1
|
Zhang ZS, Yang A, Luo X, Zhou HN, Liu YY, Bao DQ, Zhang J, Zang JT, Li QH, Li T, Liu LM. Pericyte-derived extracellular vesicles improve vascular barrier function in sepsis via the Angpt1/PI3K/AKT pathway and pericyte recruitment: an in vivo and in vitro study. Stem Cell Res Ther 2025; 16:70. [PMID: 39940043 PMCID: PMC11823130 DOI: 10.1186/s13287-025-04201-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/29/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Extracellular vesicles derived from pericytes (PCEVs) have been shown to improve vascular permeability, with their therapeutic effects attributed to the presence of pro-regenerative molecules. We hypothesized that angiopoietin 1 (Angpt1) carried by PCEVs contributes to their therapeutic effects after sepsis. METHODS A cecal ligation and puncture (CLP)-induced sepsis rat model was used in vivo, and the effects of PCEVs on vascular endothelial cells were studied in vitro. First, proteomic and Gene Ontology enrichment analyses were performed to analyze the therapeutic mechanism of PCEVs, revealing that the angiogenesis-related protein Angpt1 was highly expressed in PCEVs. We then down-regulated Angpt1 in PCEVs. The role of PCEV-carried Angpt1 on intestinal barrier function, PCs recruitment, and inflammatory cytokines was measured by using septic Sprague-Dawley rats and platelet-derived growth factor receptor beta (PDGFR-β)-Cre + mT/mG transgenic mice. RESULTS PCEVs significantly improved vascular permeability, proliferation, and angiogenesis in CLP-induced gut barrier injury both in vivo and in vitro. Further studies have shown that PCEVs exert a protective effect on intestinal barrier function and PC recruitment. Additionally, PCEVs reduced serum inflammatory factor levels. Our data also demonstrated that the protein levels of phospho-PI3K and phospho-Akt both increased after PCEVs administration, whereas knocking out Angpt1 suppressed the protective effects of PCEVs through decreased activation of PI3K/Akt signaling. CONCLUSION PCEVs protect against sepsis by regulating the vascular endothelial barrier, promoting PC recruitment, protecting intestinal function, and restoring properties via activation of the Angpt1/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Zi-Sen Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Ao Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xi Luo
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - He-Nan Zhou
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yi-Yan Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Dai-Qin Bao
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jie Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jia-Tao Zang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Qing-Hui Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Liang-Ming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
2
|
Han HY, Park SM, Lee JH, Kim CG, Kim JW, Cho HJ, Kim JH. Outcomes and predictive factors for fluid resolution following three loading injections of faricimab for treatment-naïve neovascular age-related macular degeneration. Sci Rep 2025; 15:938. [PMID: 39762260 PMCID: PMC11704234 DOI: 10.1038/s41598-024-82746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
To evaluate the outcomes and predictive factors for fluid resolution following three loading injections of faricimab for neovascular age-related macular degeneration(AMD). This retrospective study included patients diagnosed with treatment-naïve neovascular AMD who received three monthly injections of faricimab. Changes in best-corrected visual acuity(BCVA) and central retinal thickness(CRT) following treatment were evaluated. The resolution of subretinal fluid(SRF), intraretinal fluid(IRF), and serous pigment epithelial detachment(PED) was also assessed. In addition, factors associated with complete resolution of SRF and IRF were investigated. A total of 69 patients were included in this study. BCVA significantly improved from a mean logarithm of minimal angle of resolution of 0.64 ± 0.41 at baseline to 0.47 ± 0.39 at 3 months (P < 0.001). CRT significantly decreased from 424.1 ± 155.5 μm at baseline to 266.3 ± 71.7 μm at 3 months (P < 0.001). At baseline, SRF was observed in 55 eyes (79.7%), IRF in 39 eyes(56.5%), and serous PED in 57 eyes(82.6%). By 3 months, the number of eyes showing these findings had decreased to 11 eyes(15.9%) for SRF, 6 eyes(8.7%) for IRF, and 10 eyes(14.5%) for serous PED. The presence of type 2 (88.2%) and type 3 (94.7%) macular neovascularization(MNV) was associated with a high incidence of complete resolution of SRF and IRF after treatment. Three loading injections of faricimab resulted in significant functional and anatomical improvements in treatment-naïve neovascular AMD, with a high rate of resolution of SRF, IRF, and serous PED. The anatomical effects were especially pronounced in cases of type 2 and type 3 MNV.
Collapse
Affiliation(s)
- Hee Yong Han
- Department of Ophthalmology, Kim's Eye Hospital, #156 Youngdeungpo-dong 4ga, Youngdeungpo-gu, 150-034, Seoul, South Korea
| | - Sang Min Park
- Department of Ophthalmology, Kim's Eye Hospital, #156 Youngdeungpo-dong 4ga, Youngdeungpo-gu, 150-034, Seoul, South Korea
| | - Ji Hyun Lee
- Department of Ophthalmology, Kim's Eye Hospital, #156 Youngdeungpo-dong 4ga, Youngdeungpo-gu, 150-034, Seoul, South Korea
| | - Chul Gu Kim
- Department of Ophthalmology, Kim's Eye Hospital, #156 Youngdeungpo-dong 4ga, Youngdeungpo-gu, 150-034, Seoul, South Korea
| | - Jong Woo Kim
- Department of Ophthalmology, Kim's Eye Hospital, #156 Youngdeungpo-dong 4ga, Youngdeungpo-gu, 150-034, Seoul, South Korea
| | - Han Joo Cho
- Department of Ophthalmology, Kim's Eye Hospital, #156 Youngdeungpo-dong 4ga, Youngdeungpo-gu, 150-034, Seoul, South Korea.
| | - Jae Hui Kim
- Department of Ophthalmology, Kim's Eye Hospital, #156 Youngdeungpo-dong 4ga, Youngdeungpo-gu, 150-034, Seoul, South Korea.
| |
Collapse
|
3
|
Feng J, Liu L, Liu J, Wang J. Immunological alterations in the endothelial barrier: a new predictive and therapeutic paradigm for sepsis. Expert Rev Clin Immunol 2024; 20:1205-1217. [PMID: 38850066 DOI: 10.1080/1744666x.2024.2366301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024]
Abstract
INTRODUCTION Despite the fact incidence and mortality vary widely among regions, sepsis remains a major cause of morbidity and cost worldwide. The importance of the endothelial barrier in sepsis and infectious diseases is increasingly recognized; however, the underlying pathophysiology of the endothelial barrier in sepsis remains poorly understood. AREAS COVERED Here we review the advances in basic and clinical research for relevant papers in PubMed database. We attempt to provide an updated overview of immunological alterations in endothelial dysfunction, discussing the central role of endothelial barrier involved in sepsis to provide new predictive and therapeutic paradigm for sepsis. EXPERT OPINION Given its physiological and immunological functions in infectious diseases, the endothelial barrier has been dramatically altered in sepsis, suggesting that endothelial dysfunction may play a critical role in the pathogenesis of sepsis. Although many reliable biomarkers have been investigated to monitor endothelial activation and injury in an attempt to find diagnostic and therapeutic tools, there are no specific therapies to treat sepsis due to its complex pathophysiology. Since sepsis is initiated by both hyperinflammation and immunoparalysis occurring simultaneously, a 'one-treatment-fits-all' strategy for sepsis-induced immune injury and immunoparalysis is bound to fail, and an individualized 'precision medicine' approach is required.
Collapse
Affiliation(s)
- Jun Feng
- Department of Emergency Medicine, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Liu
- Department of Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junya Liu
- Department of Emergency Medicine, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junshuai Wang
- Department of Emergency Medicine, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Zhong J, Johansen SH, Bæk O, Nguyen DN. Citrulline supplementation exacerbates sepsis severity in infected preterm piglets via early induced immunosuppression. J Nutr Biochem 2024; 131:109674. [PMID: 38825026 DOI: 10.1016/j.jnutbio.2024.109674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
Arginine (ARG)/Citrulline (CIT) deficiency is associated with increased sepsis severity after infection. Supplementation of CIT to susceptible patients with ARG/CIT deficiency such as preterm newborns with suspected infection might prevent sepsis, via maintaining immune and vascular function. Caesarean-delivered, parenterally nourished preterm pigs were treated with CIT (1g/kg bodyweight) via oral or continuous intravenous supplementation, then inoculated with live Staphylococcus epidermidis and clinically monitored for 14 h. Blood, liver, and spleen samples were collected for analysis. In vitro cord blood stimulation was performed to explore how CIT and ARG affect premature blood cell responses. After infection, oral CIT supplementation led to higher mortality, increased blood bacterial load, and systemic and hepatic inflammation. Intravenous CIT administration showed increased inflammation and bacterial burdens without significantly affecting mortality. Liver transcriptomics and data from in vitro blood stimulation indicated that CIT induces systemic immunosuppression in preterm newborns, which may impair resistance response to bacteria at the early stage of infection, subsequently causing later uncontrollable inflammation and tissue damage. The early stage of CIT supplementation exacerbates sepsis severity in infected preterm pigs, likely via inducing systemic immunosuppression.
Collapse
Affiliation(s)
- Jingren Zhong
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Sebastian Høj Johansen
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | - Ole Bæk
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark; Department of Neonatology, Rigshospitalet, Denmark.
| | - Duc Ninh Nguyen
- Section for Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
5
|
Bianquis C, Leiva Agüero S, Cantero C, Golfe Bonmatí A, González J, Hu X, Lacoste-Palasset T, Livesey A, Guillamat Prats R, Salai G, Sykes DL, Toland S, van Zeller C, Viegas P, Vieira AL, Zaneli S, Karagiannidis C, Fisser C. ERS International Congress 2023: highlights from the Respiratory Intensive Care Assembly. ERJ Open Res 2024; 10:00886-2023. [PMID: 38651090 PMCID: PMC11033729 DOI: 10.1183/23120541.00886-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 04/25/2024] Open
Abstract
Early career members of Assembly 2 (Respiratory Intensive Care) attended the 2023 European Respiratory Society International Congress in Milan, Italy. The conference covered acute and chronic respiratory failure. Sessions of interest to our assembly members and to those interested in respiratory critical care are summarised in this article and include the latest updates in respiratory intensive care, in particular acute respiratory distress syndrome and mechanical ventilation.
Collapse
Affiliation(s)
- Clara Bianquis
- Sorbonne Université, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Sebastian Leiva Agüero
- Academic unit of the University Institute of Health Science H.A. Barceló Foundation, La Rioja, Argentina
| | - Chloé Cantero
- APHP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, Site Pitié-Salpêtrière, Service de Pneumologie, Paris, France
| | | | - Jessica González
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Xinxin Hu
- St Vincent's Health Network Sydney, Sydney, Australia
- University of Sydney, Sydney, Australia
| | - Thomas Lacoste-Palasset
- Assistance Publique Hôpitaux de Paris, Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Université Paris–Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France
| | - Alana Livesey
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | - Grgur Salai
- Department of Pulmonology, University Hospital Dubrava, Zagreb, Croatia
| | | | - Sile Toland
- Department of Medicine, Letterkenny University Hospital, Donegal, Ireland
| | - Cristiano van Zeller
- Department of Respiratory Medicine, King's College Hospital NHS Foundation Trust, London, UK
| | - Pedro Viegas
- Departamento de Pneumonologia, Centro Hospitalar de Vila Nova de Gaia/Espinho, Oporto, Portugal
| | | | - Stavroula Zaneli
- 1st Respiratory Department, Medical School, National and Kapodistrian University of Athens, “Sotiria” Chest Hospital, Athens, Greece
| | - Christian Karagiannidis
- Department of Pneumology and Critical Care Medicine, ARDS and ECMO Centre, Cologne-Merheim Hospital, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University Hospital, Cologne, Germany
| | - Christoph Fisser
- Department of Internal Medicine II, University Medical Centre Regensburg, Regensburg, Germany
| |
Collapse
|
6
|
Yildiz AB, Copur S, Tanriover C, Yavuz F, Vehbi S, Gaipov A, Magagnoli L, Ciceri P, Cozzolino M, Kanbay M. Angiopoietin as a Novel Prognostic Marker in Kidney Disease. Blood Purif 2024; 53:425-435. [PMID: 38262381 DOI: 10.1159/000536439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/12/2023] [Indexed: 01/25/2024]
Abstract
INTRODUCTION Renal injury is among the leading causes of morbidity and mortality; however, there are no reliable indicators for determining the likelihood of developing chronic kidney disease (CKD), CKD progression, or AKI events. Vascular growth factors called angiopoietins have a role in endothelial function, vascular remodeling, tissue stabilization, and inflammation and have been implicated as prognostic and predictive markers in AKI. METHODS Although the exact mechanism of the relationship between kidney injury and angiopoietins is unknown, this review demonstrates that AKI patients have higher angiopoietin-2 levels and that higher angiopoietin-1 to angiopoietin-2 ratio may potentially be linked with a reduced risk of the CKD progression. RESULTS This review therefore emphasizes the importance of angiopoietin-2 and proposes that it could be an important predictor of AKI in clinical settings. CONCLUSION There is a need for further large-scale randomized clinical trials in order to have a better understanding of the significance of angiopoietin-2 and for the determination of its potential clinical implications.
Collapse
Affiliation(s)
- Abdullah B Yildiz
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Cem Tanriover
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Furkan Yavuz
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Sezan Vehbi
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Abduzhappar Gaipov
- Department of Medicine, Nazarbayev Unive Mario Cozzolino Rsity School of Medicine, Astana, Kazakhstan
- Clinical Academic Department of Internal Medicine, CF "University Medical Center", Astana, Kazakhstan
| | - Lorenza Magagnoli
- Department of Health Sciences, Renal Division, University of Milan, Milan, Italy
| | - Paola Ciceri
- Department of Health Sciences, Renal Division, University of Milan, Milan, Italy
| | - Mario Cozzolino
- Department of Health Sciences, Renal Division, University of Milan, Milan, Italy
| | - Mehmet Kanbay
- Department of Medicine, Nephrology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
7
|
Cao J, Chen Y. The impact of vascular endothelial glycocalyx on the pathogenesis and treatment of disseminated intravascular coagulation. Blood Coagul Fibrinolysis 2023; 34:465-470. [PMID: 37823419 PMCID: PMC10754481 DOI: 10.1097/mbc.0000000000001257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
Disseminated intravascular coagulation (DIC) is a complex disorder characterized by widespread activation of blood clotting mechanisms throughout the body. Understanding the role of vascular endothelial glycocalyx in the pathogenesis and treatment of DIC is crucial for advancing our knowledge in this field. The vascular endothelial glycocalyx is a gel-like layer that coats the inner surface of blood vessels. It plays a significant role in maintaining vascular integrity, regulating fluid balance, and preventing excessive clotting. In the pathogenesis of DIC, the disruption of the vascular endothelial glycocalyx is a key factor. Pathological conditions trigger the activation of enzymes, including heparanase, hyaluronase, and matrix metalloproteinase. This activation leads to glycocalyx degradation, subsequently exposing endothelial cells to procoagulant stimuli. Additionally, the ANGPTs/Tie-2 signaling pathway plays a role in the imbalance between the synthesis and degradation of VEG, exacerbating endothelial dysfunction and DIC. Understanding the mechanisms behind glycocalyx degradation and its impact on DIC can provide valuable insights for the development of targeted therapies. Preservation of the glycocalyx integrity may help prevent the initiation and propagation of DIC. Strategies such as administration of exogenous glycocalyx components, anticoagulant agents, or Tie-2 antibody agents have shown promising results in experimental models. In conclusion, the vascular endothelial glycocalyx plays a crucial role in the pathogenesis and treatment of DIC. Further research in this field is warranted to unravel the complex interactions between the glycocalyx and DIC, ultimately leading to the development of novel therapies.
Collapse
Affiliation(s)
- Jingjing Cao
- Department of Intensive Care Medicine, Binhaiwan Central Hospital of Dongguan, Dongguan City, Guangdong Province, China
| | | |
Collapse
|
8
|
van Leeuwen ALI, Beijer E, Ibelings R, Dekker NAM, van der Steen MRA, Roelofs JJTH, van Meurs M, Molema G, van den Brom CE. Female sex protects against renal edema, but not lung edema, in mice with partial deletion of the endothelial barrier regulator Tie2 compared to male sex. PLoS One 2023; 18:e0293673. [PMID: 37972011 PMCID: PMC10653528 DOI: 10.1371/journal.pone.0293673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The endothelial angiopoietin/Tie2 system is an important regulator of endothelial permeability and targeting Tie2 reduces hemorrhagic shock-induced organ edema in males. However, sexual dimorphism of the endothelium has not been taken into account. This study investigated whether there are sex-related differences in the endothelial angiopoietin/Tie2 system and edema formation. METHODS Adult male and female heterozygous Tie2 knockout mice (Tie2+/-) and wild-type controls (Tie2+/+) were included (n = 9 per group). Renal and pulmonary injury were determined by wet/dry weight ratio and H&E staining of tissue sections. Protein levels were studied in plasma by ELISA and pulmonary and renal mRNA expression levels by RT-qPCR. RESULTS In Tie2+/+ mice, females had higher circulating angiopoietin-2 (138%, p<0.05) compared to males. Gene expression of angiopoietin-1 (204%, p<0.01), angiopoietin-2 (542%, p<0.001) were higher in females compared to males in kidneys, but not in lungs. Gene expression of Tie2, Tie1 and VE-PTP were similar between males and females in both organs. Renal and pulmonary wet/dry weight ratio did not differ between Tie2+/+ females and males. Tie2+/+ females had lower circulating NGAL (41%, p<0.01) compared to males, whereas renal NGAL and KIM1 gene expression was unaffected. Interestingly, male Tie2+/- mice had 28% higher renal wet/dry weight ratio (p<0.05) compared to Tie2+/+ males, which was not observed in females nor in lungs. Partial deletion of Tie2 did not affect circulating angiopoietin-1 or angiopoietin-2, but soluble Tie2 was 44% and 53% lower in males and females, respectively, compared to Tie2+/+ mice of the same sex. Renal and pulmonary gene expression of angiopoietin-1, angiopoietin-2, estrogen receptors and other endothelial barrier regulators was comparable between Tie2+/- and Tie2+/+ mice in both sexes. CONCLUSION Female sex seems to protect against renal, but not pulmonary edema in heterozygous Tie2 knock-out mice. This could not be explained by sex dimorphism in the endothelial angiopoietin/Tie2 system.
Collapse
Affiliation(s)
- Anoek L. I. van Leeuwen
- Department of Anesthesiology, Amsterdam UMC, VU University, Amsterdam, The Netherlands
- Department of Physiology, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Elise Beijer
- Department of Anesthesiology, Amsterdam UMC, VU University, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, VU University, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Roselique Ibelings
- Department of Anesthesiology, Amsterdam UMC, VU University, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole A. M. Dekker
- Department of Anesthesiology, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | | | - Joris J. T. H. Roelofs
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Matijs van Meurs
- Department of Critical Care, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Grietje Molema
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Charissa E. van den Brom
- Department of Anesthesiology, Amsterdam UMC, VU University, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Drost CC, Unger A, Linke WA, Vink H, Kümpers P. The dynamics of the endothelial glycocalyx: a rare snapshot by electron microscopy. Angiogenesis 2023; 26:487-491. [PMID: 37184739 PMCID: PMC10184622 DOI: 10.1007/s10456-023-09880-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023]
Affiliation(s)
- Carolin C Drost
- Department of Medicine D, Division of General Internal Medicine, Nephrology, and Rheumatology, University Hospital Münster, Münster, Germany.
| | - Andreas Unger
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | - Wolfgang A Linke
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | - Hans Vink
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- Microvascular Health Solutions, Alpine, USA
| | - Philipp Kümpers
- Department of Medicine D, Division of General Internal Medicine, Nephrology, and Rheumatology, University Hospital Münster, Münster, Germany
| |
Collapse
|
10
|
Bauer SR, Gellatly RM, Erstad BL. Precision fluid and vasoactive drug therapy for critically ill patients. Pharmacotherapy 2023; 43:1182-1193. [PMID: 36606689 PMCID: PMC10323046 DOI: 10.1002/phar.2763] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/03/2022] [Accepted: 10/30/2022] [Indexed: 01/07/2023]
Abstract
There are several clinical practice guidelines concerning the use of fluid and vasoactive drug therapies in critically ill adult patients, but the recommendations in these guidelines are often based on low-quality evidence. Further, some were compiled prior to the publication of landmark clinical trials, particularly in the comparison of balanced crystalloid and normal saline. An important consideration in the treatment of critically ill patients is the application of precision medicine to provide the most effective care to groups of patients most likely to benefit from the therapy. Although not currently widely integrated into these practice guidelines, the utility of precision medicine in critical illness is a recognized research priority for fluid and vasoactive therapy management. The purpose of this narrative review was to illustrate the evaluation and challenges of providing precision fluid and vasoactive therapies to adult critically ill patients. The review includes a discussion of important investigations published after the release of currently available clinical practice guidelines to provide insight into how recommendations and research priorities may change future guidelines and bedside care for critically ill patients.
Collapse
Affiliation(s)
- Seth R Bauer
- Department of Pharmacy, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rochelle M Gellatly
- Pharmacy Department, Surrey Memorial Hospital, Surrey, British Columbia, Canada
| | - Brian L Erstad
- Department of Pharmacy Practice and Science, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
11
|
Heuberger D, Wendel-Garcia PD, Sazpinar O, Müller M, Klein H, Kim BS, Andermatt R, Erlebach R, Schuepbach RA, Buehler PK, David S, Hofmaenner DA. The Angiopoietin-2/Angiopoietin-1 ratio increases early in burn patients and predicts mortality. Cytokine 2023; 169:156266. [PMID: 37354645 DOI: 10.1016/j.cyto.2023.156266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/17/2023] [Accepted: 06/02/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Angiopoietin-2 (Angpt-2) is involved in the pathogenesis of the capillary leak syndrome in sepsis and has been shown to be associated with worse outcomes in diverse critical illnesses. It is however unclear whether Angpt-2 plays a similar role in severely burned patients during the early phase characterized by massive capillary leakage. Our aim was to analyze the Angiopoietin-2/Angiopoietin-1 ratio (Angpt-2/Angpt-1 ratio) over the first two days in critically ill burn patients and examine its association with survival and further clinical parameters. METHODS Adult burn patients with a total burn surface area (TBSA) ≥ 20% treated in the burn intensive care unit (ICU) of the University Hospital of Zurich, Switzerland, were included. Serum samples were collected prospectively and serum Angpt-1 and Angpt-2 were measured by enzyme-linked immunosorbent assay (ELISA) over the first two days after burn insult and stratified according to survival status, TBSA and the abbreviated burn severity index (ABSI). Due to hemodilution in the initial resuscitation phase, the Angpt-2/Angpt-1 ratio was normalized to albumin. RESULTS Fifty-six patients were included with a median age of 51.5 years. Overall mortality was 14.3% (8/56 patients). The total amount of infused crystalloids was 12́902 ml (IQR 9́362-16́770 ml) at 24 h and 18́461 ml (IQR 13́024-23́766 ml) at 48 h. The amount of substituted albumin was 20 g (IQR 10-50 g) at 24 h and 50 g (IQR 20-60 g) at 48 h. The albumin-corrected Angpt-2/Angpt-1 ratios increased over the first 48 h after the burn insult (d0: 0.5 pg*l/ml*g [IQR 0.24 - 0.80 pg*l/ml*g]; d1: 0.83 pg*l/ml*g [IQR 0.29 - 1.98 pg*l/ml*g]; d2: 1.76 pg*l/ml*g [IQR 0.70 - 3.23 pg*l/ml*g]; p < 0.001) and were significantly higher in eventual ICU non-survivors (p = 0.005), in patients with a higher TBSA (p = 0.001) and in patients with a higher ABSI (p = 0.001). CONCLUSIONS In analogy to the pathological host response in sepsis, the Angpt-2/Angpt-1 ratio steadily increases in the first two days in critically ill burn patients, suggesting a putative involvement in the pathogenesis of capillary leakage in burns. A higher Angpt-2/Angpt-1 ratio is associated with mortality, total burn surface area and burn scores.
Collapse
Affiliation(s)
- Dorothea Heuberger
- Institute of Intensive Care Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland.
| | - Pedro David Wendel-Garcia
- Institute of Intensive Care Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland.
| | - Onur Sazpinar
- Institute of Intensive Care Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland.
| | - Mattia Müller
- Institute of Intensive Care Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland.
| | - Holger Klein
- Plastic and Hand Surgery, Cantonal Hospital Aarau, Tellstrasse 25, CH-5001 Aarau, Switzerland.
| | - Bong-Sung Kim
- Plastic and Hand Surgery, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland.
| | - Rea Andermatt
- Institute of Intensive Care Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland.
| | - Rolf Erlebach
- Institute of Intensive Care Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland.
| | - Reto A Schuepbach
- Institute of Intensive Care Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland.
| | - Philipp K Buehler
- Institute of Intensive Care Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland.
| | - Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland.
| | - Daniel A Hofmaenner
- Institute of Intensive Care Medicine, University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland.
| |
Collapse
|
12
|
Mohebbi A, Haybar H, Nakhaei Moghaddam F, Rasti Z, Vahid MA, Saki N. Biomarkers of endothelial dysfunction are associated with poor outcome in COVID-19 patients: A systematic review and meta-analysis. Rev Med Virol 2023:e2442. [PMID: 36943015 DOI: 10.1002/rmv.2442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
Abstract
Numerous studies have linked coronavirus disease 2019 (COVID-19) with endothelial dysfunction and reported elevated levels of endothelial biomarkers in this disease. We conducted a systematic review and meta-analysis of the published evidence in this respect. A systematic literature search of PubMed and Scopus databases was performed to find studies investigating biomarkers of endothelial dysfunction in COVID-19 patients. Pooled standardized mean differences and their 95% confidence intervals were calculated for each biomarker using random effect model. 74 studies with 7668 patients were included. In comparison to patients with good outcome, those with poor outcome had higher levels of von Willebrand factor (vWF) (SMD: 0.83, 95% CI: 0.59-1.07, p < 0.00001), vWF:ADAMTS13 (1.23, (0.77-1.7), p < 0.00001), angiopoietin-2 (Ang-2) (1.06 (0.6-1.51), p < 0.0001), E-selectin (1.09 (0.55-1.63), p < 0.0001), P-selectin (0.59 (0.24-0.94), p = 0.001), syndecan-1 (0.99 (0.6-1.37), p < 0.00001), mid-regional pro-adrenomedullin (MR-proADM) (1.52 (1.35-1.68), p < 0.00001), vascular endothelial growth factor (0.27 (0.02-0.53), p = 0.03), soluble fms-like tyrosine kinase-1 (sFLT-1) (1.93 (0.65-3.21), p = 0.03) and lower levels of ADAMTS13 antigen (-0.69 (-0.9 to -0.47) p < 0.00001) and activity (-0.84 (-1.06 to -0.61) p < 0.0000). Plasminogen activator inhibitor-1 and tissue plasminogen activator levels were not different between the two groups (p < 0.05). There were elevated levels of endothelial dysfunction biomarkers in COVID-19 patients with poor outcome, indicating their possible role in disease severity and prognosis. In particular, MR-proADM, vWF, syndecan-1 and sFLT-1 showed a significant association with poor outcome in these patients.
Collapse
Affiliation(s)
- Alireza Mohebbi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Habib Haybar
- Department of Cardiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Nakhaei Moghaddam
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Zahra Rasti
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Vahid
- Department of Medical Laboratory, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Department of Medical Laboratory, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
13
|
Shi X, Seidle KA, Simms KJ, Dong F, Chilian WM, Zhang P. Endothelial progenitor cells in the host defense response. Pharmacol Ther 2023; 241:108315. [PMID: 36436689 PMCID: PMC9944665 DOI: 10.1016/j.pharmthera.2022.108315] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Extensive injury of endothelial cells in blood vasculature, especially in the microcirculatory system, frequently occurs in hosts suffering from sepsis and the accompanied systemic inflammation. Pathological factors, including toxic components derived from invading microbes, oxidative stress associated with tissue ischemia/reperfusion, and vessel active mediators generated during the inflammatory response, are known to play important roles in mediating endothelial injury. Collapse of microcirculation and tissue edema developed from the failure of endothelial barrier function in vital organ systems, including the lung, brain, and kidney, are detrimental, which often predict fatal outcomes. The host body possesses a substantial capacity for maintaining vascular homeostasis and repairing endothelial damage. Bone marrow and vascular wall niches house endothelial progenitor cells (EPCs). In response to septic challenges, EPCs in their niche environment are rapidly activated for proliferation and angiogenic differentiation. In the meantime, release of EPCs from their niches into the blood stream and homing of these vascular precursors to tissue sites of injury are markedly increased. The recruited EPCs actively participate in host defense against endothelial injury and repair of damage in blood vasculature via direct differentiation into endothelial cells for re-endothelialization as well as production of vessel active mediators to exert paracrine and autocrine effects on angiogenesis/vasculogenesis. In recent years, investigations on significance of EPCs in host defense and molecular signaling mechanisms underlying regulation of the EPC response have achieved substantial progress, which promotes exploration of vascular precursor cell-based approaches for effective prevention and treatment of sepsis-induced vascular injury as well as vital organ system failure.
Collapse
Affiliation(s)
- Xin Shi
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Kelly A Seidle
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Kevin J Simms
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Ping Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America.
| |
Collapse
|
14
|
Li Y, Li H, Wang Y, Guo J, Zhang D. Potential Biomarkers for Early Diagnosis, Evaluation, and Prognosis of Sepsis-Induced Coagulopathy. Clin Appl Thromb Hemost 2023; 29:10760296231195089. [PMID: 37605466 PMCID: PMC10467369 DOI: 10.1177/10760296231195089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/23/2023] [Accepted: 07/30/2023] [Indexed: 08/23/2023] Open
Abstract
Sepsis-induced coagulopathy (SIC) is a life-threatening complication characterized by the systemic activation of coagulation in sepsis. The diagnostic criteria of SIC consist of three items, including Sequential Organ Failure Assessment (SOFA) score, platelet count, and prothrombin time (PT)-international normalized ratio (INR). SIC has a high prevalence and it can lead to a higher mortality rate and longer length of hospital and ICU stay. Thus, the early detection of SIC is extremely important. It is unfortunate that there is still no precise biomarker for early diagnosis and assessment of the prognosis of SIC. We reviewed the current literature and discovered that some potential biomarkers, such as soluble thrombomodulin (sTM), thrombin-antithrombin complex (TAT), tissue plasminogen activator-inhibitor complex (t-PAIC), α2-plasmin inhibitor-plasmin complex (PIC), C-type lectin-like receptor 2 (CLEC-2), neutrophil extracellular traps (NETs), prothrombin fragment 1.2 (F1.2), Angiopoietin-2 (Ang-2), plasminogen activator inhibitor-1 (PAI-1), and tissue inhibitor of metalloproteinase-1 (TIMP-1) may be useful for early diagnosis, evaluation, and prognosis of SIC. Early initiation of treatment without missing any therapeutic opportunities may improve SIC patients' prognosis. Further large-scale clinical studies are still needed to confirm the role of these biomarkers in the diagnosis and prognosis assessment of SIC.
Collapse
Affiliation(s)
- Yuting Li
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hongxiang Li
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Youquan Wang
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jianxing Guo
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dong Zhang
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
15
|
Ma Q, Ma W, Song TZ, Wu Z, Liu Z, Hu Z, Han JB, Xu L, Zeng B, Wang B, Sun Y, Yu DD, Wu Q, Yao YG, Zheng YT, Wang X. Single-nucleus transcriptomic profiling of multiple organs in a rhesus macaque model of SARS-CoV-2 infection. Zool Res 2022; 43:1041-1062. [PMID: 36349357 PMCID: PMC9700497 DOI: 10.24272/j.issn.2095-8137.2022.443] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/09/2022] Open
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes diverse clinical manifestations and tissue injuries in multiple organs. However, cellular and molecular understanding of SARS-CoV-2 infection-associated pathology and immune defense features in different organs remains incomplete. Here, we profiled approximately 77 000 single-nucleus transcriptomes of the lung, liver, kidney, and cerebral cortex in rhesus macaques ( Macaca mulatta) infected with SARS-CoV-2 and healthy controls. Integrated analysis of the multi-organ dataset suggested that the liver harbored the strongest global transcriptional alterations. We observed prominent impairment in lung epithelial cells, especially in AT2 and ciliated cells, and evident signs of fibrosis in fibroblasts. These lung injury characteristics are similar to those reported in patients with coronavirus disease 2019 (COVID-19). Furthermore, we found suppressed MHC class I/II molecular activity in the lung, inflammatory response in the liver, and activation of the kynurenine pathway, which induced the development of an immunosuppressive microenvironment. Analysis of the kidney dataset highlighted tropism of tubule cells to SARS-CoV-2, and we found membranous nephropathy (an autoimmune disease) caused by podocyte dysregulation. In addition, we identified the pathological states of astrocytes and oligodendrocytes in the cerebral cortex, providing molecular insights into COVID-19-related neurological implications. Overall, our multi-organ single-nucleus transcriptomic survey of SARS-CoV-2-infected rhesus macaques broadens our understanding of disease features and antiviral immune defects caused by SARS-CoV-2 infection, which may facilitate the development of therapeutic interventions for COVID-19.
Collapse
Affiliation(s)
- Qiang Ma
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenji Ma
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tian-Zhang Song
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Zhaobo Wu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zeyuan Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenxiang Hu
- LivzonBio, Inc., Zhuhai, Guangdong 519045, China
| | - Jian-Bao Han
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Ling Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Bo Zeng
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bosong Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Yinuo Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dan-Dan Yu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China. E-mail:
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming National High-Level Biosafety Research Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China. E-mail:
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China. E-mail:
| |
Collapse
|
16
|
Sharma K, Zhang Y, Paudel KR, Kachelmeier A, Hansbro PM, Shi X. The Emerging Role of Pericyte-Derived Extracellular Vesicles in Vascular and Neurological Health. Cells 2022; 11:cells11193108. [PMID: 36231071 PMCID: PMC9563036 DOI: 10.3390/cells11193108] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
Pericytes (PCs), as a central component of the neurovascular unit, contribute to the regenerative potential of the central nervous system (CNS) and peripheral nervous system (PNS) by virtue of their role in blood flow regulation, angiogenesis, maintenance of the BBB, neurogenesis, and neuroprotection. Emerging evidence indicates that PCs also have a role in mediating cell-to-cell communication through the secretion of extracellular vesicles (EVs). Extracellular vesicles are cell-derived, micro- to nano-sized vesicles that transport cell constituents such as proteins, nucleic acids, and lipids from a parent originating cell to a recipient cell. PC-derived EVs (PC-EVs) play a crucial homeostatic role in neurovascular disease, as they promote angiogenesis, maintain the integrity of the blood-tissue barrier, and provide neuroprotection. The cargo carried by PC-EVs includes growth factors such as endothelial growth factor (VEGF), connecting tissue growth factors (CTGFs), fibroblast growth factors, angiopoietin 1, and neurotrophic growth factors such as brain-derived neurotrophic growth factor (BDNF), neuron growth factor (NGF), and glial-derived neurotrophic factor (GDNF), as well as cytokines such as interleukin (IL)-6, IL-8, IL-10, and MCP-1. The PC-EVs also carry miRNA and circular RNA linked to neurovascular health and the progression of several vascular and neuronal diseases. Therapeutic strategies employing PC-EVs have potential in the treatment of vascular and neurodegenerative diseases. This review discusses current research on the characteristic features of EVs secreted by PCs and their role in neuronal and vascular health and disease.
Collapse
Affiliation(s)
- Kushal Sharma
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Yunpei Zhang
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Allan Kachelmeier
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Xiaorui Shi
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Correspondence: ; Tel.: +1-503-494-2997
| |
Collapse
|
17
|
Çakırlar FK. Application of Biomarkers in the Diagnostic Distinction of Bacterial and Viral Infections. Biomark Med 2022. [DOI: 10.2174/9789815040463122010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Infectious diseases, which pose a great threat worldwide, have a significant
impact on public health and the world economy. It contributes to increased healthcare
costs, unnecessary drug-related side effects, and increased antimicrobial resistance. It is
not always easy to distinguish the etiological differentiation of diseases that can
develop with bacteria and viruses. Therefore, one of the biggest challenges in medicine
is how to correctly distinguish between the different causes of these infections and how
to manage the patient. Because bacterial and viral infections often present similar
symptoms. The real decision is whether the infection is caused by bacteria or viruses
and whether to treat the patient with antibiotics. There are many different
methodological approaches to diagnosing infections. Biomarkers have been used in the
diagnosis of diseases and other conditions for many years. Biomarkers are molecules
found in blood and body fluids in measurable amounts, which can evaluate biological
and pathological processes. These key indicators can provide vital information in
determining disease prognosis, predicting response to treatments, adverse events and
drug interactions, and identifying key risks. An effective biomarker is extremely
important for the early diagnosis of various diseases. The explosion of interest in
biomarker research is driving the development of new predictive, diagnostic, and
prognostic products in modern medical practice. The purpose of this review is to
demonstrate the use and diagnostic potential of current and investigational biomarkers
in the distinction between bacterial and viral infections.
Collapse
Affiliation(s)
- Fatma Köksal Çakırlar
- Faculty of Cerrahpaşa Medicine, University of İstanbul- Cerrahpaşa,Department of Medical Microbiology,Department of Medical Microbiology, Faculty of Cerrahpaşa Medicine, University of İstanbul- Cerrahpaşa, Istanbul, Turkey,Istanbul,Turkey
| |
Collapse
|
18
|
Abstract
COVID-19 is a primary respiratory illness that is frequently complicated by systemic involvement of the vasculature. Vascular involvement leads to an array of complications ranging from thrombosis to pulmonary edema secondary to loss of barrier function. This review will address the vasculopathy of COVID-19 with a focus on the role of the endothelium in orchestrating the systemic response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The endothelial receptor systems and molecular pathways activated in the setting of COVID-19 and the consequences of these inflammatory and prothrombotic changes on endothelial cell function will be discussed. The sequelae of COVID-19 vascular involvement at the level of organ systems will also be addressed, with an emphasis on the pulmonary vasculature but with consideration of effects on other vascular beds. The dramatic changes in endothelial phenotypes associated with COVID-19 has enabled the identification of biomarkers that could help guide therapy and predict outcomes. Knowledge of vascular pathogenesis in COVID-19 has also informed therapeutic approaches that may control its systemic sequelae. Because our understanding of vascular response in COVID-19 continues to evolve, we will consider areas of controversy, such as the extent to which SARS-CoV-2 directly infects endothelium and the degree to which vascular responses to SARS-CoV-2 are unique or common to those of other viruses capable of causing severe respiratory disease. This conceptual framework describing how SARS-CoV-2 infection affects endothelial inflammation, prothrombotic transformation, and barrier dysfunction will provide a context for interpreting new information as it arises addressing the vascular complications of COVID-19.
Collapse
Affiliation(s)
| | | | - Alec A Schmaier
- Division of Hemostasis and Thrombosis and
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
19
|
Lansdell TA, Chambers LC, Dorrance AM. Endothelial Cells and the Cerebral Circulation. Compr Physiol 2022; 12:3449-3508. [PMID: 35766836 DOI: 10.1002/cphy.c210015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelial cells form the innermost layer of all blood vessels and are the only vascular component that remains throughout all vascular segments. The cerebral vasculature has several unique properties not found in the peripheral circulation; this requires that the cerebral endothelium be considered as a unique entity. Cerebral endothelial cells perform several functions vital for brain health. The cerebral vasculature is responsible for protecting the brain from external threats carried in the blood. The endothelial cells are central to this requirement as they form the basis of the blood-brain barrier. The endothelium also regulates fibrinolysis, thrombosis, platelet activation, vascular permeability, metabolism, catabolism, inflammation, and white cell trafficking. Endothelial cells regulate the changes in vascular structure caused by angiogenesis and artery remodeling. Further, the endothelium contributes to vascular tone, allowing proper perfusion of the brain which has high energy demands and no energy stores. In this article, we discuss the basic anatomy and physiology of the cerebral endothelium. Where appropriate, we discuss the detrimental effects of high blood pressure on the cerebral endothelium and the contribution of cerebrovascular disease endothelial dysfunction and dementia. © 2022 American Physiological Society. Compr Physiol 12:3449-3508, 2022.
Collapse
Affiliation(s)
- Theresa A Lansdell
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Laura C Chambers
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
20
|
Richter RP, Ashtekar AR, Zheng L, Pretorius D, Kaushlendra T, Sanderson RD, Gaggar A, Richter JR. Glycocalyx heparan sulfate cleavage promotes endothelial cell angiopoietin-2 expression by impairing shear stress-related AMPK/FoxO1 signaling. JCI Insight 2022; 7:155010. [PMID: 35763350 PMCID: PMC9462499 DOI: 10.1172/jci.insight.155010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Angiopoietin-2 (Ang-2) is a key mediator of vascular disease during sepsis, and elevated plasma levels of Ang-2 are associated with organ injury scores and poor clinical outcomes. We have previously observed that biomarkers of endothelial glycocalyx (EG) damage correlate with plasma Ang-2 levels, suggesting a potential mechanistic linkage between EG injury and Ang-2 expression during states of systemic inflammation. However, the cell signaling mechanisms regulating Ang-2 expression following EG damage are unknown. In the current study, we determined the temporal associations between plasma heparan sulfate (HS) levels as a marker of EG erosion and plasma Ang-2 levels in children with sepsis and in mouse models of sepsis. Secondly, we evaluated the role of shear stress-mediated 5'-adenosine monophosphate-activated protein kinase (AMPK) signaling in Ang-2 expression following enzymatic HS cleavage from the surface of human primary lung microvascular endothelial cells (HLMVEC). We found that plasma HS levels peak prior to plasma Ang-2 levels in children and mice with sepsis. Further, we discovered that impaired AMPK signaling contributes to increased Ang-2 expression following HS cleavage from flow conditioned HLMVECs, establishing a novel paradigm by which Ang-2 may be upregulated during sepsis.
Collapse
Affiliation(s)
- Robert P Richter
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, United States of America
| | - Amit R Ashtekar
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, United States of America
| | - Lei Zheng
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, United States of America
| | - Danielle Pretorius
- Department of Surgery, University of Alabama at Birmingham, Birmingham, United States of America
| | - Tripathi Kaushlendra
- Department of Pathology, University of Alabama at Birmingham, Birmingham, United States of America
| | - Ralph D Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, United States of America
| | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, United States of America
| | - Jillian R Richter
- Department of Surgery, University of Alabama at Birmingham, Birmingham, United States of America
| |
Collapse
|
21
|
Ciechanowska A, Gora IM, Sabalinska S, Ladyzynski P. The Effect of High and Variable Glucose on the Viability of Endothelial Cells Co-Cultured with Smooth Muscle Cells. Int J Mol Sci 2022; 23:ijms23126704. [PMID: 35743147 PMCID: PMC9223437 DOI: 10.3390/ijms23126704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes mellitus causes endothelial dysfunction. The aim of this study was to investigate the effect of normal (5 mmol/L), high (20 mmol/L), and fluctuating (5 and 20 mmol/L changed every day) glucose concentration in the culture medium on the viability of human umbilical vein endothelial cells (HUVECs) co-cultured with human umbilical artery smooth muscle cells (HUASMCs). The cultures were conducted on semi-permeable flat polysulfone (PSU) fibronectin-coated membranes immobilized in self-made inserts. The insert contained either HUVECs on a single membrane or HUASMCs and HUVECs on two membranes close to each other. Cultures were conducted for 7 or 14 days. Apoptosis, mitochondrial potential, and the production of reactive oxygen species and lactate by HUVECs were investigated. The results indicate that fluctuations in glucose concentration have a stronger negative effect on HUVECs viability than constant high glucose concentration. High and fluctuating glucose concentrations slow down cell proliferation compared to the culture carried out in the medium with normal glucose concentration. In conclusion, HUASMCs affect the viability of HUVECs when both types of cells are co-cultured in medium with normal or variable glucose concentration.
Collapse
|
22
|
Pape T, Hunkemöller AM, Kümpers P, Haller H, David S, Stahl K. Targeting the "sweet spot" in septic shock - A perspective on the endothelial glycocalyx regulating proteins Heparanase-1 and -2. Matrix Biol Plus 2021; 12:100095. [PMID: 34917926 PMCID: PMC8669377 DOI: 10.1016/j.mbplus.2021.100095] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022] Open
Abstract
Sepsis is a life-threatening syndrome caused by a pathological host response to an infection that eventually, if uncontrolled, leads to septic shock and ultimately, death. In sepsis, a massive aggregation of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) cause a cytokine storm. The endothelial glycocalyx (eGC) is a gel like layer on the luminal side of the endothelium that consists of proteoglycans, glycosaminoglycans (GAG) and plasma proteins. It is synthesized by endothelial cells and plays an active role in the regulation of inflammation, permeability, and coagulation. In sepsis, early and profound injury of the eGC is observed and circulating eGC components correlate directly with clinical severity and outcome. The activity of the heparan sulfate (HS) specific glucuronidase Heparanase-1 (Hpa-1) is elevated in sepsis, resulting in shedding of heparan sulfate (HS), a main GAG of the eGC. HS induces endothelial barrier breakdown and accelerates systemic inflammation. Lipopolysaccharide (LPS), a PAMP mainly found on the surface of gram-negative bacteria, activates TLR-4, which results in cytokine production and further activation of Hpa-1. Hpa-1 shed HS fragments act as DAMPs themselves, leading to a vicious cycle of inflammation and end-organ dysfunction such as septic cardiomyopathy and encephalopathy. Recently, Hpa-1's natural antagonist, Heparanase-2 (Hpa-2) has been identified. It has no intrinsic enzymatic activity but instead acts by reducing inflammation. Hpa-2 levels are reduced in septic mice and patients, leading to an acquired imbalance of Hpa-1 and Hpa-2 paving the road towards a therapeutic intervention. Recently, the synthetic antimicrobial peptide 19-2.5 was described as a promising therapy protecting the eGC by inhibition of Hpa-1 activity and HS shed fragments in animal studies. However, a recombinant Hpa-2 therapy does not exist to the present time. Therapeutic plasma exchange (TPE), a modality already tested in clinical practice, effectively removes injurious mediators, e.g., Hpa-1, while replacing depleted protective molecules, e.g., Hpa-2. In critically ill patients with septic shock, TPE restores the physiological Hpa-1/Hpa-2 ratio and attenuates eGC breakdown. TPE results in a significant improvement in hemodynamic instability including reduced vasopressor requirement. Although promising, further studies are needed to determine the therapeutic impact of TPE in septic shock.
Collapse
Affiliation(s)
- Thorben Pape
- Division of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Anna Maria Hunkemöller
- Department of Medicine, Division of General Internal and Emergency Medicine, Nephrology, and Rheumatology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Philipp Kümpers
- Department of Medicine, Division of General Internal and Emergency Medicine, Nephrology, and Rheumatology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Hermann Haller
- Division of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Klaus Stahl
- Division of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.,Division of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
23
|
Pape T, Idowu TO, Etzrodt VM, Stahl K, Seeliger B, Haller H, David S. Modulation of the Permeability-Inducing Factor Angiopoietin-2 Through Bifonazole in Systemic Inflammation. Shock 2021; 56:1049-1056. [PMID: 33756505 DOI: 10.1097/shk.0000000000001777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Vascular barrier breakdown in sepsis represents a key component of the maladaptive host response to infection and the release of endothelial Angiopoietin-2 (Angpt-2) is a mechanistic driver of endothelial hyperpermeability. Angpt-2 is associated with morbidity and mortality but a targeted therapeutic approach is not available. We screened for U.S. Food and Drug Administration (FDA) approved drugs that might have off-target effects decreasing Angpt-2 and therefore, ameliorating capillary leakage. METHODS Endothelial cells were isolated from human umbilical veins (HUVECs) and used for in vitro studies at baseline and after stimulation (FDA-library screening, RT-PCR, ELISA, immunocytochemistry, MTT assay). On the functional level, we assessed real-time transendothelial electrical resistance (TER) using an electric cell-substrate impedance sensing device. RESULTS We found that the anti-fungal Bifonazole (BIFO) reduces spontaneous Angpt-2 release in a time- and dose-dependent manner after 8, 12, and 24 h (24 h: veh: 15.6 ± 0.7 vs. BIFO: 8.6 ± 0.8 ng/mL, P < 0.0001). Furthermore, we observed a reduction in its intra-cellular content by 33% (P < 0.001). Stimulation with tumor necrosis factor α induced a strong release of Angpt-2 that could analogously be blocked by additional treatment with BIFO (veh: 1.58 ± 0.2 vs. BIFO: 1.02 ± 0.1, P < 0.0001). Quantification of endothelial permeability by TER revealed that BIFO was sufficient to reduce Thrombin-induced barrier breakdown (veh: 0.82 ± 0.1 vs. BIFO: 1.01 ± 0.02, P < 0.05). CONCLUSION The antifungal BIFO reduces both release and biosynthesis of the endothelial-destabilizing factor Angpt-2 in vitro thereby improving vascular barrier function. Additional studies are needed to further investigate the underlying mechanism and to translate these findings to in vivo models.
Collapse
Affiliation(s)
- Thorben Pape
- Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | | | | | - Klaus Stahl
- Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
- Division of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Benjamin Seeliger
- Division of Respiratory Medicine and German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Sascha David
- Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Sirt3 Maintains Microvascular Endothelial Adherens Junction Integrity to Alleviate Sepsis-Induced Lung Inflammation by Modulating the Interaction of VE-Cadherin and β-Catenin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8978795. [PMID: 34630854 PMCID: PMC8500765 DOI: 10.1155/2021/8978795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 11/21/2022]
Abstract
Inflammatory injury is a hallmark of sepsis-induced acute respiratory distress syndrome (ARDS)/acute lung injury (ALI). However, the mechanisms underlying inflammatory injury remain obscure. Here, we developed the novel strategy to suppress lung inflammation through maintaining microvascular endothelial barrier integrity. VE-cadherin is the main adherens junction protein that interacts with β-catenin and forms a complex. We found that lung inflammation was accompanied by decreased VE-cadherin expression and increased β-catenin activity in animal models and human pulmonary microvascular endothelial cells (HPMECs), illuminating the relationship among VE-cadherin/β-catenin complex, microvascular endothelial barrier integrity, and inflammation. Furthermore, we showed that the VE-cadherin/β-catenin complex dissociated upon lung inflammation, while Sirt3 promoted the stability of such a complex. Sirt3 was decreased during lung inflammation in vivo and in vitro. Sirt3 deficiency not only led to the downregulation of VE-cadherin but also enhanced the transcriptional activity of β-catenin that further increased β-catenin target gene MMP-7 expression, thereby promoting inflammatory factor COX-2 expression. Sirt3 overexpression promoted VE-cadherin expression, inhibited β-catenin transcriptional activity, strengthened the stability of the VE-cadherin/β-catenin complex, and suppressed inflammation in HPMECs. Notably, Sirt3 deficiency significantly damaged microvascular endothelial barrier integrity and intensified lung inflammation in animal model. These results demonstrated the role of Sirt3 in modulating microvascular endothelial barrier integrity to inhibit inflammation. Therefore, strategies that aim at enhancing the stability of endothelial VE-cadherin/β-catenin complex are potentially beneficial for preventing sepsis-induced lung inflammation.
Collapse
|
25
|
Alharbi A. A Potential Role of Vitamin D on Platelet Leukocyte Aggregation and Pathological Events in Sepsis: An Updated Review. J Inflamm Res 2021; 14:3651-3664. [PMID: 34354363 PMCID: PMC8331079 DOI: 10.2147/jir.s321362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/21/2021] [Indexed: 12/29/2022] Open
Abstract
Vitamin D deficiency and sepsis are both significant global health problems. Insufficient vitamin D is considered to be a pathogenically relevant factor of sepsis-related deaths; however, a causal relationship has not yet been demonstrated. Recently, vitamin D has been an exciting field of research owing to the identification of vitamin D receptors on many extra skeletal tissues and cells, suggesting an unexpected role on body physiology, beyond its effects on bone homeostasis. However, while the role of vitamin D on bone health is widely understood and has been successfully translated into clinical applications and public health policies, recent evidence supporting its role in other physiological and pathological processes has not been fully established. In sepsis, there is an induction of local intracellular vitamin D activity by most immune cells, including lymphocytes, macrophages, neutrophils, and dendritic cells, as well as vascular endothelial cells, to ensure efficient clearance of infective microorganisms and mediate anti-inflammatory and tolerogenic effects. The literature suggests an association between low vitamin D levels and sepsis, but clinical trials have yielded contradictory results. A greater understanding of this role may improve disease management. This article reviews the available knowledge regarding vitamin D in immune function, emerging literature regarding the association between its deficiency and sepsis, as well as presenting its potential effect on platelet leukocyte aggregations (PLAs), a significant pathology in sepsis. It also summarizes clinical trials involving vitamin D supplementation during critical illness and sepsis and addresses the impact of relevant factors of sepsis pathogenesis on the efficacy of vitamin D supplementation, which could contribute to the reported inconsistencies. Looking ahead, further studies are required to uncover the possible modulatory relationship between vitamin D and sepsis to define better cut-offs for its levels, proper timing of its administration, and the optimum dosage for best management.
Collapse
Affiliation(s)
- Azzah Alharbi
- Medical Microbiology and Parasitology Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
26
|
Barabutis N, Marinova M, Solopov P, Uddin MA, Croston GE, Reinheimer TM, Catravas JD. Protective Mechanism of the Selective Vasopressin V 1A Receptor Agonist Selepressin against Endothelial Barrier Dysfunction. J Pharmacol Exp Ther 2020; 375:286-295. [PMID: 32943478 DOI: 10.1124/jpet.120.000146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022] Open
Abstract
Sepsis and septic shock are among the most common causes of death in the intensive care unit; advanced therapeutic approaches are thus urgently needed. Vascular hyperpermeability represents a major manifestation of severe sepsis and is responsible for the ensuing organ dysfunction and failure. Vasopressin V1A receptor (V1AR) agonists have shown promise in the treatment of sepsis, increasing blood pressure, and reducing vascular hyperpermeability. The effects of the selective V1AR-selective agonist selepressin have been investigated in an in vitro model of thrombin-, vascular endothelial growth factor-, angiopoietin 2-, and lipopolysaccharide (LPS)-induced pulmonary microvascular endothelial hyperpermeability. Results suggest that selepressin counteracts the effects of all four endothelial barrier disruptors in a concentration-dependent manner, as reflected in real-time measurements of vascular permeability by means of transendothelial electrical resistance. Further, selepressin protected the barrier integrity against the LPS-mediated corruption of the endothelial monolayer integrity, as captured by VE-cadherin and actin staining. The protective effects of selepressin were abolished by silencing of the vasopressin V1AR, as well as by atosiban, an antagonist of the human V1AR. p53 appears to be involved in mediating these palliative effects, since selepressin strongly induced its expression levels, suppressed the inflammatory RhoA/myosin light chain2 pathway, and triggered the barrier-protective effects of the GTPase Rac1. We conclude that V1AR-selective agonists, such as selepressin, may prove useful in the improvement of endothelial barrier function in the management of severe sepsis. SIGNIFICANCE STATEMENT: A cardinal sign of sepsis, a serious disease with significant mortality and no specific treatment, is pulmonary endothelial barrier dysfunction that leads to pulmonary edema. Here, we present evidence that in cultured human lung microvascular endothelial cells, the synthetic, selective vasopressin V1A receptor agonist selepressin protects against endothelial barrier dysfunction caused by four different edemogenic agents, suggesting a potential role of selepressin in the clinical management of sepsis.
Collapse
Affiliation(s)
- Nektarios Barabutis
- Frank Reidy Research Center for Bioelectrics (N.B., M.M., P.S., J.D.C.) and School of Medical Diagnostic and Translational Sciences, College of Health Sciences (J.D.C.), Old Dominion University, Norfolk, Virginia; School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (N.B., M.A.U.); Croston Consulting, San Diego, California (G.E.C.); and Ferring Pharmaceuticals A/S, Copenhagen, Denmark (T.M.R.)
| | - Margarita Marinova
- Frank Reidy Research Center for Bioelectrics (N.B., M.M., P.S., J.D.C.) and School of Medical Diagnostic and Translational Sciences, College of Health Sciences (J.D.C.), Old Dominion University, Norfolk, Virginia; School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (N.B., M.A.U.); Croston Consulting, San Diego, California (G.E.C.); and Ferring Pharmaceuticals A/S, Copenhagen, Denmark (T.M.R.)
| | - Pavel Solopov
- Frank Reidy Research Center for Bioelectrics (N.B., M.M., P.S., J.D.C.) and School of Medical Diagnostic and Translational Sciences, College of Health Sciences (J.D.C.), Old Dominion University, Norfolk, Virginia; School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (N.B., M.A.U.); Croston Consulting, San Diego, California (G.E.C.); and Ferring Pharmaceuticals A/S, Copenhagen, Denmark (T.M.R.)
| | - Mohammad A Uddin
- Frank Reidy Research Center for Bioelectrics (N.B., M.M., P.S., J.D.C.) and School of Medical Diagnostic and Translational Sciences, College of Health Sciences (J.D.C.), Old Dominion University, Norfolk, Virginia; School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (N.B., M.A.U.); Croston Consulting, San Diego, California (G.E.C.); and Ferring Pharmaceuticals A/S, Copenhagen, Denmark (T.M.R.)
| | - Glenn E Croston
- Frank Reidy Research Center for Bioelectrics (N.B., M.M., P.S., J.D.C.) and School of Medical Diagnostic and Translational Sciences, College of Health Sciences (J.D.C.), Old Dominion University, Norfolk, Virginia; School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (N.B., M.A.U.); Croston Consulting, San Diego, California (G.E.C.); and Ferring Pharmaceuticals A/S, Copenhagen, Denmark (T.M.R.)
| | - Torsten M Reinheimer
- Frank Reidy Research Center for Bioelectrics (N.B., M.M., P.S., J.D.C.) and School of Medical Diagnostic and Translational Sciences, College of Health Sciences (J.D.C.), Old Dominion University, Norfolk, Virginia; School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (N.B., M.A.U.); Croston Consulting, San Diego, California (G.E.C.); and Ferring Pharmaceuticals A/S, Copenhagen, Denmark (T.M.R.)
| | - John D Catravas
- Frank Reidy Research Center for Bioelectrics (N.B., M.M., P.S., J.D.C.) and School of Medical Diagnostic and Translational Sciences, College of Health Sciences (J.D.C.), Old Dominion University, Norfolk, Virginia; School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana (N.B., M.A.U.); Croston Consulting, San Diego, California (G.E.C.); and Ferring Pharmaceuticals A/S, Copenhagen, Denmark (T.M.R.)
| |
Collapse
|
27
|
Filewod NC, Lee WL. Inflammation without Vascular Leakage. Science Fiction No Longer? Am J Respir Crit Care Med 2020; 200:1472-1476. [PMID: 31381867 DOI: 10.1164/rccm.201905-1011cp] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vascular leakage is a characteristic of critical illnesses such as septic shock and acute respiratory distress syndrome. It results in hypotension and tissue edema and contributes to organ dysfunction. It has long been taught that increased vascular permeability is a natural consequence of inflammation; in particular, many clinicians believe that it occurs inevitably during leukocyte recruitment to a site of infection. In fact, abundant research now indicates that vascular leakage and leukocyte emigration do not necessarily occur together in a blood vessel. The molecular mechanisms underpinning these processes-allowing leukocytes to exit the circulation without increasing vascular permeability-are starting to be elucidated and establish vascular leakage as a viable therapeutic target. Several preclinical studies indicate that vascular leakage can be reduced without impairing cytokine production, leukocyte recruitment, and pathogen clearance. The realization that leukocyte traffic and vascular permeability can be regulated separately should spur development of therapies that decrease vascular leakage and tissue edema without compromising the immune response.
Collapse
Affiliation(s)
- Niall C Filewod
- Department of Critical Care Medicine and.,Keenan Research Centre for Biomedical Sciences, St. Michael's Hospital, Toronto, Ontario, Canada; and
| | - Warren L Lee
- Department of Critical Care Medicine and.,Keenan Research Centre for Biomedical Sciences, St. Michael's Hospital, Toronto, Ontario, Canada; and.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Polinder-Bos HA, Elting JWJ, Aries MJ, García DV, Willemsen AT, van Laar PJ, Kuipers J, Krijnen WP, Slart RH, Luurtsema G, Westerhuis R, Gansevoort RT, Gaillard CA, Franssen CF. Changes in cerebral oxygenation and cerebral blood flow during hemodialysis - A simultaneous near-infrared spectroscopy and positron emission tomography study. J Cereb Blood Flow Metab 2020; 40:328-340. [PMID: 30540219 PMCID: PMC7370620 DOI: 10.1177/0271678x18818652] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Near-infrared spectroscopy (NIRS) is used to monitor cerebral tissue oxygenation (rSO2) depending on cerebral blood flow (CBF), cerebral blood volume and blood oxygen content. We explored whether NIRS might be a more easy applicable proxy to [15O]H2O positron emission tomography (PET) for detecting CBF changes during hemodialysis. Furthermore, we compared potential determinants of rSO2 and CBF. In 12 patients aged ≥ 65 years, NIRS and PET were performed simultaneously: before (T1), early after start (T2), and at the end of hemodialysis (T3). Between T1 and T3, the relative change in frontal rSO2 (ΔrSO2) was -8 ± 9% (P = 0.001) and -5 ± 11% (P = 0.08), whereas the relative change in frontal gray matter CBF (ΔCBF) was -11 ± 18% (P = 0.009) and -12 ± 16% (P = 0.007) for the left and right hemisphere, respectively. ΔrSO2 and ΔCBF were weakly correlated for the left (ρ 0.31, P = 0.4), and moderately correlated for the right (ρ 0.69, P = 0.03) hemisphere. The Bland-Altman plot suggested underestimation of ΔCBF by NIRS. Divergent associations of pH, pCO2 and arterial oxygen content with rSO2 were found compared to corresponding associations with CBF. In conclusion, NIRS could be a proxy to PET to detect intradialytic CBF changes, although NIRS and PET capture different physiological parameters of the brain.
Collapse
Affiliation(s)
- Harmke A Polinder-Bos
- Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Willem J Elting
- Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marcel Jh Aries
- Department of Intensive Care, University of Maastricht, University Medical Center Maastricht, Maastricht, The Netherlands
| | - David Vállez García
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, Groningen, The Netherlands
| | - Antoon Tm Willemsen
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter J van Laar
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Wim P Krijnen
- Research Group Healthy Ageing, Allied Health Care and Nursing, Hanze University of Applied Sciences, Groningen, The Netherlands.,Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, Groningen, The Netherlands
| | - Riemer Hja Slart
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, Groningen, The Netherlands
| | - Gert Luurtsema
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Ron T Gansevoort
- Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Carlo Ajm Gaillard
- Division of Internal Medicine and Dermatology, Department of Nephrology, University Medical Center Utrecht, University of Utrecht, The Netherlands
| | - Casper Fm Franssen
- Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
29
|
Diebel LN, Liberati DM, Martin JV. Acute hyperglycemia increases sepsis related glycocalyx degradation and endothelial cellular injury: A microfluidic study. Am J Surg 2019; 217:1076-1082. [PMID: 30635208 DOI: 10.1016/j.amjsurg.2018.12.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 11/16/2018] [Accepted: 12/29/2018] [Indexed: 11/15/2022]
Abstract
BACKGROUND Hyperglycemia promotes vascular inflammation; however its effect on endothelial dysfunction in sepsis is unknown. Microfluidic devices (MFD) may closely mimic the in vivo endothelial cell microenvironment. We hypothesized that stress glucose concentrations would increase sepsis related endothelial injury/activation. METHODS Human umbilical vein endothelial cell (HUVEC) monolayers were established in microfluidic channels. TNF was added followed by glucose. Endothelial glycocalyx (EG) integrity was indexed by shedding of the EG components as well as thickness. Endothelial cell (EC) injury/activation was indexed by soluble biomarkers. Intracellular reactive oxygen species (ROS) was by fluorescence. RESULTS TNF increased glycocalyx degradation and was associated with biomarkers of EC injury. These vascular barrier derangements were further increased by hyperglycemia. This may be related to increase ROS species generated followed by the combined insults. CONCLUSION MFD technology may be a useful platform to study endothelial barrier function and stress conditions and allow preclinical assessment of potential therapies.
Collapse
Affiliation(s)
- Lawrence N Diebel
- Michael and Marian Ilitch Department of Surgery, Wayne State University, Detroit, MI, USA.
| | - David M Liberati
- Michael and Marian Ilitch Department of Surgery, Wayne State University, Detroit, MI, USA.
| | - Jonathan V Martin
- Michael and Marian Ilitch Department of Surgery, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
30
|
Lebedev NV, Klimov AE, Cherepanova ON, Barkhudarov AA. [Inflammatory markers in diagnosis and prognosis of abdominal sepsis]. Khirurgiia (Mosk) 2018:92-98. [PMID: 30531745 DOI: 10.17116/hirurgia201810192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
For today, it is necessary to recognize, that treatment of patients with abdominal sepsis remains the basic problem in urgent surgery due to the invariably high mortality. Early diagnostics and targeted therapy are the key points for improving of sepsis outcome. At present, researchers around the world have proposed a large number of biological markers for diagnosing sepsis and predicting mortality. Ideally, doctors can use biomarkers for risk stratification, diagnosing, monitoring of treatment effectiveness and outcome prediction. The biomarker is a laboratory parameter that can be objectively measured and characterized as an indicator of normal and pathological biological processes. The article presents the modern concept of the sepsis pathogenesis for understanding the role of various biomarkers and inflammatory indicators in its development. We have analyzed literature data and summarized information on the possible use of biological markers and their combinations in the early detection of sepsis, for monitoring sepsis and predicting its outcome.
Collapse
Affiliation(s)
- N V Lebedev
- Chair of Faculty-Based Surgery, Peoples' Friendship University of Russia, Moscow, Russia
| | - A E Klimov
- Chair of Faculty-Based Surgery, Peoples' Friendship University of Russia, Moscow, Russia
| | - O N Cherepanova
- Chair of Faculty-Based Surgery, Peoples' Friendship University of Russia, Moscow, Russia
| | - A A Barkhudarov
- Chair of Faculty-Based Surgery, Peoples' Friendship University of Russia, Moscow, Russia
| |
Collapse
|
31
|
Smith TL, Van Slyke P, Jones N, Dumont DJ, McGlade CJ. Tie2 signalling through Erk1/2 regulates TLR4 driven inflammation. Cell Signal 2018; 51:211-221. [DOI: 10.1016/j.cellsig.2018.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 12/17/2022]
|
32
|
Thamm K, Schrimpf C, Retzlaff J, Idowu TO, van Meurs M, Zijlstra JG, Ghosh CC, Zeitvogel J, Werfel TA, Haller H, Parikh SM, David S. Molecular Regulation of Acute Tie2 Suppression in Sepsis. Crit Care Med 2018; 46:e928-e936. [PMID: 29979219 PMCID: PMC6095816 DOI: 10.1097/ccm.0000000000003269] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Tie2 is a tyrosine kinase receptor expressed by endothelial cells that maintains vascular barrier function. We recently reported that diverse critical illnesses acutely decrease Tie2 expression and that experimental Tie2 reduction suffices to recapitulate cardinal features of the septic vasculature. Here we investigated molecular mechanisms driving Tie2 suppression in settings of critical illness. DESIGN Laboratory and animal research, postmortem kidney biopsies from acute kidney injury patients and serum from septic shock patients. SETTING Research laboratories and ICU of Hannover Medical School, Harvard Medical School, and University of Groningen. PATIENTS Deceased septic acute kidney injury patients (n = 16) and controls (n = 12) and septic shock patients (n = 57) and controls (n = 22). INTERVENTIONS Molecular biology assays (Western blot, quantitative polymerase chain reaction) + in vitro models of flow and transendothelial electrical resistance experiments in human umbilical vein endothelial cells; murine cecal ligation and puncture and lipopolysaccharide administration. MEASUREMENTS AND MAIN RESULTS We observed rapid reduction of both Tie2 messenger RNA and protein in mice following cecal ligation and puncture. In cultured endothelial cells exposed to tumor necrosis factor-α, suppression of Tie2 protein was more severe than Tie2 messenger RNA, suggesting distinct regulatory mechanisms. Evidence of protein-level regulation was found in tumor necrosis factor-α-treated endothelial cells, septic mice, and septic humans, all three of which displayed elevation of the soluble N-terminal fragment of Tie2. The matrix metalloprotease 14 was both necessary and sufficient for N-terminal Tie2 shedding. Since clinical settings of Tie2 suppression are often characterized by shock, we next investigated the effects of laminar flow on Tie2 expression. Compared with absence of flow, laminar flow induced both Tie2 messenger RNA and the expression of GATA binding protein 3. Conversely, septic lungs exhibited reduced GATA binding protein 3, and knockdown of GATA binding protein 3 in flow-exposed endothelial cells reduced Tie2 messenger RNA. Postmortem tissue from septic patients showed a trend toward reduced GATA binding protein 3 expression that was associated with Tie2 messenger RNA levels (p < 0.005). CONCLUSIONS Tie2 suppression is a pivotal event in sepsis that may be regulated both by matrix metalloprotease 14-driven Tie2 protein cleavage and GATA binding protein 3-driven flow regulation of Tie2 transcript.
Collapse
Affiliation(s)
- Kristina Thamm
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Claudia Schrimpf
- Department of Vascular & Endovascular Surgery, Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Jennifer Retzlaff
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Temitayo O Idowu
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Matijs van Meurs
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan G Zijlstra
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Chandra C Ghosh
- Beth Israel Deaconess and Harvard Medical School, CVBR, Boston, United States
| | - Jana Zeitvogel
- Department of Dermatology, Venerology and Allergy, Division of Immunodermatology and Allergy Research, Hannover Medical School, Hannover, Germany
| | - Thomas A Werfel
- Department of Dermatology, Venerology and Allergy, Division of Immunodermatology and Allergy Research, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Samir M Parikh
- Medical Biology Section, Department of Pathology and Medical Biology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Sascha David
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| |
Collapse
|
33
|
D'Elia JA, Weinrauch LA. Calcium Ion Channels: Roles in Infection and Sepsis Mechanisms of Calcium Channel Blocker Benefits in Immunocompromised Patients at Risk for Infection. Int J Mol Sci 2018; 19:E2465. [PMID: 30134544 PMCID: PMC6164603 DOI: 10.3390/ijms19092465] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 01/08/2023] Open
Abstract
Immunosuppression may occur for a number of reasons related to an individual's frailty, debility, disease or from therapeutic iatrogenic intervention or misadventure. A large percentage of morbidity and mortality in immunodeficient populations is related to an inadequate response to infectious agents with slow response to antibiotics, enhancements of antibiotic resistance in populations, and markedly increased prevalence of acute inflammatory response, septic and infection related death. Given known relationships between intracellular calcium ion concentrations and cytotoxicity and cellular death, we looked at currently available data linking blockade of calcium ion channels and potential decrease in expression of sepsis among immunosuppressed patients. Notable are relationships between calcium, calcium channel, vitamin D mechanisms associated with sepsis and demonstration of antibiotic-resistant pathogens that may utilize channels sensitive to calcium channel blocker. We note that sepsis shock syndrome represents loss of regulation of inflammatory response to infection and that vitamin D, parathyroid hormone, fibroblast growth factor, and klotho interact with sepsis defense mechanisms in which movement of calcium and phosphorus are part of the process. Given these observations we consider that further investigation of the effect of relatively inexpensive calcium channel blockade agents of infections in immunosuppressed populations might be worthwhile.
Collapse
Affiliation(s)
- John A D'Elia
- E P Joslin Research Laboratory, Kidney and Hypertension Section, Joslin Diabetes Center, Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Boston and Cambridge, 521 Mount Auburn Street Watertown, MA 02472, USA. jd'
| | - Larry A Weinrauch
- E P Joslin Research Laboratory, Kidney and Hypertension Section, Joslin Diabetes Center, Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Boston and Cambridge, 521 Mount Auburn Street Watertown, MA 02472, USA.
| |
Collapse
|
34
|
Statz S, Sabal G, Walborn A, Williams M, Hoppensteadt D, Mosier M, Rondina M, Fareed J. Angiopoietin 2 Levels in the Risk Stratification and Mortality Outcome Prediction of Sepsis-Associated Coagulopathy. Clin Appl Thromb Hemost 2018; 24:1223-1233. [PMID: 29996658 PMCID: PMC6714761 DOI: 10.1177/1076029618786029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
It has been well established that angiopoietin 2 (Ang-2), a glycoprotein involved in activation of the endothelium, plays an integral role in the pathophysiology of sepsis and many other inflammatory conditions. However, the role of Ang-2 in sepsis-associated coagulopathy (SAC) specifically has not been defined. The aim of this study was to measure Ang-2 plasma levels in patients with sepsis and suspected disseminated intravascular coagulation (DIC) in order to demonstrate its predictive value in SAC severity determination and 28-day mortality outcome. Plasma samples were collected from 102 patients with sepsis and suspected DIC at intensive care unit (ICU) admission. The Ang-2 plasma levels were quantified using a sandwich enzyme-linked immunosorbent assay method. The International Society on Thrombosis and Haemostasis DIC scoring system was used to compare the accuracy of Ang-2 levels versus clinical illness severity scores in predicting SAC severity. Mean Ang-2 levels in patients with sepsis and DIC were significantly higher in comparison to healthy controls (P < 0.0001), and median Ang-2 levels showed a downward trend over time (P = 0.0008). Baseline Ang-2 levels and clinical illness severity scores were higher with increasing severity of disease, and Ang-2 was a better predictor of DIC severity than clinical illness scores. This study demonstrates that Ang-2 levels are significantly upregulated in SAC, and this biomarker can be used to risk stratify patients with sepsis into non-overt DIC and overt DIC. Furthermore, the Ang-2 level at ICU admission in a patient with sepsis and suspected DIC may provide a predictive biomarker for mortality outcome.
Collapse
Affiliation(s)
- Stephen Statz
- 1 Hemostasis and Thrombosis Laboratories, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Giselle Sabal
- 1 Hemostasis and Thrombosis Laboratories, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Amanda Walborn
- 1 Hemostasis and Thrombosis Laboratories, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | | | | | - Michael Mosier
- 4 Department of General Surgery, Surgical and Burn Specialists at Emanuel, Portland, OR, USA
| | - Matthew Rondina
- 5 Department of Internal Medicine, University of Utah Hospital, Salt Lake City, UT, USA
| | - Jawed Fareed
- 3 Department of Pathology, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
35
|
Wollborn J, Schlegel N, Schick MA. [Phosphodiesterase 4 inhibition for treatment of endothelial barrier and microcirculation disorders in sepsis]. Anaesthesist 2018; 66:347-352. [PMID: 28429038 DOI: 10.1007/s00101-017-0305-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Sepsis is commonly associated with loss of microvascular endothelial barrier function (capillary leak) and dysfunctional microcirculation, which both promote organ failure. The development of a distinct therapy of impaired endothelial barrier function and disturbed microcirculation is highly relevant because both of these phenomena constitute crucial processes which critically influence the prognosis of patients. Numerous in vivo and in vitro trials over the past years have fostered a better understanding of the pathophysiology of capillary leak. Furthermore, promising data in animal models show that therapeutic modulation of endothelial barrier function and microcirculation can be achieved by stabilizing endothelial cAMP (cyclic adenosine monophosphate) levels followed by activation of Rho-GTPase Rac1, e. g. by phosphodiesterase 4 inhibitors. This review summarizes and discusses recent findings of cellular mechanisms and in vivo trials.
Collapse
Affiliation(s)
- J Wollborn
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Hugstetter Str. 55, 79106, Freiburg, Deutschland
| | - N Schlegel
- Klinik und Poliklinik für Allgemein-, Viszeral-, Gefäß- und Kinderchirurgie, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - M A Schick
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg, Hugstetter Str. 55, 79106, Freiburg, Deutschland.
| |
Collapse
|
36
|
Fodor LE, Gézsi A, Gál Z, Nagy A, Kiss A, Bikov A, Szalai C. Variation in the TEK gene is not associated with asthma but with allergic conjunctivitis. Int J Immunogenet 2018; 45:102-108. [PMID: 29667338 DOI: 10.1111/iji.12365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 01/22/2018] [Accepted: 03/22/2018] [Indexed: 11/29/2022]
Abstract
The Tie2 receptor is an important player in angiogenesis. The Tie2 mRNA and protein are abundantly expressed in the lungs and the associated pathway also has an important role in the development and function of the eye. Tie2 is encoded by the TEK gene in humans. Recently, variations in the TEK gene have been found associated with asthma. The objective of the present study was to investigate whether variations in the TEK gene influenced the susceptibility to pediatric asthma and/or associated phenotypes like GINA status, viral- or exercise-induced asthma, allergic asthma, indoor, outdoor, inhalative allergies, IgE and eosonophil levels, allergic rhinitis and allergic conjunctivitis. Three single nucleotide polymorphisms (SNPs, rs3780315, rs581724 and rs7876024) in the TEK gene were genotyped in 1189 unrelated individuals, out of which 435 were asthmatic children and 754 healthy controls. Different types of asthma, allergies and co-morbidities were defined in 320 patients. Among the fully phenotyped 320 asthmatic patients 178 (55.6%) also had allergic rhinitis and 100 (31.3%) had conjunctivitis. Among the rhinitis patients 98 (55.1%) also had conjunctivitis. Two patients had conjunctivitis without rhinitis. The genotyped SNPs showed no association with asthma. However, SNP rs581724 was significantly associated with allergic conjunctivitis in a recessive way (p=0.007; OR=2.3 (1.3-4.4)) within the asthmatic population. The risk remained significant when the whole population (asthmatics and healthy controls) was included in the calculation (p = 0.003; OR = 2.1 (1.3-3.6)). The minor allele of the rs581724 SNP which is associated with the increased risk to conjunctivitis is also associated with reduced Tie2 expression. There was a significant association between SNP rs581724 and the occurrence of allergic conjunctivitis in asthmatic children. If additional studies can confirm the role of the Tie2 pathway in allergic conjunctivitis, it can be a potential novel therapeutic target in the disease.
Collapse
Affiliation(s)
- L E Fodor
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - A Gézsi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Z Gál
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - A Nagy
- Heim Pal Children Hospital, Budapest, Hungary
| | - A Kiss
- Heim Pal Children Hospital, Budapest, Hungary
| | - A Bikov
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - C Szalai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.,Heim Pal Children Hospital, Budapest, Hungary
| |
Collapse
|
37
|
Li B, Zeng Q. Personalized identification of differentially expressed pathways in pediatric sepsis. Mol Med Rep 2017; 16:5085-5090. [PMID: 28849000 PMCID: PMC5647041 DOI: 10.3892/mmr.2017.7217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/04/2016] [Indexed: 12/11/2022] Open
Abstract
Sepsis is a leading killer of children worldwide with numerous differentially expressed genes reported to be associated with sepsis. Identifying core pathways in an individual is important for understanding septic mechanisms and for the future application of custom therapeutic decisions. Samples used in the study were from a control group (n=18) and pediatric sepsis group (n=52). Based on Kauffman's attractor theory, differentially expressed pathways associated with pediatric sepsis were detected as attractors. When the distribution results of attractors are consistent with the distribution of total data assessed using support vector machine, the individualized pathway aberrance score (iPAS) was calculated to distinguish differences. Through attractor and Kyoto Encyclopedia of Genes and Genomes functional analysis, 277 enriched pathways were identified as attractors. There were 81 pathways with P<0.05 and 59 pathways with P<0.01. Distribution outcomes of screened attractors were mostly consistent with the total data demonstrated by the six classifying parameters, which suggested the efficiency of attractors. Cluster analysis of pediatric sepsis using the iPAS method identified seven pathway clusters and four sample clusters. Thus, in the majority pediatric sepsis samples, core pathways can be detected as different from accumulated normal samples. In conclusion, a novel procedure that identified the dysregulated attractors in individuals with pediatric sepsis was constructed. Attractors can be markers to identify pathways involved in pediatric sepsis. iPAS may provide a correlation score for each of the signaling pathways present in an individual patient. This process may improve the personalized interpretation of disease mechanisms and may be useful in the forthcoming era of personalized medicine.
Collapse
Affiliation(s)
- Binjie Li
- The First Clinical Medical College, Southern Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiyi Zeng
- Department of Pediatric Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
38
|
Flaumenhaft R, De Ceunynck K. Targeting PAR1: Now What? Trends Pharmacol Sci 2017; 38:701-716. [PMID: 28558960 PMCID: PMC5580498 DOI: 10.1016/j.tips.2017.05.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 05/01/2017] [Accepted: 05/04/2017] [Indexed: 12/30/2022]
Abstract
Protease-activated receptors (PARs) are a ubiquitously expressed class of G-protein-coupled receptors (GPCRs) that enable cells to respond to proteases in the extracellular environment in a nuanced and dynamic manner. PAR1 is the archetypal family member and has been the object of large-scale drug development programs since the 1990s. Vorapaxar and drotrecogin-alfa are approved PAR1-targeted therapeutics, but safety concerns have limited the clinical use of vorapaxar and questions regarding the efficacy of drotrecogin-alfa led to its withdrawal from the market. New understanding of mechanisms of PAR1 function, discovery of improved strategies for modifying PAR1 function, and identification of novel indications for PAR1 modulators have provided new opportunities for therapies targeting PAR1. In this review, we critically evaluate prospects for the next generation of PAR1-targeted therapeutics.
Collapse
Affiliation(s)
- Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | - Karen De Ceunynck
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
39
|
Valdivieso P, Toigo M, Hoppeler H, Flück M. T/T homozygosity of the tenascin-C gene polymorphism rs2104772 negatively influences exercise-induced angiogenesis. PLoS One 2017; 12:e0174864. [PMID: 28384286 PMCID: PMC5383042 DOI: 10.1371/journal.pone.0174864] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 03/16/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mechanical stress, including blood pressure related factors, up-regulate expression of the pro-angiogenic extracellular matrix protein tenascin-C in skeletal muscle. We hypothesized that increased capillarization of skeletal muscle with the repeated augmentation in perfusion during endurance training is associated with blood vessel-related expression of tenascin-C and would be affected by the single-nucleotide polymorphism (SNP) rs2104772, which characterizes the non-synonymous exchange of thymidine (T)-to-adenosine (A) in the amino acid codon 1677 of tenascin-C. METHODS Sixty-one healthy, untrained, male white participants of Swiss descent performed thirty 30-min bouts of endurance exercise on consecutive weekdays using a cycling ergometer. Genotype and training interactions were called significant at Bonferroni-corrected p-value of 5% (repeated measures ANOVA). RESULTS Endurance training increased capillary-to-fiber-ratio (+11%), capillary density (+7%), and mitochondrial volume density (+30%) in m. vastus lateralis. Tenascin-C protein expression in this muscle was confined to arterioles and venules (80% of cases) and increased after training in A-allele carriers. Prior to training, volume densities of subsarcolemmal and myofibrillar mitochondria in m. vastus lateralis muscle were 49% and 18%, respectively, higher in A/A homozygotes relative to T-nucleotide carriers (A/T and T/T). Training specifically increased capillary-to-fiber ratio in A-nucleotide carriers but not in T/T homozygotes. Genotype specific regulation of angiogenesis was reflected by the expression response of 8 angiogenesis-associated transcripts after exercise, and confirmed by training-induced alterations of the shear stress related factors, vimentin and VEGF A. CONCLUSION Our findings provide evidence for a negative influence of T/T homozygosity in rs2104772 on capillary remodeling with endurance exercise.
Collapse
Affiliation(s)
- Paola Valdivieso
- Laboratory for Muscle Plasticity, Department of Orthopedics, University of Zurich, Balgrist Campus, Zurich, Switzerland
| | - Marco Toigo
- Laboratory for Muscle Plasticity, Department of Orthopedics, University of Zurich, Balgrist Campus, Zurich, Switzerland
| | - Hans Hoppeler
- Institute of Anatomy, University of Berne, Berne, Switzerland
| | - Martin Flück
- Laboratory for Muscle Plasticity, Department of Orthopedics, University of Zurich, Balgrist Campus, Zurich, Switzerland
- Institute of Anatomy, University of Berne, Berne, Switzerland
- * E-mail:
| |
Collapse
|
40
|
Retzlaff J, Thamm K, Ghosh CC, Ziegler W, Haller H, Parikh SM, David S. Flunarizine suppresses endothelial Angiopoietin-2 in a calcium - dependent fashion in sepsis. Sci Rep 2017; 7:44113. [PMID: 28276491 PMCID: PMC5343493 DOI: 10.1038/srep44113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 02/06/2017] [Indexed: 01/17/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to an infection leading to systemic inflammation and endothelial barrier breakdown. The vascular-destabilizing factor Angiopoietin-2 (Angpt-2) has been implicated in these processes in humans. Here we screened in an unbiased approach FDA-approved compounds with respect to Angpt-2 suppression in endothelial cells (ECs) in vitro. We identified Flunarizine – a well-known anti-migraine calcium channel (CC) blocker – being able to diminish intracellular Angpt-2 protein in a time- and dose-dependent fashion thereby indirectly reducing the released protein. Moreover, Flunarizine protected ECs from TNFα-induced increase in Angpt-2 transcription and vascular barrier breakdown. Mechanistically, we could exclude canonical Tie2 signalling being responsible but found that three structurally distinct T-type - but not L-type - CC blockers can suppress Angpt-2. Most importantly, experimental increase in intracellular calcium abolished Flunarizine’s effect. Flunarizine was also able to block the injurious increase of Angpt-2 in murine endotoxemia in vivo. This resulted in reduced pulmonary adhesion molecule expression (intercellular adhesion molecule-1) and tissue infiltration of inflammatory cells (Gr-1). Our finding could have therapeutic implications as side effects of Flunarizine are low and specific sepsis therapeutics that target the dysregulated host response are highly desirable.
Collapse
Affiliation(s)
- Jennifer Retzlaff
- Division of Nephrology and Hypertension, Hannover Medical School, Germany
| | - Kristina Thamm
- Division of Nephrology and Hypertension, Hannover Medical School, Germany
| | - Chandra C Ghosh
- Beth Israel Deaconess Medical Center and Harvard Medical School, Center for Vascular Biology Research, Boston, MA, USA
| | - Wolfgang Ziegler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Germany
| | - Hermann Haller
- Division of Nephrology and Hypertension, Hannover Medical School, Germany
| | - Samir M Parikh
- Beth Israel Deaconess Medical Center and Harvard Medical School, Center for Vascular Biology Research, Boston, MA, USA
| | - Sascha David
- Division of Nephrology and Hypertension, Hannover Medical School, Germany
| |
Collapse
|
41
|
de Jong GM, Slager JJ, Verbon A, van Hellemond JJ, van Genderen PJJ. Systematic review of the role of angiopoietin-1 and angiopoietin-2 in Plasmodium species infections: biomarkers or therapeutic targets? Malar J 2016; 15:581. [PMID: 27905921 PMCID: PMC5134107 DOI: 10.1186/s12936-016-1624-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/19/2016] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Levels of both angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) correlate with malaria disease severity and are proposed as biomarkers and possible therapeutic targets. To establish their role in malaria, a systematic review was performed of the literature on Ang-1 and Ang-2 with regard to their potential as biomarkers in malaria and discuss their possible place in adjuvant treatment regimens. METHODS Ten electronic databases were systematically searched to identify studies investigating Ang-1 and Ang-2 in human and murine malaria in both clinical and experimental settings. Information about the predictive value of Ang-1 and Ang-2 for disease severity and their regulatory changes in interventional studies were extracted. RESULTS Some 579 studies were screened; 26 were included for analysis. In all five studies that determined Ang-1 levels and in all 11 studies that determined Ang-2 in different disease severity states in falciparum malaria, a decline in Ang-1 and an increase of Ang-2 levels was associated with increasing disease severity. All nine studies that determined angiopoietin levels in Plasmodium falciparum patients to study their ability as biomarkers could distinguish between multiple disease severity states; the more the disease severity states differed, the better they could be distinguished. Five studies differentiating malaria survivors from non-survivors with Ang-2 as marker found an AUROC in a range of 0.71-0.83, which performed as well or better than lactate. Prophylactic administration of FTY720, rosiglitazone or inhalation of nitric oxide (NO) during malaria disease in mice resulted in an increase in Ang-1, a decrease in Ang-2 and an increased survival. For rosiglitazone, a decrease in Ang-2/Ang-1 ratio was observed after post-infection treatment in mice and humans with malaria, but for inhalation of NO, an effect on Ang-1 and survival was only observed in mice. CONCLUSION Both Ang-1 and Ang-2 levels correlate with and can distinguish between malaria disease severity states within the group of malaria-infected patients. However, distinct comparisons of disease severity states were made in distinct studies and not all distinctions made had clinical relevance. Changes in levels of Ang-1 and Ang-2 might also reflect treatment effectiveness and are promising therapeutic targets as part of multi-targeted therapy.
Collapse
Affiliation(s)
- Gerdie M. de Jong
- Institute for Tropical Diseases, Harbour Hospital, Haringvliet 2, Rotterdam, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Jasper J. Slager
- Institute for Tropical Diseases, Harbour Hospital, Haringvliet 2, Rotterdam, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Annelies Verbon
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Jaap J. van Hellemond
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | | |
Collapse
|
42
|
Lee JY, Linge HM, Ochani K, Lin K, Miller EJ. Regulation of angiopoietin-2 secretion from human pulmonary microvascular endothelial cells. Exp Lung Res 2016; 42:335-345. [PMID: 27585839 DOI: 10.1080/01902148.2016.1218977] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Sepsis is characterized by dysregulated systemic inflammation and cytokine storm. Angiopoietin-2 (Ang-2) is known to closely correlate with severity of sepsis-related acute lung injury and mortality. The aim of this study was to clarify the mechanisms involved in Ang-2 secretion to better understand the pathophysiology of sepsis. MATERIALS AND METHODS The concentration of Ang-2 was assessed in culture medium of pulmonary microvascular endothelial cells in the presence or absence of Gram-positive bacteria cell wall components [lipoteichoic acid (LTA) and peptidoglycan (PGN)] stimulation at different time points ranging from 15 minutes to 24 hours. Constitutive and LTA-PGN-stimulated Ang-2 level changes were also assessed after cells were pretreated with different pathway inhibitors for 1 hour. RESULTS Two distinctive mechanisms of Ang-2 secretion, constitutive and stimulated secretion, were identified. Constitutive secretion resulted in slow but continuous increase in Ang-2 in culture medium over time. It was regulated by 3'5'-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA)-Ca2+ and nitric oxide (NO)-3'5'-cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG)-Ca2+ pathways and partially regulated by N-ethyl-maleimide-sensitive factor-Ca2+ pathways. LTA-PGN stimulation caused rapid and potent increase followed by gradual decrease of Ang-2. It was partially regulated by both Ral A-phospholipase D and NSF-Ca2+ pathways. CONCLUSIONS We demonstrated characteristics and involved pathways for two distinctive secretory mechanisms, constitutive and stimulated, of Ang-2 in pulmonary microvascular endothelial cells. Considering the close correlation of Ang-2 with sepsis outcomes, our findings provide a better understanding of an important mechanism associated with sepsis pathophysiology and identify possible therapeutic targets to improve outcomes in the potentially lethal disease.
Collapse
Affiliation(s)
- Ji Young Lee
- a The Elmezzi Graduate School of Molecular Medicine , Manhasset , New York , USA.,b Department of Pulmonary and Critical Care Medicine , University of South Alabama , Mobile , Alabama , USA
| | - Helena M Linge
- c The Center for Heart and Lung Research , The Feinstein Institute for Medical Research , Manhasset , New York , USA
| | - Kanta Ochani
- c The Center for Heart and Lung Research , The Feinstein Institute for Medical Research , Manhasset , New York , USA
| | - Ke Lin
- c The Center for Heart and Lung Research , The Feinstein Institute for Medical Research , Manhasset , New York , USA
| | - Edmund J Miller
- a The Elmezzi Graduate School of Molecular Medicine , Manhasset , New York , USA.,c The Center for Heart and Lung Research , The Feinstein Institute for Medical Research , Manhasset , New York , USA.,d Hofstra North Shore-LIJ Medical School , Hempstead , New York , USA
| |
Collapse
|
43
|
Müller-Redetzky H, Lienau J, Suttorp N, Witzenrath M. Therapeutic strategies in pneumonia: going beyond antibiotics. Eur Respir Rev 2016; 24:516-24. [PMID: 26324814 DOI: 10.1183/16000617.0034-2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dysregulation of the innate immune system drives lung injury and its systemic sequelae due to breakdown of vascular barrier function, harmful hyperinflammation and microcirculatory failure, which contribute to the unfavourable outcome of patients with severe pneumonia. A variety of promising therapeutic targets have been identified and numerous innovative therapeutic approaches demonstrated to improve lung injury in experimental preclinical studies. However, at present specific preventive or curative strategies for the treatment of lung failure in pneumonia in addition to antibiotics are still missing. The aim of this mini-review is to give a short overview of some, but not all, adjuvant therapeutic strategies for pneumonia and its most important complications, sepsis and acute respiratory distress syndrome, and briefly discuss future perspectives.
Collapse
Affiliation(s)
- Holger Müller-Redetzky
- Dept of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jasmin Lienau
- Dept of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Norbert Suttorp
- Dept of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Witzenrath
- Dept of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
44
|
Bourdeau A, Van Slyke P, Kim H, Cruz M, Smith T, Dumont DJ. Vasculotide, an Angiopoietin-1 mimetic, ameliorates several features of experimental atopic dermatitis-like disease. BMC Res Notes 2016; 9:289. [PMID: 27236199 PMCID: PMC4884390 DOI: 10.1186/s13104-015-1817-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 12/17/2015] [Indexed: 01/21/2023] Open
Abstract
Background Earlier studies by our group have demonstrated that a transgenic animal engineered to express Tie2 under the control of the Tie2 promoter produced animals with a scaly skin phenotype that recapitulated many of the hallmarks of atopic dermatitis (AT-Derm). To test the hypothesis that this model of AT-Derm is driven by dysregulated Tie2-signalling, we have bred AT-Derm transgenic (TG) animals with TG-animals engineered to overexpress Angiopoietin-1 or -2, the cognate Tie2 ligands. These two ligands act to antagonize one another in a context-dependent manner. To further evaluate the role of Ang1-driven-Tie2 signalling, we examined the ability of Vasculotide, an Ang1-mimetic, to modulate the AT-Derm phenotype. Results AT-Derm+Ang2 animals exhibited an accentuated phenotype, whereas AT-Derm+Ang1 presented with a markedly reduced skin disease, similarly VT-treated AT-Derm animals present with a clear decrease in the skin phenotype. Moreover, a decrease in several important inflammatory cytokines and a decrease in the number of eosinophils was noted in VT-treated animals. Bone marrow differentiation in the presence of VT produced fewer CFU-G colonies, further supporting a role for Tie2-signalling in eosinophil development. Importantly, we demonstrate activation of Tie2, the VT-target, in lung tissue from naïve animals treated with increasing amounts of VT. Conclusions The AT-Derm phenotype in these animals is driven through dysregulation of Tie2 receptor signalling and is augmented by supplemental Ang2-dependent stimulation. Overexpression of Ang1 or treatment with VT produced a similar amelioration of the phenotype supporting the contention that VT and Ang1 have a similar mechanism of action on the Tie2 receptor and can both counteract the signalling driven by Ang2. Our results also support a possible role for Tie2-signalling in the development of eosinophilic diseases and that activation of Tie2 may directly or indirectly modulate the differentiation of eosinophils, which express Tie2. In summary, these data support the hypothesis that this AT-Derm mouse model is driven by dysregulation of the Tie2 signalling pathway and increased Ang2 levels can aggravate it, whereas it can be reversed by either Ang1-overexpression or VT treatment. Moreover, our data supports the contention that VT acts as an Angiopoietin-1 mimetic and may provide a novel entry point for Tie2-agonist-based therapies for atopic diseases.
Collapse
Affiliation(s)
- Annie Bourdeau
- Department of Immunology, University of Toronto, Toronto, ON, USA.,Sunnybrook Research Institute, Toronto, ON, USA
| | - Paul Van Slyke
- Vasomune Therapeutics, 101 College Street, Toronto, ON, USA.
| | - Harold Kim
- Sunnybrook Research Institute, Toronto, ON, USA.,Vasomune Therapeutics, 101 College Street, Toronto, ON, USA.,Department of Medical Biophysics, University of Toronto, Toronto, ON, USA
| | | | - Tracy Smith
- Sunnybrook Research Institute, Toronto, ON, USA.,Department of Medical Biophysics, University of Toronto, Toronto, ON, USA
| | - Daniel J Dumont
- Sunnybrook Research Institute, Toronto, ON, USA.,Department of Medical Biophysics, University of Toronto, Toronto, ON, USA
| |
Collapse
|
45
|
Thamm K, David S. Role of angiopoietin-2 in infection - A double-edged sword? Cytokine 2016; 83:61-63. [PMID: 27038015 DOI: 10.1016/j.cyto.2016.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 03/25/2016] [Accepted: 03/25/2016] [Indexed: 10/22/2022]
Abstract
The endothelial angiopoietin (Angpt)/Tie2 ligand receptor system maintains vascular quiescence and modulates the response to injury. Angpt-1 is considered the natural Tie2 agonist and receptor ligation leads to its phosphorylation inducing various protective downstream pathways. The natural antagonist - Angpt-2 - appears to inhibit these protective effects. In sepsis, the balance between both ligands is shifted in favor for Angpt-2 and the vasculature is highly dysfunctional, activated and leaky. Circulating levels of Angpt-2 strongly predict mortality in septic patients. Consistently, experimental strategies that target Angpt-2 (e.g. antibody, RNAi, etc.) can protect the vascular barrier and improve survival. However, in vitro is has also been shown that Angpt-2 can act as a dose-dependent Tie2 agonist/antagonist. Based on this, people have wondered if Angpt-2 is per se injurious or if it might have protective effects dependent on the scenario. A recent paper by Safioleas and colleagues showed survival benefits after a therapeutic injection of recombinant Angpt-2 in experimental pyelonephritis. Here, we discuss their counter-intuitive but interesting findings and put them into a global context with respect to the existent literature in the angiopoietin/Tie2 sepsis field.
Collapse
Affiliation(s)
- Kristina Thamm
- Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Sascha David
- Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
46
|
Michels M, Steckert AV, Quevedo J, Barichello T, Dal-Pizzol F. Mechanisms of long-term cognitive dysfunction of sepsis: from blood-borne leukocytes to glial cells. Intensive Care Med Exp 2015; 3:30. [PMID: 26515197 PMCID: PMC4626467 DOI: 10.1186/s40635-015-0066-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/21/2015] [Indexed: 12/12/2022] Open
Abstract
Several mechanisms are associated with brain dysfunction during sepsis; one of the most important are activation of microglia and astrocytes. Activation of glial cells induces changes in permeability of the blood-brain barrier, secretion of inflammatory cytokines, and these alterations could induce neuronal dysfunction. Furthermore, blood-borne leukocytes can also reach the brain and participate in inflammatory response. Mechanisms involved in sepsis-associated brain dysfunction were revised here, focusing in neuroinflammation and involvement of blood-borne leukocytes and glial cells in this process.
Collapse
Affiliation(s)
- Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, 88806-000, Brazil.
| | - Amanda V Steckert
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil.
| | - João Quevedo
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil.
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas at Houston, Houston, TX, USA.
| | - Tatiana Barichello
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil.
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas at Houston, Houston, TX, USA.
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Sepsis, defined by the presence of infection and host inflammation, is a lethal clinical syndrome with an increasing mortality rate worldwide. In severe disease, the coagulation system becomes diffusely activated, with consumption of multiple clotting factors resulting in disseminated intravascular coagulation (DIC). When present, DIC portends a higher mortality rate. Understanding the mechanisms that tie inflammation and diffuse thrombosis will allow therapeutic interventions to be developed. The coagulopathy of acute sepsis is a dynamic process that is time and disease burden specific. Whole-blood testing of coagulation may provide more clinically useful information than the classical tests. Natural anticoagulants that regulate thrombosis are downregulated in sepsis. Patients may benefit from the modulation of the coagulation system when systemic inflammation and hypercoagulopathy exist. Proper timing of anticoagulant therapy may ultimately lead to decreased incidence of multisystem organ dysfunction. RECENT FINDINGS The pathogenesis of coagulopathy in sepsis is driven by an upregulation of procoagulant mechanisms and simultaneous downregulation of natural anticoagulants. Inflammation caused by the invading organism is a natural host defense that cannot be eliminated during treatment. Successful strategies to prevent multisystem organ dysfunction center on stratifying patients at high risk for DIC and restoring the balance of inflammation and coagulation. SUMMARY The prevention of DIC in septic patients is a key therapeutic target in preventing death from multisystem organ failure. Stratifying patients for therapy using thromboelastometry, specific markers for DIC, and composite scoring systems is an area of growing research.
Collapse
|
48
|
Carvalho LJDM, Moreira ADS, Daniel-Ribeiro CT, Martins YC. Vascular dysfunction as a target for adjuvant therapy in cerebral malaria. Mem Inst Oswaldo Cruz 2015; 109:577-88. [PMID: 25185000 PMCID: PMC4156451 DOI: 10.1590/0074-0276140061] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/02/2014] [Indexed: 12/27/2022] Open
Abstract
Cerebral malaria (CM) is a life-threatening complication of Plasmodium
falciparum malaria that continues to be a major global health problem.
Brain vascular dysfunction is a main factor underlying the pathogenesis of CM and can
be a target for the development of adjuvant therapies for the disease. Vascular
occlusion by parasitised red blood cells and vasoconstriction/vascular dysfunction
results in impaired cerebral blood flow, ischaemia, hypoxia, acidosis and death. In
this review, we discuss the mechanisms of vascular dysfunction in CM and the roles of
low nitric oxide bioavailability, high levels of endothelin-1 and dysfunction of the
angiopoietin-Tie2 axis. We also discuss the usefulness and relevance of the murine
experimental model of CM by Plasmodium berghei ANKA to identify
mechanisms of disease and to screen potential therapeutic interventions.
Collapse
Affiliation(s)
| | - Aline da Silva Moreira
- Laboratório de Pesquisas em Malária, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | | | - Yuri Chaves Martins
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
49
|
Siegler BH, Weiterer S, Lichtenstern C, Stumpp D, Brenner T, Hofer S, Weigand MA, Uhle F. [Use of biomarkers in sepsis. Update and perspectives]. Anaesthesist 2015; 63:678-90. [PMID: 25002138 DOI: 10.1007/s00101-014-2347-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sepsis and related complications are a challenge for intensive care medicine. Despite many advances in antibiotic therapy sepsis remains one of the most common diseases of patients in intensive care units and is designated as the main cause of death in critically ill patients. Persisting sepsis leads to impaired immunity, resulting in immunosuppression. Unspecific predictive signs complicate an early diagnosis; however, an early initiation of adequate therapy is of crucial importance for the prognosis. Scoring systems can be applied for the initial evaluation but are controversially discussed concerning the monitoring of disease progression and therapy as well as outcome prediction. Biomarkers are considered as a complementary approach.
Collapse
Affiliation(s)
- B H Siegler
- Klinik für Anaesthesiologie und Operative Intensivmedizin, Universitätsklinikum Gießen und Marburg, Standort Gießen, Rudolf-Buchheim Str. 7, 35392, Gießen, Deutschland
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Fibrinogen concentrate improves survival during limited resuscitation of uncontrolled hemorrhagic shock in a Swine model. Shock 2015; 42:456-63. [PMID: 25337778 DOI: 10.1097/shk.0000000000000238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to evaluate the effect of fibrinogen concentrate, as a hemostatic agent, on limited resuscitation of uncontrolled hemorrhagic shock. We use a swine model of hemorrhagic shock with free bleeding from a 4-mm aortic tear to test the effect of adding a one-time dose of fibrinogen concentrate given at the onset of limited fluid resuscitation. Immature female swine were anesthetized and subjected to catheter hemorrhage and aortic tear to induce uniform hemorrhagic shock. Animals (n = 7 per group) were then randomized to receive (i) no fluid resuscitation (neg control) or (ii) limited resuscitation in the form of two boluses of 10 mL/kg of 6% hydroxyethyl starch solution given 30 min apart (HEX group), or (iii) the same fluid regimen with one dose of 120-mg/kg fibrinogen concentrate given with the first hydroxyethyl starch bolus (FBG). Animals were then observed for a total of 6 h with aortic repair and aggressive resuscitation with shed blood taking place at 3 h. Survival to 6 h was significantly increased with FBG (7/8, 86%) versus HEX (2/7, 29%) and neg control (0/7, 0%) (FBG vs. HEX, Kaplan-Meier log-rank P = 0.035). Intraperitoneal blood loss adjusted for survival time was increased in HEX (0.4 mL/kg per minute) when compared with FBG (0.1 mg/kg per minute, P = 0.047) and neg control (0.1 mL/kg per minute, P = 0.041). Systemic and cerebral hemodynamics also showed improvement with FBG versus HEX. Fibrinogen concentrate may be a useful adjunct to decrease blood loss, improve hemodynamics, and prolong survival during limited resuscitation of uncontrolled hemorrhagic shock.
Collapse
|