on serum leptin levels: population-based study. ACTA ACUST UNITED AC 2018; 40:216-219. [PMID: 29412334 PMCID: PMC6900773 DOI: 10.1590/1516-4446-2017-2231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/27/2017] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To evaluate the serum leptin levels in cannabis smokers. METHODS This was a cross-sectional population-based study of participants between the ages of 18 and 35 years. The data were collected through a self-administered questionnaire covering sociodemographic data and the use of psychoactive substances. Leptin levels were measured using a commercial ELISA kit. RESULTS Of the 911 participants, 6.7% were identified as cannabis smokers and had significantly lower leptin levels (p = 0.008). When stratified by gender, there was a significant decrease in leptin levels among male smokers (p = 0.039). CONCLUSION Cannabis smoking was linked to leptin levels in men, suggesting that the response to biological signals may be different between men and women.
Collapse
Affiliation(s)
- Fernanda P Moreira
- Ciência Translacional em Transtornos Cerebrais, Departamento de Saúde e Comportamento, Centro de Ciências da Vida e da Saúde, Universidade Católica de Pelotas (UCPel), Pelotas, RS, Brazil
| | - Carolina D Wiener
- Ciência Translacional em Transtornos Cerebrais, Departamento de Saúde e Comportamento, Centro de Ciências da Vida e da Saúde, Universidade Católica de Pelotas (UCPel), Pelotas, RS, Brazil.,Programa de Pós-Graduação em Epidemiologia, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Jacqueline F de Oliveira
- Ciência Translacional em Transtornos Cerebrais, Departamento de Saúde e Comportamento, Centro de Ciências da Vida e da Saúde, Universidade Católica de Pelotas (UCPel), Pelotas, RS, Brazil
| | - Luciano D M Souza
- Ciência Translacional em Transtornos Cerebrais, Departamento de Saúde e Comportamento, Centro de Ciências da Vida e da Saúde, Universidade Católica de Pelotas (UCPel), Pelotas, RS, Brazil
| | - Ricardo A da Silva
- Ciência Translacional em Transtornos Cerebrais, Departamento de Saúde e Comportamento, Centro de Ciências da Vida e da Saúde, Universidade Católica de Pelotas (UCPel), Pelotas, RS, Brazil
| | - Luis V Portela
- Laboratório de Neurotrauma, Departamento de Bioquímica, Instituto de Ciências da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Diogo R Lara
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Karen Jansen
- Ciência Translacional em Transtornos Cerebrais, Departamento de Saúde e Comportamento, Centro de Ciências da Vida e da Saúde, Universidade Católica de Pelotas (UCPel), Pelotas, RS, Brazil.,Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Jean Pierre Oses
- Ciência Translacional em Transtornos Cerebrais, Departamento de Saúde e Comportamento, Centro de Ciências da Vida e da Saúde, Universidade Católica de Pelotas (UCPel), Pelotas, RS, Brazil.,Aplicações Tecnológicas em Neurociências, Departamento de Engenharia Eletrônica e Computação, UCPel, Pelotas, RS, Brazil
| |
Collapse
|
5
|
A quantitative analysis of statistical power identifies obesity end points for improved in vivo preclinical study design. Int J Obes (Lond) 2017; 41:1306-1309. [PMID: 28392555 PMCID: PMC5568066 DOI: 10.1038/ijo.2017.93] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/15/2017] [Accepted: 02/18/2017] [Indexed: 01/07/2023]
Abstract
The design of well-powered in vivo preclinical studies is a key element in building knowledge of disease physiology for the purpose of identifying and effectively testing potential anti-obesity drug targets. However, as a result of the complexity of the obese phenotype, there is limited understanding of the variability within and between study animals of macroscopic endpoints such as food intake and body composition. This, combined with limitations inherent in the measurement of certain endpoints, presents challenges to study design that can have significant consequences for an anti-obesity program. Here, we analyze a large, longitudinal study of mouse food intake and body composition during diet perturbation to quantify the variability and interaction of key metabolic endpoints. To demonstrate how conclusions can change as a function of study size, we show that a simulated pre-clinical study properly powered for one endpoint may lead to false conclusions based on secondary endpoints. We then propose guidelines for endpoint selection and study size estimation under different conditions to facilitate proper power calculation for a more successful in vivo study design.
Collapse
|
6
|
Semina E, Žukauskaitė A, Šačkus A, De Kimpe N, Mangelinckx S. Selective Elaboration of Aminodiols towards Small Ring α- and β-Amino Acid Derivatives that Incorporate an Aziridine, Azetidine, or Epoxide Scaffold. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Abstract
Whereas pharmacological responses tend to be fairly rapid in onset and are therefore detectable after a single dose, some diminish on repeated dosing, and others increase in magnitude and therefore can be missed or underestimated in single-dose safety pharmacology studies. Safety pharmacology measurements can be incorporated into repeat-dose toxicity studies, either routinely or on an ad hoc basis. Drivers for this are both scientific (see above) and regulatory (e.g. ICH S6, S7, S9). There are inherent challenges in achieving this: the availability of suitable technical and scientific expertise in the test facility, unsuitable laboratory conditions, use of simultaneous (as opposed to staggered) dosing, requirement for toxicokinetic sampling, unsuitability of certain techniques (e.g. use of anaesthesia, surgical implantation, food restriction), equipment availability at close proximity and sensitivity of the methods to detect small, clinically relevant, changes. Nonetheless, 'fit-for-purpose' data can still be acquired without requiring additional animals. Examples include assessment of behaviour, sensorimotor, visual and autonomic functions, ambulatory ECG and blood pressure, echocardiography, respiratory, gastrointestinal, renal and hepatic function. This is entirely achievable if the safety pharmacology measurements are relatively unobtrusive, both with respect to the animals and to the toxicology study itself. Careful pharmacological validation of any methods used, and establishing their detection sensitivity, is vital to ensure the credibility of generated data.
Collapse
Affiliation(s)
- Will S Redfern
- Drug Safety and Metabolism, AstraZeneca R&D, Darwin Building, 310 Cambridge Science Park, Cambridge, CB4 0WG, UK,
| |
Collapse
|
8
|
Lim FPL, Luna G, Dolzhenko AV. A one-pot, three-component aminotriazine annulation onto 5-aminopyrazole-4-carbonitriles under microwave irradiation. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2014.12.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Lim FPL, Dolzhenko AV. 4-Amino-substituted pyrazolo[1,5-a][1,3,5]triazin-2-amines: a new practical synthesis and biological activity. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.10.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Lim FPL, Dolzhenko AV. 1,3,5-Triazine-based analogues of purine: From isosteres to privileged scaffolds in medicinal chemistry. Eur J Med Chem 2014; 85:371-90. [DOI: 10.1016/j.ejmech.2014.07.112] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 04/11/2014] [Accepted: 07/31/2014] [Indexed: 12/12/2022]
|
11
|
Lim FPL, Luna G, Dolzhenko AV. A new, one-pot, multicomponent synthesis of 5-aza-9-deaza-adenines under microwave irradiation. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.07.105] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Žukauskaitė A, Moretto A, Peggion C, De Zotti M, Šačkus A, Formaggio F, De Kimpe N, Mangelinckx S. Synthesis and Conformational Study of Model Peptides ContainingN-Substituted 3-Aminoazetidine-3-carboxylic Acids. European J Org Chem 2014. [DOI: 10.1002/ejoc.201301741] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Redfern WS, Ewart LC, Lainée P, Pinches M, Robinson S, Valentin JP. Functional assessments in repeat-dose toxicity studies: the art of the possible. Toxicol Res (Camb) 2013. [DOI: 10.1039/c3tx20093k] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
14
|
Harwood HJ. The adipocyte as an endocrine organ in the regulation of metabolic homeostasis. Neuropharmacology 2012; 63:57-75. [DOI: 10.1016/j.neuropharm.2011.12.010] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/28/2011] [Accepted: 12/09/2011] [Indexed: 02/06/2023]
|
15
|
Abstract
Animal models are important for determining the pathogenesis of and potential treatments for obesity and diabetes. Nonhuman primates (NHPs) are particularly useful for studying these disorders. As in humans, type 2 diabetes mellitus is the most common form of diabetes in NHPs and occurs more often in older obese animals, with a metabolic progression from insulin resistance (IR) and impaired glucose tolerance to overt diabetes. Histopathologic changes in pancreatic islets are also similar to those seen in humans with diabetes. Initially, there is islet hyperplasia with abundant insulin production to compensate for IR, followed by insufficient insulin production with replacement of islets with islet-associated amyloid. Diabetic NHPs also have adverse changes in plasma lipid and lipoprotein concentrations, biomarkers of obesity, inflammation, and oxidative stress, and protein glycation that contribute to the numerous complications of the disease. Furthermore, sex hormones, pregnancy, and environmental factors (e.g., diet and stress) affect IR and can also contribute to diabetes progression in NHPs. Additionally, due to their similar clinical and pathologic characteristics, NHPs have been used in many pharmacological studies to assess new therapeutic agents. For these reasons, NHPs are particularly valuable animal models of obesity and diabetes for studying disease pathogenesis, risk factors, comorbidities, and therapeutic interventions.
Collapse
Affiliation(s)
- H James Harwood
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | |
Collapse
|
16
|
Janero DR. Cannabinoid-1 receptor (CB1R) blockers as medicines: beyond obesity and cardiometabolic disorders to substance abuse/drug addiction with CB1R neutral antagonists. Expert Opin Emerg Drugs 2012; 17:17-29. [DOI: 10.1517/14728214.2012.660916] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Riggs PK, Vaida F, Rossi SS, Sorkin LS, Gouaux B, Grant I, Ellis RJ. A pilot study of the effects of cannabis on appetite hormones in HIV-infected adult men. Brain Res 2011; 1431:46-52. [PMID: 22133305 DOI: 10.1016/j.brainres.2011.11.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/18/2011] [Accepted: 11/02/2011] [Indexed: 01/06/2023]
Abstract
RATIONALE The endocannabinoid system is under active investigation as a pharmacological target for obesity management due to its role in appetite regulation and metabolism. Exogenous cannabinoids such as tetrahydrocannabinol (THC) stimulate appetite and food intake. However, there are no controlled observations directly linking THC to changes of most of the appetite hormones. OBJECTIVES We took the opportunity afforded by a placebo-controlled trial of smoked medicinal cannabis for HIV-associated neuropathic pain to evaluate the effects of THC on the appetite hormones ghrelin, leptin and PYY, as well as on insulin. METHODS In this double-blind cross-over study, each subject was exposed to both active cannabis (THC) and placebo. RESULTS Compared to placebo, cannabis administration was associated with significant increases in plasma levels of ghrelin and leptin, and decreases in PYY, but did not significantly influence insulin levels. CONCLUSION These findings are consistent with modulation of appetite hormones mediated through endogenous cannabinoid receptors, independent of glucose metabolism.
Collapse
Affiliation(s)
- Patricia K Riggs
- Center for Medicinal Cannabis Research (CMCR) and HIV Neurobehavioral Research Center (HNRC), University of California, San Diego, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Janero DR, Lindsley L, Vemuri VK, Makriyannis A. Cannabinoid 1 G protein-coupled receptor (periphero-)neutral antagonists: emerging therapeutics for treating obesity-driven metabolic disease and reducing cardiovascular risk. Expert Opin Drug Discov 2011; 6:995-1025. [DOI: 10.1517/17460441.2011.608063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Quarta C, Mazza R, Obici S, Pasquali R, Pagotto U. Energy balance regulation by endocannabinoids at central and peripheral levels. Trends Mol Med 2011; 17:518-26. [PMID: 21816675 DOI: 10.1016/j.molmed.2011.05.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 04/28/2011] [Accepted: 05/10/2011] [Indexed: 12/24/2022]
Abstract
Dysregulation of the endocannabinoid system (ECS) is a universal and, perhaps, causative feature of obesity. Central nervous system (CNS) circuits that regulate food intake were initially believed to be the targets for dysregulation. However, it is increasingly evident that endocannabinoids affect food intake, energy expenditure and substrate metabolism by acting on peripheral sites. Cannabinoid type 1 receptor (CB1r) antagonists can effectively treat obesity and associated metabolic alterations but, unfortunately, cause and exacerbate mood disorders. Drugs restricted to act on peripheral CB1rs might be safer and more effective, retaining the anti-obesity effects but lacking the adverse neurodepressive reactions. This review summarizes the emerging roles of the ECS in energy balance and discusses future pharmacological approaches for developing peripherally restricted CB1r antagonists.
Collapse
Affiliation(s)
- Carmelo Quarta
- Endocrinology Unit and Centro di Ricerca Biomedica Applicata, Department of Clinical Medicine, S. Orsola-Malpighi Hospital, Alma Mater University of Bologna, Bologna 40138, Italy
| | | | | | | | | |
Collapse
|