1
|
Ban H, Nobe K, Kobayashi S. Inhibitory effects of high extracellular L-glutamate concentrations on skeletal myogenesis. Sci Rep 2025; 15:17364. [PMID: 40389489 PMCID: PMC12089497 DOI: 10.1038/s41598-025-01840-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 05/08/2025] [Indexed: 05/21/2025] Open
Abstract
L-glutamate (Glu) is accumulated abundantly in skeletal muscle cells and plays a central role in energy production, amino acid metabolism, and protein synthesis. If intracellular Glu leaks due to plasma membrane fragility or injury, it may adversely affect the surrounding myocytes. In the present study, we examined the effects of high extracellular Glu concentration on skeletal myogenesis. Five mM Glu stimulation decreased the expression of fast-twitch myosin heavy chain isoforms and myogenin, an indicator of C2C12 cell differentiation into myocytes, and inhibited the cell fusion. This stimulation reduced the expression of metabotropic glutamate receptor 5 (mGluR5) and N-methyl-D-aspartate receptor 1 (NMDAR), which are glutamate receptors on the C2C12 plasma membrane. Furthermore, phosphorylation of p38 mitogen-activated protein kinase, myocyte enhancer factor 2A, and cAMP response element binding protein, which are downstream of these Glu receptors, was reduced, and the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) decreased. Moreover, reduced mGluR5 and NMDAR expression and muscle weight were observed in the tibialis anterior muscle of mice with increased aging markers. These findings provide insights into the molecular mechanisms contributing to age-related muscle fragility and highlight the potential detrimental effects of elevated Glu on muscle health.
Collapse
Affiliation(s)
- Himiko Ban
- Department of Pharmacology, Showa Medical University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
- Pharmacological Research Center, Showa Medical University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Koji Nobe
- Department of Pharmacology, Showa Medical University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
- Pharmacological Research Center, Showa Medical University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Soushi Kobayashi
- Department of Pharmacology, Showa Medical University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
- Pharmacological Research Center, Showa Medical University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| |
Collapse
|
2
|
Janz P, Bainier M, Marashli S, Gross S, Redondo RL. Clinically-probed mechanisms of action in Fragile-X syndrome fail to normalize translational EEG phenotypes in Fmr1 knockout mice. Neuropharmacology 2025; 262:110182. [PMID: 39396738 DOI: 10.1016/j.neuropharm.2024.110182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by Fragile X Messenger Ribonucleoprotein (FMRP) deficiency. Electroencephalogram (EEG) changes in FXS include alterations of oscillatory activity and responses to sensory stimuli, some of which have been back-translated into rodent models by knocking-out the Fragile X messenger ribonucleoprotein 1 gene (Fmr1-KO). However, the validity of these EEG phenotypes as objective biomarkers requires further investigation. Potential pharmacotherapies such as mGluR5 inhibitors (e.g. CTEP; 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazole-4-yl)ethynyl)pyridine), GABABR agonists (e.g. arbaclofen) and δ-containing GABAAR agonists (e.g. gaboxadol) have not translated into clinical success despite rescuing many phenotypes in the Fmr1-KO model. Yet none of these treatments have been assessed on EEG phenotypes in the Fmr1-KO model. Therefore, we set out to discover new EEG phenotypes in Fmr1-KO mice, using "task-free" and auditory-evoked (AEPs) and visually-evoked potential (VEP) paradigms, and probe their modulation by CTEP, arbaclofen and gaboxadol, using within-subjects designs. First, we report Fmr1-KO-associated EEG abnormalities that closely resemble those observed in FXS, including elevated gamma-band power, reduced alpha/beta-band coherence, increased AEPs and delayed VEPs. Secondly, we found that pharmacological treatment, at best, only partially normalized EEG phenotypes. CTEP restored alpha/beta-band coherence and AEP amplitudes but failed to normalize gamma power and VEP latencies. Conversely, arbaclofen reduced gamma power but did not restore coherence or AEP amplitudes and further delayed VEPs. Gaboxadol did not normalize any EEG phenotypes. We conclude that these compounds have limited ability to normalize these EEG phenotypes.
Collapse
Affiliation(s)
- Philipp Janz
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Marie Bainier
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Samuel Marashli
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Simon Gross
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Roger L Redondo
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| |
Collapse
|
3
|
Kos J, Langiu M, Hellyer SD, Gregory KJ. Pharmacology, Signaling and Therapeutic Potential of Metabotropic Glutamate Receptor 5 Negative Allosteric Modulators. ACS Pharmacol Transl Sci 2024; 7:3671-3690. [PMID: 39698283 PMCID: PMC11651194 DOI: 10.1021/acsptsci.4c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 12/20/2024]
Abstract
Metabotropic glutamate receptors are a family of eight class C G protein-coupled receptors regulating higher order brain functions including cognition and motion. Metabotropic glutamate receptors have thus been heavily investigated as potential drug targets for treating neurological disorders. Drug discovery efforts directed toward metabotropic glutamate receptor subtype 5 (mGlu5) have been particularly fruitful, with a wealth of drug candidates and pharmacological tools identified. mGlu5 negative allosteric modulators (NAMs) are promising novel therapeutics for developmental, neuropsychiatric and neurodegenerative disorders (e.g., Alzheimer's Disease, Huntington's Disease, Parkinson's Disease, amyotrophic lateral sclerosis, autism spectrum disorders, substance use disorders, stroke, anxiety and depression) and show promise in ameliorating adverse effects induced by other medications (e.g., L-dopa induced dyskinesia in Parkinson's Disease). However, despite preclinical success, mGlu5 NAMs are yet to reach the market due to poor safety and efficacy profiles in clinical trials. Herein, we review the physiology and signal transduction of mGlu5. We provide a comprehensive critique of therapeutic options with respect to mGlu5 inhibitors, spanning from orthosteric antagonists to NAMs. Finally, we address the challenges associated with drug development and highlight future directions to guide rational drug discovery of safe and effective novel therapeutics.
Collapse
Affiliation(s)
- Jackson
A. Kos
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
| | - Monica Langiu
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
| | - Shane D. Hellyer
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
| | - Karen J. Gregory
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences and
Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
4
|
Toledano-Zaragoza A, Enriquez-Zarralanga V, Naya-Forcano S, Briz V, Alfaro-Ruíz R, Parra-Martínez M, Mitroi DN, Luján R, Esteban JA, Ledesma MD. Enhanced mGluR 5 intracellular activity causes psychiatric alterations in Niemann Pick type C disease. Cell Death Dis 2024; 15:771. [PMID: 39443481 PMCID: PMC11499878 DOI: 10.1038/s41419-024-07158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Niemann-Pick disease Type C (NPC) is caused by mutations in the cholesterol transport protein NPC1 leading to the endolysosomal accumulation of the lipid and to psychiatric alterations. Using an NPC mouse model (Npc1nmf164) we show aberrant mGluR5 lysosomal accumulation and reduction at plasma membrane in NPC1 deficient neurons. This phenotype was induced in wild-type (wt) neurons by genetic and pharmacological NPC1 silencing. Extraction of cholesterol normalized mGluR5 distribution in NPC1-deficient neurons. Intracellular accumulation of mGluR5 was functionally active leading to enhanced mGluR-dependent long-term depression (mGluR-LTD) in Npc1nmf164 hippocampal slices. mGluR-LTD was lower or higher in Npc1nmf164 slices compared with wt when stimulated with non-membrane-permeable or membrane-permeable mGluR5 agonists, respectively. Oral treatment with the mGluR5 antagonist 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine (CTEP) reduced mGluR-LTD and ameliorated psychiatric anomalies in the Npc1nmf164 mice. Increased neuronal mGluR5 levels were found in an NPC patient. These results implicate mGluR5 alterations in NPC psychiatric condition and provide a new therapeutic strategy that might help patients suffering from this devastating disease.
Collapse
Affiliation(s)
| | | | | | - Víctor Briz
- Centro Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Centro Nacional de Sanidad Ambiental, Instituto Salud Carlos III, Majadahonda, Spain
| | - Rocío Alfaro-Ruíz
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | | | - Daniel N Mitroi
- Centro Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - José A Esteban
- Centro Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | | |
Collapse
|
5
|
Kat R, Linkenkaer-Hansen K, Koopmans MA, Houtman SJ, Bruining H, Kas MJH. Assessment of the excitation-inhibition ratio in the Fmr1 KO2 mouse using neuronal oscillation dynamics. Cereb Cortex 2024; 34:bhae201. [PMID: 38771240 PMCID: PMC11107376 DOI: 10.1093/cercor/bhae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
In vitro and ex vivo studies have shown consistent indications of hyperexcitability in the Fragile X Messenger Ribonucleoprotein 1 (Fmr1) knockout mouse model of autism spectrum disorder. We recently introduced a method to quantify network-level functional excitation-inhibition ratio from the neuronal oscillations. Here, we used this measure to study whether the implicated synaptic excitation-inhibition disturbances translate to disturbances in network physiology in the Fragile X Messenger Ribonucleoprotein 1 (Fmr1) gene knockout model. Vigilance-state scoring was used to extract segments of inactive wakefulness as an equivalent behavioral condition to the human resting-state and, subsequently, we performed high-frequency resolution analysis of the functional excitation-inhibition biomarker, long-range temporal correlations, and spectral power. We corroborated earlier studies showing increased high-frequency power in Fragile X Messenger Ribonucleoprotein 1 (Fmr1) knockout mice. Long-range temporal correlations were higher in the gamma frequency ranges. Contrary to expectations, functional excitation-inhibition was lower in the knockout mice in high frequency ranges, suggesting more inhibition-dominated networks. Exposure to the Gamma-aminobutyric acid (GABA)-agonist clonazepam decreased the functional excitation-inhibition in both genotypes, confirming that increasing inhibitory tone results in a reduction of functional excitation-inhibition. In addition, clonazepam decreased electroencephalogram power and increased long-range temporal correlations in both genotypes. These findings show applicability of these new resting-state electroencephalogram biomarkers to animal for translational studies and allow investigation of the effects of lower-level disturbances in excitation-inhibition balance.
Collapse
Affiliation(s)
- Renate Kat
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Klaus Linkenkaer-Hansen
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Marthe A Koopmans
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Simon J Houtman
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Hilgo Bruining
- Department of Child and Adolescent Psychiatry, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
6
|
Xing V, Biggar K, Ferguson SSG, Hayley S. In vitro modulation of mTOR and mGlur5 influence α-synuclein accumulation. Mol Brain 2024; 17:9. [PMID: 38360671 PMCID: PMC10870503 DOI: 10.1186/s13041-023-01074-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/18/2023] [Indexed: 02/17/2024] Open
Abstract
One of the main hallmarks of Parkinson's disease (PD) is abnormal alpha-synuclein (α-syn) aggregation which forms the main component of intracellular Lewy body inclusions. This short report used preformed α-syn fibrils, as well as an A53T mutant α-syn adenovirus to mimic conditions of pathological protein aggregation in dopaminergic human derived SH-SY5Y neural cells. Since there is evidence that the mTOR pathway and glutamatergic signaling each influence protein aggregation, we also assessed the impact of the mTOR inhibitor, rapamycin and the mGluR5 allosteric modulator, CTEP. We found that both rapamycin and CTEP induced a significant reduction of α-syn fibrils in SH-SY5Y cells and this effect was associated with a reduction in mTOR signaling and enhancement in autophagic pathway factors. These data support the possibility that CTEP (or rapamycin) might be a useful pharmacological approach to target abnormal α-syn accumulation by promoting intracellular degradation or enhanced clearance.
Collapse
Affiliation(s)
- Viktoria Xing
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kyle Biggar
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Stephen S G Ferguson
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa Brain and Mind Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
7
|
de Lima IBQ, Cardozo PL, Fahel JS, Lacerda JPS, Miranda AS, Teixeira AL, Ribeiro FM. Blockade of mGluR5 in astrocytes derived from human iPSCs modulates astrocytic function and increases phagocytosis. Front Immunol 2023; 14:1283331. [PMID: 38146365 PMCID: PMC10749358 DOI: 10.3389/fimmu.2023.1283331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/23/2023] [Indexed: 12/27/2023] Open
Abstract
TNF-α is essential for induction and maintenance of inflammatory responses and its dysregulation is associated with susceptibility to various pathogens that infect the central nervous system. Activation of both microglia and astrocytes leads to TNF-α production, which in turn triggers further activation of these cells. Astrocytes have been implicated in the pathophysiology of a wide range of neurodegenerative diseases with either harmful or protective roles, as these cells are capable of secreting several inflammatory factors and also promote synapse elimination and remodeling. These responses are possible because they sense their surroundings via several receptors, including the metabotropic glutamate receptor 5 (mGluR5). Under neuroinflammatory conditions, mGluR5 activation in astrocytes can be neuroprotective or have the opposite effect. In the current study, we investigated the role of mGluR5 in hiPSC-derived astrocytes subjected to pro-inflammatory stimulation by recombinant TNF-α (rTNF-α). Our results show that mGluR5 blockade by CTEP decreases the secreted levels of pro-inflammatory cytokines (IL-6 and IL-8) following short rTNF-α stimulation, although this effect subsides with time. Additionally, CTEP enhances synaptoneurosome phagocytosis by astrocytes in both non-stimulated and rTNF-α-stimulated conditions, indicating that mGluR5 blockade alone is enough to drive synaptic material engulfment. Finally, mGluR5 antagonism as well as rTNF-α stimulation augment the expression of the reactivity marker SERPINA3 and reduces the expression of synaptogenic molecules. Altogether, these data suggest a complex role for mGluR5 in human astrocytes, since its blockade may have beneficial and detrimental effects under inflammatory conditions.
Collapse
Affiliation(s)
- Izabella B. Q. de Lima
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pablo L. Cardozo
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Julia S. Fahel
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana P. S. Lacerda
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Aline S. Miranda
- Department of Morphology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Antônio L. Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Fabiola M. Ribeiro
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
8
|
Torazza C, Provenzano F, Gallia E, Cerminara M, Balbi M, Bonifacino T, Tessitore S, Ravera S, Usai C, Musante I, Puliti A, Van Den Bosch L, Jafar-nejad P, Rigo F, Milanese M, Bonanno G. Genetic Downregulation of the Metabotropic Glutamate Receptor Type 5 Dampens the Reactive and Neurotoxic Phenotype of Adult ALS Astrocytes. Cells 2023; 12:1952. [PMID: 37566031 PMCID: PMC10416852 DOI: 10.3390/cells12151952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive degeneration of motor neurons (MNs). Astrocytes display a toxic phenotype in ALS, which results in MN damage. Glutamate (Glu)-mediated excitotoxicity and group I metabotropic glutamate receptors (mGluRs) play a pathological role in the disease progression. We previously demonstrated that in vivo genetic ablation or pharmacological modulation of mGluR5 reduced astrocyte activation and MN death, prolonged survival and ameliorated the clinical progression in the SOD1G93A mouse model of ALS. This study aimed to investigate in vitro the effects of mGluR5 downregulation on the reactive spinal cord astrocytes cultured from adult late symptomatic SOD1G93A mice. We observed that mGluR5 downregulation in SOD1G93A astrocytes diminished the cytosolic Ca2+ overload under resting conditions and after mGluR5 simulation and reduced the expression of the reactive glial markers GFAP, S100β and vimentin. In vitro exposure to an anti-mGluR5 antisense oligonucleotide or to the negative allosteric modulator CTEP also ameliorated the altered reactive astrocyte phenotype. Downregulating mGluR5 in SOD1G93A mice reduced the synthesis and release of the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α and ameliorated the cellular bioenergetic profile by improving the diminished oxygen consumption and ATP synthesis and by lowering the excessive lactate dehydrogenase activity. Most relevantly, mGluR5 downregulation hampered the neurotoxicity of SOD1G93A astrocytes co-cultured with spinal cord MNs. We conclude that selective reduction in mGluR5 expression in SOD1G93A astrocytes positively modulates the astrocyte reactive phenotype and neurotoxicity towards MNs, further supporting mGluR5 as a promising therapeutic target in ALS.
Collapse
Affiliation(s)
- Carola Torazza
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| | - Francesca Provenzano
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| | - Elena Gallia
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| | - Maria Cerminara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo, 16132 Genoa, Italy; (M.C.); (A.P.)
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Matilde Balbi
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| | - Tiziana Bonifacino
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Sara Tessitore
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| | - Silvia Ravera
- Department of Experimental Medicine (DIMES), University of Genoa, Via Alberti L.B. 2, 16132 Genova, Italy;
| | - Cesare Usai
- Institute of Biophysics, National Research Council (CNR), Via De Marini 6, 16149 Genoa, Italy;
| | - Ilaria Musante
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Aldamaria Puliti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo, 16132 Genoa, Italy; (M.C.); (A.P.)
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven-University of Leuven, 3000 Leuven, Belgium;
- VIB-Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | | | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA; (P.J.-n.); (F.R.)
| | - Marco Milanese
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy; (C.T.); (F.P.); (E.G.); (M.B.); (T.B.); (S.T.); (G.B.)
| |
Collapse
|
9
|
Epping-Jordan MP, Girard F, Bessis AS, Mutel V, Boléa C, Derouet F, Bessif A, Mingard B, Barbier S, Paradis JS, Rocher JP, Lütjens R, Kalinichev M, Poli S. Effect of the Metabotropic Glutamate Receptor Type 5 Negative Allosteric Modulator Dipraglurant on Motor and Non-Motor Symptoms of Parkinson's Disease. Cells 2023; 12:1004. [PMID: 37048075 PMCID: PMC10093229 DOI: 10.3390/cells12071004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Parkinson's disease (PD) patients suffer not only from the primary motor symptoms of the disease but also from a range of non-motor symptoms (NMS) that cause disability and low quality of life. Excessive glutamate activity in the basal ganglia resulting from degeneration of the nigrostriatal dopamine pathway has been implicated in the motor symptoms, NMS and dyskinesias in PD patients. In this study, we investigated the effects of a selective mGlu5 negative allosteric modulator (NAM), dipraglurant, in a rodent motor symptoms model of PD, but also in models of anxiety, depression and obsessive-compulsive disorder, all of which are among the most prevalent NMS symptoms. Dipraglurant is rapidly absorbed after oral administration, readily crosses the blood-brain barrier, and exhibits a high correlation between plasma concentration and efficacy in behavioral models. In vivo, dipraglurant dose-dependently reduced haloperidol-induced catalepsy, increased punished licks in the Vogel conflict-drinking model, decreased immobility time in the forced swim test, decreased the number of buried marbles in the marble-burying test, but had no effect on rotarod performance or locomotor activity. These findings suggest that dipraglurant may have benefits to address some of the highly problematic comorbid non-motor symptoms of PD, in addition to its antidyskinetic effect demonstrated in PD-LID patients.
Collapse
|
10
|
Asch RH, Hillmer AT, Baldassarri SR, Esterlis I. The metabotropic glutamate receptor 5 as a biomarker for psychiatric disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:265-310. [PMID: 36868631 DOI: 10.1016/bs.irn.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of glutamate system in the etiology and pathophysiology of psychiatric disorders has gained considerable attention in the past two decades, including dysregulation of the metabotropic glutamatergic receptor subtype 5 (mGlu5). Thus, mGlu5 may represent a promising therapeutic target for psychiatric conditions, particularly stress-related disorders. Here, we describe mGlu5 findings in mood disorders, anxiety, and trauma disorders, as well as substance use (specifically nicotine, cannabis, and alcohol use). We highlight insights gained from positron emission tomography (PET) studies, where possible, and discuss findings from treatment trials, when available, to explore the role of mGlu5 in these psychiatric disorders. Through the research evidence reviewed in this chapter, we make the argument that, not only is dysregulation of mGlu5 evident in numerous psychiatric disorders, potentially functioning as a disease "biomarker," the normalization of glutamate neurotransmission via changes in mGlu5 expression and/or modulation of mGlu5 signaling may be a needed component in treating some psychiatric disorders or symptoms. Finally, we hope to demonstrate the utility of PET as an important tool for investigating mGlu5 in disease mechanisms and treatment response.
Collapse
Affiliation(s)
- Ruth H Asch
- Department of Psychiatry, Yale University, New Haven, CT, United States.
| | - Ansel T Hillmer
- Department of Psychiatry, Yale University, New Haven, CT, United States; Department of Radiology and Biomedical Imaging, New Haven, CT, United States
| | - Stephen R Baldassarri
- Yale Program in Addiction Medicine, Yale University, New Haven, CT, United States; Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Irina Esterlis
- Department of Psychiatry, Yale University, New Haven, CT, United States; Department of Psychology, Yale University, New Haven, CT, United States; Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
11
|
Teal LB, Ingram SM, Bubser M, McClure E, Jones CK. The Evolving Role of Animal Models in the Discovery and Development of Novel Treatments for Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2023; 30:37-99. [PMID: 36928846 DOI: 10.1007/978-3-031-21054-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Historically, animal models have been routinely used in the characterization of novel chemical entities (NCEs) for various psychiatric disorders. Animal models have been essential in the in vivo validation of novel drug targets, establishment of lead compound pharmacokinetic to pharmacodynamic relationships, optimization of lead compounds through preclinical candidate selection, and development of translational measures of target occupancy and functional target engagement. Yet, with decades of multiple NCE failures in Phase II and III efficacy trials for different psychiatric disorders, the utility and value of animal models in the drug discovery process have come under intense scrutiny along with the widespread withdrawal of the pharmaceutical industry from psychiatric drug discovery. More recently, the development and utilization of animal models for the discovery of psychiatric NCEs has undergone a dynamic evolution with the application of the Research Domain Criteria (RDoC) framework for better design of preclinical to clinical translational studies combined with innovative genetic, neural circuitry-based, and automated testing technologies. In this chapter, the authors will discuss this evolving role of animal models for improving the different stages of the discovery and development in the identification of next generation treatments for psychiatric disorders.
Collapse
Affiliation(s)
- Laura B Teal
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Shalonda M Ingram
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Michael Bubser
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Elliott McClure
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
12
|
Kampen S, Rodríguez D, Jørgensen M, Kruszyk-Kujawa M, Huang X, Collins M, Boyle N, Maurel D, Rudling A, Lebon G, Carlsson J. Structure-Based Discovery of Negative Allosteric Modulators of the Metabotropic Glutamate Receptor 5. ACS Chem Biol 2022; 17:2744-2752. [PMID: 36149353 PMCID: PMC9594040 DOI: 10.1021/acschembio.2c00234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recently determined structures of class C G protein-coupled receptors (GPCRs) revealed the location of allosteric binding sites and opened new opportunities for the discovery of novel modulators. In this work, molecular docking screens for allosteric modulators targeting the metabotropic glutamate receptor 5 (mGlu5) were performed. The mGlu5 receptor is activated by the main excitatory neurotransmitter of the nervous central system, L-glutamate, and mGlu5 receptor activity can be allosterically modulated by negative or positive allosteric modulators. The mGlu5 receptor is a promising target for the treatment of psychiatric and neurodegenerative diseases, and several allosteric modulators of this GPCR have been evaluated in clinical trials. Chemical libraries containing fragment- (1.6 million molecules) and lead-like (4.6 million molecules) compounds were docked to an allosteric binding site of mGlu5 identified in X-ray crystal structures. Among the top-ranked compounds, 59 fragments and 59 lead-like compounds were selected for experimental evaluation. Of these, four fragment- and seven lead-like compounds were confirmed to bind to the allosteric site with affinities ranging from 0.43 to 8.6 μM, corresponding to a hit rate of 9%. The four compounds with the highest affinities were demonstrated to be negative allosteric modulators of mGlu5 signaling in functional assays. The results demonstrate that virtual screens of fragment- and lead-like chemical libraries have complementary advantages and illustrate how access to high-resolution structures of GPCRs in complex with allosteric modulators can accelerate lead discovery.
Collapse
Affiliation(s)
- Stefanie Kampen
- Science
for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden
| | - David Rodríguez
- Science
for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, SE-171 21 Solna, Sweden,H.
Lundbeck A/S, Ottiliavej
9, DK-2500 Valby, Denmark
| | | | | | - Xinyan Huang
- Lundbeck
Research USA, 215 College Road, Paramus, New Jersey 07652 - 1431, United States
| | - Michael Collins
- Lundbeck
Research USA, 215 College Road, Paramus, New Jersey 07652 - 1431, United States
| | - Noel Boyle
- Lundbeck
Research USA, 215 College Road, Paramus, New Jersey 07652 - 1431, United States
| | - Damien Maurel
- IGF,
Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Axel Rudling
- Science
for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, SE-171 21 Solna, Sweden
| | - Guillaume Lebon
- IGF,
Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Jens Carlsson
- Science
for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, SE-751 24 Uppsala, Sweden,
| |
Collapse
|
13
|
Budgett RF, Bakker G, Sergeev E, Bennett KA, Bradley SJ. Targeting the Type 5 Metabotropic Glutamate Receptor: A Potential Therapeutic Strategy for Neurodegenerative Diseases? Front Pharmacol 2022; 13:893422. [PMID: 35645791 PMCID: PMC9130574 DOI: 10.3389/fphar.2022.893422] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 01/13/2023] Open
Abstract
The type 5 metabotropic glutamate receptor, mGlu5, has been proposed as a potential therapeutic target for the treatment of several neurodegenerative diseases. In preclinical neurodegenerative disease models, novel allosteric modulators have been shown to improve cognitive performance and reduce disease-related pathology. A common pathological hallmark of neurodegenerative diseases is a chronic neuroinflammatory response, involving glial cells such as astrocytes and microglia. Since mGlu5 is expressed in astrocytes, targeting this receptor could provide a potential mechanism by which neuroinflammatory processes in neurodegenerative disease may be modulated. This review will discuss current evidence that highlights the potential of mGlu5 allosteric modulators to treat neurodegenerative diseases, including Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Furthermore, this review will explore the role of mGlu5 in neuroinflammatory responses, and the potential for this G protein-coupled receptor to modulate neuroinflammation.
Collapse
Affiliation(s)
- Rebecca F Budgett
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | | | - Sophie J Bradley
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.,Sosei Heptares, Cambridge, United Kingdom
| |
Collapse
|
14
|
Milanese M, Bonifacino T, Torazza C, Provenzano F, Kumar M, Ravera S, Zerbo AR, Frumento G, Balbi M, Nguyen TPN, Bertola N, Ferrando S, Viale M, Profumo A, Bonanno G. Blocking glutamate mGlu 5 receptors with the negative allosteric modulator CTEP improves disease course in SOD1 G93A mouse model of amyotrophic lateral sclerosis. Br J Pharmacol 2021; 178:3747-3764. [PMID: 33931856 PMCID: PMC8457068 DOI: 10.1111/bph.15515] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/22/2021] [Accepted: 04/20/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE The pathogenesis of amyotrophic lateral sclerosis (ALS) is not fully clarified, although excessive glutamate (Glu) transmission and the downstream cytotoxic cascades are major mechanisms for motor neuron death. Two metabotropic glutamate receptors (mGlu1 and mGlu5 ) are overexpressed in ALS and regulate cellular disease processes. Expression and function of mGlu5 receptors are altered at early symptomatic stages in the SOD1G93A mouse model of ALS and knockdown of mGlu5 receptors in SOD1G93A mice improved disease progression. EXPERIMENTAL APPROACH We treated male and female SOD1G93A mice with 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine (CTEP), an orally available mGlu5 receptor negative allosteric modulator (NAM), using doses of 2 mg·kg-1 per 48 h or 4 mg·kg-1 per 24 h from Day 90, an early symptomatic disease stage. Disease progression was studied by behavioural and histological approaches. KEY RESULTS CTEP dose-dependently ameliorated clinical features in SOD1G93A mice. The lower dose increased survival and improved motor skills in female mice, with barely positive effects in male mice. Higher doses significantly ameliorated disease symptoms and survival in both males and females, females being more responsive. CTEP also reduced motor neuron death, astrocyte and microglia activation, and abnormal glutamate release in the spinal cord, with equal effects in male and female mice. No differences were also observed in CTEP access to the brain. CONCLUSION AND IMPLICATIONS Our results suggest that mGlu5 receptors are promising targets for the treatment of ALS and highlight mGlu5 receptor NAMs as effective pharmacological tools with translational potential.
Collapse
Affiliation(s)
- Marco Milanese
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy.,Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy.,Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Carola Torazza
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy
| | - Francesca Provenzano
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy.,Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen and German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Mandeep Kumar
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Arianna Roberta Zerbo
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy
| | - Giulia Frumento
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy
| | - Matilde Balbi
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy
| | - T P Nhung Nguyen
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy
| | - Nadia Bertola
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Sara Ferrando
- Department of Earth, Environmental and Life Science, University of Genoa, Genoa, Italy
| | | | - Aldo Profumo
- IRCCS Ospedale policlinico San Martino, Genoa, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy.,IRCCS Ospedale policlinico San Martino, Genoa, Italy
| |
Collapse
|
15
|
Su LD, Wang N, Han J, Shen Y. Group 1 Metabotropic Glutamate Receptors in Neurological and Psychiatric Diseases: Mechanisms and Prospective. Neuroscientist 2021; 28:453-468. [PMID: 34088252 PMCID: PMC9449437 DOI: 10.1177/10738584211021018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Metabotropic glutamate receptors (mGluRs) are G-protein coupled receptors
that are activated by glutamate in the central nervous system (CNS).
Basically, mGluRs contribute to fine-tuning of synaptic efficacy and
control the accuracy and sharpness of neurotransmission. Among eight
subtypes, mGluR1 and mGluR5 belong to group 1 (Gp1) family, and are
implicated in multiple CNS disorders, such as Alzheimer’s disease,
autism, Parkinson’s disease, and so on. In the present review, we
systematically discussed underlying mechanisms and prospective of Gp1
mGluRs in a group of neurological and psychiatric diseases, including
Alzheimer’s disease, Parkinson’s disease, autism spectrum disorder,
epilepsy, Huntington’s disease, intellectual disability, Down’s
syndrome, Rett syndrome, attention-deficit hyperactivity disorder,
addiction, anxiety, nociception, schizophrenia, and depression, in
order to provide more insights into the therapeutic potential of Gp1
mGluRs.
Collapse
Affiliation(s)
- Li-Da Su
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Na Wang
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Junhai Han
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Ying Shen
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
16
|
Gonzalez-Lozano MA, Wortel J, van der Loo RJ, van Weering JRT, Smit AB, Li KW. Reduced mGluR5 Activity Modulates Mitochondrial Function. Cells 2021; 10:cells10061375. [PMID: 34199502 PMCID: PMC8228325 DOI: 10.3390/cells10061375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 11/30/2022] Open
Abstract
The metabotropic glutamate receptor 5 (mGluR5) is an essential modulator of synaptic plasticity, learning and memory; whereas in pathological conditions, it is an acknowledged therapeutic target that has been implicated in multiple brain disorders. Despite robust pre-clinical data, mGluR5 antagonists failed in several clinical trials, highlighting the need for a better understanding of the mechanisms underlying mGluR5 function. In this study, we dissected the molecular synaptic modulation mediated by mGluR5 using genetic and pharmacological mouse models to chronically and acutely reduce mGluR5 activity. We found that next to dysregulation of synaptic proteins, the major regulation in protein expression in both models concerned specific processes in mitochondria, such as oxidative phosphorylation. Second, we observed morphological alterations in shape and area of specifically postsynaptic mitochondria in mGluR5 KO synapses using electron microscopy. Third, computational and biochemical assays suggested an increase of mitochondrial function in neurons, with increased level of NADP/H and oxidative damage in mGluR5 KO. Altogether, our observations provide diverse lines of evidence of the modulation of synaptic mitochondrial function by mGluR5. This connection suggests a role for mGluR5 as a mediator between synaptic activity and mitochondrial function, a finding which might be relevant for the improvement of the clinical potential of mGluR5.
Collapse
Affiliation(s)
- Miguel A. Gonzalez-Lozano
- Center for Neurogenomics and Cognitive Research, Department of Molecular and Cellular Neurobiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands; (R.J.v.d.L.); (A.B.S.)
- Correspondence: (M.A.G.-L.); (K.W.L.)
| | - Joke Wortel
- Center for Neurogenomics and Cognitive Research, Department of Functional Genomics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands; (J.W.); (J.R.T.v.W.)
| | - Rolinka J. van der Loo
- Center for Neurogenomics and Cognitive Research, Department of Molecular and Cellular Neurobiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands; (R.J.v.d.L.); (A.B.S.)
| | - Jan R. T. van Weering
- Center for Neurogenomics and Cognitive Research, Department of Functional Genomics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands; (J.W.); (J.R.T.v.W.)
- Center for Neurogenomics and Cognitive Research, Department of Clinical Genetics, Amsterdam Neuroscience, Amsterdam UMC location VUmc, 1081 Amsterdam, The Netherlands
| | - August B. Smit
- Center for Neurogenomics and Cognitive Research, Department of Molecular and Cellular Neurobiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands; (R.J.v.d.L.); (A.B.S.)
| | - Ka Wan Li
- Center for Neurogenomics and Cognitive Research, Department of Molecular and Cellular Neurobiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands; (R.J.v.d.L.); (A.B.S.)
- Correspondence: (M.A.G.-L.); (K.W.L.)
| |
Collapse
|
17
|
Filon MJ, Wallace E, Wright S, Douglas DJ, Steinberg LI, Verkuilen CL, Westmark PR, Maganti RK, Westmark CJ. Sleep and diurnal rest-activity rhythm disturbances in a mouse model of Alzheimer's disease. Sleep 2021; 43:5830779. [PMID: 32369586 DOI: 10.1093/sleep/zsaa087] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/07/2020] [Indexed: 01/08/2023] Open
Abstract
STUDY OBJECTIVES Accumulating evidence suggests a strong association between sleep, amyloid-beta (Aβ) deposition, and Alzheimer's disease (AD). We sought to determine if (1) deficits in rest-activity rhythms and sleep are significant phenotypes in J20 AD mice, (2) metabotropic glutamate receptor 5 inhibitors (mGluR5) could rescue deficits in rest-activity rhythms and sleep, and (3) Aβ levels are responsive to treatment with mGluR5 inhibitors. METHODS Diurnal rest-activity levels were measured by actigraphy and sleep-wake patterns by electroencephalography, while animals were chronically treated with mGluR5 inhibitors. Behavioral tests were performed, and Aβ levels measured in brain lysates. RESULTS J20 mice exhibited a 4.5-h delay in the acrophase of activity levels compared to wild-type littermates and spent less time in rapid eye movement (REM) sleep during the second half of the light period. J20 mice also exhibited decreased non-rapid eye movement (NREM) delta power but increased NREM sigma power. The mGluR5 inhibitor CTEP rescued the REM sleep deficit and improved NREM delta and sigma power but did not correct rest-activity rhythms. No statistically significant differences were observed in Aβ levels, rotarod performance, or the passive avoidance task following chronic mGluR5 inhibitor treatment. CONCLUSIONS J20 mice have disruptions in rest-activity rhythms and reduced homeostatic sleep pressure (reduced NREM delta power). NREM delta power was increased following treatment with a mGluR5 inhibitor. Drug bioavailability was poor. Further work is necessary to determine if mGluR5 is a viable target for treating sleep phenotypes in AD.
Collapse
Affiliation(s)
- Mikolaj J Filon
- Department of Neurology, University of Wisconsin-Madison, Madison, WI
| | - Eli Wallace
- Department of Neurology, University of Wisconsin-Madison, Madison, WI
| | - Samantha Wright
- Department of Neurology, University of Wisconsin-Madison, Madison, WI
| | - Dylan J Douglas
- Department of Neurology, University of Wisconsin-Madison, Madison, WI
| | | | | | - Pamela R Westmark
- Department of Neurology, University of Wisconsin-Madison, Madison, WI
| | - Rama K Maganti
- Department of Neurology, University of Wisconsin-Madison, Madison, WI
| | - Cara J Westmark
- Department of Neurology, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
18
|
Gregory KJ, Goudet C. International Union of Basic and Clinical Pharmacology. CXI. Pharmacology, Signaling, and Physiology of Metabotropic Glutamate Receptors. Pharmacol Rev 2021; 73:521-569. [PMID: 33361406 DOI: 10.1124/pr.119.019133] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors respond to glutamate, the major excitatory neurotransmitter in the mammalian brain, mediating a modulatory role that is critical for higher-order brain functions such as learning and memory. Since the first mGlu receptor was cloned in 1992, eight subtypes have been identified along with many isoforms and splice variants. The mGlu receptors are transmembrane-spanning proteins belonging to the class C G protein-coupled receptor family and represent attractive targets for a multitude of central nervous system disorders. Concerted drug discovery efforts over the past three decades have yielded a wealth of pharmacological tools including subtype-selective agents that competitively block or mimic the actions of glutamate or act allosterically via distinct sites to enhance or inhibit receptor activity. Herein, we review the physiologic and pathophysiological roles for individual mGlu receptor subtypes including the pleiotropic nature of intracellular signal transduction arising from each. We provide a comprehensive analysis of the in vitro and in vivo pharmacological properties of prototypical and commercially available orthosteric agonists and antagonists as well as allosteric modulators, including ligands that have entered clinical trials. Finally, we highlight emerging areas of research that hold promise to facilitate rational design of highly selective mGlu receptor-targeting therapeutics in the future. SIGNIFICANCE STATEMENT: The metabotropic glutamate receptors are attractive therapeutic targets for a range of psychiatric and neurological disorders. Over the past three decades, intense discovery efforts have yielded diverse pharmacological tools acting either competitively or allosterically, which have enabled dissection of fundamental biological process modulated by metabotropic glutamate receptors and established proof of concept for many therapeutic indications. We review metabotropic glutamate receptor molecular pharmacology and highlight emerging areas that are offering new avenues to selectively modulate neurotransmission.
Collapse
Affiliation(s)
- Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| | - Cyril Goudet
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| |
Collapse
|
19
|
Abd-Elrahman KS, Albaker A, de Souza JM, Ribeiro FM, Schlossmacher MG, Tiberi M, Hamilton A, Ferguson SSG. Aβ oligomers induce pathophysiological mGluR5 signaling in Alzheimer's disease model mice in a sex-selective manner. Sci Signal 2020; 13:13/662/eabd2494. [PMID: 33323410 DOI: 10.1126/scisignal.abd2494] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The prevalence, presentation, and progression of Alzheimer's disease (AD) differ between men and women, although β-amyloid (Aβ) deposition is a pathological hallmark of AD in both sexes. Aβ-induced activation of the neuronal glutamate receptor mGluR5 is linked to AD progression. However, we found that mGluR5 exhibits distinct sex-dependent profiles. Specifically, mGluR5 isolated from male mouse cortical and hippocampal tissues bound with high affinity to Aβ oligomers, whereas mGluR5 from female mice exhibited no such affinity. This sex-selective Aβ-mGluR5 interaction did not appear to depend on estrogen, but rather Aβ interaction with cellular prion protein (PrPC), which was detected only in male mouse brain homogenates. The ternary complex between mGluR5, Aβ oligomers, and PrPC was essential to elicit mGluR5-dependent pathological suppression of autophagy in primary neuronal cultures. Pharmacological inhibition of mGluR5 reactivated autophagy, mitigated Aβ pathology, and reversed cognitive decline in male APPswe/PS1ΔE9 mice, but not in their female counterparts. Aβ oligomers also bound with high affinity to human mGluR5 isolated from postmortem donor male cortical brain tissue, but not that from female samples, suggesting that this mechanism may be relevant to patients. Our findings indicate that mGluR5 does not contribute to Aβ pathology in females, highlighting the complexity of mGluR5 pharmacology and Aβ signaling that supports the need for sex-specific stratification in clinical trials assessing AD therapeutics.
Collapse
Affiliation(s)
- Khaled S Abd-Elrahman
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Awatif Albaker
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 12371, Saudi Arabia
| | - Jessica M de Souza
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Department of Biochemistry and Immunology, ICB, Universidade Federalde Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Fabiola M Ribeiro
- Department of Biochemistry and Immunology, ICB, Universidade Federalde Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Michael G Schlossmacher
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Department of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6, Canada
| | - Mario Tiberi
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Department of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, Ontario, K1H 8L6, Canada.,Department of Psychiatry, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Alison Hamilton
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Stephen S G Ferguson
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
20
|
Werthmann RC, Tzouros M, Lamerz J, Augustin A, Fritzius T, Trovò L, Stawarski M, Raveh A, Diener C, Fischer C, Gassmann M, Lindemann L, Bettler B. Symmetric signal transduction and negative allosteric modulation of heterodimeric mGlu1/5 receptors. Neuropharmacology 2020; 190:108426. [PMID: 33279506 DOI: 10.1016/j.neuropharm.2020.108426] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/09/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Abstract
For a long time metabotropic glutamate receptors (mGluRs) were thought to regulate neuronal functions as obligatory homodimers. Recent reports, however, indicate the existence of heterodimers between group-II and -III mGluRs in the brain, which differ from the homodimers in their signal transduction and sensitivity to negative allosteric modulators (NAMs). Whether the group-I mGluRs, mGlu1 and mGlu5, form functional heterodimers in the brain is still a matter of debate. We now show that mGlu1 and mGlu5 co-purify from brain membranes and hippocampal tissue and co-localize in cultured hippocampal neurons. Complementation assays with mutants deficient in agonist-binding or G protein-coupling reveal that mGlu1/5 heterodimers are functional in heterologous cells and transfected cultured hippocampal neurons. In contrast to heterodimers between group-II and -III mGluRs, mGlu1/5 receptors exhibit a symmetric signal transduction, with both protomers activating G proteins to a similar extent. NAMs of either protomer in mGlu1/5 receptors partially inhibit signaling, showing that both protomers need to be able to reach an active conformation for full receptor activity. Complete heterodimer inhibition is observed when both protomers are locked in their inactive state by a NAM. In summary, our data show that mGlu1/5 heterodimers exhibit a symmetric signal transduction and thus intermediate signaling efficacy and kinetic properties. Our data support the existence of mGlu1/5 heterodimers in neurons and highlight differences in the signaling transduction of heterodimeric mGluRs that influence allosteric modulation.
Collapse
Affiliation(s)
- Ruth C Werthmann
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Manuel Tzouros
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience and Rare Diseases (NRD) (LL, CD, CF), Pharmaceutical Sciences, Biomarkers, Bioinformatics and Omics & Pathology (MT, JL, AA), Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Jens Lamerz
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience and Rare Diseases (NRD) (LL, CD, CF), Pharmaceutical Sciences, Biomarkers, Bioinformatics and Omics & Pathology (MT, JL, AA), Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Angélique Augustin
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience and Rare Diseases (NRD) (LL, CD, CF), Pharmaceutical Sciences, Biomarkers, Bioinformatics and Omics & Pathology (MT, JL, AA), Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Thorsten Fritzius
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Luca Trovò
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Michal Stawarski
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Adi Raveh
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Catherine Diener
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience and Rare Diseases (NRD) (LL, CD, CF), Pharmaceutical Sciences, Biomarkers, Bioinformatics and Omics & Pathology (MT, JL, AA), Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Christophe Fischer
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience and Rare Diseases (NRD) (LL, CD, CF), Pharmaceutical Sciences, Biomarkers, Bioinformatics and Omics & Pathology (MT, JL, AA), Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Martin Gassmann
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Lothar Lindemann
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Neuroscience and Rare Diseases (NRD) (LL, CD, CF), Pharmaceutical Sciences, Biomarkers, Bioinformatics and Omics & Pathology (MT, JL, AA), Roche Innovation Center Basel, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Bernhard Bettler
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| |
Collapse
|
21
|
Stachowicz K. Indomethacin, a nonselective cyclooxygenase inhibitor, does not interact with MTEP in antidepressant-like activity, as opposed to imipramine in CD-1 mice. Eur J Pharmacol 2020; 888:173585. [PMID: 32971092 DOI: 10.1016/j.ejphar.2020.173585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 02/03/2023]
Abstract
The contribution of metabotropic glutamate receptors (mGlu receptors) in depression is well known and tested worldwide. Our previous study showed the involvement of the cyclooxygenase-2 (COX-2) pathway in behavioral changes mediated by an antagonist of metabotropic glutamate receptor subtype 5 (mGlu5 receptor) 3-[(2-methyl-1,3-tiazol-4-yl)ethynyl]-pyridine (MTEP). Among others, we have found that chronic concomitant administration of a COX-2 inhibitor and sub-effective dose of MTEP accelerates antidepressant-like activity of MTEP. This paper seeks to explore whether the same effect would be observed with the use of a non-selective COX inhibitor 2-[1-(4-chlorobenzoyl)-5-methoxy-2-methylindol-3-yl]acetic acid (indomethacin). To that end, we have employed experimental procedure implemented in the earlier research. MTEP and indomethacin or MTEP + indomethacin were used chronically for 7 or 14 days. Then, the Porsolt test, tail suspension test and locomotor activity test were performed. Imipramine was used as a reference compound, as its action is connected with mGlu5 receptor. We found that, in contrast to COX-2 inhibition, indomethacin - acting both through COX-1 and COX-2 - did not release antidepressant-like potential of MTEP. The opposite effect was shown when imipramine was used.
Collapse
Affiliation(s)
- Katarzyna Stachowicz
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
22
|
de Souza JM, Abd-Elrahman KS, Ribeiro FM, Ferguson SSG. mGluR5 regulates REST/NRSF signaling through N-cadherin/β-catenin complex in Huntington's disease. Mol Brain 2020; 13:118. [PMID: 32859226 PMCID: PMC7456045 DOI: 10.1186/s13041-020-00657-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/20/2020] [Indexed: 03/05/2023] Open
Abstract
Repressor element 1-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) is a transcription repressor and its expression is regulated by the Wnt pathway through β-catenin. Metabotropic glutamate receptor 5 (mGluR5) signaling plays a key role in controlling neuronal gene expression. Interestingly, REST/NRSF nuclear translocation and signaling, as well as mGluR5 signaling are altered in the presence of mutant huntingtin. It remains unclear whether mGluR5 can modulate Wnt and REST/NRSF signaling under physiological conditions and whether this modulation is altered in Huntington's disease (HD). Using primary corticostriatal neurons derived from wild type mouse embryos, we find that targeting mGluR5 using the agonist, DHPG, or the negative allosteric modulator, CTEP, modulates REST/NRSF expression by regulating the assembly of N-cadherin/ β-catenin complex in a Src kinase-dependent manner. We have validated our in vitro findings in vivo using two HD mouse models. Specifically, we show that pharmacological inhibition of mGluR5 in zQ175 mice and genetic ablation of mGluR5 in BACHD mice corrected the pathological activation of Src and rescued REST/NRSF-dependent signaling. Together, our data provide evidence that mGluR5 regulates REST/NRSF expression via the Wnt pathway and highlight the contribution of impaired REST/ NRSF signaling to HD pathology.
Collapse
Affiliation(s)
- Jéssica M. de Souza
- University of Ottawa Brain and Mind Institute and Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5 Canada
- Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Khaled S. Abd-Elrahman
- University of Ottawa Brain and Mind Institute and Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5 Canada
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521 Egypt
| | - Fabiola M. Ribeiro
- Department of Biochemistry and Immunology, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Stephen S. G. Ferguson
- University of Ottawa Brain and Mind Institute and Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5 Canada
| |
Collapse
|
23
|
Westmark CJ, Kiso M, Halfmann P, Westmark PR, Kawaoka Y. Repurposing Fragile X Drugs to Inhibit SARS-CoV-2 Viral Reproduction. Front Cell Dev Biol 2020; 8:856. [PMID: 32984339 PMCID: PMC7479061 DOI: 10.3389/fcell.2020.00856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic is a global health crisis that requires the application of interdisciplinary research to address numerous knowledge gaps including molecular strategies to prevent viral reproduction in affected individuals. In response to the Frontiers Research Topic, "Coronavirus disease (COVID-19): Pathophysiology, Epidemiology, Clinical Management, and Public Health Response," this Hypothesis article proposes a novel therapeutic strategy to repurpose metabotropic glutamate 5 receptor (mGluR5) inhibitors to interfere with viral hijacking of the host protein synthesis machinery. We review pertinent background on SARS-CoV-2, fragile X syndrome (FXS) and metabotropic glutamate receptor 5 (mGluR5) and provide a mechanistic-based hypothesis and preliminary data to support testing mGluR5 inhibitors in COVID-19 research.
Collapse
Affiliation(s)
- Cara J Westmark
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, United States
| | - Maki Kiso
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Peter Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Pamela R Westmark
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, United States
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI, United States.,Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
24
|
Abd-Elrahman K, Hamilton A, Albaker A, Ferguson SSG. mGluR5 Contribution to Neuropathology in Alzheimer Mice Is Disease Stage-Dependent. ACS Pharmacol Transl Sci 2020; 3:334-344. [PMID: 32296772 PMCID: PMC7155195 DOI: 10.1021/acsptsci.0c00013] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease and is characterized by a progressive cognitive decline in affected individuals. Current therapeutic strategies are limited in their efficacy and some have proven to be even less effective at later disease stages or after extended use. We previously demonstrated that chronic inhibition of mGluR5 signaling using the selective negative allosteric modulator (NAM) CTEP in APPswe/PS1ΔE9 mice can rescue cognitive function, activating the ZBTB16-mediated autophagy pathway to reduce Aβ, the principal neurotoxic species in AD brains. Here, we evaluated the efficacy of long-term treatment with CTEP in 6 month old APPswe/PS1ΔE9 mice for either 24 or 36 weeks. CTEP maintained its efficacy in reversing working and spatial memory deficits and mitigating neurogliosis in APPswe/PS1ΔE9 mice when administered for 24 weeks. This was paralleled by a significant reduction in Aβ oligomer and plaque load as a result of autophagy activation via ZBTB16 and mTOR-dependent pathways. However, further extension of CTEP treatment for 36 weeks was found ineffective in reversing memory deficit, neurogliosis, or Aβ-related pathology. We found that this loss in CTEP efficacy in 15 month old APPswe/PS1ΔE9 mice was due to the abolished contribution of ZBTB16 and mTOR-mediated signaling to AD neuropathology at this advanced disease stage. Our findings indicate that the contribution of pathological mGluR5-signaling to AD may shift as the disease progresses. Thus, we provide the first evidence that the underlying pathophysiological mechanism(s) of AD may unfold along the course of the disease and treatment strategies should be modified accordingly to ensure maximal therapeutic outcomes.
Collapse
Affiliation(s)
- Khaled
S. Abd-Elrahman
- University
of Ottawa Brain and Mind Institute, and Department of Cellular and Molecular
Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Alison Hamilton
- University
of Ottawa Brain and Mind Institute, and Department of Cellular and Molecular
Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Awatif Albaker
- University
of Ottawa Brain and Mind Institute, and Department of Cellular and Molecular
Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Department
of Pharmacology and Toxicology, College
of Pharmacy, King Saud University, Riyadh, 12371, Saudi Arabia
| | - Stephen S. G. Ferguson
- University
of Ottawa Brain and Mind Institute, and Department of Cellular and Molecular
Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
25
|
Bhat SA, Henry RJ, Blanchard AC, Stoica BA, Loane DJ, Faden AI. Enhanced Akt/GSK-3β/CREB signaling mediates the anti-inflammatory actions of mGluR5 positive allosteric modulators in microglia and following traumatic brain injury in male mice. J Neurochem 2020; 156:225-248. [PMID: 31926033 DOI: 10.1111/jnc.14954] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/16/2019] [Accepted: 01/02/2020] [Indexed: 12/20/2022]
Abstract
We have previously shown that treatment with a mGluR5 positive allosteric modulator (PAM) is neuroprotective after experimental traumatic brain injury (TBI), limiting post-traumatic neuroinflammation by reducing pro-inflammatory microglial activation and promoting anti-inflammatory and neuroprotective responses. However, the specific molecular mechanisms governing this anti-inflammatory shift in microglia remain unknown. Here we show that the mGluR5 PAM, VU0360172 (VuPAM), regulates microglial inflammatory responses through activation of Akt, resulting in the inhibition of GSK-3β. GSK-3β regulates the phosphorylation of CREB, thereby controlling the expression of inflammation-related genes and microglial plasticity. The anti-inflammatory action of VuPAM in microglia is reversed by inhibiting Akt/GSK-3β/CREB signaling. Using a well-characterized TBI model and CX3CR1gfp/+ mice to visualize microglia in vivo, we demonstrate that VuPAM enhances Akt/GSK-3β/CREB signaling in the injured cortex, as well as anti-inflammatory microglial markers. Furthermore, in situ analysis revealed that GFP + microglia in the cortex of VuPAM-treated TBI mice co-express pCREB and the anti-inflammatory microglial phenotype marker YM1. Taken together, our data show that VuPAM decreases pro-inflammatory microglial activation by modulating Akt/GSK-3β/CREB signaling. These findings serve to clarify the potential neuroprotective mechanisms of mGluR5 PAM treatment after TBI, and suggest novel therapeutic targets for post-traumatic neuroinflammation. Cover Image for this issue: https://doi.org/10.1111/jnc.15048.
Collapse
Affiliation(s)
- Shahnawaz A Bhat
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rebecca J Henry
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alexa C Blanchard
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bogdan A Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA.,School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Rossi R, Ciofalo M. Current Advances in the Synthesis and Biological Evaluation of Pharmacologically Relevant 1,2,4,5-Tetrasubstituted-1H-Imidazole Derivatives. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666191014154129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
:
In recent years, the synthesis and evaluation of the
biological properties of 1,2,4,5-tetrasubstituted-1H-imidazole
derivatives have been the subject of a large number of studies
by academia and industry. In these studies it has been shown
that this large and highly differentiated class of heteroarene
derivatives includes high valuable compounds having important
biological and pharmacological properties such as
antibacterial, antifungal, anthelmintic, anti-inflammatory, anticancer,
antiviral, antihypertensive, cholesterol-lowering, antifibrotic,
antiuricemic, antidiabetic, antileishmanial and antiulcer
activities.
:
The present review with 411 references, in which we focused on the literature data published mainly from 2011
to 2017, aims to update the readers on the recent developments on the synthesis and biological evaluation of
pharmacologically relevant 1,2,4,5-tetrasubstituted-1H-imidazole derivatives with an emphasis on their different
molecular targets and their potential use as drugs to treat various types of diseases. Reference was also
made to substantial literature data acquired before 2011 in this burgeoning research area.
Collapse
Affiliation(s)
- Renzo Rossi
- Dipartimento di Chimica e Chimica Industriale, University of Pisa - via Moruzzi, 3, I-56124 Pisa, Italy
| | - Maurizio Ciofalo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo - Viale delle Scienze, Edificio 4, I-90128 Palermo, Italy
| |
Collapse
|
27
|
Farmer K, Abd-Elrahman KS, Derksen A, Rowe EM, Thompson AM, Rudyk CA, Prowse NA, Dwyer Z, Bureau SC, Fortin T, Ferguson SSG, Hayley S. mGluR5 Allosteric Modulation Promotes Neurorecovery in a 6-OHDA-Toxicant Model of Parkinson's Disease. Mol Neurobiol 2019; 57:1418-1431. [PMID: 31754998 DOI: 10.1007/s12035-019-01818-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/14/2019] [Indexed: 10/25/2022]
Abstract
Parkinson's disease is a neurodegenerative disease characterized by a loss of dopaminergic substantia nigra neurons and depletion of dopamine. To date, current therapeutic approaches focus on managing motor symptoms and trying to slow neurodegeneration, with minimal capacity to promote neurorecovery. mGluR5 plays a key role in neuroplasticity, and altered mGluR5 signaling contributes to synucleinopathy and dyskinesia in patients with Parkinson's disease. Here, we tested whether the mGluR5-negative allosteric modulator, (2-chloro-4-[2[2,5-dimethyl-1-[4-(trifluoromethoxy) phenyl] imidazol-4-yl] ethynyl] pyridine (CTEP), would be effective in improving motor deficits and promoting neural recovery in a 6-hydroxydopamine (6-OHDA) mouse model. Lesions were induced by 6-ODHA striatal infusion, and 30 days later treatment with CTEP (2 mg/kg) or vehicle commenced for either 1 or 12 weeks. Animals were subjected to behavioral, pathological, and molecular analyses. We also assessed how long the effects of CTEP persisted, and finally, using rapamycin, determined the role of the mTOR pathway. CTEP treatment induced a duration-dependent improvement in apomorphine-induced rotation and performance on rotarod in lesioned mice. Moreover, CTEP promoted a recovery of striatal tyrosine hydroxylase-positive fibers and normalized FosB levels in lesioned mice. The beneficial effects of CTEP were paralleled by an activation of mammalian target of rapamycin (mTOR) pathway and elevated brain-derived neurotrophic factor levels in the striatum of lesioned mice. The mTOR inhibitor, rapamycin (sirolimus), abolished CTEP-induced neurorecovery and rescue of motor deficits. Our findings indicate that mTOR pathway is a useful target to promote recovery and that mGluR5 allosteric regulators may potentially be repurposed to selectively target this pathway to enhance neuroplasticity in patients with Parkinson's disease.
Collapse
Affiliation(s)
- Kyle Farmer
- Department of Neuroscience, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Khaled S Abd-Elrahman
- University of Ottawa Brain and Mind Institute, Ottawa, Ontario, K1H 8M5, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Alexa Derksen
- Department of Neuroscience, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Elyn M Rowe
- Department of Neuroscience, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Ashley M Thompson
- Department of Neuroscience, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Christopher A Rudyk
- Department of Neuroscience, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Natalie A Prowse
- Department of Neuroscience, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Zachary Dwyer
- Department of Neuroscience, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Samantha C Bureau
- Department of Neuroscience, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Teresa Fortin
- Department of Neuroscience, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Stephen S G Ferguson
- University of Ottawa Brain and Mind Institute, Ottawa, Ontario, K1H 8M5, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, Ontario, K1S 5B6, Canada.
| |
Collapse
|
28
|
Abd-elrahman KS, Albaker A, de Souza JM, Ribeiro FM, Schlossmacher MG, Tiberi M, Hamilton A, Ferguson SSG. Aβ oligomers induce sex-selective differences in mGluR5 pharmacology and pathophysiological signaling in Alzheimer mice.. [DOI: 10.1101/803262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
ABSTRACTSex is a key modifier of the prevalence and progression of Alzheimer’s disease (AD). β- Amyloid (Aβ) deposition is a pathological hallmark of AD and aberrant activation of metabotropic glutamate receptor 5 (mGluR5) by Aβ has been linked to AD progression. We find that mGluR5 exhibits distinct sex-dependent pharmacological profiles. Specifically, endogenous mGluR5 from male mouse cortex and hippocampus binds with high-affinity to Aβ oligomers whereas, female mGluR5 exhibits no affinity to Aβ oligomers. The binding affinity of mGluR5 to Aβ oligomer is dependent on its interaction with cellular prion protein (PrPC) as mGluR5 co-immunoprecipitates with PrPCfrom male, but not female, mouse brain. Aβ oligomers also bind with high-affinity to human mGluR5 in male, but not female, cortex. The mGluR5/Aβ oligomer/PrPCternary complex is essential to elicit mGluR5-dependent pathological signaling and as a consequence mGluR5-regulated GSK3β/ZBTB16 autophagic signaling is dysregulated in male, but not female, primary neuronal cultures. These sex-specific differences in mGluR5 signaling translate into in vivo differences in mGluR5-dependent pathological signaling between male and female AD mice. We show that the chronic inhibition of mGluR5 using a mGluR5-selective negative allosteric modulator reactivates GSK3β/ZBTB16-regulated autophagy, mitigates Aβ pathology and reverses cognitive decline in male, but not female, APPswe/PS1ΔE9 mice. Thus, it is evident that, unlike male brain, mGluR5 does not contribute to Aβ pathology in female AD mice. This study highlights the complexity of mGluR5 pharmacology and Aβ oligomer-activated pathological signaling and emphasizes the need for clinical trials redesign and analysis of sex-tailored treatment for AD.
Collapse
|
29
|
Bonifacino T, Rebosio C, Provenzano F, Torazza C, Balbi M, Milanese M, Raiteri L, Usai C, Fedele E, Bonanno G. Enhanced Function and Overexpression of Metabotropic Glutamate Receptors 1 and 5 in the Spinal Cord of the SOD1 G93A Mouse Model of Amyotrophic Lateral Sclerosis during Disease Progression. Int J Mol Sci 2019; 20:ijms20184552. [PMID: 31540330 PMCID: PMC6774337 DOI: 10.3390/ijms20184552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/26/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022] Open
Abstract
Glutamate (Glu)-mediated excitotoxicity is a major cause of amyotrophic lateral sclerosis (ALS) and our previous work highlighted that abnormal Glu release may represent a leading mechanism for excessive synaptic Glu. We demonstrated that group I metabotropic Glu receptors (mGluR1, mGluR5) produced abnormal Glu release in SOD1G93A mouse spinal cord at a late disease stage (120 days). Here, we studied this phenomenon in pre-symptomatic (30 and 60 days) and early-symptomatic (90 days) SOD1G93A mice. The mGluR1/5 agonist (S)-3,5-Dihydroxyphenylglycine (3,5-DHPG) concentration dependently stimulated the release of [3H]d-Aspartate ([3H]d-Asp), which was comparable in 30- and 60-day-old wild type mice and SOD1G93A mice. At variance, [3H]d-Asp release was significantly augmented in 90-day-old SOD1G93A mice and both mGluR1 and mGluR5 were involved. The 3,5-DHPG-induced [3H]d-Asp release was exocytotic, being of vesicular origin and mediated by intra-terminal Ca2+ release. mGluR1 and mGluR5 expression was increased in Glu spinal cord axon terminals of 90-day-old SOD1G93A mice, but not in the whole axon terminal population. Interestingly, mGluR1 and mGluR5 were significantly augmented in total spinal cord tissue already at 60 days. Thus, function and expression of group I mGluRs are enhanced in the early-symptomatic SOD1G93A mouse spinal cord, possibly participating in excessive Glu transmission and supporting their implication in ALS. Please define all abbreviations the first time they appear in the abstract, the main text, and the first figure or table caption.
Collapse
Affiliation(s)
- Tiziana Bonifacino
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genova, Italy.
| | - Claudia Rebosio
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genova, Italy.
| | - Francesca Provenzano
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genova, Italy.
| | - Carola Torazza
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genova, Italy.
| | - Matilde Balbi
- Department of Pharmacy, Unit of Pharmacology and Toxicology, University of Genoa, 16148 Genova, Italy.
| | - Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, 16132 Genova, Italy.
| | - Luca Raiteri
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, 16132 Genova, Italy.
| | - Cesare Usai
- Institute of Biophysics, National Research Council (CNR), 16149 Genova, Italy.
| | - Ernesto Fedele
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, 16132 Genova, Italy.
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, 16132 Genova, Italy.
| | - Giambattista Bonanno
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research (CEBR), University of Genoa, 16132 Genova, Italy.
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, 16132 Genova, Italy.
| |
Collapse
|
30
|
Werner FM, Coveñas R. Comparison of Mono-dopaminergic and Multi-target Pharmacotherapies in Primary Parkinson Syndrome and Assessment Tools to Evaluate Motor and Non-motor Symptoms. CURRENT DRUG THERAPY 2019. [DOI: 10.2174/1574885513666181115104137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Primary Parkinson syndrome is mostly treated by dopaminergic drugs, while the progression of the disease is not altered. Some non-dopaminergic are available, which are administered only after the Parkinsonian symptoms get worse.Objective:The objective of this review is to give basic results in order to compare a dopaminergic and non-dopaminergic pharmacotherapy in Parkinson’s disease and to control whether the add-on pharmacotherapy with non-dopaminergic drugs can inhibit the progression of the disease.Methods:In primary Parkinson syndrome, the altered activity of classical neurotransmitters and neuropeptides in the extrapyramidal system is summarized and up-dated. Anatomical studies on neural networks in the basal ganglia are mentioned. The direct, motor facilitatory pathway (D1 dopaminergic neurons) from the substantia nigra to the thalamus, via the internal globus pallidus, and the indirect, motor inhibitory pathway via D2 dopaminergic neurons have been considered. These established anatomical pathways have been brought in line with the neural interactions derived from neurotransmitter balances or imbalances. Besides, preclinical and clinical studies of effective non-dopaminergic anti-Parkinsonian drugs are reviewed.Results:It can be hypothesized that glutamatergic neurons enhance dopamine deficiency in the substantia nigra and putamen through an increased presynaptic inhibition mediated by NMDA receptors. In the putamen, 5-HT2A serotonergic neurons counteract D2 dopaminergic neurons and A2A adenosine neurons antagonize D2 dopaminergic neurons by activating glutamatergic neurons, which presynaptically inhibit via subtype 5 of metabotropic glutamatergic receptors, D2 dopaminergic neurons. In the extrapyramidal system, an up-dated neural network, which harmonizes established anatomical pathways with derived neural interactions, is presented. In Parkinson’s disease, a question should be answered, whether a combination of dopaminergic and non-dopaminergic drugs can promote an increased motor and non-motor functioning.Conclusion:A mono-target pharmacotherapy (using only dopaminergic drugs) and a multi-target pharmacotherapy (i.e. by combining dopaminergic and non-dopaminergic drugs) are compared. The alternate administration of dopaminergic and non-dopaminergic anti-Parkinsonian drugs, administered at different times during the day, must be tested in order to inhibit the progression of the disease. Assessment tools can be used to evaluate motor and cognitive functions. Moreover, imaging examination techniques can be also applied to control the course of the disease.
Collapse
Affiliation(s)
- Felix-Martin Werner
- Institute of Neurosciences of Castilla y Leon (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems (Lab. 14), University of Salamanca, Salamanca, Spain
| | - Rafael Coveñas
- Institute of Neurosciences of Castilla y Leon (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems (Lab. 14), University of Salamanca, Salamanca, Spain
| |
Collapse
|
31
|
Abel JM, Nesil T, Bakhti-Suroosh A, Grant PA, Lynch WJ. Mechanisms underlying the efficacy of exercise as an intervention for cocaine relapse: a focus on mGlu5 in the dorsal medial prefrontal cortex. Psychopharmacology (Berl) 2019; 236:2155-2171. [PMID: 31161451 PMCID: PMC6626681 DOI: 10.1007/s00213-019-05208-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/25/2019] [Indexed: 01/08/2023]
Abstract
RATIONALE Exercise shows promise as a treatment option for addiction; but in order to prevent relapse, it may need to be introduced early in the course of treatment. OBJECTIVE We propose that exercise, by upregulating dorsal medial prefrontal cortex (dmPFC)-nucleus accumbens (NAc) transmission, offsets deficits in pathways targeting glutamate, BDNF, and dopamine during early abstinence, and in doing so, normalizes neuroadaptations that underlie relapse. METHODS We compared the effects of exercise (wheel running, 2-h/day) during early (days 1-7), late (days 8-14), and throughout abstinence (days 1-14) to sedentary conditions on cocaine-seeking and gene expression in the dmPFC and NAc core of male rats tested following 24-h/day extended-access cocaine (up to 96 infusions/day) or saline self-administration and protracted abstinence (15 days). Based on these data, we then used site-specific manipulation to determine whether dmPFC metabotropic glutamate receptor5 (mGlu5) underlies the efficacy of exercise. RESULTS Exercise initiated during early, but not late abstinence, reduced cocaine-seeking; this effect was strongly associated with dmPFC Grm5 expression (gene encoding mGlu5), and modestly associated with dmPFC Grin1 and Bdnf-IV expression. Activation of mGlu5 in the dmPFC during early abstinence mimicked the efficacy of early-initiated exercise; however, inhibition of these receptors prior to the exercise sessions did not block its efficacy indicating that there may be redundancy in the mechanisms through which exercise reduces cocaine-seeking. CONCLUSION These findings indicate that addiction treatments, including exercise, should be tailored for early versus late phases of abstinence since their effectiveness will vary over abstinence due to the dynamic nature of the underlying neuroadaptations.
Collapse
Affiliation(s)
- Jean M. Abel
- Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA
| | - Tanseli Nesil
- Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA
| | | | - Patrick A. Grant
- Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA
| | - Wendy J. Lynch
- Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA,Corresponding Author: Wendy J. Lynch, PhD, Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, PO Box 801402, Charlottesville, VA 22904; Tel: (434) 243-0580; Fax: (434) 973-7031;
| |
Collapse
|
32
|
Stachniak TJ, Sylwestrak EL, Scheiffele P, Hall BJ, Ghosh A. Elfn1-Induced Constitutive Activation of mGluR7 Determines Frequency-Dependent Recruitment of Somatostatin Interneurons. J Neurosci 2019; 39:4461-4474. [PMID: 30940718 PMCID: PMC6554623 DOI: 10.1523/jneurosci.2276-18.2019] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 02/14/2019] [Accepted: 03/22/2019] [Indexed: 11/21/2022] Open
Abstract
Excitatory synapses onto somatostatin (SOM) interneurons show robust short-term facilitation. This hallmark feature of SOM interneurons arises from a low initial release probability that regulates the recruitment of interneurons in response to trains of action potentials. Previous work has shown that Elfn1 (extracellular leucine rich repeat and fibronectin Type III domain containing 1) is necessary to generate facilitating synapses onto SOM neurons by recruitment of two separate presynaptic components: mGluR7 (metabotropic glutamate receptor 7) and GluK2-KARs (kainate receptors containing glutamate receptor, ionotropic, kainate 2). Here, we identify how a transsynaptic interaction between Elfn1 and mGluR7 constitutively reduces initial release probability onto mouse cortical SOM neurons. Elfn1 produces glutamate-independent activation of mGluR7 via presynaptic clustering, resulting in a divergence from the canonical "autoreceptor" role of Type III mGluRs, and substantially altering synaptic pharmacology. This structurally induced determination of initial release probability is present at both layer 2/3 and layer 5 synapses. In layer 2/3 SOM neurons, synaptic facilitation in response to spike trains is also dependent on presynaptic GluK2-KARs. In contrast, layer 5 SOM neurons do not exhibit presynaptic GluK2-KAR activity at baseline and show reduced facilitation. GluK2-KAR engagement at synapses onto layer 5 SOM neurons can be induced by calmodulin activation, suggesting that synaptic function can be dynamically regulated. Thus, synaptic facilitation onto SOM interneurons is mediated both by constitutive mGluR7 recruitment by Elfn1 and regulated GluK2-KAR recruitment, which determines the extent of interneuron recruitment in different cortical layers.SIGNIFICANCE STATEMENT This study identifies a novel mechanism for generating constitutive GPCR activity through a transsynaptic Elfn1/mGluR7 structural interaction. The resulting tonic suppression of synaptic release probability deviates from canonical autoreceptor function. Constitutive suppression delays the activation of somatostatin interneurons in circuits, necessitating high-frequency activity for somatostatin interneuron recruitment. Furthermore, variations in the synaptic proteome generate layer-specific differences in facilitation at pyr → SOM synapses. The presence of GluK2 kainate receptors in L2/3 enhances synaptic transmission during prolonged activity. Thus, layer-specific synaptic properties onto somatostatin interneurons are mediated by both constitutive mGluR7 recruitment and regulated GluK2 kainate receptor recruitment, revealing a mechanism that generates diversity in physiological responses of interneurons.
Collapse
Affiliation(s)
- Tevye Jason Stachniak
- F. Hoffmann-La Roche Ltd, Roche Innovation Center Basel, Basel 4051, Switzerland
- University of Basel, Departement Biozentrum, Basel 4056, Switzerland, and
- Biogen, Cambridge, Massachusetts 02142
| | - Emily Lauren Sylwestrak
- F. Hoffmann-La Roche Ltd, Roche Innovation Center Basel, Basel 4051, Switzerland
- Stanford University, Department of Bioengineering, Stanford, California 94305
- University of Basel, Departement Biozentrum, Basel 4056, Switzerland, and
| | - Peter Scheiffele
- University of Basel, Departement Biozentrum, Basel 4056, Switzerland, and
| | - Benjamin J Hall
- F. Hoffmann-La Roche Ltd, Roche Innovation Center Basel, Basel 4051, Switzerland
| | - Anirvan Ghosh
- F. Hoffmann-La Roche Ltd, Roche Innovation Center Basel, Basel 4051, Switzerland,
- Biogen, Cambridge, Massachusetts 02142
| |
Collapse
|
33
|
Abd-Elrahman KS, Ferguson SSG. Modulation of mTOR and CREB pathways following mGluR5 blockade contribute to improved Huntington's pathology in zQ175 mice. Mol Brain 2019; 12:35. [PMID: 30961637 PMCID: PMC6454676 DOI: 10.1186/s13041-019-0456-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/29/2019] [Indexed: 01/07/2023] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder caused by a genetic abnormality in the huntingtin gene that leads to a polyglutamine repeat expansion of the huntingtin protein. The cleaved polyglutamine expansion of mutant huntingtin (mHTT) protein can form aggregates strongly correlated with HD progression. We have previously shown that the inhibition of mGluR5 using CTEP, a selective negative allosteric mGluR5 modulator, can delay disease progression and reduce in mHTT aggregates in the zQ175 mouse model of HD. This was paralleled by enhanced catalytic activity of Unc-51-like kinase 1 (ULK1), a kinase modulated by mammalian target of rapamycin (mTOR) and key regulator of autophagy initiation. In the present study, we show that CTEP can correct aberrant phosphoinositide 3-kinase (PI3K)/Akt/mTOR signaling detected in zQ175 mice that may underlie the enhanced ULK1 activity and activation of autophagy. We also show that CTEP can facilitate cAMP response element-binding protein (CREB)-mediated expression of brain-derived neurotrophic factor (BDNF) to foster neuronal survival and reduce apoptosis. Taken together, our findings provide the molecular evidence for how targeting mGluR5 using a well-tolerated selective NAM can mitigate two critical mechanisms of neurodegeneration, autophagy and apoptosis.
Collapse
Affiliation(s)
- Khaled S Abd-Elrahman
- University of Ottawa Brain and Mind Institute, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Stephen S G Ferguson
- University of Ottawa Brain and Mind Institute, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.
| |
Collapse
|
34
|
Jalnapurkar I, Cochran DM, Frazier JA. New Therapeutic Options for Fragile X Syndrome. Curr Treat Options Neurol 2019; 21:12. [PMID: 30809735 DOI: 10.1007/s11940-019-0551-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide an overview of current research and clinical practice guidelines in fragile X syndrome (FXS) with regard to therapeutic approaches in the management of this condition. The authors summarize and discuss findings from relevant preclinical studies and results from clinical trials in human subjects with FXS. Additionally, we provide an outline of the basic framework for understanding and providing educational and psychosocial supports for these individuals. RECENT FINDINGS Current treatments in FXS are largely symptom based and focused on managing associated psychiatric and behavioral co-morbidities. While data from animal studies has been promising in providing targeted treatments to correct the underlying deficits at the cellular level, there have not been as robust findings in human trials. There are several targeted treatments for FXS currently under development. Individuals with FXS present with several behavioral challenges including anxiety, social withdrawal, ADHD, hyperarousal, self-injury, and aggression. Therapeutic services are often necessary, such as behavioral intervention, speech and language therapy, occupational therapy, and individualized educational support; adjunctive psychopharmacologic treatment is often helpful as well. It is important to address these symptoms and weigh the evidence for the use of medications that target the underlying neurobiology and pathophysiology of the syndrome.
Collapse
Affiliation(s)
- Isha Jalnapurkar
- Eunice Kennedy Shriver Center, University of Massachusetts Medical School, 55 Lake Ave N, Worcester, MA, 01655, USA. .,Department of Psychiatry, University of Massachusetts Medical School, 55 Lake Ave N, Worcester, MA, 01655, USA.
| | - David M Cochran
- Eunice Kennedy Shriver Center, University of Massachusetts Medical School, 55 Lake Ave N, Worcester, MA, 01655, USA.,Department of Psychiatry, University of Massachusetts Medical School, 55 Lake Ave N, Worcester, MA, 01655, USA
| | - Jean A Frazier
- Eunice Kennedy Shriver Center, University of Massachusetts Medical School, 55 Lake Ave N, Worcester, MA, 01655, USA.,Department of Psychiatry, University of Massachusetts Medical School, 55 Lake Ave N, Worcester, MA, 01655, USA
| |
Collapse
|
35
|
Sengmany K, Hellyer SD, Albold S, Wang T, Conn PJ, May LT, Christopoulos A, Leach K, Gregory KJ. Kinetic and system bias as drivers of metabotropic glutamate receptor 5 allosteric modulator pharmacology. Neuropharmacology 2019; 149:83-96. [PMID: 30763654 DOI: 10.1016/j.neuropharm.2019.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/18/2019] [Accepted: 02/04/2019] [Indexed: 12/17/2022]
Abstract
Allosteric modulators of the metabotropic glutamate receptor subtype 5 (mGlu5) have been proposed as potential therapies for various CNS disorders. These ligands bind to sites distinct from the orthosteric (or endogenous) ligand, often with improved subtype selectivity and spatio-temporal control over receptor responses. We recently revealed that mGlu5 allosteric agonists and positive allosteric modulators exhibit biased agonism and/or modulation. To establish whether negative allosteric modulators (NAMs) engender similar bias, we rigorously characterized the pharmacology of eight diverse mGlu5 NAMs. Radioligand inhibition binding studies revealed novel modes of interaction with mGlu5 for select NAMs, with biphasic or incomplete inhibition of the radiolabeled NAM, [3H]methoxy-PEPy. We assessed mGlu5-mediated intracellular Ca2+ (iCa2+) mobilization and inositol phosphate (IP1) accumulation in HEK293A cells stably expressing low levels of mGlu5 (HEK293A-rat mGlu5-low) and mouse embryonic cortical neurons. The apparent affinity of acetylenic NAMs, MPEP, MTEP and dipraglurant, was dependent on the signaling pathway measured, agonist used, and cell type (HEK293A-rat mGlu5-low versus mouse cortical neurons). In contrast, the acetylenic partial NAM, M-5MPEP, and structurally distinct NAMs (VU0366248, VU0366058, fenobam), had similar affinity estimates irrespective of the assay or cellular background. Biased modulation was evident for VU0366248 in mouse cortical neurons where it was a NAM for DHPG-mediated iCa2+ mobilization, but neutral with DHPG in IP1 accumulation assays. Overall, this study highlights the inherent complexity in mGlu5 NAM pharmacology that we hypothesize may influence interpretation when translating into preclinical models and beyond in the design and development of novel therapeutics for neuropsychiatric and neurological disorders.
Collapse
Affiliation(s)
- Kathy Sengmany
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - Shane D Hellyer
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - Sabine Albold
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - Taide Wang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Department of Pharmacology, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
36
|
Biased agonism and allosteric modulation of metabotropic glutamate receptor 5. Clin Sci (Lond) 2018; 132:2323-2338. [PMID: 30389826 DOI: 10.1042/cs20180374] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022]
Abstract
Metabotropic glutamate receptors belong to class C G-protein-coupled receptors and consist of eight subtypes that are ubiquitously expressed throughout the central nervous system. In recent years, the metabotropic glutamate receptor subtype 5 (mGlu5) has emerged as a promising target for a broad range of psychiatric and neurological disorders. Drug discovery programs targetting mGlu5 are primarily focused on development of allosteric modulators that interact with sites distinct from the endogenous agonist glutamate. Significant efforts have seen mGlu5 allosteric modulators progress into clinical trials; however, recent failures due to lack of efficacy or adverse effects indicate a need for a better understanding of the functional consequences of mGlu5 allosteric modulation. Biased agonism is an interrelated phenomenon to allosterism, describing how different ligands acting through the same receptor can differentially influence signaling to distinct transducers and pathways. Emerging evidence demonstrates that allosteric modulators can induce biased pharmacology at the level of intrinsic agonism as well as through differential modulation of orthosteric agonist-signaling pathways. Here, we present key considerations in the discovery and development of mGlu5 allosteric modulators and the opportunities and pitfalls offered by biased agonism and modulation.
Collapse
|
37
|
Li Y, Shen M, Stockton ME, Zhao X. Hippocampal deficits in neurodevelopmental disorders. Neurobiol Learn Mem 2018; 165:106945. [PMID: 30321651 DOI: 10.1016/j.nlm.2018.10.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022]
Abstract
Neurodevelopmental disorders result from impaired development or maturation of the central nervous system. Both genetic and environmental factors can contribute to the pathogenesis of these disorders; however, the exact causes are frequently complex and unclear. Individuals with neurodevelopmental disorders may have deficits with diverse manifestations, including challenges with sensory function, motor function, learning, memory, executive function, emotion, anxiety, and social ability. Although these functions are mediated by multiple brain regions, many of them are dependent on the hippocampus. Extensive research supports important roles of the mammalian hippocampus in learning and cognition. In addition, with its high levels of activity-dependent synaptic plasticity and lifelong neurogenesis, the hippocampus is sensitive to experience and exposure and susceptible to disease and injury. In this review, we first summarize hippocampal deficits seen in several human neurodevelopmental disorders, and then discuss hippocampal impairment including hippocampus-dependent behavioral deficits found in animal models of these neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yue Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Minjie Shen
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Michael E Stockton
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
38
|
Abstract
The trillions of synaptic connections within the human brain are shaped by experience and neuronal activity, both of which underlie synaptic plasticity and ultimately learning and memory. G protein-coupled receptors (GPCRs) play key roles in synaptic plasticity by strengthening or weakening synapses and/or shaping dendritic spines. While most studies of synaptic plasticity have focused on cell surface receptors and their downstream signaling partners, emerging data point to a critical new role for the very same receptors to signal from inside the cell. Intracellular receptors have been localized to the nucleus, endoplasmic reticulum, lysosome, and mitochondria. From these intracellular positions, such receptors may couple to different signaling systems, display unique desensitization patterns, and/or show distinct patterns of subcellular distribution. Intracellular GPCRs can be activated at the cell surface, endocytosed, and transported to an intracellular site or simply activated in situ by de novo ligand synthesis, diffusion of permeable ligands, or active transport of non-permeable ligands. Current findings reinforce the notion that intracellular GPCRs play a dynamic role in synaptic plasticity and learning and memory. As new intracellular GPCR roles are defined, the need to selectively tailor agonists and/or antagonists to both intracellular and cell surface receptors may lead to the development of more effective therapeutic tools.
Collapse
Affiliation(s)
- Yuh-Jiin I. Jong
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Steven K. Harmon
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Karen L. O’Malley
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
39
|
mGluR5 Modulation of Behavioral and Epileptic Phenotypes in a Mouse Model of Tuberous Sclerosis Complex. Neuropsychopharmacology 2018; 43:1457-1465. [PMID: 29206810 PMCID: PMC5916364 DOI: 10.1038/npp.2017.295] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/03/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022]
Abstract
Drugs targeting metabotropic glutamate receptor 5 (mGluR5) have therapeutic potential in autism spectrum disorders (ASD), including tuberous sclerosis complex (TSC). The question whether inhibition or potentiation of mGluR5 could be beneficial depends, among other factors, on the specific indication. To facilitate the development of mGluR5 treatment strategies, we tested the therapeutic utility of mGluR5 negative and positive allosteric modulators (an mGluR5 NAM and PAM) for TSC, using a mutant mouse model with neuronal loss of Tsc2 that demonstrates disease-related phenotypes, including behavioral symptoms of ASD and epilepsy. This model uniquely enables the in vivo characterization and rescue of the electrographic seizures associated with TSC. We demonstrate that inhibition of mGluR5 corrects hyperactivity, seizures, and elevated de novo synaptic protein synthesis. Conversely, positive allosteric modulation of mGluR5 results in the exacerbation of hyperactivity and epileptic phenotypes. The data suggest a meaningful therapeutic potential for mGluR5 NAMs in TSC, which warrants clinical exploration and the continued development of mGluR5 therapies.
Collapse
|
40
|
Abd-Elrahman KS, Hamilton A, Vasefi M, Ferguson SSG. Autophagy is increased following either pharmacological or genetic silencing of mGluR5 signaling in Alzheimer's disease mouse models. Mol Brain 2018; 11:19. [PMID: 29631635 PMCID: PMC5892040 DOI: 10.1186/s13041-018-0364-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/28/2018] [Indexed: 11/10/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by neurotoxicity mediated by the accumulation of beta amyloid (Aβ) oligomers, causing neuronal loss and progressive cognitive decline. Genetic deletion or chronic pharmacological inhibition of mGluR5 by the negative allosteric modulator CTEP, rescues cognitive function and reduces Aβ aggregation in both APPswe/PS1ΔE9 and 3xTg-AD mouse models of AD. In late onset neurodegenerative diseases, such as AD, defects arise at different stages of the autophagy pathway. Here, we show that mGluR5 cell surface expression is elevated in APPswe/PS1ΔE9 and 3xTg-AD mice. This is accompanied by reduced autophagy (accumulation of p62) as the consequence of increased ZBTB16 expression and reduced ULK1 activity, as we have previously observed in Huntington's disease (HD). The chronic (12 week) inhibition of mGluR5 with CTEP in APPswe/PS1ΔE9 and 3xTg-AD mice prevents the observed increase in mGluR5 surface expression. In addition, mGluR5 inactivation facilitates the loss of ZBTB16 expression and ULK1 activation as a consequence of ULK-Ser757 dephosphorylation, which promotes the loss of expression of the autophagy marker p62. Moreover, the genetic ablation of mGluR5 in APPswe/PS1ΔE9 mice activated autophagy via similar mechanisms to pharmacological blockade. This study provides further evidence that mGluR5 overactivation contributes to inhibition of autophagy and can result in impaired clearance of neurotoxic aggregates in multiple neurodegenerative diseases. Thus, it provides additional support for the potential of mGluR5 inhibition as a general therapeutic strategy for neurodegenerative diseases such as AD and HD.
Collapse
Affiliation(s)
- Khaled S Abd-Elrahman
- University of Ottawa Brain and Mind Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Alexandria, Alexandria, 21521, Egypt
| | - Alison Hamilton
- University of Ottawa Brain and Mind Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | | | - Stephen S G Ferguson
- University of Ottawa Brain and Mind Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
41
|
Effect of the mGluR5-NAM Basimglurant on Behavior in Adolescents and Adults with Fragile X Syndrome in a Randomized, Double-Blind, Placebo-Controlled Trial: FragXis Phase 2 Results. Neuropsychopharmacology 2018; 43:503-512. [PMID: 28816242 PMCID: PMC5770759 DOI: 10.1038/npp.2017.177] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 12/19/2022]
Abstract
Preclinical data suggest that inhibition of the metabotropic glutamate receptor 5 (mGluR5) receptor might hold therapeutic benefits in Fragile X syndrome (FXS). Treatment of Fmr1 knockout mice with mGluR5-negative allosteric modulators (NAMs) has been reported to correct a broad range of phenotypes related to FXS. The early short-term clinical trials with mGluR5 NAMs, including basimglurant, assessing the effects in individuals with FXS, were supportive of further exploration in larger, well-controlled trials. We evaluated basimglurant, a potent and selective mGluR5 NAM, in a 12-week, double-blind, parallel-group study of 183 adults and adolescents (aged 14-50, mean 23.4 years) with FXS. Individuals with an FMR1 full mutation were randomized to placebo or one of two doses of basimglurant. The primary efficacy endpoint was the change from baseline in behavioral symptoms using the Anxiety Depression and Mood Scale (ADAMS) total score. All treatment arms showed marked behavioral improvements from baseline to week 12 with less improvement in the basimglurant 1.5 mg arm than placebo; however, basimglurant 0.5 mg was inferior to placebo in the ADAMs total score. Treatment with basimglurant was overall well-tolerated. A higher incidence of adverse events classified as psychiatric disorders were reported in patients treated with basimglurant, including three patients with hallucinations or psychosis. In this phase 2 clinical trial, basimglurant did not demonstrate improvement over placebo. Evaluation of the overall risk-benefit in younger patient populations is an important consideration for the design of potential further investigations of efficacy with this class of medications.
Collapse
|
42
|
Abd-Elrahman KS, Hamilton A, Hutchinson SR, Liu F, Russell RC, Ferguson SSG. mGluR5 antagonism increases autophagy and prevents disease progression in thezQ175mouse model of Huntington’s disease. Sci Signal 2017; 10:10/510/eaan6387. [DOI: 10.1126/scisignal.aan6387] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Drug development for neurodevelopmental disorders: lessons learned from fragile X syndrome. Nat Rev Drug Discov 2017; 17:280-299. [PMID: 29217836 DOI: 10.1038/nrd.2017.221] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neurodevelopmental disorders such as fragile X syndrome (FXS) result in lifelong cognitive and behavioural deficits and represent a major public health burden. FXS is the most frequent monogenic form of intellectual disability and autism, and the underlying pathophysiology linked to its causal gene, FMR1, has been the focus of intense research. Key alterations in synaptic function thought to underlie this neurodevelopmental disorder have been characterized and rescued in animal models of FXS using genetic and pharmacological approaches. These robust preclinical findings have led to the implementation of the most comprehensive drug development programme undertaken thus far for a genetically defined neurodevelopmental disorder, including phase IIb trials of metabotropic glutamate receptor 5 (mGluR5) antagonists and a phase III trial of a GABAB receptor agonist. However, none of the trials has been able to unambiguously demonstrate efficacy, and they have also highlighted the extent of the knowledge gaps in drug development for FXS and other neurodevelopmental disorders. In this Review, we examine potential issues in the previous studies and future directions for preclinical and clinical trials. FXS is at the forefront of efforts to develop drugs for neurodevelopmental disorders, and lessons learned in the process will also be important for such disorders.
Collapse
|
44
|
Munshi K, Pawlowski K, Gonzalez-Heydrich J, Picker JD. Review of Salient Investigational Drugs for the Treatment of Fragile X Syndrome. J Child Adolesc Psychopharmacol 2017; 27:850-863. [PMID: 28475355 DOI: 10.1089/cap.2016.0200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability, in addition to being the commonest diagnosable cause of autism. The identification of the biochemical mechanism underlying this disorder has provided amenable targets for therapy. This review aims to provide an overview of investigational drug therapies for FXS. METHODS The authors carried out a search of clinical and preclinical trials for FXS in PubMed and on the U.S. National Institutes of Health index of clinical trials ( www.clinicaltrials.gov ). We limited our review to Phase II trials or more preliminary and reviewed the associated publications for these studies, complemented by a review of the literature on PubMed. RESULTS The review of the preclinical, Phase I, and Phase II trials of agents with therapeutic potential in FXS revolves around an understanding of the putative pathways in the pathogenesis of FXS. While there is significant overlap between some of these pathways, the agents can be categorized as modulators of the metabotropic glutamate receptor system, GABAergic agents, and miscellaneous modulators affecting other pathways. CONCLUSION As trials involving agents targeting different aspects of the molecular biology proceed, common themes have emerged. With the great hope came great disappointment as the initial trials failed to demonstrate sufficient significance. In particular, the differences in outcome between the animal models and humans have highlighted the unique challenges of carrying out trials in these cognitively and behaviorally challenged individuals, as well as a dearth of clinically relevant outcome measures for use in medication trials. However, in reviewing and reframing the studies of the last decade, many important lessons have been learned, which will ultimately have a greater impact on therapeutic research in the field of developmental delay as a whole.
Collapse
Affiliation(s)
- Kaizad Munshi
- 1 Department of Psychiatry, Boston Children's Hospital , Boston, Massachusetts.,2 Harvard Medical School , Boston, Massachusetts
| | - Katherine Pawlowski
- 3 Division of Genetics and Genomics, Boston Children's Hospital , Boston, Massachusetts.,4 Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital , Boston, Massachusetts
| | - Joseph Gonzalez-Heydrich
- 1 Department of Psychiatry, Boston Children's Hospital , Boston, Massachusetts.,2 Harvard Medical School , Boston, Massachusetts
| | - Jonathan D Picker
- 1 Department of Psychiatry, Boston Children's Hospital , Boston, Massachusetts.,2 Harvard Medical School , Boston, Massachusetts.,3 Division of Genetics and Genomics, Boston Children's Hospital , Boston, Massachusetts
| |
Collapse
|
45
|
Stoppel LJ, Auerbach BD, Senter RK, Preza AR, Lefkowitz RJ, Bear MF. β-Arrestin2 Couples Metabotropic Glutamate Receptor 5 to Neuronal Protein Synthesis and Is a Potential Target to Treat Fragile X. Cell Rep 2017; 18:2807-2814. [PMID: 28329674 DOI: 10.1016/j.celrep.2017.02.075] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/31/2017] [Accepted: 02/24/2017] [Indexed: 10/19/2022] Open
Abstract
Synaptic protein synthesis is essential for modification of the brain by experience and is aberrant in several genetically defined disorders, notably fragile X (FX), a heritable cause of autism and intellectual disability. Neural activity directs local protein synthesis via activation of metabotropic glutamate receptor 5 (mGlu5), yet how mGlu5 couples to the intracellular signaling pathways that regulate mRNA translation is poorly understood. Here, we provide evidence that β-arrestin2 mediates mGlu5-stimulated protein synthesis in the hippocampus and show that genetic reduction of β-arrestin2 corrects aberrant synaptic plasticity and cognition in the Fmr1-/y mouse model of FX. Importantly, reducing β-arrestin2 does not induce psychotomimetic activity associated with full mGlu5 inhibitors and does not affect Gq signaling. Thus, in addition to identifying a key requirement for mGlu5-stimulated protein synthesis, these data suggest that β-arrestin2-biased negative modulators of mGlu5 offer significant advantages over first-generation inhibitors for the treatment of FX and related disorders.
Collapse
Affiliation(s)
- Laura J Stoppel
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Benjamin D Auerbach
- The Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, The State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Rebecca K Senter
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anthony R Preza
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert J Lefkowitz
- Departments of Medicine and Biochemistry, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Mark F Bear
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
46
|
Hirose W, Kato Y, Natsutani I, Takata M, Kitaichi M, Imai S, Hayashi S, Arai Y, Hoshino K, Yoshida K. Synthesis and optimization of 4,5,6,7-tetrahydrooxazolo[4,5-c]pyridines as potent and orally-active metabotropic glutamate receptor 5 negative allosteric modulators. Bioorg Med Chem Lett 2017; 27:4331-4335. [PMID: 28838696 DOI: 10.1016/j.bmcl.2017.08.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/08/2017] [Accepted: 08/14/2017] [Indexed: 11/28/2022]
Abstract
We describe here the design, synthesis and characterization of a series of 4,5,6,7-tetrahydrooxazolo[4,5-c]pyridines as metabotropic glutamate receptor (mGluR) 5 negative allosteric modulators (NAMs). Optimization of the substituents led to the identification of several compounds with good pharmacokinetic profiles, including long half life and high oral bioavailability, in both rats and monkeys. The receptor occupancy test in the rat cortex revealed favorable brain penetration of these compounds. The reprsentative compound 13 produced oral antidepressant-like effect in the rat forced swimming test (MED: 0.3mg/kg, q.d.).
Collapse
Affiliation(s)
- Wataru Hirose
- Drug Research Division, Sumitomo Dainippon Pharma, 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan.
| | - Yoshihiro Kato
- Drug Research Division, Sumitomo Dainippon Pharma, 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Itaru Natsutani
- Drug Research Division, Sumitomo Dainippon Pharma, 33-94 Enoki-cho, Suita, Osaka 564-0053, Japan
| | - Makoto Takata
- Drug Research Division, Sumitomo Dainippon Pharma, 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Maiko Kitaichi
- Drug Research Division, Sumitomo Dainippon Pharma, 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Satoki Imai
- Drug Research Division, Sumitomo Dainippon Pharma, 33-94 Enoki-cho, Suita, Osaka 564-0053, Japan
| | - Shun Hayashi
- Drug Research Division, Sumitomo Dainippon Pharma, 33-94 Enoki-cho, Suita, Osaka 564-0053, Japan
| | - Yukiyo Arai
- Drug Research Division, Sumitomo Dainippon Pharma, 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Kohei Hoshino
- Drug Research Division, Sumitomo Dainippon Pharma, 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Kohzo Yoshida
- Drug Research Division, Sumitomo Dainippon Pharma, 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan.
| |
Collapse
|
47
|
Blundon JA, Roy NC, Teubner BJW, Yu J, Eom TY, Sample KJ, Pani A, Smeyne RJ, Han SB, Kerekes RA, Rose DC, Hackett TA, Vuppala PK, Freeman BB, Zakharenko SS. Restoring auditory cortex plasticity in adult mice by restricting thalamic adenosine signaling. Science 2017; 356:1352-1356. [PMID: 28663494 PMCID: PMC5523828 DOI: 10.1126/science.aaf4612] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 02/09/2017] [Accepted: 05/15/2017] [Indexed: 11/02/2022]
Abstract
Circuits in the auditory cortex are highly susceptible to acoustic influences during an early postnatal critical period. The auditory cortex selectively expands neural representations of enriched acoustic stimuli, a process important for human language acquisition. Adults lack this plasticity. Here we show in the murine auditory cortex that juvenile plasticity can be reestablished in adulthood if acoustic stimuli are paired with disruption of ecto-5'-nucleotidase-dependent adenosine production or A1-adenosine receptor signaling in the auditory thalamus. This plasticity occurs at the level of cortical maps and individual neurons in the auditory cortex of awake adult mice and is associated with long-term improvement of tone-discrimination abilities. We conclude that, in adult mice, disrupting adenosine signaling in the thalamus rejuvenates plasticity in the auditory cortex and improves auditory perception.
Collapse
Affiliation(s)
- Jay A. Blundon
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Noah C. Roy
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Brett J. W. Teubner
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jing Yu
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Tae-Yeon Eom
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - K. Jake Sample
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Amar Pani
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Richard J. Smeyne
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Seung Baek Han
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ryan A Kerekes
- Electrical and Electronics Systems Research Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Derek C. Rose
- Electrical and Electronics Systems Research Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Troy A. Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Pradeep K. Vuppala
- Preclinical Pharmacokinetics Shared Resource, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Burgess B. Freeman
- Preclinical Pharmacokinetics Shared Resource, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Stanislav S. Zakharenko
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
48
|
Erickson CA, Davenport MH, Schaefer TL, Wink LK, Pedapati EV, Sweeney JA, Fitzpatrick SE, Brown WT, Budimirovic D, Hagerman RJ, Hessl D, Kaufmann WE, Berry-Kravis E. Fragile X targeted pharmacotherapy: lessons learned and future directions. J Neurodev Disord 2017; 9:7. [PMID: 28616096 PMCID: PMC5467059 DOI: 10.1186/s11689-017-9186-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/18/2017] [Indexed: 01/04/2023] Open
Abstract
Our understanding of fragile X syndrome (FXS) pathophysiology continues to improve and numerous potential drug targets have been identified. Yet, current prescribing practices are only symptom-based in order to manage difficult behaviors, as no drug to date is approved for the treatment of FXS. Drugs impacting a diversity of targets in the brain have been studied in recent FXS-specific clinical trials. While many drugs have focused on regulation of enhanced glutamatergic or deficient GABAergic neurotransmission, compounds studied have not been limited to these mechanisms. As a single-gene disorder, it was thought that FXS would have consistent drug targets that could be modulated with pharmacotherapy and lead to significant improvement. Unfortunately, despite promising results in FXS animal models, translational drug treatment development in FXS has largely failed. Future success in this field will depend on learning from past challenges to improve clinical trial design, choose appropriate outcome measures and age range choices, and find readily modulated drug targets. Even with many negative placebo-controlled study results, the field continues to move forward exploring both the new mechanistic drug approaches combined with ways to improve trial execution. This review summarizes the known phenotype and pathophysiology of FXS and past clinical trial rationale and results, and discusses current challenges facing the field and lessons from which to learn for future treatment development efforts.
Collapse
Affiliation(s)
- Craig A Erickson
- Division of Child and Adolescent Psychiatry (MLC 4002), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA.,Department of Psychiatry, College of Medicine, University of Cincinnati, Cincinnati, OH USA
| | - Matthew H Davenport
- Division of Child and Adolescent Psychiatry (MLC 4002), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA.,Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH USA
| | - Tori L Schaefer
- Division of Child and Adolescent Psychiatry (MLC 4002), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA
| | - Logan K Wink
- Division of Child and Adolescent Psychiatry (MLC 4002), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA.,Department of Psychiatry, College of Medicine, University of Cincinnati, Cincinnati, OH USA
| | - Ernest V Pedapati
- Division of Child and Adolescent Psychiatry (MLC 4002), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA.,Department of Psychiatry, College of Medicine, University of Cincinnati, Cincinnati, OH USA
| | - John A Sweeney
- Department of Psychiatry, College of Medicine, University of Cincinnati, Cincinnati, OH USA
| | - Sarah E Fitzpatrick
- Division of Child and Adolescent Psychiatry (MLC 4002), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229-3039 USA
| | - W Ted Brown
- Institute for Basic Research in Developmental Disabilities, New York, NY USA
| | - Dejan Budimirovic
- Clinical Research Center, Clinical Trials Unit, Fragile X Clinic, Kennedy Krieger Institute, The Johns Hopkins Medical Institutions, Baltimore, MD USA.,Departments of Psychiatry & Behavioral Sciences, Child Psychiatry, The Johns Hopkins Medical Institutions, Baltimore, MD USA
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Davis Medical Center, University of California, Sacramento, CA USA.,Department of Pediatrics, Davis Medical Center, University of California, Sacramento, California USA
| | - David Hessl
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Davis Medical Center, University of California, Sacramento, CA USA.,Department of Psychiatry and Behavioral Sciences, Davis Medical Center, University of California, Sacramento, California USA
| | - Walter E Kaufmann
- Greenwood Genetic Center, Greenwood, SC USA.,Boston Children's Hospital, Boston, Massachusetts USA
| | - Elizabeth Berry-Kravis
- Departments of Pediatrics, Neurological Sciences, Biochemistry, Rush University Medical Center, Chicago, Illinois USA
| |
Collapse
|
49
|
Pugin A, Faundes V, Santa María L, Curotto B, Aliaga S, Salas I, Soto P, Bravo P, Peña M, Alliende M. Clinical, molecular, and pharmacological aspects of FMR1 -related disorders. NEUROLOGÍA (ENGLISH EDITION) 2017. [DOI: 10.1016/j.nrleng.2014.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
50
|
Zhang D, Qi Y, Klyubin I, Ondrejcak T, Sarell CJ, Cuello AC, Collinge J, Rowan MJ. Targeting glutamatergic and cellular prion protein mechanisms of amyloid β-mediated persistent synaptic plasticity disruption: Longitudinal studies. Neuropharmacology 2017; 121:231-246. [PMID: 28390893 DOI: 10.1016/j.neuropharm.2017.03.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/08/2017] [Accepted: 03/30/2017] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease amyloid-β (Aβ) oligomers are synaptotoxic, inappropriately increasing extracellular glutamate concentration and glutamate receptor activation to thereby rapidly disrupt synaptic plasticity. Thus, acutely promoting brain glutamate homeostasis with a blood-based scavenging system, glutamate-oxaloacetate transaminase (GOT), and blocking metabotropic glutamate 5 (mGlu5) receptor or its co-receptor cellular prion protein (PrP), prevent the acute inhibition of long-term potentiation (LTP) by exogenous Aβ. Here, we evaluated the time course of the effects of such interventions in the persistent disruptive effects of Aβ oligomers, either exogenously injected in wild type rats or endogenously generated in transgenic rats that model Alzheimer's disease amyloidosis. We report that repeated, but not acute, systemic administration of recombinant GOT type 1, with or without the glutamate co-substrate oxaloacetate, reversed the persistent deleterious effect of exogenous Aβ on synaptic plasticity. Moreover, similar repetitive treatment reversibly abrogated the inhibition of LTP monitored longitudinally in freely behaving transgenic rats. Remarkably, brief repeated treatment with an mGlu5 receptor antagonist, basimglurant, or an antibody that prevents Aβ oligomer binding to PrP, ICSM35, also had similar reversible ameliorative effects in the transgenic rat model. Overall, the present findings support the ongoing development of therapeutics for early Alzheimer's disease based on these complementary approaches.
Collapse
Affiliation(s)
- Dainan Zhang
- Department of Pharmacology & Therapeutics, and Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Yingjie Qi
- Department of Pharmacology & Therapeutics, and Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland.
| | - Igor Klyubin
- Department of Pharmacology & Therapeutics, and Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Tomas Ondrejcak
- Department of Pharmacology & Therapeutics, and Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Claire J Sarell
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, Department of Neurology and Neurosurgery, Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - John Collinge
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Michael J Rowan
- Department of Pharmacology & Therapeutics, and Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland.
| |
Collapse
|