1
|
Virtanen A, Kettunen V, Musta K, Räkköläinen V, Knapp S, Haikarainen T, Silvennoinen O. Molecular basis of JAK kinase regulation guiding therapeutic approaches: Evaluating the JAK3 pseudokinase domain as a drug target. Adv Biol Regul 2025; 95:101072. [PMID: 39755448 DOI: 10.1016/j.jbior.2024.101072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/06/2025]
Abstract
Janus kinases (JAK1-3, TYK2) are critical mediators of cytokine signaling and their role in hematological and inflammatory and autoimmune diseases has sparked widespread interest in their therapeutic targeting. JAKs have unique tandem kinase structure consisting of an active tyrosine kinase domain adjacent to a pseudokinase domain that is a hotspot for pathogenic mutations. The development of JAK inhibitors has focused on the active kinase domain and the developed drugs have demonstrated good clinical efficacy but due to off-target inhibition cause also side-effects and carry a black box warning limiting their use. Our understanding of the regulatory function of the pseudokinase domain in physiological and pathological signaling has improved substantially. The pseudokinase domain maintains the inactive state of JAKs in the absence of cytokine stimulation but it has also a key role in physiological and mutation-driven activation process. Furthermore, the pseudokinase domain has favourable structural characteristics for selective targeting of cytokine signaling, such as unique mode of ATP-binding, and the first pseudokinase targeting inhibitor for TYK2 has been approved for clinical use. Here we describe the recent functional and structural knowledge of JAK signaling and their therapeutic targeting, and present data evaluating the druggability of the JAK3 pseudokinase domain.
Collapse
Affiliation(s)
- Anniina Virtanen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpönkatu 34, 33014, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, P.O. Box 56, 00014, Finland
| | - Vivian Kettunen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpönkatu 34, 33014, Finland
| | - Kirsikka Musta
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpönkatu 34, 33014, Finland
| | - Veera Räkköläinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpönkatu 34, 33014, Finland
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Teemu Haikarainen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpönkatu 34, 33014, Finland; Department of Microbiology, Fimlab Laboratories, P.O.Box 66, 33013, Tampere, Finland
| | - Olli Silvennoinen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpönkatu 34, 33014, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, P.O. Box 56, 00014, Finland; Department of Microbiology, Fimlab Laboratories, P.O.Box 66, 33013, Tampere, Finland.
| |
Collapse
|
2
|
Zhang S, Wang L, Lu Y, Guo C, Zhang T, Zhang L. Targeting spleen tyrosine kinase (SYK): structure, mechanisms and drug discovery. Drug Discov Today 2025; 30:104257. [PMID: 39653169 DOI: 10.1016/j.drudis.2024.104257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/23/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Spleen tyrosine kinase (SYK) is a crucial non-receptor tyrosine kinase involved in signaling pathways that regulate various cellular processes. It is primarily expressed in hematopoietic cells and myeloid cells, which are crucial for B-cell development, maturation and antibody production, and it is a key therapeutic target for autoimmune and allergic diseases. Overexpression of SYK is also associated with cancer and cardiovascular, cerebrovascular and neurodegenerative diseases, contributing to their initiation and progression. SYK is a promising target for drug development, and several inhibitors have already been reported. This review covers the structure and regulatory pathways of SYK, as well as its links to various diseases. It also highlights key small-molecule SYK inhibitors, their design strategies and their potential therapeutic benefits, aiming to enhance our understanding and aid in the discovery of more-effective SYK inhibitors.
Collapse
Affiliation(s)
- Shuangqian Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lilin Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China
| | - Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Chuanxin Guo
- Nucleic Acid Division, Shanghai Cell Therapy Group, Shanghai 201805, China.
| | - Tongtong Zhang
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China; The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
3
|
Verra C, Paulmann MK, Wegener J, Marzani E, Ferreira Alves G, Collino M, Coldewey SM, Thiemermann C. Spleen tyrosine kinase: a novel pharmacological target for sepsis-induced cardiac dysfunction and multi-organ failure. Front Immunol 2024; 15:1447901. [PMID: 39559354 PMCID: PMC11570271 DOI: 10.3389/fimmu.2024.1447901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Sepsis is a systemic condition caused by a dysregulated host response to infection and often associated with excessive release of proinflammatory cytokines resulting in multi-organ failure (MOF), including cardiac dysfunction. Despite a number of effective supportive treatments (e.g. ventilation, dialysis), there are no specific interventions that prevent or reduce MOF in patients with sepsis. To identify possible intervention targets, we re-analyzed the publicly accessible Gene Expression Omnibus accession GSE131761 dataset, which revealed an increased expression of spleen tyrosine kinase (SYK) in the whole blood of septic patients compared to healthy volunteers. This result suggests a potential involvement of SYK in the pathophysiology of sepsis. Thus, we investigated the effects of the highly selective SYK inhibitor PRT062607 (15mg/kg; i.p.) on sepsis-induced cardiac dysfunction and MOF in a clinically-relevant, murine model of sepsis. PRT062607 or vehicle (saline) was administered to 10-weeks-old C57BL/6 mice at 1h after the onset of sepsis induced by cecal ligation and puncture (CLP). Antibiotics (imipenem/cilastatin; 2mg/kg; s.c.) and analgesic (buprenorphine; 0.05mg/kg; i.p.) were administered at 6h and 18h post-CLP. After 24h, cardiac function was assessed in vivo by echocardiography and, after termination of the experiments, serum and cardiac samples were collected to evaluate the effects of SYK inhibition on the systemic release of inflammatory mediators and the degree of organ injury and dysfunction. Our results show that treatment of CLP-mice with PRT062607 significantly reduces systolic and diastolic cardiac dysfunction, renal dysfunction and liver injury compared to CLP-mice treated with vehicle. In addition, the sepsis-induced systemic inflammation (measured as an increase in inflammatory cytokines and chemokines in the serum) and the cardiac activation of NF-kB (IKK) and the NLRP3 inflammasome were significantly reduced in CLP-mice treated with PRT062607. These results demonstrate, for the first time, that SYK inhibition 1h after the onset of sepsis reduces the systemic inflammation, cardiac dysfunction and MOF, suggesting a potential role of the activation of SYK in the pathophysiology of sepsis. Novel therapeutic strategies that inhibit SYK activity may be of benefit in patients with diseases associated with local or systemic inflammation including sepsis.
Collapse
Affiliation(s)
- Chiara Verra
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Maria Kerstin Paulmann
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Jamila Wegener
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Enrica Marzani
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | | | - Massimo Collino
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Sina Maren Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Christoph Thiemermann
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
4
|
Li A, Wang X, Li J, Li X, Wang J, Liu Y, Wang Z, Yang X, Gao J, Wu J, Sun T, Huo L, Yi Y, Shen J, Cai J, Yao Y. Critical role of G protein-coupled receptor 40 in B cell response and the pathogenesis of rheumatoid arthritis in mice and patients. Cell Rep 2024; 43:114858. [PMID: 39392754 DOI: 10.1016/j.celrep.2024.114858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/06/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024] Open
Abstract
Rheumatoid arthritis (RA) is marked by joint damage and inflammation, with B cells playing a key role by generating autoantibodies. This study shows that G protein-coupled receptor 40 (GPR40) deficiency in B cells leads to increased activation, proliferation, antibody production, germinal center formation, and class switch recombination. GPR40 regulates Plcγ2 phosphorylation and intracellular calcium flux downstream of the B cell receptor by binding to the Gαq protein. In GPR40-deficient mice, susceptibility to collagen-induced arthritis was higher. GPR40 agonists showed potential as therapeutic agents, and their reduced expression in patients with RA correlated with disease onset, suggesting GPR40 as a potential therapeutic target and diagnostic marker.
Collapse
Affiliation(s)
- Anqi Li
- School of Medicine & Nursing, Huzhou University, Huzhou, China
| | - Xiaoyi Wang
- First Affiliated Hospital, Huzhou University, Huzhou, China
| | - Jingwen Li
- School of Medicine & Nursing, Huzhou University, Huzhou, China
| | - Xiaoyu Li
- School of Medicine & Nursing, Huzhou University, Huzhou, China
| | - Jue Wang
- School of Medicine & Nursing, Huzhou University, Huzhou, China
| | - Yang Liu
- First Affiliated Hospital, Huzhou University, Huzhou, China
| | - Zhihong Wang
- Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
| | - Xiaobing Yang
- Third Affiliated Hospital, Huzhou University, Huzhou, China
| | - Jiapeng Gao
- Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Juanjie Wu
- First Affiliated Hospital, Huzhou University, Huzhou, China
| | - Tao Sun
- Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
| | - Lixia Huo
- First Affiliated Hospital, Huzhou University, Huzhou, China
| | - Yanfeng Yi
- School of Life and Health Sciences, Huzhou College, Huzhou, China
| | - Jiantong Shen
- School of Medicine & Nursing, Huzhou University, Huzhou, China
| | - Jiexun Cai
- School of Medicine & Nursing, Huzhou University, Huzhou, China
| | - Yunliang Yao
- School of Medicine & Nursing, Huzhou University, Huzhou, China; First Affiliated Hospital, Huzhou University, Huzhou, China.
| |
Collapse
|
5
|
Capener JL, Vasta JD, Katis VL, Michaud A, Beck MT, Daglish SCD, Cohen-Kedar S, Barda ES, Howell S, Dotan I, Robers MB, Axtman AD, Bashore FM. Development of SYK NanoBRET Cellular Target Engagement Assays for Gain-of-Function Variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598544. [PMID: 38915605 PMCID: PMC11195201 DOI: 10.1101/2024.06.12.598544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase that is activated by phosphorylation events downstream of FcR, B-cell and T-cell receptors, integrins, and C-type lectin receptors. When the tandem Src homology 2 (SH2) domains of SYK bind to phosphorylated immunoreceptor tyrosine-based activation motifs (pITAMs) contained within these immunoreceptors, or when SYK is phosphorylated in interdomain regions A and B, SYK is activated. SYK gain-of-function (GoF) variants were previously identified in six patients that had higher levels of phosphorylated SYK and phosphorylated downstream proteins JNK and ERK. Furthermore, the increased SYK activation resulted in the clinical manifestation of immune dysregulation, organ inflammation, and a predisposition for lymphoma. The knowledge that the SYK GoF variants have enhanced activity was leveraged to develop a SYK NanoBRET cellular target engagement assay in intact live cells with constructs for the SYK GoF variants. Herein, we developed a potent SYK-targeted NanoBRET tracer using a SYK donated chemical probe, MRL-SYKi, that enabled a NanoBRET cellular target engagement assay for SYK GoF variants, SYK(S550Y), SYK(S550F), and SYK(P342T). We determined that ATP-competitive SYK inhibitors bind potently to these SYK variants in intact live cells. Additionally, we demonstrated that MRL-SYKi can effectively reduce the catalytic activity of SYK variants, and the phosphorylation levels of SYK(S550Y) in an epithelial cell line (SW480) stably expressing SYK(S550Y).
Collapse
Affiliation(s)
- Jacob L. Capener
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James D. Vasta
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI 53711, USA
| | - Vittorio L. Katis
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Ani Michaud
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI 53711, USA
| | - Michael T. Beck
- Promega Corporation, 2800 Woods Hollow Road, Madison, WI 53711, USA
| | - Sabrina C. D. Daglish
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sarit Cohen-Kedar
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Efrat Shaham Barda
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Stefanie Howell
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Iris Dotan
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Alison D. Axtman
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Frances M. Bashore
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Rasool S, Shomali T, Truong L, Croteau N, Veyron S, Bustillos BA, Springer W, Fiesel FC, Trempe JF. Identification and structural characterization of small molecule inhibitors of PINK1. Sci Rep 2024; 14:7739. [PMID: 38565869 PMCID: PMC10987619 DOI: 10.1038/s41598-024-58285-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
Mutations in PINK1 and Parkin cause early-onset Parkinson's Disease (PD). PINK1 is a kinase which functions as a mitochondrial damage sensor and initiates mitochondrial quality control by accumulating on the damaged organelle. There, it phosphorylates ubiquitin, which in turn recruits and activates Parkin, an E3 ubiquitin ligase. Ubiquitylation of mitochondrial proteins leads to the autophagic degradation of the damaged organelle. Pharmacological modulation of PINK1 constitutes an appealing avenue to study its physiological function and develop therapeutics. In this study, we used a thermal shift assay with insect PINK1 to identify small molecules that inhibit ATP hydrolysis and ubiquitin phosphorylation. PRT062607, an SYK inhibitor, is the most potent inhibitor in our screen and inhibits both insect and human PINK1, with an IC50 in the 0.5-3 µM range in HeLa cells and dopaminergic neurons. The crystal structures of insect PINK1 bound to PRT062607 or CYC116 reveal how the compounds interact with the ATP-binding pocket. PRT062607 notably engages with the catalytic aspartate and causes a destabilization of insert-2 at the autophosphorylation dimer interface. While PRT062607 is not selective for PINK1, it provides a scaffold for the development of more selective and potent inhibitors of PINK1 that could be used as chemical probes.
Collapse
Affiliation(s)
- Shafqat Rasool
- Department of Pharmacology & Therapeutics, Centre de Recherche en Biologie Structurale, and Structural Genomics Consortium, McGill University, 3655 Prom Sir William Osler, Montréal, QC, H3G 1Y6, Canada
| | - Tara Shomali
- Department of Pharmacology & Therapeutics, Centre de Recherche en Biologie Structurale, and Structural Genomics Consortium, McGill University, 3655 Prom Sir William Osler, Montréal, QC, H3G 1Y6, Canada
| | - Luc Truong
- Department of Pharmacology & Therapeutics, Centre de Recherche en Biologie Structurale, and Structural Genomics Consortium, McGill University, 3655 Prom Sir William Osler, Montréal, QC, H3G 1Y6, Canada
| | - Nathalie Croteau
- Department of Pharmacology & Therapeutics, Centre de Recherche en Biologie Structurale, and Structural Genomics Consortium, McGill University, 3655 Prom Sir William Osler, Montréal, QC, H3G 1Y6, Canada
| | - Simon Veyron
- Department of Pharmacology & Therapeutics, Centre de Recherche en Biologie Structurale, and Structural Genomics Consortium, McGill University, 3655 Prom Sir William Osler, Montréal, QC, H3G 1Y6, Canada
| | | | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA
| | - Fabienne C Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA
| | - Jean-François Trempe
- Department of Pharmacology & Therapeutics, Centre de Recherche en Biologie Structurale, and Structural Genomics Consortium, McGill University, 3655 Prom Sir William Osler, Montréal, QC, H3G 1Y6, Canada.
| |
Collapse
|
7
|
Bashore FM, Katis VL, Du Y, Sikdar A, Wang D, Bradshaw WJ, Rygiel KA, Leisner TM, Chalk R, Mishra S, Williams CA, Gileadi O, Brennan PE, Wiley JC, Gockley J, Cary GA, Carter GW, Young JE, Pearce KH, Fu H, the Emory-Sage-SGC TREAT-AD Center, Axtman AD. Characterization of covalent inhibitors that disrupt the interaction between the tandem SH2 domains of SYK and FCER1G phospho-ITAM. PLoS One 2024; 19:e0293548. [PMID: 38359047 PMCID: PMC10868801 DOI: 10.1371/journal.pone.0293548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/15/2023] [Indexed: 02/17/2024] Open
Abstract
RNA sequencing and genetic data support spleen tyrosine kinase (SYK) and high affinity immunoglobulin epsilon receptor subunit gamma (FCER1G) as putative targets to be modulated for Alzheimer's disease (AD) therapy. FCER1G is a component of Fc receptor complexes that contain an immunoreceptor tyrosine-based activation motif (ITAM). SYK interacts with the Fc receptor by binding to doubly phosphorylated ITAM (p-ITAM) via its two tandem SH2 domains (SYK-tSH2). Interaction of the FCER1G p-ITAM with SYK-tSH2 enables SYK activation via phosphorylation. Since SYK activation is reported to exacerbate AD pathology, we hypothesized that disruption of this interaction would be beneficial for AD patients. Herein, we developed biochemical and biophysical assays to enable the discovery of small molecules that perturb the interaction between the FCER1G p-ITAM and SYK-tSH2. We identified two distinct chemotypes using a high-throughput screen (HTS) and orthogonally assessed their binding. Both chemotypes covalently modify SYK-tSH2 and inhibit its interaction with FCER1G p-ITAM, however, these compounds lack selectivity and this limits their utility as chemical tools.
Collapse
Affiliation(s)
- Frances M. Bashore
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Vittorio L. Katis
- Nuffield Department of Medicine, Centre for Medicines Discovery, ARUK Oxford Drug Discovery Institute, University of Oxford, Headington, Oxford, United Kingdom
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, United States of America
- Emory Chemical Biology Discovery Center, School of Medicine, Emory University, Atlanta, GA, United States of America
| | - Arunima Sikdar
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Dongxue Wang
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, United States of America
- Emory Chemical Biology Discovery Center, School of Medicine, Emory University, Atlanta, GA, United States of America
| | - William J. Bradshaw
- Nuffield Department of Medicine, Centre for Medicines Discovery, ARUK Oxford Drug Discovery Institute, University of Oxford, Headington, Oxford, United Kingdom
| | - Karolina A. Rygiel
- Nuffield Department of Medicine, Centre for Medicines Discovery, ARUK Oxford Drug Discovery Institute, University of Oxford, Headington, Oxford, United Kingdom
| | - Tina M. Leisner
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Rod Chalk
- Nuffield Department of Medicine, Centre for Medicines Discovery, ARUK Oxford Drug Discovery Institute, University of Oxford, Headington, Oxford, United Kingdom
| | - Swati Mishra
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, United States of America
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States of America
| | - C. Andrew Williams
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, United States of America
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States of America
| | - Opher Gileadi
- Nuffield Department of Medicine, Centre for Medicines Discovery, ARUK Oxford Drug Discovery Institute, University of Oxford, Headington, Oxford, United Kingdom
| | - Paul E. Brennan
- Nuffield Department of Medicine, Centre for Medicines Discovery, ARUK Oxford Drug Discovery Institute, University of Oxford, Headington, Oxford, United Kingdom
| | | | - Jake Gockley
- Sage Bionetworks, Seattle, WA, United States of America
| | - Gregory A. Cary
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, United States of America
| | - Gregory W. Carter
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, United States of America
| | - Jessica E. Young
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, United States of America
- Institute for Stem Cell and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States of America
| | - Kenneth H. Pearce
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, United States of America
- Emory Chemical Biology Discovery Center, School of Medicine, Emory University, Atlanta, GA, United States of America
| | | | - Alison D. Axtman
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
8
|
Phelan JD, Scheich S, Choi J, Wright GW, Häupl B, Young RM, Rieke SA, Pape M, Ji Y, Urlaub H, Bolomsky A, Doebele C, Zindel A, Wotapek T, Kasbekar M, Collinge B, Huang DW, Coulibaly ZA, Morris VM, Zhuang X, Enssle JC, Yu X, Xu W, Yang Y, Zhao H, Wang Z, Tran AD, Shoemaker CJ, Shevchenko G, Hodson DJ, Shaffer AL, Staudt LM, Oellerich T. Response to Bruton's tyrosine kinase inhibitors in aggressive lymphomas linked to chronic selective autophagy. Cancer Cell 2024; 42:238-252.e9. [PMID: 38215749 PMCID: PMC11256978 DOI: 10.1016/j.ccell.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/10/2023] [Accepted: 12/20/2023] [Indexed: 01/14/2024]
Abstract
Diffuse large B cell lymphoma (DLBCL) is an aggressive, profoundly heterogeneous cancer, presenting a challenge for precision medicine. Bruton's tyrosine kinase (BTK) inhibitors block B cell receptor (BCR) signaling and are particularly effective in certain molecular subtypes of DLBCL that rely on chronic active BCR signaling to promote oncogenic NF-κB. The MCD genetic subtype, which often acquires mutations in the BCR subunit, CD79B, and in the innate immune adapter, MYD88L265P, typically resists chemotherapy but responds exceptionally to BTK inhibitors. However, the underlying mechanisms of response to BTK inhibitors are poorly understood. Herein, we find a non-canonical form of chronic selective autophagy in MCD DLBCL that targets ubiquitinated MYD88L265P for degradation in a TBK1-dependent manner. MCD tumors acquire genetic and epigenetic alterations that attenuate this autophagic tumor suppressive pathway. In contrast, BTK inhibitors promote autophagic degradation of MYD88L265P, thus explaining their exceptional clinical benefit in MCD DLBCL.
Collapse
Affiliation(s)
- James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sebastian Scheich
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Jaewoo Choi
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - George W Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, Bethesda, MD 20850, USA
| | - Björn Häupl
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Ryan M Young
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sara A Rieke
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Martine Pape
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Yanlong Ji
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany; Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Arnold Bolomsky
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carmen Doebele
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Alena Zindel
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Tanja Wotapek
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Monica Kasbekar
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brett Collinge
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC V5Z 4E6, Canada
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zana A Coulibaly
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vivian M Morris
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Xiaoxuan Zhuang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julius C Enssle
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Xin Yu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weihong Xu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yandan Yang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hong Zhao
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhuo Wang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andy D Tran
- CCR Microscopy Core, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher J Shoemaker
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Galina Shevchenko
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Daniel J Hodson
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Arthur L Shaffer
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Thomas Oellerich
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
9
|
Martin HL, Turner AL, Higgins J, Tang AA, Tiede C, Taylor T, Siripanthong S, Adams TL, Manfield IW, Bell SM, Morrison EE, Bond J, Trinh CH, Hurst CD, Knowles MA, Bayliss RW, Tomlinson DC. Affimer-mediated locking of p21-activated kinase 5 in an intermediate activation state results in kinase inhibition. Cell Rep 2023; 42:113184. [PMID: 37776520 DOI: 10.1016/j.celrep.2023.113184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/17/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023] Open
Abstract
Kinases are important therapeutic targets, and their inhibitors are classified according to their mechanism of action, which range from blocking ATP binding to covalent inhibition. Here, a mechanism of inhibition is highlighted by capturing p21-activated kinase 5 (PAK5) in an intermediate state of activation using an Affimer reagent that binds in the P+1 pocket. PAK5 was identified from a non-hypothesis-driven high-content imaging RNAi screen in urothelial cancer cells. Silencing of PAK5 resulted in reduced cell number, G1/S arrest, and enlargement of cells, suggesting it to be important in urothelial cancer cell line survival and proliferation. Affimer reagents were isolated to identify mechanisms of inhibition. The Affimer PAK5-Af17 recapitulated the phenotype seen with siRNA. Co-crystallization revealed that PAK5-Af17 bound in the P+1 pocket of PAK5, locking the kinase into a partial activation state. This mechanism of inhibition indicates that another class of kinase inhibitors is possible.
Collapse
Affiliation(s)
- Heather L Martin
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK; Division of Molecular Medicine, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Amy L Turner
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Julie Higgins
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - Anna A Tang
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Christian Tiede
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas Taylor
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sitthinon Siripanthong
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas L Adams
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Iain W Manfield
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sandra M Bell
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK; Division of Molecular Medicine, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Ewan E Morrison
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK; Division of Molecular Medicine, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Jacquelyn Bond
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK; Division of Molecular Medicine, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Chi H Trinh
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Carolyn D Hurst
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Margaret A Knowles
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Richard W Bayliss
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Darren C Tomlinson
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
10
|
Bashore FM, Katis VL, Du Y, Sikdar A, Wang D, Bradshaw WJ, Rygiel KA, Leisner TM, Chalk R, Mishra S, Williams AC, Gileadi O, Brennan PE, Wiley JC, Gockley J, Cary GA, Carter GW, Young JE, Pearce KH, Fu H, Axtman AD. Characterization of covalent inhibitors that disrupt the interaction between the tandem SH2 domains of SYK and FCER1G phospho-ITAM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.551026. [PMID: 37547005 PMCID: PMC10402180 DOI: 10.1101/2023.07.28.551026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
RNA sequencing and genetic data support spleen tyrosine kinase (SYK) and high affinity immunoglobulin epsilon receptor subunit gamma (FCER1G) as putative targets to be modulated for Alzheimer's disease (AD) therapy. FCER1G is a component of Fc receptor complexes that contain an immunoreceptor tyrosine-based activation motif (ITAM). SYK interacts with the Fc receptor by binding to doubly phosphorylated ITAM (p-ITAM) via its two tandem SH2 domains (SYK-tSH2). Interaction of the FCER1G p-ITAM with SYK-tSH2 enables SYK activation via phosphorylation. Since SYK activation is reported to exacerbate AD pathology, we hypothesized that disruption of this interaction would be beneficial for AD patients. Herein, we developed biochemical and biophysical assays to enable the discovery of small molecules that perturb the interaction between the FCER1G p-ITAM and SYK-tSH2. We identified two distinct chemotypes using a high-throughput screen (HTS) and orthogonally assessed their binding. Both chemotypes covalently modify SYK-tSH2 and inhibit its interaction with FCER1G p-ITAM.
Collapse
Affiliation(s)
- Frances M Bashore
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Structural Genomics Consortium, University of North Carolina, Chapel Hill, NC, USA
| | - Vittorio L Katis
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Headington, Oxford, OX3 7FZ, UK
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Emory Chemical Biology Discovery Center, School of Medicine, Emory University, Atlanta, GA, USA
| | - Arunima Sikdar
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, NC, USA
| | - Dongxue Wang
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Emory Chemical Biology Discovery Center, School of Medicine, Emory University, Atlanta, GA, USA
| | - William J Bradshaw
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Headington, Oxford, OX3 7FZ, UK
| | - Karolina A Rygiel
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Headington, Oxford, OX3 7FZ, UK
| | - Tina M Leisner
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, NC, USA
| | - Rod Chalk
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Headington, Oxford, OX3 7FZ, UK
| | | | | | - Opher Gileadi
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Headington, Oxford, OX3 7FZ, UK
- Current address: Structural Genomics Consortium, Department of Medicine, Karolinska Hospital and Karolinska Institute, 171 76 Stockholm, Sweden
| | - Paul E Brennan
- ARUK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Headington, Oxford, OX3 7FZ, UK
| | | | | | | | | | | | - Kenneth H Pearce
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, University of North Carolina, Chapel Hill, NC, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Emory Chemical Biology Discovery Center, School of Medicine, Emory University, Atlanta, GA, USA
| | - Alison D Axtman
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Structural Genomics Consortium, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
11
|
Birkle TJY, Brown GC. Syk inhibitors protect against microglia-mediated neuronal loss in culture. Front Aging Neurosci 2023; 15:1120952. [PMID: 37009452 PMCID: PMC10050448 DOI: 10.3389/fnagi.2023.1120952] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Microglia are brain macrophages and play beneficial and/or detrimental roles in many brain pathologies because of their inflammatory and phagocytic activity. Microglial inflammation and phagocytosis are thought to be regulated by spleen tyrosine kinase (Syk), which is activated by multiple microglial receptors, including TREM2 (Triggering Receptor Expressed on Myeloid Cells 2), implicated in neurodegeneration. Here, we have tested whether Syk inhibitors can prevent microglia-dependent neurodegeneration induced by lipopolysaccharide (LPS) in primary neuron-glia cultures. We found that the Syk inhibitors BAY61-3606 and P505-15 (at 1 and 10 μM, respectively) completely prevented the neuronal loss induced by LPS, which was microglia-dependent. Syk inhibition also prevented the spontaneous loss of neurons from older neuron-glia cultures. In the absence of LPS, Syk inhibition depleted microglia from the cultures and induced some microglial death. However, in the presence of LPS, Syk inhibition had relatively little effect on microglial density (reduced by 0-30%) and opposing effects on the release of two pro-inflammatory cytokines (IL-6 decreased by about 45%, TNFα increased by 80%). Syk inhibition also had no effect on the morphological transition of microglia exposed to LPS. On the other hand, inhibition of Syk reduced microglial phagocytosis of beads, synapses and neurons. Thus, Syk inhibition in this model is most likely neuroprotective by reducing microglial phagocytosis, however, the reduced microglial density and IL-6 release may also contribute. This work adds to increasing evidence that Syk is a key regulator of the microglial contribution to neurodegenerative disease and suggests that Syk inhibitors may be used to prevent excessive microglial phagocytosis of synapses and neurons.
Collapse
Affiliation(s)
| | - Guy C. Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Prajapati P, Doshi G. An Update on the Emerging Role of Wnt/β-catenin, SYK, PI3K/AKT, and GM-CSF Signaling Pathways in Rheumatoid Arthritis. Curr Drug Targets 2023; 24:1298-1316. [PMID: 38083893 DOI: 10.2174/0113894501276093231206064243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/14/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024]
Abstract
Rheumatoid arthritis is an untreatable autoimmune disorder. The disease is accompanied by joint impairment and anomalies, which negatively affect the patient's quality of life and contribute to a decline in manpower. To diagnose and treat rheumatoid arthritis, it is crucial to understand the abnormal signaling pathways that contribute to the disease. This understanding will help develop new rheumatoid arthritis-related intervention targets. Over the last few decades, researchers have given more attention to rheumatoid arthritis. The current review seeks to provide a detailed summary of rheumatoid arthritis, highlighting the basic description of the disease, past occurrences, the study of epidemiology, risk elements, and the process of disease progression, as well as the key scientific development of the disease condition and multiple signaling pathways and enumerating the most current advancements in discovering new rheumatoid arthritis signaling pathways and rheumatoid arthritis inhibitors. This review emphasizes the anti-rheumatoid effects of these inhibitors [for the Wnt/β-catenin, Phosphoinositide 3-Kinases (PI3K/AKT), Spleen Tyrosine Kinase (SYK), and Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) signaling pathways], illustrating their mechanism of action through a literature search, current therapies, and novel drugs under pre-clinical and clinical trials.
Collapse
Affiliation(s)
- Pradyuman Prajapati
- SVKM's Dr Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India
| | - Gaurav Doshi
- SVKM's Dr Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
13
|
Endocytosis triggers V-ATPase-SYK-mediated priming of cGAS activation and innate immune response. Proc Natl Acad Sci U S A 2022; 119:e2207280119. [PMID: 36252040 PMCID: PMC9618142 DOI: 10.1073/pnas.2207280119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The current view of nucleic acid-mediated innate immunity is that binding of intracellular sensors to nucleic acids is sufficient for their activation. Here, we report that endocytosis of virus or foreign DNA initiates a priming signal for the DNA sensor cyclic GMP-AMP synthase (cGAS)-mediated innate immune response. Mechanistically, viral infection or foreign DNA transfection triggers recruitment of the spleen tyrosine kinase (SYK) and cGAS to the endosomal vacuolar H+ pump (V-ATPase), where SYK is activated and then phosphorylates human cGASY214/215 (mouse cGasY200/201) to prime its activation. Upon binding to DNA, the primed cGAS initiates robust cGAMP production and mediator of IRF3 activation/stimulator of interferon genes-dependent innate immune response. Consistently, blocking the V-ATPase-SYK axis impairs DNA virus- and transfected DNA-induced cGAMP production and expression of antiviral genes. Our findings reveal that V-ATPase-SYK-mediated tyrosine phosphorylation of cGAS following endocytosis of virus or other cargos serves as a priming signal for cGAS activation and innate immune response.
Collapse
|
14
|
Yamamoto Y, Yaji K, Ito T. Practical Isolation of tert-Butyl [(1 S,2 R)-2-Aminocyclohexyl]carbamate ( R)-Mandelate through Diastereomeric Salt Formation under Thermodynamic Control. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuhei Yamamoto
- Process Chemistry, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, 17-85 Jusohonmachi 2-chome, Yodogawa-ku, Osaka 532-8686, Japan
| | - Kentaro Yaji
- Process Chemistry, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, 17-85 Jusohonmachi 2-chome, Yodogawa-ku, Osaka 532-8686, Japan
| | - Tatsuya Ito
- Process Chemistry, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, 17-85 Jusohonmachi 2-chome, Yodogawa-ku, Osaka 532-8686, Japan
| |
Collapse
|
15
|
Cao M, Ma L, Yan C, Wang H, Ran M, Chen Y, Wang X, Liang X, Chai L, Li X. Mouse Ocilrp2/Clec2i negatively regulates LPS-mediated IL-6 production by blocking Dap12-Syk interaction in macrophage. Front Immunol 2022; 13:984520. [PMID: 36300111 PMCID: PMC9589251 DOI: 10.3389/fimmu.2022.984520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
C-type lectin Ocilrp2/Clec2i is widely expressed in dendritic cells, lymphokine-activated killer cells and activated T cells. Previous studies have shown that Ocilrp2 is an important regulator in the activation of T cells and NK cells. However, the role of Ocilrp2 in the inflammatory responses by activated macrophages is currently unknown. This study investigated the expression of inflammatory cytokines in LPS-induced macrophages from primary peritoneal macrophages silenced by specific siRNA target Ocilrp2. Ocilrp2 was significantly downregulated in macrophages via NF-κB and pathways upon LPS stimuli or VSV infection. Silencing Ocilrp2 resulted in the increased expression of IL-6 in LPS-stimulated peritoneal macrophages and mice. Moreover, IL-6 expression was reduced in LPS-induced Ocilrp2 over-expressing iBMDM cells. Furthermore, we found that Ocilrp2-related Syk activation is responsible for expressing inflammatory cytokines in LPS-stimulated macrophages. Silencing Ocilrp2 significantly promotes the binding of Syk to Dap12. Altogether, we identified the Ocilrp2 as a critical role in the TLR4 signaling pathway and inflammatory macrophages’ immune regulation, and added mechanistic insights into the crosstalk between TLR and Syk signaling.
Collapse
Affiliation(s)
- Mingya Cao
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
- Institute of Translational Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Lina Ma
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Chenyang Yan
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Han Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Mengzhe Ran
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Ying Chen
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Xiao Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Xiaonan Liang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Lihui Chai
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
- Institute of Translational Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Lihui Chai, ; Xia Li,
| | - Xia Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
- Institute of Translational Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Lihui Chai, ; Xia Li,
| |
Collapse
|
16
|
Abstract
Flaxseed (Linum usitatissimum L.) has been associated with numerous health benefits. The flax plant synthesizes an array of biologically active compounds including peptides or linusorbs (LOs, a.k.a., cyclolinopeptides), lignans, soluble dietary fiber and omega-3 fatty acids. The LOs arise from post-translational modification of four or more ribosome-derived precursors. These compounds exhibit an array of biological activities, including suppression of T-cell proliferation, excessive inflammation, and osteoclast replication as well as induction of apoptosis in some cancer cell lines. The mechanisms of LO action are only now being elucidated but these compounds might interact with other active compounds in flaxseed and contribute to biological activity attributed to other flax compounds. This review focuses on both the biological interaction of LOs with proteins and other molecules and comprehensive knowledge of LO pharmacological and biological properties. The physicochemical and nutraceutical properties of LOs, as well as the biological effects of certain LOs, and their underlying mechanisms of action, are reviewed. Finally, strategies for producing LOs by either peptide synthesis or recombinant organisms are presented. This review will be the first to describe LOs as a versatile scaffold for the action of compounds to deliver physiochemically/biologically active molecules for developing novel nutraceuticals and pharmaceuticals.
Collapse
Affiliation(s)
- Youn Young Shim
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
- Prairie Tide Diversified Inc, Saskatoon, Saskatchewan, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Gyeonggi-do, Korea
| | - Martin J T Reaney
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Prairie Tide Diversified Inc, Saskatoon, Saskatchewan, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Tang S, Yu Q, Ding C. Investigational spleen tyrosine kinase (SYK) inhibitors for the treatment of autoimmune diseases. Expert Opin Investig Drugs 2022; 31:291-303. [PMID: 35130124 DOI: 10.1080/13543784.2022.2040014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Autoimmune diseases (ADs) are disorders induced by multiple inflammatory mediators, in which immune system attacks healthy tissues and triggers tissue injury. Targeted regulation of the activity of kinases that influence inflammation is one of the major therapies for ADs. Recently, investigational spleen tyrosine kinase (SYK) inhibitors have shown encouraging results in the ADs therapy. AREAS COVERED This article provides a background on autoimmune diseases and provides an update on investigational SYK inhibitors. This literature review was conducted by searching publications about investigational Spleen tyrosine kinase inhibitors in the treatment of ADs from experimental to clinical studies. The search terms used were SYK inhibitors, R406, fostamatinib (R788), P505-15 (PRT062607), entospletinib (GS-9973), R112, lanraplenib (GS-9876), cerdulatinib, R343, BAY-61-3606, GSK compound 143 (GSK143), R211, SKI-G-618, SKI-O-85, ER-27319, YM193306, RO9021 in conjunction with autoimmune disease using electronic databases including PubMed, EMBASE, MEDLINE and Google Scholar. EXPERT OPINION SYK inhibitors are promising drugs with unique advantages and acceptable tolerability and safety for the treatment of ADs. However, the difficulties in developing highly selective SYK inhibitors and the unknown effects are challenges. Long term and real-world data are essential to determine the risk-benefit ratio and true role of SYK inhibitors in the therapy of ADs.
Collapse
Affiliation(s)
- Su'an Tang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Centre of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qinghong Yu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
18
|
Inhibition of SYK and cSrc kinases can protect bone and cartilage in preclinical models of osteoarthritis and rheumatoid arthritis. Sci Rep 2021; 11:23120. [PMID: 34848799 PMCID: PMC8632988 DOI: 10.1038/s41598-021-02568-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 10/26/2021] [Indexed: 11/08/2022] Open
Abstract
The pathophysiology of osteoarthritis (OA) includes the destruction of subchondral bone tissue and inflammation of the synovium. Thus, an effective disease-modifying treatment should act on both of these pathogenetic components. It is known that cSrc kinase is involved in bone and cartilage remodeling, and SYK kinase is associated with the inflammatory component. Thus the aim of this study was to characterize the mechanism of action and efficacy of a small molecule multikinase inhibitor MT-SYK-03 targeting SYK and cSrc kinases among others in different in vitro and in vivo arthritis models. The selectivity of MT-SYK-03 kinase inhibition was assayed on a panel of 341 kinases. The compound was evaluated in a set of in vitro models of OA and in vivo OA and RA models: surgically-induced arthritis (SIA), monosodium iodoacetate-induced arthritis (MIA), collagen-induced arthritis (CIA), adjuvant-induced arthritis (AIA). MT-SYK-03 inhibited cSrc and SYK with IC50 of 14.2 and 23 nM respectively. Only five kinases were inhibited > 90% at 500 nM of MT-SYK-03. In in vitro OA models MT-SYK-03 reduced hypertrophic changes of chondrocytes, bone resorption, and inhibited SYK-mediated inflammatory signaling. MT-SYK-03 showed preferential distribution to joint and bone tissue (in rats) and revealed disease-modifying activity in vivo by halving the depth of cartilage erosion in rat SIA model, and increasing the pain threshold in rat MIA model. Chondroprotective and antiresorptive effects were shown in a monotherapy regime and in combination with methotrexate (MTX) in murine and rat CIA models; an immune-mediated inflammation in rat AIA model was decreased. The obtained preclinical data support inhibition of cSrc and SYK as a viable strategy for disease-modifying treatment of OA. A Phase 2 clinical study of MT-SYK-03 is to be started.
Collapse
|
19
|
Xie G, Liu W, Lian Z, Xie D, Yuan G, Ye J, Lin Z, Wang W, Zeng J, Shen H, Wang X, Feng H, Cong W, Yao G. Spleen tyrosine kinase (SYK) inhibitor PRT062607 protects against ovariectomy-induced bone loss and breast cancer-induced bone destruction. Biochem Pharmacol 2021; 188:114579. [PMID: 33895161 DOI: 10.1016/j.bcp.2021.114579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 02/05/2023]
Abstract
Osteolytic diseases, including breast cancer-induced osteolysis and postmenopausal osteoporosis, are attributed to excessive bone resorption by osteoclasts. Spleen tyrosine kinase (SYK) is involved in osteoclastogenesis and bone resorption, whose role in breast cancer though remains controversial. Effects of PRT062607 (PRT), a highly specific inhibitor of SYK, on the osteoclast and breast cancer functionalities are yet to be clarified. This study demonstrated the in vitro inhibitory actions of PRT on the osteoclast-specific gene expression, bone resorption, and osteoclastogenesis caused by receptor activator of nuclear factor kappa B ligand (RANKL), as well as its in vitro suppressive effects on the growth, migration and invasion of breast carcinoma cell line MDA-MB-231, which were achieved through PLCγ2 and PI3K-AKT-mTOR pathways. Further, we proved that PRT could prevent post-ovariectomy (OVX) loss of bone and breast cancer-induced bone destruction in vivo, which agreed with the in vitro outcomes. In conclusion, our findings suggest the potential value of PRT in managing osteolytic diseases mediated by osteoclasts.
Collapse
Affiliation(s)
- Gang Xie
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Wenjie Liu
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Zhen Lian
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Dantao Xie
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Guixin Yuan
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Jiajie Ye
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Zihong Lin
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Weidong Wang
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Jican Zeng
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Huaxing Shen
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xinjia Wang
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Haotian Feng
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi, China; School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Wei Cong
- Institute of Translational Medicine, Shanghai University, Shanghai, China.
| | - Guanfeng Yao
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
20
|
Abstract
Despite recent advances in the treatment of autoimmune and inflammatory diseases, unmet medical needs in some areas still exist. One of the main therapeutic approaches to alleviate dysregulated inflammation has been to target the activity of kinases that regulate production of inflammatory mediators. Small-molecule kinase inhibitors have the potential for broad efficacy, convenience and tissue penetrance, and thus often offer important advantages over biologics. However, designing kinase inhibitors with target selectivity and minimal off-target effects can be challenging. Nevertheless, immense progress has been made in advancing kinase inhibitors with desirable drug-like properties into the clinic, including inhibitors of JAKs, IRAK4, RIPKs, BTK, SYK and TPL2. This Review will address the latest discoveries around kinase inhibitors with an emphasis on clinically validated autoimmunity and inflammatory pathways.
Collapse
Affiliation(s)
- Ali A Zarrin
- Discovery Department, TRex Bio, South San Francisco, CA, USA.
| | - Katherine Bao
- Early Discovery Biochemistry Department, Genentech, South San Francisco, CA, USA
| | | | - Domagoj Vucic
- Early Discovery Biochemistry Department, Genentech, South San Francisco, CA, USA
| |
Collapse
|
21
|
Hawner M, Ducho C. Cellular Targeting of Oligonucleotides by Conjugation with Small Molecules. Molecules 2020; 25:E5963. [PMID: 33339365 PMCID: PMC7766908 DOI: 10.3390/molecules25245963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Drug candidates derived from oligonucleotides (ON) are receiving increased attention that is supported by the clinical approval of several ON drugs. Such therapeutic ON are designed to alter the expression levels of specific disease-related proteins, e.g., by displaying antigene, antisense, and RNA interference mechanisms. However, the high polarity of the polyanionic ON and their relatively rapid nuclease-mediated cleavage represent two major pharmacokinetic hurdles for their application in vivo. This has led to a range of non-natural modifications of ON structures that are routinely applied in the design of therapeutic ON. The polyanionic architecture of ON often hampers their penetration of target cells or tissues, and ON usually show no inherent specificity for certain cell types. These limitations can be overcome by conjugation of ON with molecular entities mediating cellular 'targeting', i.e., enhanced accumulation at and/or penetration of a specific cell type. In this context, the use of small molecules as targeting units appears particularly attractive and promising. This review provides an overview of advances in the emerging field of cellular targeting of ON via their conjugation with small-molecule targeting structures.
Collapse
Affiliation(s)
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66 123 Saarbrücken, Germany;
| |
Collapse
|
22
|
Shao Y, Zhang S, Zhang Y, Liu Z. Recent advance of spleen tyrosine kinase in diseases and drugs. Int Immunopharmacol 2020; 90:107168. [PMID: 33264719 DOI: 10.1016/j.intimp.2020.107168] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Spleen tyrosine kinase (Syk) is a non-receptor protein tyrosine kinase, also known as p72Syk. It is important for downstream signaling from cell surface receptors, such as Fc receptors, complement receptors and integrin. Syk plays the critical role in triggering immune and allergic reactions, the signaling pathway of Syk has become the research focus on drugs for allergic disease and human malignancies. This review summarized the characteristics of Syk, its mechanism in related reactions, and mainly discussed the signal transduction pathway mediated by Syk. With the development of industry and the aggravation of environmental pollution, the incidence of allergic diseases is increasing, it has become a global priority disease. In this process, Syk participates in IgE/FcεRI signaling pathway plays a critical role in triggering allergic reactions. This review described the characteristics and the interaction mechanism of Syk and its binding proteins in disease, and summarized the research status of targeted Syk inhibitors.
Collapse
Affiliation(s)
- Yuxin Shao
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Su Zhang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yanfen Zhang
- Technology Transfer Center, Hebei University, Baoding 071002, China.
| | - Zhongcheng Liu
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
23
|
Syk Inhibitors: New Computational Insights into Their Intraerythrocytic Action in Plasmodium falciparum Malaria. Int J Mol Sci 2020; 21:ijms21197009. [PMID: 32977621 PMCID: PMC7582821 DOI: 10.3390/ijms21197009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/12/2020] [Accepted: 09/18/2020] [Indexed: 12/23/2022] Open
Abstract
Resistance to antimalarial drugs has spread rapidly over the past few decades. The WHO recommends artemisinin-based combination therapies for the treatment of uncomplicated malaria, but unfortunately these approaches are losing their efficacy in large areas of Southeast Asia. In 2016, artemisinin resistance was confirmed in 5 countries of the Greater Mekong subregion. We focused our study on Syk inhibitors as antimalarial drugs. The Syk protein is present in human erythrocytes, and the membrane of protein band 3 is its major target following activation by oxidant stress. Tyr phosphorylation of band 3 occurs during P. falciparum growth, leading to the release of microparticles containing hemicromes and structural weakening of the host cell membrane, simplifying merozoite reinfection. Syk inhibitors block these events by interacting with the Syk protein’s catalytic site. We performed in vitro proteomics and in silico studies and compared the results. In vitro studies were based on treatment of the parasite’s cellular cultures with different concentrations of Syk inhibitors, while proteomics studies were focused on the Tyr phosphorylation of band 3 by Syk protein with the same concentrations of drugs. In silico studies were based on different molecular modeling approaches in order to analyze and optimize the ligand–protein interactions and obtain the highest efficacy in vitro. In the presence of Syk inhibitors, we observed a marked decrease of band 3 Tyr phosphorylation according to the increase of the drug’s concentration. Our studies could be useful for the structural optimization of these compounds and for the design of novel Syk inhibitors in the future.
Collapse
|
24
|
Song JH, Yu DH, Hwang TS, Seung BJ, Sur JH, Kim YJ, Jung DI. Expression of platelet-derived growth factor receptor-α/ß, vascular endothelial growth factor receptor-2, c-Abl, and c-Kit in canine granulomatous meningoencephalitis and necrotizing encephalitis. Vet Med Sci 2020; 6:965-974. [PMID: 32585777 PMCID: PMC7738704 DOI: 10.1002/vms3.314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/11/2020] [Accepted: 05/27/2020] [Indexed: 01/21/2023] Open
Abstract
Background Given the active research on targeted therapy using tyrosine kinase (TK) inhibitors (TKIs) in the field of oncology, further studies have recently been conducted to evaluate their use in autoimmune disorders. Based on immunological investigations, previous studies have suggested that granulomatous meningoencephalomyelitis (GME) and necrotizing encephalomyelitis (NE) are similar to multiple sclerosis (MS), which is a human autoimmune demyelinating central nervous system disease. Objectives Considering this perspective, we hypothesized that canine GME and NE have significant expression of one or more TKs, which are associated with human MS pathogenesis. Methods To determine the possible use of conventional multi‐targeted TKIs as a treatment for canine GME and NE, we characterized the immunohistochemical expression of platelet‐derived growth factor receptor (PDGFR)‐α, PDGFR‐ß, vascular endothelial growth factor receptor (VEGFR)‐2, c‐Abl and c‐Kit in GME and NE samples. Results Histological samples from four dogs with GME and three with NE were retrieved. All samples stained positive for PDGFR‐ß (7/7 [100%]). PDGFR‐α and c‐Kit were expressed in 3/7 (42.8%) samples each. c‐Abl was identified in 2/7 (28.5%) samples; no sample showed VEGFR‐2 (0%) expression. Co‐expression of TKs was identified in 6/7 (85.7%) dogs. Conclusions All samples were positive for at least one or more of PDGFR‐α, PDGFR‐ß, c‐Kit and c‐Abl, which are known as the target TKs of conventional multi‐targeted TKIs. Their presence does suggest that these TKs may play a role in the pathogenesis of GME and NE. Therefore, multi‐targeted TKIs may provide benefits in the treatment of canine GME and NE by suppressing the activity of these TKs.
Collapse
Affiliation(s)
- Joong-Hyun Song
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Do-Hyeon Yu
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Tae-Sung Hwang
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Byung-Joon Seung
- Department of Pathobiology, Small Animal Tumor Diagnostic Center, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jung-Hyang Sur
- Department of Pathobiology, Small Animal Tumor Diagnostic Center, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Young Joo Kim
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, 91766-1854, USA
| | - Dong-In Jung
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| |
Collapse
|
25
|
Kurniawan DW, Storm G, Prakash J, Bansal R. Role of spleen tyrosine kinase in liver diseases. World J Gastroenterol 2020; 26:1005-1019. [PMID: 32205992 PMCID: PMC7081001 DOI: 10.3748/wjg.v26.i10.1005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/14/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase expressed in most hematopoietic cells and non-hematopoietic cells and play a crucial role in both immune and non-immune biological responses. SYK mediate diverse cellular responses via an immune-receptor tyrosine-based activation motifs (ITAMs)-dependent signalling pathways, ITAMs-independent and ITAMs-semi-dependent signalling pathways. In liver, SYK expression has been observed in parenchymal (hepatocytes) and non-parenchymal cells (hepatic stellate cells and Kupffer cells), and found to be positively correlated with the disease severity. The implication of SYK pathway has been reported in different liver diseases including liver fibrosis, viral hepatitis, alcoholic liver disease, non-alcoholic steatohepatitis and hepatocellular carcinoma. Antagonism of SYK pathway using kinase inhibitors have shown to attenuate the progression of liver diseases thereby suggesting SYK as a highly promising therapeutic target. This review summarizes the current understanding of SYK and its therapeutic implication in liver diseases.
Collapse
Affiliation(s)
- Dhadhang Wahyu Kurniawan
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede 7500, the Netherlands
- Department of Pharmacy, Universitas Jenderal Soedirman, Purwokerto 53132, Indonesia
| | - Gert Storm
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede 7500, the Netherlands
- Department of Pharmaceutics, University of Utrecht, Utrecht 3454, the Netherlands
| | - Jai Prakash
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede 7500, the Netherlands
| | - Ruchi Bansal
- Department of Biomaterials Science and Technology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede 7500, the Netherlands
- Department of Pharmacokinetics, Toxicology and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Enschede 7500, the Netherlands
| |
Collapse
|
26
|
Wang C, Wang X, Li Y, Wang T, Huang Z, Qin Z, Yang S, Xiang R, Fan Y. Design and optimization of orally spleen tyrosine kinase (SYK) inhibitors for treatment of solid tumor. Bioorg Chem 2020; 95:103547. [PMID: 31911307 DOI: 10.1016/j.bioorg.2019.103547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 02/08/2023]
Abstract
As the aim to discover orally SYK inhibitors for solid tumor treatment, a series of novel derivatives based on imidazo[1,2-a]pyrazine scaffold were designed, synthesized and evaluated. Structure-activity relationship study of both enzymatic and cellular assays led to the identification of compound 12f. The novel SYK inhibitor 12f showed potent antitumor activity against solid tumors with favorable drug-like properties of lipophilicity and solubility. 12f could induce cell apoptosis of ovarian and lung cancer cell lines. In SKOV3 xenograft mouse model, oral administration of 12f led to significant tumour regression without obvious toxicity. 12f improved the limited response of traditional SYK inhibitors in solid tumors in vitro and in vivo. Taken together, this compound may act as a promising lead compound for further development of new SYK inhibitors for solid tumor therapy.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China; 2011 Project Collaborative Innovation Center for Biotherapy of Ministry of Education, 94 Weijin Road, Tianjin 300071, China
| | - Xin Wang
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China; 2011 Project Collaborative Innovation Center for Biotherapy of Ministry of Education, 94 Weijin Road, Tianjin 300071, China
| | - Yao Li
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Tianqi Wang
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhi Huang
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhongxiang Qin
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Shengyong Yang
- Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Xiang
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China; 2011 Project Collaborative Innovation Center for Biotherapy of Ministry of Education, 94 Weijin Road, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, 94 Weijin Road, Tianjin 300071, China.
| | - Yan Fan
- Department of Medicinal Chemistry, School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China; 2011 Project Collaborative Innovation Center for Biotherapy of Ministry of Education, 94 Weijin Road, Tianjin 300071, China.
| |
Collapse
|
27
|
Patel RK, Weir MC, Shen K, Snyder D, Cooper VS, Smithgall TE. Expression of myeloid Src-family kinases is associated with poor prognosis in AML and influences Flt3-ITD kinase inhibitor acquired resistance. PLoS One 2019; 14:e0225887. [PMID: 31790499 PMCID: PMC6886798 DOI: 10.1371/journal.pone.0225887] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023] Open
Abstract
Unregulated protein-tyrosine kinase signaling is a common feature of AML, often involving mutations in Flt3 and overexpression of myeloid Src-family kinases (Hck, Fgr, Lyn). Here we show that high-level expression of these Src kinases predicts poor survival in a large cohort of AML patients. To test the therapeutic benefit of Flt3 and Src-family kinase inhibition, we used the pyrrolopyrimidine kinase inhibitor A-419259. This compound potently inhibits Hck, Fgr, and Lyn as well as Flt3 bearing an activating internal tandem duplication (ITD). Flt3-ITD expression sensitized human TF-1 myeloid cells to growth arrest by A-419259, supporting direct action on the Flt3-ITD kinase domain. Cells transformed with the Flt3-ITD mutants D835Y and F691L were resistant to A-419259, while co-expression of Hck or Fgr restored inhibitor sensitivity to Flt3-ITD D835Y. Conversely, Hck and Fgr mutants with engineered A-419259 resistance mutations decreased sensitivity of TF-1/Flt3-ITD cells. To investigate de novo resistance mechanisms, A-419259-resistant Flt3-ITD+ AML cell populations were derived via long-term dose escalation. Whole exome sequencing identified a distinct Flt3-ITD kinase domain mutation (N676S/T) among all A-419259 target kinases in each of six independent resistant cell populations. These studies show that Hck and Fgr expression influences inhibitor sensitivity and the pathway to acquired resistance in Flt3-ITD+ AML.
Collapse
MESH Headings
- Amino Acid Substitution
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/genetics
- Mutation, Missense
- Prognosis
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins c-hck/biosynthesis
- Proto-Oncogene Proteins c-hck/genetics
- Pyrimidines/pharmacology
- Pyrroles/pharmacology
- Exome Sequencing
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
- src-Family Kinases/biosynthesis
- src-Family Kinases/genetics
Collapse
Affiliation(s)
- Ravi K. Patel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Mark C. Weir
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kexin Shen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Daniel Snyder
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Vaughn S. Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Thomas E. Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
28
|
Bang BR, Han KH, Seo GY, Croft M, Kang YJ. The protein tyrosine kinase SYK regulates the alternative p38 activation in liver during acute liver inflammation. Sci Rep 2019; 9:17838. [PMID: 31780731 PMCID: PMC6882802 DOI: 10.1038/s41598-019-54335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/11/2019] [Indexed: 12/02/2022] Open
Abstract
Two distinct p38 signaling pathways, classical and alternative, have been identified to regulate inflammatory responses in host defense and disease development. The role of alternative p38 activation in liver inflammation is elusive, while classical p38 signaling in hepatocytes plays a role in regulating the induction of cell death in autoimmune-mediated acute liver injury. In this study, we found that a mutation of alternative p38 in mice augmented the severity of acute liver inflammation. Moreover, TNF-induced hepatocyte death was augmented by a mutation of alternative p38, suggesting that alternative p38 signaling in hepatocytes contributed more significantly to the pathology of acute liver injury. Furthermore, SYK-Vav-1 signaling regulates alternative p38 activation and the downregulation of cell death in hepatocytes. Therefore, it is suggested that alternative p38 signaling in the liver plays a critical role in the induction and subsequent pathological changes of acute liver injury. Collectively, our results imply that p38 signaling in hepatocytes plays a crucial role to prevent excessive liver injury by regulating the induction of cell death and inflammation.
Collapse
Affiliation(s)
- Bo-Ram Bang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Kyung Ho Han
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Goo-Young Seo
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Young Jun Kang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Molecular Medicine Research Institute, Sunnyvale, CA, 94085, USA.
| |
Collapse
|
29
|
Wu J, Zhu Z, Yu Q, Ding C. Tyrosine kinase inhibitors for the treatment of rheumatoid arthritis: phase I to Ⅱ clinical trials. Expert Opin Investig Drugs 2019; 28:1113-1123. [PMID: 31738612 DOI: 10.1080/13543784.2019.1692812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Rheumatoid arthritis (RA) is a chronic, refractory disorder caused by autoimmunity in the synovial joints. Disease-modifying anti-rheumatic drugs (DMARDs) and biologicals offer remission in only two-thirds of RA patients within 3 months, hence new therapeutic approaches are necessary. Tyrosine kinase inhibitors (TKIs) are newly developed small molecule drugs which have demonstrated encouraging results in this disease.Areas covered: The key findings from phase I and II clinical trials that have investigated the use of novel TKIs in the treatment of RA are discussed. We examined the literature published between January 2014 to January 2019 using electronic databases including PubMed, Web of Science, Medline, Embase, and Google Scholar. Additional information about phase I and II trials on the ClinicalTrial.gov website up to January 2019 was also retrieved.Expert opinion: JAK inhibitors are promising drugs with sound efficacy and acceptable safety and may be beneficial to patients who do not respond to DMARDs and biologicals. The response rates among RA patients to TKIs are diverse; genetic and environmental factors may be involved in the varying responses which are closely related to the pathogenesis of RA. Future studies may reveal the underlying mechanisms of resistance and non-response.
Collapse
Affiliation(s)
- Jing Wu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhaohua Zhu
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qinghong Yu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Changhai Ding
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| |
Collapse
|
30
|
Szilveszter KP, Németh T, Mócsai A. Tyrosine Kinases in Autoimmune and Inflammatory Skin Diseases. Front Immunol 2019; 10:1862. [PMID: 31447854 PMCID: PMC6697022 DOI: 10.3389/fimmu.2019.01862] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/23/2019] [Indexed: 12/30/2022] Open
Abstract
Tyrosine kinases relay signals from diverse leukocyte antigen receptors, innate immune receptors, and cytokine receptors, and therefore mediate the recruitment and activation of various leukocyte populations. Non-receptor tyrosine kinases of the Jak, Src, Syk, and Btk families play major roles in various immune-mediated disorders, and small-molecule tyrosine kinase inhibitors are emerging novel therapeutics in a number of those diseases. Autoimmune and inflammatory skin diseases represent a broad spectrum of immune-mediated diseases. Genetic and pharmacological studies in humans and mice support the role of tyrosine kinases in several inflammatory skin diseases. Atopic dermatitis and psoriasis are characterized by an inflammatory microenvironment which activates cytokine receptors coupled to the Jak-Stat signaling pathway. Jak kinases are also implicated in alopecia areata and vitiligo, skin disorders mediated by cytotoxic T lymphocytes. Genetic studies indicate a critical role for Src-family kinases and Syk in animal models of autoantibody-mediated blistering skin diseases. Here, we review the various tyrosine kinase signaling pathways and their role in various autoimmune and inflammatory skin diseases. Special emphasis will be placed on identification of potential therapeutic targets, as well as on ongoing preclinical and clinical studies for the treatment of inflammatory skin diseases by small-molecule tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Kata P Szilveszter
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Tamás Németh
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| |
Collapse
|
31
|
Ganjoo A, Prabhakar C. In silico structural anatomization of spleen tyrosine kinase inhibitors: Pharmacophore modeling, 3D QSAR analysis and molecular docking studies. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
SYK Inhibition Potentiates the Effect of Chemotherapeutic Drugs on Neuroblastoma Cells in Vitro. Cancers (Basel) 2019; 11:cancers11020202. [PMID: 30744170 PMCID: PMC6406899 DOI: 10.3390/cancers11020202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma is a malignancy arising from the developing sympathetic nervous system and the most common and deadly cancer of infancy. New therapies are needed to improve the prognosis for high-risk patients and to reduce toxicity and late effects. Spleen tyrosine kinase (SYK) has previously been identified as a promising drug target in various inflammatory diseases and cancers but has so far not been extensively studied as a potential therapeutic target in neuroblastoma. In this study, we observed elevated SYK gene expression in neuroblastoma compared to neural crest and benign neurofibroma. While SYK protein was detected in the majority of examined neuroblastoma tissues it was less frequently observed in neuroblastoma cell lines. Depletion of SYK by siRNA and the use of small molecule SYK inhibitors significantly reduced the cell viability of neuroblastoma cell lines expressing SYK protein. Moreover, SYK inhibition decreased ERK1/2 and Akt phosphorylation. The SYK inhibitor BAY 61-3606 enhanced the effect of different chemotherapeutic drugs. Transient expression of a constitutive active SYK variant increased the viability of neuroblastoma cells independent of endogenous SYK levels. Collectively, our findings suggest that targeting SYK in combination with conventional chemotherapy should be further evaluated as a treatment option in neuroblastoma.
Collapse
|
33
|
Bian X, Wu L, Mu L, Yin X, Wei X, Zhong X, Yang Y, Wang J, Li Y, Guo Z, Ye J. Spleen tyrosine kinase from Nile tilapia (Oreochromis niloticus): Molecular characterization, expression pattern upon bacterial infection and the potential role in BCR signaling and inflammatory response. FISH & SHELLFISH IMMUNOLOGY 2018; 82:162-172. [PMID: 30114435 DOI: 10.1016/j.fsi.2018.08.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Spleen tyrosine kinase (SYK), a member of non-receptor tyrosine kinase family, plays an important role in immune responses against pathogen infection, which is capable of activating B cells signaling pathway and regulating inflammatory response. In this study, Nile tilapia (Oreochromis niloticus) ortholog (OnSYK) was identified and characterized at expression pattern against bacterial infection, function in B cells activation pathway and inflammatory response. The cDNA of OnSYK ORF contained 1851 bp of nucleotide sequence encoding polypeptides of 616 amino acids. The deduced OnSYK protein was highly homologous to other species SYK, containing two SH2 domains and a TyrKc domain. Spatial mRNA expression analysis revealed that OnSYK had wide tissue distribution and was highly expressed in the liver. After challenge of Streptococcus agalactiae (S. agalactiae) in vivo, mRNA expression of OnSYK was significantly up-regulated in the head kidney, spleen and liver. The up-regulation of OnSYK transcript was also displayed in the head kidney and spleen leukocytes stimulation with S. agalactiae and LPS in vitro, which was confirmed at protein level in the head kidney leukocytes by FACS analysis. In addition, after induction with mouse anti-OnIgM monoclonal antibody in vitro, the expressions of OnSYK and its downstream molecules (OnLYN, OnBLNK and OnAP-1) were significantly up-regulated in the head kidney leukocytes, and pharmacological inhibition of SYK activity with inhibitor (P505-15) significantly attenuated the expressions of OnLYN, OnBLNK and OnAP-1. Moreover, upon LPS challenge, the expressions of OnSYK, OnTNF-α, OnIL-6 and OnAP-1 were also up-regulated in the head kidney monocytes/macrophages. After treatment with SYK inhibitor (BAY 61-3606), the expressions of OnTNF-α, OnIL-6 and OnAP-1 were inhibited in the LPS-challenged head kidney monocytes/macrophages. Taken together, the results of this study indicated that OnSYK, playing potential roles in BCR signaling and inflammatory response, was likely to get involved in host defense against bacterial infection in Nile tilapia.
Collapse
Affiliation(s)
- Xia Bian
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Liting Wu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Liangliang Mu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Xiaoxue Yin
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Xiufang Wei
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Xiaofang Zhong
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Yanjian Yang
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Junru Wang
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Yuan Li
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Zheng Guo
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, College of Life Sciences, South China Normal University, Guangdong, 510631, PR China.
| |
Collapse
|
34
|
Coffey GP, Feng J, Betz A, Pandey A, Birrell M, Leeds JM, Der K, Kadri S, Lu P, Segal J, Wang YL, Michelson G, Curnutte JT, Conley PB. Cerdulatinib Pharmacodynamics and Relationships to Tumor Response Following Oral Dosing in Patients with Relapsed/Refractory B-cell Malignancies. Clin Cancer Res 2018; 25:1174-1184. [PMID: 30333224 DOI: 10.1158/1078-0432.ccr-18-1047] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/07/2018] [Accepted: 10/12/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Preclinical studies suggest SYK and JAK contribute to tumor-intrinsic and microenvironment-derived survival signals. The pharmacodynamics of cerdulatinib, a dual SYK/JAK inhibitor, and associations with tumor response were investigated. PATIENTS AND METHODS In a phase I dose-escalation study in adults with relapsed/refractory B-cell malignancies, cerdulatinib was administered orally to sequential dose-escalation cohorts using once-daily or twice-daily schedules. The study enrolled 8 patients with chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL), 13 with follicular lymphoma, 16 with diffuse large B-cell lymphoma (DLBCL), and 6 with mantle cell lymphoma. Correlation of tumor response with pharmacodynamic markers was determined in patients with meaningful clinical responses. RESULTS Following cerdulatinib administration, complete SYK and JAK pathway inhibition was achieved in whole blood of patients at tolerated exposures. Target inhibition correlated with serum cerdulatinib concentration, and IC50 values against B-cell antigen receptor (BCR), IL2, IL4, and IL6 signaling pathways were 0.27 to 1.11 μmol/L, depending on the phosphorylation event. Significant correlations were observed between SYK and JAK pathway inhibition and tumor response. Serum inflammation markers were reduced by cerdulatinib, and several significantly correlated with tumor response. Diminished expression of CD69 and CD86 (B-cell activation markers), CD5 (negative regulator of BCR signaling), and enhanced expression of CXCR4 were observed in 2 patients with CLL, consistent with BCR and IL4 suppression and loss of proliferative capacity. CONCLUSIONS Cerdulatinib potently and selectively inhibited SYK/JAK signaling at tolerated exposures in patients with relapsed/refractory B-cell malignancies. The extent of target inhibition in whole-blood assays and suppression of inflammation correlated with tumor response. (ClinicalTrials.gov ID:NCT01994382).
Collapse
Affiliation(s)
- Greg P Coffey
- Biology and Pharmacology, Portola Pharmaceuticals, Inc., South San Francisco, California.
| | - Jiajia Feng
- Research and Development, Portola Pharmaceuticals, Inc., South San Francisco, California
| | - Andreas Betz
- Research and Development, Portola Pharmaceuticals, Inc., South San Francisco, California
| | - Anjali Pandey
- Medicinal Chemistry and Chemical Development, Portola Pharmaceuticals, Inc., South San Francisco, California
| | - Matt Birrell
- Corporate Development, Portola Pharmaceuticals, Inc., South San Francisco, California
| | - Janet M Leeds
- Drug Metabolism and Pharmacokinetics, Portola Pharmaceuticals, Inc., South San Francisco, California
| | - Kenneth Der
- Pharmacokinetics, Portola Pharmaceuticals, Inc., South San Francisco, California
| | - Sabah Kadri
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Pin Lu
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Jeremy Segal
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Y Lynn Wang
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Glenn Michelson
- Clinical Development, Portola Pharmaceuticals, Inc., South San Francisco, California
| | - John T Curnutte
- Research and Development, Portola Pharmaceuticals, Inc., South San Francisco, California
| | - Pamela B Conley
- Biology, Portola Pharmaceuticals, Inc., South San Francisco, California
| |
Collapse
|
35
|
Clarke AS, Rousseau E, Wang K, Kim JY, Murray BP, Bannister R, Matzkies F, Currie KS, Di Paolo JA. Effects of GS-9876, a novel spleen tyrosine kinase inhibitor, on platelet function and systemic hemostasis. Thromb Res 2018; 170:109-118. [DOI: 10.1016/j.thromres.2018.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/08/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022]
|
36
|
Hayashi H, Kaneko R, Demizu S, Akasaka D, Tayama M, Harada T, Irie H, Ogino Y, Fujino N, Sasaki E. TAS05567, a Novel Potent and Selective Spleen Tyrosine Kinase Inhibitor, Abrogates Immunoglobulin-Mediated Autoimmune and Allergic Reactions in Rodent Models. J Pharmacol Exp Ther 2018; 366:84-95. [PMID: 29728446 DOI: 10.1124/jpet.118.248153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 03/08/2025] Open
Abstract
Spleen tyrosine kinase (Syk) is involved in regulation of B-cell receptor (BCR) and Fc receptor downstream signal pathways. Syk plays an essential role in production of inflammatory mediators and differentiation in various immune cells and is therefore an attractive target for treating inflammatory conditions, such as autoimmune and allergic diseases. We identified TAS05567 as a highly selective Syk inhibitor and evaluated its therapeutic potential in animal models. In vitro biochemical assays were performed with available kinase assay panels. Inhibitory effects of TAS05567 on immune cells were analyzed by assessing the Syk downstream signaling pathway and production of inflammatory factors. In vivo effects of TAS05567 were evaluated in animal models of autoimmune diseases and antigen-specific IgE transgenic mice. TAS05567 inhibited only 4 of 191 kinases tested but inhibited Syk enzymatic activity with high potency. TAS05567 inhibited BCR-dependent signal transduction in Ramos cells, FcγR-mediated tumor necrosis factor-α production in THP-1 cells, and FcεR-mediated histamine release from RBL-2H3 cells. In rheumatoid arthritis models, TAS05567 suppressed hind-paw swelling in a dose-dependent manner compared with vehicle. Moreover, TAS05667 markedly reduced histopathologic scores in an established rat arthritis model. In a mouse immune thrombocytopenic purpura model, platelet counts were reduced with injection of anti-platelet antibody. TAS05567 prevented the platelet count decrease in a dose-dependent manner. Finally, TAS05567 treatment suppressed IgE-mediated ear swelling in vivo. Collectively, our data indicate TAS05567 is a selective Syk inhibitor and potential therapeutic candidate for treating humoral immune-mediated inflammatory conditions such as autoimmune and allergic diseases.
Collapse
Affiliation(s)
- Hiroaki Hayashi
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Ryusuke Kaneko
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Shunsuke Demizu
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Daichi Akasaka
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Manabu Tayama
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Takafumi Harada
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Hiroki Irie
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Yoshio Ogino
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Naoko Fujino
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Eiji Sasaki
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| |
Collapse
|
37
|
Primo D, Scarfò L, Xochelli A, Mattsson M, Ranghetti P, Espinosa AB, Robles A, Gorrochategui J, Martínez-López J, de la Serna J, González M, Gil AC, Anguita E, Iraheta S, Munugalavadla V, Quéva C, Tannheimer S, Rosenquist R, Stamatopoulos K, Ballesteros J, Ghia P. A novel ex vivo high-throughput assay reveals antiproliferative effects of idelalisib and ibrutinib in chronic lymphocytic leukemia. Oncotarget 2018; 9:26019-26031. [PMID: 29899839 PMCID: PMC5995261 DOI: 10.18632/oncotarget.25419] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 04/28/2018] [Indexed: 12/21/2022] Open
Abstract
PI3Kδ (idelalisib) and BTK (ibrutinib) inhibitors have demonstrated significant clinical activity in chronic lymphocytic leukemia (CLL) interfering with the cross-talk between CLL cells and the lymph node microenviroment, yet their mechanism of action remains to be fully elucidated. Here, we developed an ex vivo model with the aim of reproducing the effects of the microenvironment that would help shed light on the in vivo mechanism of action of idelalisib and ibrutinib and predict their clinical efficacy in individual patients. First we explored the effects of various cell-extrinsic elements on CLL apoptosis and proliferation and found that the combination of CpG+IL2+HS5 stromal cell line + human serum +CLL plasma and erythrocyte fractions represented the best co-culture conditions to test the effects of the novel inhibitors. Then, using this assay, we investigated the impact of idelalisib and ibrutinib on both survival and proliferation in 30 CLL patients. While both drugs had a limited direct pro-apoptotic activity, a potent inhibition of proliferation was achieved at clinically achievable concentrations. Notably, up to 10% of CLL cells still proliferated even at the highest concentrations, likely mirroring the known difficulty to achieve complete responses in vivo. Altogether, this novel assay represents an appropriate ex vivo drug testing system to potentially predict the clinical response to novel inhibitors in particular by quantifying the antiproliferative effect.
Collapse
Affiliation(s)
| | - Lydia Scarfò
- Strategic Research Program on CLL and B Cell Neoplasia Unit, Università Vita-Salute San Raffaele and IRCCS Istituto Scientifico San Raffaele, Milan, Italy
| | - Aliki Xochelli
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece
| | - Mattias Mattsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Pamela Ranghetti
- Strategic Research Program on CLL and B Cell Neoplasia Unit, Università Vita-Salute San Raffaele and IRCCS Istituto Scientifico San Raffaele, Milan, Italy
| | | | | | | | | | - Javier de la Serna
- Department of Hematology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Marcos González
- Hematology Service, IBSAL-Hospital Universitario, Centro de Investigación del Cáncer (CIC)- IBMCC, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Universidad de Salamanca, Salamanca, Spain
| | - Alberto Chaparro Gil
- Department of Hematology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain.,Department of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Eduardo Anguita
- Department of Hematology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain.,Department of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Sandra Iraheta
- Department of Hematology and Hemotherapy, Hospital Universitario de Canarias, La Laguna, Spain
| | | | | | | | - Richard Rosenquist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece.,Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Paolo Ghia
- Strategic Research Program on CLL and B Cell Neoplasia Unit, Università Vita-Salute San Raffaele and IRCCS Istituto Scientifico San Raffaele, Milan, Italy
| |
Collapse
|
38
|
Weisberg EL, Puissant A, Stone R, Sattler M, Buhrlage SJ, Yang J, Manley PW, Meng C, Buonopane M, Daley JF, Lazo S, Wright R, Weinstock DM, Christie AL, Stegmaier K, Griffin JD. Characterization of midostaurin as a dual inhibitor of FLT3 and SYK and potentiation of FLT3 inhibition against FLT3-ITD-driven leukemia harboring activated SYK kinase. Oncotarget 2017; 8:52026-52044. [PMID: 28881711 PMCID: PMC5581010 DOI: 10.18632/oncotarget.19036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/12/2017] [Indexed: 01/13/2023] Open
Abstract
Oncogenic FLT3 kinase is a clinically validated target in acute myeloid leukemia (AML), and both multi-targeted and selective FLT3 inhibitors have been developed. Spleen tyrosine kinase (SYK) has been shown to be activated and increased in FLT3-ITD-positive AML patients, and has further been shown to be critical for transformation and maintenance of the leukemic clone in these patients. Further, over-expression of constitutively activated SYK causes resistance to highly selective FLT3 tyrosine kinase inhibitors (TKI). Up to now, the activity of the multi-targeted FLT3 inhibitor, midostaurin, against cells expressing activated SYK has not been explored in the context of leukemia, although SYK has been identified as a target of midostaurin in systemic mastocytosis. We compared the ability of midostaurin to inhibit activated SYK in mutant FLT3-positive AML cells with that of inhibitors displaying dual SYK/FLT3 inhibition, targeted SYK inhibition, and targeted FLT3 inhibition. Our findings suggest that dual FLT3/SYK inhibitors and FLT3-targeted drugs potently kill oncogenic FLT3-transformed cells, while SYK-targeted small molecule inhibition displays minimal activity. However, midostaurin and other dual FLT3/SYK inhibitors display superior anti-proliferative activity when compared to targeted FLT3 inhibitors, such as crenolanib and quizartinib, against cells co-expressing FLT3-ITD and constitutively activated SYK-TEL. Interestingly, additional SYK suppression potentiated the effects of dual FLT3/SYK inhibitors and targeted FLT3 inhibitors against FLT3-ITD-driven leukemia, both in the absence and presence of activated SYK. Taken together, our findings have important implications for the design of drug combination studies in mutant FLT3-positive patients and for the design of future generations of FLT3 inhibitors.
Collapse
Affiliation(s)
- Ellen L Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexandre Puissant
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Sara J Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Biological Chemistry and Molecular Pharmacology, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jing Yang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul W Manley
- Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Chengcheng Meng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Michael Buonopane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - John F Daley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Suzan Lazo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Renee Wright
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Amanda L Christie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - James D Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
39
|
Katewa A, Wang Y, Hackney JA, Huang T, Suto E, Ramamoorthi N, Austin CD, Bremer M, Chen JZ, Crawford JJ, Currie KS, Blomgren P, DeVoss J, DiPaolo JA, Hau J, Johnson A, Lesch J, DeForge LE, Lin Z, Liimatta M, Lubach JW, McVay S, Modrusan Z, Nguyen A, Poon C, Wang J, Liu L, Lee WP, Wong H, Young WB, Townsend MJ, Reif K. Btk-specific inhibition blocks pathogenic plasma cell signatures and myeloid cell-associated damage in IFN α-driven lupus nephritis. JCI Insight 2017; 2:e90111. [PMID: 28405610 DOI: 10.1172/jci.insight.90111] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is often associated with exaggerated B cell activation promoting plasma cell generation, immune-complex deposition in the kidney, renal infiltration of myeloid cells, and glomerular nephritis. Type-I IFNs amplify these autoimmune processes and promote severe disease. Bruton's tyrosine kinase (Btk) inhibitors are considered novel therapies for SLE. We describe the characterization of a highly selective reversible Btk inhibitor, G-744. G-744 is efficacious, and superior to blocking BAFF and Syk, in ameliorating severe lupus nephritis in both spontaneous and IFNα-accelerated lupus in NZB/W_F1 mice in therapeutic regimens. Selective Btk inhibition ablated plasmablast generation, reduced autoantibodies, and - similar to cyclophosphamide - improved renal pathology in IFNα-accelerated lupus. Employing global transcriptional profiling of spleen and kidney coupled with cross-species human modular repertoire analyses, we identify similarities in the inflammatory process between mice and humans, and we demonstrate that G-744 reduced gene expression signatures essential for splenic B cell terminal differentiation, particularly the secretory pathway, as well as renal transcriptional profiles coupled with myeloid cell-mediated pathology and glomerular plus tubulointerstitial disease in human glomerulonephritis patients. These findings reveal the mechanism through which a selective Btk inhibitor blocks murine autoimmune kidney disease, highlighting pathway activity that may translate to human SLE.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - James J Crawford
- Discovery Chemistry, at Genentech, South San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Lichuan Liu
- Clinical Pharmacology at Genentech, South San Francisco, California, USA
| | | | | | - Wendy B Young
- Discovery Chemistry, at Genentech, South San Francisco, California, USA
| | | | | |
Collapse
|
40
|
Guo A, Lu P, Coffey G, Conley P, Pandey A, Wang YL. Dual SYK/JAK inhibition overcomes ibrutinib resistance in chronic lymphocytic leukemia: Cerdulatinib, but not ibrutinib, induces apoptosis of tumor cells protected by the microenvironment. Oncotarget 2017; 8:12953-12967. [PMID: 28088788 PMCID: PMC5355069 DOI: 10.18632/oncotarget.14588] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/01/2017] [Indexed: 11/25/2022] Open
Abstract
Ibrutinib (BTK inhibitor) has generated remarkable responses in CLL. However, the drug, to a large extent, does not cause cell death directly and does not eradicate CLL malignant clones. Inability to eradicate CLL has fostered resistance generation. Once patients become resistant, they do poorly with a median survival of 3-4 months. Novel therapeutic strategies are needed to prevent resistance, improve treatment outcome and ultimately cure the disease. Herein, we explore dual targeting of the BCR and JAK-STAT pathways with a novel single agent, cerdulatinib, which selectively inhibits both SYK (a BCR component) and JAK kinases. We demonstrated that cerdulatinib delivered potent tumor inhibition in 60 primary CLL patient samples, especially in those with poor prognostic indicators. Importantly, cerdulatinib, but not ibrutinib, is able to overcome the support of microenvironment and induces CLL cell death at clinically achievable concentrations. Notably, cerdulatinib blocked proliferation of ibrutinib-resistant primary CLL cells and of BTKC481S-transfected/ibrutinib-resistant lymphoma cells. These anti-tumor effects are well correlated with the inhibition of BCR and JAK-STAT signaling and downstream inhibition of the functions of AKT, ERK and NFκB. Collectively, our results show that simultaneous targeting of BCR and JAK-STAT pathways is a more effective strategy relative to single BTK inhibition.
Collapse
Affiliation(s)
- Ailin Guo
- Department of Pathology, Lymphoma Translational Pathology, University of Chicago, Chicago, IL, USA
| | - Pin Lu
- Department of Pathology, Lymphoma Translational Pathology, University of Chicago, Chicago, IL, USA
| | - Greg Coffey
- Portola Pharmaceuticals, Inc., South San Francisco, CA, USA
| | - Pamela Conley
- Portola Pharmaceuticals, Inc., South San Francisco, CA, USA
| | - Anjali Pandey
- Portola Pharmaceuticals, Inc., South San Francisco, CA, USA
| | - Y. Lynn Wang
- Department of Pathology, Lymphoma Translational Pathology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
41
|
Ellis JM, Altman MD, Cash B, Haidle AM, Kubiak RL, Maddess ML, Yan Y, Northrup AB. Carboxamide Spleen Tyrosine Kinase (Syk) Inhibitors: Leveraging Ground State Interactions To Accelerate Optimization. ACS Med Chem Lett 2016; 7:1151-1155. [PMID: 27994755 DOI: 10.1021/acsmedchemlett.6b00353] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/07/2016] [Indexed: 12/22/2022] Open
Abstract
Optimization of a series of highly potent and kinome selective carbon-linked carboxamide spleen tyrosine kinase (Syk) inhibitors with favorable drug-like properties is described. A pervasive Ames liability in an analogous nitrogen-linked carboxamide series was obviated by replacement with a carbon-linked moiety. Initial efforts lacked on-target potency, likely due to strain induced between the hinge binding amide and solvent front heterocycle. Consideration of ground state and bound state energetics allowed rapid realization of improved solvent front substituents affording subnanomolar Syk potency and high kinome selectivity. These molecules were also devoid of mutagenicity risk as assessed via the Ames test using the TA97a Salmonella strain.
Collapse
Affiliation(s)
- J. Michael Ellis
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Michael D. Altman
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Brandon Cash
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Andrew M. Haidle
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Rachel L. Kubiak
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Matthew L. Maddess
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Youwei Yan
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Alan B. Northrup
- Department of Discovery Chemistry, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| |
Collapse
|
42
|
Ren CF, Zhao YX, Hou CF, Luan L, Duan GQ, Li SJ, Zhao JH. Expression of soluble programmed death-1 protein in peripheral blood regulatory T cells and its effects on rheumatoid arthritis progression. Mol Med Rep 2016; 15:460-466. [DOI: 10.3892/mmr.2016.5968] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 09/21/2016] [Indexed: 11/06/2022] Open
|
43
|
Hoemann M, Wilson N, Argiriadi M, Banach D, Burchat A, Calderwood D, Clapham B, Cox P, Duignan DB, Konopacki D, Somal G, Vasudevan A. Synthesis and optimization of furano[3,2-d]pyrimidines as selective spleen tyrosine kinase (Syk) inhibitors. Bioorg Med Chem Lett 2016; 26:5562-5567. [PMID: 27789138 DOI: 10.1016/j.bmcl.2016.09.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 11/25/2022]
Abstract
A series of furano[3,2-d]pyrimidine Syk inhibitors were synthesized and optimized for their enzyme potency and selectivity versus other kinases. In addition, ADME properties were assessed and compounds were prepared with optimized profiles for in vivo experiments. Compound 23 was identified as having acceptable pharmacokinetic properties and demonstrated efficacy in a rat collagen induced arthritis model.
Collapse
Affiliation(s)
- Michael Hoemann
- AbbVie Bioresearch Center, 100 Research Dr., Worcester, MA 01545, United States
| | - Noel Wilson
- AbbVie, 1 North Waukegan Rd., North Chicago, IL 60064, United States
| | - Maria Argiriadi
- AbbVie Bioresearch Center, 100 Research Dr., Worcester, MA 01545, United States
| | - David Banach
- AbbVie Bioresearch Center, 100 Research Dr., Worcester, MA 01545, United States
| | - Andrew Burchat
- AbbVie Bioresearch Center, 100 Research Dr., Worcester, MA 01545, United States
| | - David Calderwood
- AbbVie Bioresearch Center, 100 Research Dr., Worcester, MA 01545, United States
| | - Bruce Clapham
- Reset Therapeutics, One Corporate Drive, South San Francisco, CA 94080, United States(†)
| | - Phil Cox
- AbbVie, 1 North Waukegan Rd., North Chicago, IL 60064, United States
| | - David B Duignan
- AbbVie Bioresearch Center, 100 Research Dr., Worcester, MA 01545, United States
| | - Don Konopacki
- AbbVie Bioresearch Center, 100 Research Dr., Worcester, MA 01545, United States
| | - Gagandeep Somal
- AbbVie Bioresearch Center, 100 Research Dr., Worcester, MA 01545, United States
| | - Anil Vasudevan
- AbbVie, 1 North Waukegan Rd., North Chicago, IL 60064, United States
| |
Collapse
|
44
|
Duque-Afonso J, Lin CH, Han K, Wei MC, Feng J, Kurzer JH, Schneidawind C, Wong SHK, Bassik MC, Cleary ML. E2A-PBX1 Remodels Oncogenic Signaling Networks in B-cell Precursor Acute Lymphoid Leukemia. Cancer Res 2016; 76:6937-6949. [PMID: 27758892 DOI: 10.1158/0008-5472.can-16-1899] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 02/07/2023]
Abstract
There is limited understanding of how signaling pathways are altered by oncogenic fusion transcription factors that drive leukemogenesis. To address this, we interrogated activated signaling pathways in a comparative analysis of mouse and human leukemias expressing the fusion protein E2A-PBX1, which is present in 5%-7% of pediatric and 50% of pre-B-cell receptor (preBCR+) acute lymphocytic leukemia (ALL). In this study, we describe remodeling of signaling networks by E2A-PBX1 in pre-B-ALL, which results in hyperactivation of the key oncogenic effector enzyme PLCγ2. Depletion of PLCγ2 reduced proliferation of mouse and human ALLs, including E2A-PBX1 leukemias, and increased disease-free survival after secondary transplantation. Mechanistically, E2A-PBX1 bound promoter regulatory regions and activated the transcription of its key target genes ZAP70, SYK, and LCK, which encode kinases upstream of PLCγ2. Depletion of the respective upstream kinases decreased cell proliferation and phosphorylated levels of PLCγ2 (pPLCγ2). Pairwise silencing of ZAP70, SYK, or LCK showed additive effects on cell growth inhibition, providing a rationale for combination therapy with inhibitors of these kinases. Accordingly, inhibitors such as the SRC family kinase (SFK) inhibitor dasatinib reduced pPLCγ2 and inhibited proliferation of human and mouse preBCR+/E2A-PBX1+ leukemias in vitro and in vivo Furthermore, combining small-molecule inhibition of SYK, LCK, and SFK showed synergistic interactions and preclinical efficacy in the same setting. Our results show how the oncogenic fusion protein E2A-PBX1 perturbs signaling pathways upstream of PLCγ2 and renders leukemias amenable to targeted therapeutic inhibition. Cancer Res; 76(23); 6937-49. ©2016 AACR.
Collapse
Affiliation(s)
- Jesús Duque-Afonso
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Chiou-Hong Lin
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Kyuho Han
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Michael C Wei
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Jue Feng
- Department of Pathology, Stanford University School of Medicine, Stanford, California.,Department of Pathology and Department of Medicine, New York University Langone Medical Center, New York, New York
| | - Jason H Kurzer
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Corina Schneidawind
- Department of Pathology, Stanford University School of Medicine, Stanford, California.,Department of Hematology and Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Stephen Hon-Kit Wong
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Michael L Cleary
- Department of Pathology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
45
|
Coffey G, Rani A, Betz A, Pak Y, Haberstock-Debic H, Pandey A, Hollenbach S, Gretler DD, Mant T, Jurcevic S, Sinha U. PRT062607 Achieves Complete Inhibition of the Spleen Tyrosine Kinase at Tolerated Exposures Following Oral Dosing in Healthy Volunteers. J Clin Pharmacol 2016; 57:194-210. [PMID: 27406873 PMCID: PMC5248591 DOI: 10.1002/jcph.794] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 12/31/2022]
Abstract
The spleen tyrosine kinase (SYK) regulates immune cell activation in response to engagement of a variety of receptors, making it an intriguing target for the treatment of inflammatory and autoimmune disorders as well as certain B‐cell malignancies. We have previously reported on the discovery and preclinical characterization of PRT062607, a potent and highly selective inhibitor of SYK that exhibits robust anti‐inflammatory activity in a variety of animal models. Here we present data from our first human studies aimed at characterizing the pharmacokinetics (PK), pharmacodynamics (PD), and safety of PRT062607 in healthy volunteers following single and multiple oral administrations. PRT062607 demonstrated a favorable PK profile and the ability to completely inhibit SYK activity in multiple whole‐blood assays. The PD half‐life in the more sensitive assays was approximately 24 hours and returned to predose levels by 72 hours. Selectivity for SYK was observed at all dose levels tested. Analysis of the PK/PD relationship indicated an IC50 of 324 nM for inhibition of B‐cell antigen receptor‐mediated B‐cell activation and 205 nM for inhibition of FcεRI‐mediated basophil degranulation. PRT062607 was safe and well tolerated across the entire range of doses. Clinical PK/PD was related to in vivo anti‐inflammatory activity of PRT062607 in the rat collagen‐induced arthritis model, which predicts that therapeutic concentrations may be safely achieved in humans for the treatment of autoimmune disease. PRT062607 has a desirable PK profile and is capable of safely, potently, and selectively suppressing SYK kinase function in humans following once‐daily oral dosing.
Collapse
Affiliation(s)
- Greg Coffey
- Portola Pharmaceuticals, Inc, South San Francisco, CA, USA
| | | | - Andreas Betz
- Portola Pharmaceuticals, Inc, South San Francisco, CA, USA
| | - Yvonne Pak
- Portola Pharmaceuticals, Inc, South San Francisco, CA, USA
| | | | - Anjali Pandey
- Portola Pharmaceuticals, Inc, South San Francisco, CA, USA
| | | | | | - Tim Mant
- Quintiles Drug Research Unit at Guy's Hospital, London, UK
| | | | - Uma Sinha
- Portola Pharmaceuticals, Inc, South San Francisco, CA, USA
| |
Collapse
|
46
|
Shen J, Li X, Zhang Z, Luo J, Long H, Tu Z, Zhou X, Ding K, Lu X. 3-aminopyrazolopyrazine derivatives as spleen tyrosine kinase inhibitors. Chem Biol Drug Des 2016; 88:690-698. [PMID: 27264434 DOI: 10.1111/cbdd.12798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/13/2016] [Accepted: 05/14/2016] [Indexed: 01/15/2023]
Abstract
Spleen tyrosine kinase is a new promising target for drug discovery to treat human cancer and inflammatory disorders. A series of pyrazolopyrazine-3-amine and pyrazolopyrimidine-3-amine derivatives was designed and synthesized as new spleen tyrosine kinase inhibitors. The efforts yielded compound 6h with promising spleen tyrosine kinase inhibition in both enzymatic and B-lymphoma cell proliferation assays. Additionally, compound 6h dose dependently inhibited the activation of spleen tyrosine kinase signal in human B-cell lymphoma cells. Compound 6h might serve as a lead for further development of new spleen tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Jiayi Shen
- College of Pharmacy, Jilin University, Changchun, China
| | - Xiaokai Li
- College of Pharmacy, Jilin University, Changchun, China
| | - Zhang Zhang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jingfeng Luo
- State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Huoyou Long
- State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhengchao Tu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoping Zhou
- College of Pharmacy, Jilin University, Changchun, China.
| | - Ke Ding
- State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. .,School of Pharmacy, Jinan University, Guangzhou, China.
| | - Xiaoyun Lu
- School of Pharmacy, Jinan University, Guangzhou, China.
| |
Collapse
|
47
|
Köhrer S, Havranek O, Seyfried F, Hurtz C, Coffey GP, Kim E, Hacken ET, Jäger U, Vanura K, O’Brien S, Thomas DA, Kantarjian H, Ghosh D, Wang Z, Zhang M, Ma W, Jumaa H, Debatin KM, Müschen M, Meyer LH, Davis RE, Burger JA. Pre-BCR signaling in precursor B-cell acute lymphoblastic leukemia regulates PI3K/AKT, FOXO1 and MYC, and can be targeted by SYK inhibition. Leukemia 2016; 30:1246-54. [PMID: 26847027 PMCID: PMC5459356 DOI: 10.1038/leu.2016.9] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/20/2015] [Accepted: 12/23/2015] [Indexed: 12/11/2022]
Abstract
Precursor-B-cell receptor (pre-BCR) signaling and spleen tyrosine kinase (SYK) recently were introduced as therapeutic targets for patients with B-cell acute lymphoblastic leukemia (B-ALL), but the importance of this pathway in B-ALL subsets and mechanism of downstream signaling have not fully been elucidated. Here, we provide new detailed insight into the mechanism of pre-BCR signaling in B-ALL. We compared the effects of pharmacological and genetic disruption of pre-BCR signaling in vitro and in mouse models for B-ALL, demonstrating exquisite dependency of pre-BCR(+) B-ALL, but not other B-ALL subsets, on this signaling pathway. We demonstrate that SYK, PI3K/AKT, FOXO1 and MYC are important downstream mediators of pre-BCR signaling in B-ALL. Furthermore, we define a characteristic immune phenotype and gene expression signature of pre-BCR(+) ALL to distinguish them from other B-ALL subsets. These data provide comprehensive new insight into pre-BCR signaling in B-ALL and corroborate pre-BCR signaling and SYK as promising new therapeutic targets in pre-BCR(+) B-ALL.
Collapse
Affiliation(s)
- Stefan Köhrer
- Department of Leukemia, Unit 428, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States, 77030
| | - Ondrej Havranek
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States, 77030
| | - Felix Seyfried
- Ulm University Medical Center, Department of Pediatrics and Adolescent Medicine, Ulm, Germany
| | - Christian Hurtz
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143
| | | | - Ekaterina Kim
- Department of Leukemia, Unit 428, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States, 77030
| | - Elisa ten Hacken
- Department of Leukemia, Unit 428, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States, 77030
| | - Ulrich Jäger
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Katrina Vanura
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Susan O’Brien
- Department of Leukemia, Unit 428, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States, 77030
| | - Deborah A. Thomas
- Department of Leukemia, Unit 428, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States, 77030
| | - Hagop Kantarjian
- Department of Leukemia, Unit 428, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States, 77030
| | - Dipanjan Ghosh
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States, 77030
| | - Zhiqiang Wang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States, 77030
| | - Min Zhang
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States, 77030
| | - Wencai Ma
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States, 77030
| | - Hassan Jumaa
- Ulm University, Department of Immunology, Ulm, Germany
| | - Klaus-Michael Debatin
- Ulm University Medical Center, Department of Pediatrics and Adolescent Medicine, Ulm, Germany
| | - Markus Müschen
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143
| | - Lüder H. Meyer
- Ulm University Medical Center, Department of Pediatrics and Adolescent Medicine, Ulm, Germany
| | - R. Eric Davis
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States, 77030
| | - Jan A. Burger
- Department of Leukemia, Unit 428, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States, 77030
| |
Collapse
|
48
|
Lamb DJ, Wollin SL, Schnapp A, Bischoff D, Erb KJ, Bouyssou T, Guilliard B, Strasser C, Wex E, Blum S, Thaler E, Nickel H, Radmacher O, Haas H, Swantek JL, Souza D, Canfield M, White D, Panzenbeck M, Kashem MA, Sanville-Ross M, Kono T, Sewald K, Braun A, Obernolte H, Danov O, Schaenzle G, Rast G, Maier GM, Hoffmann M. BI 1002494, a Novel Potent and Selective Oral Spleen Tyrosine Kinase Inhibitor, Displays Differential Potency in Human Basophils and B Cells. J Pharmacol Exp Ther 2016; 357:554-61. [PMID: 27048659 DOI: 10.1124/jpet.116.233155] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/31/2016] [Indexed: 03/08/2025] Open
Abstract
BI 1002494 [(R)-4-{(R)-1-[7-(3,4,5-trimethoxy-phenyl)-[1,6]napthyridin-5-yloxy]-ethyl}pyrrolidin-2-one] is a novel, potent, and selective spleen tyrosine kinase (SYK) inhibitor with sustained plasma exposure after oral administration in rats, which qualifies this molecule as a good in vitro and in vivo tool compound. BI 1002494 exhibits higher potency in inhibiting high-affinity IgE receptor-mediated mast cell and basophil degranulation (IC50 = 115 nM) compared with B-cell receptor-mediated activation of B cells (IC50 = 810 nM). This may be explained by lower kinase potency when the physiologic ligand B-cell linker was used, suggesting that SYK inhibitors may exhibit differential potency depending on the cell type and the respective signal transduction ligand. A 3-fold decrease in potency was observed in rat basophils (IC50 = 323 nM) compared with human basophils, but a similar species potency shift was not observed in B cells. The lower potency in rat basophils was confirmed in both ex vivo inhibition of bronchoconstriction in precision-cut rat lung slices and in reversal of anaphylaxis-driven airway resistance in rats. The different cellular potencies translated into different in vivo efficacy; full efficacy in a rat ovalbumin model (that contains an element of mast cell dependence) was achieved with a trough plasma concentration of 340 nM, whereas full efficacy in a rat collagen-induced arthritis model (that contains an element of B-cell dependence) was achieved with a trough plasma concentration of 1400 nM. Taken together, these data provide a platform from which different estimates of human efficacious exposures can be made according to the relevant cell type for the indication intended to be treated.
Collapse
Affiliation(s)
- David J Lamb
- Immunology and Respiratory Research (D.J.L., S.L.W., A.S., K.J.E., T.B., B.G., C.S., E.W., S.B., E.T., H.N., O.R., H.H.), Discovery Drug Support (D.B., G.S., G.R., G.-M.M.), and Medicinal Chemistry (M.H.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; Immunology and Respiratory Research (J.L.S., D.S., M.C., D.W., M.P.) and Small Molecule Discovery Research (M.A.K., M.S.-R.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut; Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Chuo-ku, Kobe City, Japan (T.K.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (K.S., A.B., H.O., O.D.)
| | - Stefan Lutz Wollin
- Immunology and Respiratory Research (D.J.L., S.L.W., A.S., K.J.E., T.B., B.G., C.S., E.W., S.B., E.T., H.N., O.R., H.H.), Discovery Drug Support (D.B., G.S., G.R., G.-M.M.), and Medicinal Chemistry (M.H.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; Immunology and Respiratory Research (J.L.S., D.S., M.C., D.W., M.P.) and Small Molecule Discovery Research (M.A.K., M.S.-R.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut; Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Chuo-ku, Kobe City, Japan (T.K.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (K.S., A.B., H.O., O.D.)
| | - Andreas Schnapp
- Immunology and Respiratory Research (D.J.L., S.L.W., A.S., K.J.E., T.B., B.G., C.S., E.W., S.B., E.T., H.N., O.R., H.H.), Discovery Drug Support (D.B., G.S., G.R., G.-M.M.), and Medicinal Chemistry (M.H.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; Immunology and Respiratory Research (J.L.S., D.S., M.C., D.W., M.P.) and Small Molecule Discovery Research (M.A.K., M.S.-R.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut; Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Chuo-ku, Kobe City, Japan (T.K.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (K.S., A.B., H.O., O.D.)
| | - Daniel Bischoff
- Immunology and Respiratory Research (D.J.L., S.L.W., A.S., K.J.E., T.B., B.G., C.S., E.W., S.B., E.T., H.N., O.R., H.H.), Discovery Drug Support (D.B., G.S., G.R., G.-M.M.), and Medicinal Chemistry (M.H.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; Immunology and Respiratory Research (J.L.S., D.S., M.C., D.W., M.P.) and Small Molecule Discovery Research (M.A.K., M.S.-R.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut; Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Chuo-ku, Kobe City, Japan (T.K.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (K.S., A.B., H.O., O.D.)
| | - Klaus J Erb
- Immunology and Respiratory Research (D.J.L., S.L.W., A.S., K.J.E., T.B., B.G., C.S., E.W., S.B., E.T., H.N., O.R., H.H.), Discovery Drug Support (D.B., G.S., G.R., G.-M.M.), and Medicinal Chemistry (M.H.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; Immunology and Respiratory Research (J.L.S., D.S., M.C., D.W., M.P.) and Small Molecule Discovery Research (M.A.K., M.S.-R.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut; Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Chuo-ku, Kobe City, Japan (T.K.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (K.S., A.B., H.O., O.D.)
| | - Thierry Bouyssou
- Immunology and Respiratory Research (D.J.L., S.L.W., A.S., K.J.E., T.B., B.G., C.S., E.W., S.B., E.T., H.N., O.R., H.H.), Discovery Drug Support (D.B., G.S., G.R., G.-M.M.), and Medicinal Chemistry (M.H.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; Immunology and Respiratory Research (J.L.S., D.S., M.C., D.W., M.P.) and Small Molecule Discovery Research (M.A.K., M.S.-R.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut; Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Chuo-ku, Kobe City, Japan (T.K.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (K.S., A.B., H.O., O.D.)
| | - Bernd Guilliard
- Immunology and Respiratory Research (D.J.L., S.L.W., A.S., K.J.E., T.B., B.G., C.S., E.W., S.B., E.T., H.N., O.R., H.H.), Discovery Drug Support (D.B., G.S., G.R., G.-M.M.), and Medicinal Chemistry (M.H.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; Immunology and Respiratory Research (J.L.S., D.S., M.C., D.W., M.P.) and Small Molecule Discovery Research (M.A.K., M.S.-R.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut; Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Chuo-ku, Kobe City, Japan (T.K.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (K.S., A.B., H.O., O.D.)
| | - Christine Strasser
- Immunology and Respiratory Research (D.J.L., S.L.W., A.S., K.J.E., T.B., B.G., C.S., E.W., S.B., E.T., H.N., O.R., H.H.), Discovery Drug Support (D.B., G.S., G.R., G.-M.M.), and Medicinal Chemistry (M.H.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; Immunology and Respiratory Research (J.L.S., D.S., M.C., D.W., M.P.) and Small Molecule Discovery Research (M.A.K., M.S.-R.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut; Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Chuo-ku, Kobe City, Japan (T.K.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (K.S., A.B., H.O., O.D.)
| | - Eva Wex
- Immunology and Respiratory Research (D.J.L., S.L.W., A.S., K.J.E., T.B., B.G., C.S., E.W., S.B., E.T., H.N., O.R., H.H.), Discovery Drug Support (D.B., G.S., G.R., G.-M.M.), and Medicinal Chemistry (M.H.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; Immunology and Respiratory Research (J.L.S., D.S., M.C., D.W., M.P.) and Small Molecule Discovery Research (M.A.K., M.S.-R.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut; Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Chuo-ku, Kobe City, Japan (T.K.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (K.S., A.B., H.O., O.D.)
| | - Sylvia Blum
- Immunology and Respiratory Research (D.J.L., S.L.W., A.S., K.J.E., T.B., B.G., C.S., E.W., S.B., E.T., H.N., O.R., H.H.), Discovery Drug Support (D.B., G.S., G.R., G.-M.M.), and Medicinal Chemistry (M.H.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; Immunology and Respiratory Research (J.L.S., D.S., M.C., D.W., M.P.) and Small Molecule Discovery Research (M.A.K., M.S.-R.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut; Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Chuo-ku, Kobe City, Japan (T.K.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (K.S., A.B., H.O., O.D.)
| | - Eva Thaler
- Immunology and Respiratory Research (D.J.L., S.L.W., A.S., K.J.E., T.B., B.G., C.S., E.W., S.B., E.T., H.N., O.R., H.H.), Discovery Drug Support (D.B., G.S., G.R., G.-M.M.), and Medicinal Chemistry (M.H.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; Immunology and Respiratory Research (J.L.S., D.S., M.C., D.W., M.P.) and Small Molecule Discovery Research (M.A.K., M.S.-R.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut; Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Chuo-ku, Kobe City, Japan (T.K.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (K.S., A.B., H.O., O.D.)
| | - Helga Nickel
- Immunology and Respiratory Research (D.J.L., S.L.W., A.S., K.J.E., T.B., B.G., C.S., E.W., S.B., E.T., H.N., O.R., H.H.), Discovery Drug Support (D.B., G.S., G.R., G.-M.M.), and Medicinal Chemistry (M.H.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; Immunology and Respiratory Research (J.L.S., D.S., M.C., D.W., M.P.) and Small Molecule Discovery Research (M.A.K., M.S.-R.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut; Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Chuo-ku, Kobe City, Japan (T.K.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (K.S., A.B., H.O., O.D.)
| | - Oliver Radmacher
- Immunology and Respiratory Research (D.J.L., S.L.W., A.S., K.J.E., T.B., B.G., C.S., E.W., S.B., E.T., H.N., O.R., H.H.), Discovery Drug Support (D.B., G.S., G.R., G.-M.M.), and Medicinal Chemistry (M.H.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; Immunology and Respiratory Research (J.L.S., D.S., M.C., D.W., M.P.) and Small Molecule Discovery Research (M.A.K., M.S.-R.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut; Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Chuo-ku, Kobe City, Japan (T.K.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (K.S., A.B., H.O., O.D.)
| | - Hannah Haas
- Immunology and Respiratory Research (D.J.L., S.L.W., A.S., K.J.E., T.B., B.G., C.S., E.W., S.B., E.T., H.N., O.R., H.H.), Discovery Drug Support (D.B., G.S., G.R., G.-M.M.), and Medicinal Chemistry (M.H.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; Immunology and Respiratory Research (J.L.S., D.S., M.C., D.W., M.P.) and Small Molecule Discovery Research (M.A.K., M.S.-R.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut; Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Chuo-ku, Kobe City, Japan (T.K.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (K.S., A.B., H.O., O.D.)
| | - Jennifer L Swantek
- Immunology and Respiratory Research (D.J.L., S.L.W., A.S., K.J.E., T.B., B.G., C.S., E.W., S.B., E.T., H.N., O.R., H.H.), Discovery Drug Support (D.B., G.S., G.R., G.-M.M.), and Medicinal Chemistry (M.H.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; Immunology and Respiratory Research (J.L.S., D.S., M.C., D.W., M.P.) and Small Molecule Discovery Research (M.A.K., M.S.-R.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut; Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Chuo-ku, Kobe City, Japan (T.K.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (K.S., A.B., H.O., O.D.)
| | - Don Souza
- Immunology and Respiratory Research (D.J.L., S.L.W., A.S., K.J.E., T.B., B.G., C.S., E.W., S.B., E.T., H.N., O.R., H.H.), Discovery Drug Support (D.B., G.S., G.R., G.-M.M.), and Medicinal Chemistry (M.H.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; Immunology and Respiratory Research (J.L.S., D.S., M.C., D.W., M.P.) and Small Molecule Discovery Research (M.A.K., M.S.-R.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut; Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Chuo-ku, Kobe City, Japan (T.K.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (K.S., A.B., H.O., O.D.)
| | - Melissa Canfield
- Immunology and Respiratory Research (D.J.L., S.L.W., A.S., K.J.E., T.B., B.G., C.S., E.W., S.B., E.T., H.N., O.R., H.H.), Discovery Drug Support (D.B., G.S., G.R., G.-M.M.), and Medicinal Chemistry (M.H.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; Immunology and Respiratory Research (J.L.S., D.S., M.C., D.W., M.P.) and Small Molecule Discovery Research (M.A.K., M.S.-R.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut; Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Chuo-ku, Kobe City, Japan (T.K.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (K.S., A.B., H.O., O.D.)
| | - Della White
- Immunology and Respiratory Research (D.J.L., S.L.W., A.S., K.J.E., T.B., B.G., C.S., E.W., S.B., E.T., H.N., O.R., H.H.), Discovery Drug Support (D.B., G.S., G.R., G.-M.M.), and Medicinal Chemistry (M.H.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; Immunology and Respiratory Research (J.L.S., D.S., M.C., D.W., M.P.) and Small Molecule Discovery Research (M.A.K., M.S.-R.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut; Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Chuo-ku, Kobe City, Japan (T.K.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (K.S., A.B., H.O., O.D.)
| | - Mark Panzenbeck
- Immunology and Respiratory Research (D.J.L., S.L.W., A.S., K.J.E., T.B., B.G., C.S., E.W., S.B., E.T., H.N., O.R., H.H.), Discovery Drug Support (D.B., G.S., G.R., G.-M.M.), and Medicinal Chemistry (M.H.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; Immunology and Respiratory Research (J.L.S., D.S., M.C., D.W., M.P.) and Small Molecule Discovery Research (M.A.K., M.S.-R.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut; Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Chuo-ku, Kobe City, Japan (T.K.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (K.S., A.B., H.O., O.D.)
| | - Mohammed A Kashem
- Immunology and Respiratory Research (D.J.L., S.L.W., A.S., K.J.E., T.B., B.G., C.S., E.W., S.B., E.T., H.N., O.R., H.H.), Discovery Drug Support (D.B., G.S., G.R., G.-M.M.), and Medicinal Chemistry (M.H.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; Immunology and Respiratory Research (J.L.S., D.S., M.C., D.W., M.P.) and Small Molecule Discovery Research (M.A.K., M.S.-R.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut; Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Chuo-ku, Kobe City, Japan (T.K.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (K.S., A.B., H.O., O.D.)
| | - Mary Sanville-Ross
- Immunology and Respiratory Research (D.J.L., S.L.W., A.S., K.J.E., T.B., B.G., C.S., E.W., S.B., E.T., H.N., O.R., H.H.), Discovery Drug Support (D.B., G.S., G.R., G.-M.M.), and Medicinal Chemistry (M.H.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; Immunology and Respiratory Research (J.L.S., D.S., M.C., D.W., M.P.) and Small Molecule Discovery Research (M.A.K., M.S.-R.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut; Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Chuo-ku, Kobe City, Japan (T.K.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (K.S., A.B., H.O., O.D.)
| | - Takeshi Kono
- Immunology and Respiratory Research (D.J.L., S.L.W., A.S., K.J.E., T.B., B.G., C.S., E.W., S.B., E.T., H.N., O.R., H.H.), Discovery Drug Support (D.B., G.S., G.R., G.-M.M.), and Medicinal Chemistry (M.H.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; Immunology and Respiratory Research (J.L.S., D.S., M.C., D.W., M.P.) and Small Molecule Discovery Research (M.A.K., M.S.-R.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut; Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Chuo-ku, Kobe City, Japan (T.K.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (K.S., A.B., H.O., O.D.)
| | - Katherina Sewald
- Immunology and Respiratory Research (D.J.L., S.L.W., A.S., K.J.E., T.B., B.G., C.S., E.W., S.B., E.T., H.N., O.R., H.H.), Discovery Drug Support (D.B., G.S., G.R., G.-M.M.), and Medicinal Chemistry (M.H.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; Immunology and Respiratory Research (J.L.S., D.S., M.C., D.W., M.P.) and Small Molecule Discovery Research (M.A.K., M.S.-R.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut; Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Chuo-ku, Kobe City, Japan (T.K.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (K.S., A.B., H.O., O.D.)
| | - Armin Braun
- Immunology and Respiratory Research (D.J.L., S.L.W., A.S., K.J.E., T.B., B.G., C.S., E.W., S.B., E.T., H.N., O.R., H.H.), Discovery Drug Support (D.B., G.S., G.R., G.-M.M.), and Medicinal Chemistry (M.H.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; Immunology and Respiratory Research (J.L.S., D.S., M.C., D.W., M.P.) and Small Molecule Discovery Research (M.A.K., M.S.-R.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut; Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Chuo-ku, Kobe City, Japan (T.K.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (K.S., A.B., H.O., O.D.)
| | - Helena Obernolte
- Immunology and Respiratory Research (D.J.L., S.L.W., A.S., K.J.E., T.B., B.G., C.S., E.W., S.B., E.T., H.N., O.R., H.H.), Discovery Drug Support (D.B., G.S., G.R., G.-M.M.), and Medicinal Chemistry (M.H.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; Immunology and Respiratory Research (J.L.S., D.S., M.C., D.W., M.P.) and Small Molecule Discovery Research (M.A.K., M.S.-R.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut; Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Chuo-ku, Kobe City, Japan (T.K.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (K.S., A.B., H.O., O.D.)
| | - Olga Danov
- Immunology and Respiratory Research (D.J.L., S.L.W., A.S., K.J.E., T.B., B.G., C.S., E.W., S.B., E.T., H.N., O.R., H.H.), Discovery Drug Support (D.B., G.S., G.R., G.-M.M.), and Medicinal Chemistry (M.H.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; Immunology and Respiratory Research (J.L.S., D.S., M.C., D.W., M.P.) and Small Molecule Discovery Research (M.A.K., M.S.-R.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut; Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Chuo-ku, Kobe City, Japan (T.K.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (K.S., A.B., H.O., O.D.)
| | - Gerhard Schaenzle
- Immunology and Respiratory Research (D.J.L., S.L.W., A.S., K.J.E., T.B., B.G., C.S., E.W., S.B., E.T., H.N., O.R., H.H.), Discovery Drug Support (D.B., G.S., G.R., G.-M.M.), and Medicinal Chemistry (M.H.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; Immunology and Respiratory Research (J.L.S., D.S., M.C., D.W., M.P.) and Small Molecule Discovery Research (M.A.K., M.S.-R.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut; Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Chuo-ku, Kobe City, Japan (T.K.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (K.S., A.B., H.O., O.D.)
| | - Georg Rast
- Immunology and Respiratory Research (D.J.L., S.L.W., A.S., K.J.E., T.B., B.G., C.S., E.W., S.B., E.T., H.N., O.R., H.H.), Discovery Drug Support (D.B., G.S., G.R., G.-M.M.), and Medicinal Chemistry (M.H.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; Immunology and Respiratory Research (J.L.S., D.S., M.C., D.W., M.P.) and Small Molecule Discovery Research (M.A.K., M.S.-R.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut; Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Chuo-ku, Kobe City, Japan (T.K.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (K.S., A.B., H.O., O.D.)
| | - Gerd-Michael Maier
- Immunology and Respiratory Research (D.J.L., S.L.W., A.S., K.J.E., T.B., B.G., C.S., E.W., S.B., E.T., H.N., O.R., H.H.), Discovery Drug Support (D.B., G.S., G.R., G.-M.M.), and Medicinal Chemistry (M.H.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; Immunology and Respiratory Research (J.L.S., D.S., M.C., D.W., M.P.) and Small Molecule Discovery Research (M.A.K., M.S.-R.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut; Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Chuo-ku, Kobe City, Japan (T.K.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (K.S., A.B., H.O., O.D.)
| | - Matthias Hoffmann
- Immunology and Respiratory Research (D.J.L., S.L.W., A.S., K.J.E., T.B., B.G., C.S., E.W., S.B., E.T., H.N., O.R., H.H.), Discovery Drug Support (D.B., G.S., G.R., G.-M.M.), and Medicinal Chemistry (M.H.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany; Immunology and Respiratory Research (J.L.S., D.S., M.C., D.W., M.P.) and Small Molecule Discovery Research (M.A.K., M.S.-R.), Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut; Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Chuo-ku, Kobe City, Japan (T.K.); and Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany (K.S., A.B., H.O., O.D.)
| |
Collapse
|
49
|
Elucidation of tonic and activated B-cell receptor signaling in Burkitt's lymphoma provides insights into regulation of cell survival. Proc Natl Acad Sci U S A 2016; 113:5688-93. [PMID: 27155012 DOI: 10.1073/pnas.1601053113] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Burkitt's lymphoma (BL) is a highly proliferative B-cell neoplasm and is treated with intensive chemotherapy that, because of its toxicity, is often not suitable for the elderly or for patients with endemic BL in developing countries. BL cell survival relies on signals transduced by B-cell antigen receptors (BCRs). However, tonic as well as activated BCR signaling networks and their relevance for targeted therapies in BL remain elusive. We have systematically characterized and compared tonic and activated BCR signaling in BL by quantitative phosphoproteomics to identify novel BCR effectors and potential drug targets. We identified and quantified ∼16,000 phospho-sites in BL cells. Among these sites, 909 were related to tonic BCR signaling, whereas 984 phospho-sites were regulated upon BCR engagement. The majority of the identified BCR signaling effectors have not been described in the context of B cells or lymphomas yet. Most of these newly identified BCR effectors are predicted to be involved in the regulation of kinases, transcription, and cytoskeleton dynamics. Although tonic and activated BCR signaling shared a considerable number of effector proteins, we identified distinct phosphorylation events in tonic BCR signaling. We investigated the functional relevance of some newly identified BCR effectors and show that ACTN4 and ARFGEF2, which have been described as regulators of membrane-trafficking and cytoskeleton-related processes, respectively, are crucial for BL cell survival. Thus, this study provides a comprehensive dataset for tonic and activated BCR signaling and identifies effector proteins that may be relevant for BL cell survival and thus may help to develop new BL treatments.
Collapse
|
50
|
Deng GM, Kyttaris VC, Tsokos GC. Targeting Syk in Autoimmune Rheumatic Diseases. Front Immunol 2016; 7:78. [PMID: 27014261 PMCID: PMC4779881 DOI: 10.3389/fimmu.2016.00078] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/16/2016] [Indexed: 02/03/2023] Open
Abstract
Spleen tyrosine kinase (Syk) is a member of the Src family of non-receptor tyrosine kinases, which associates directly with surface receptors, including B-cell receptor and Fcγ receptor, and is involved in a variety of signal transduction pathways. Rheumatoid arthritis (RA) and systemic lupus erythematosus are autoimmune diseases in which autoantibodies, immune complexes, and autoreactive T cells account for the expression of tissue inflammation and damage. Syk inhibitors efficiently suppress RA in patients albeit in the expression of unwanted side effects, including gastrointestinal effects, hypertension, and neutropenia. Syk inhibitors also inhibit clinical manifestations in lupus-prone mice. Here, we review the evidence that supports the use of Syk inhibitors to treat rheumatic and other autoimmune diseases.
Collapse
Affiliation(s)
- Guo-Min Deng
- Key Laboratory of Antibody Techniques of Ministry of Health, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | | | - George C Tsokos
- Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|