1
|
Wang P, Zhao Q, Zhu X, Cao S, Williams JP, An J. OZONE THERAPY AMELIORATES LPS-INDUCED ACUTE LUNG INJURY IN MICE BY INHIBITING THE NLRP3/ASC/CASPASE-1 AXIS. Shock 2025; 63:487-494. [PMID: 39637244 PMCID: PMC11882185 DOI: 10.1097/shk.0000000000002525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/09/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
ABSTRACT Background: Acute lung injury (ALI) is a common respiratory emergency with high incidence and mortality. Among its main pathologic mechanisms is the rapid and intense inflammatory response. Ozone is a naturally occurring compound and is known for its properties as an oxidizing agent. Ozone therapy is the clinical application of a mixture of ozone (O 3 ) and oxygen, used within nontoxic, safe concentrations. It could be used for the treatment of several diseases. Ozone rectal insufflation (O 3 -RI) is a treatment in which medical O 3 is introduced into the rectum to treat and prevent disease. Although O 3 therapy exerts anti-inflammatory effects, its function in ALI remains unclear. The aim of this study was to preliminarily investigate the role and function of O 3 -RI in ALI. Methods: A mouse model of ALI was established by intratracheal administration of LPS. O 3 -RI was administered 4 h following the modeling procedure. Lung histopathology, lung wet/dry ratio, protein content in bronchoalveolar lavage fluid (BALF), and myeloperoxidase activity in lung tissues, as well as the number of inflammatory cells and inflammatory cytokines in BALF, were assessed. The expression levels of NOD-like receptor thermal protein domain associated protein (NLRP3)/apoptosis-associated speck-like protein (ASC)/caspase-1 axis-related proteins in lung tissues were examined by real-time fluorescence quantitative polymerase chain reaction and Western blotting. Results: Ozone therapy reduced the wet/dry ratio of lung tissue and total protein content in BALF and attenuated lung edema and microvascular leakage in ALI mice. Ozone therapy reduced the myeloperoxidase content in the lung tissue, the number of inflammatory cells, and the content of inflammatory cytokines in BALF and attenuated lung tissue inflammation in mice with ALI. Ozone therapy ameliorated lung tissue morphological damage in ALI mice. Ozone therapy downregulated the expression of NLRP3/ASC/caspase-1 axis-related proteins. Conclusion: Ozone therapy attenuated LPS-induced ALI in mice, possibly by inhibiting NLRP3/ASC/caspase-1 axis. Ozone therapy is a valuable potential therapeutic modality for ALI.
Collapse
Affiliation(s)
- PengCheng Wang
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong, China
- Institute for Innovation Diagnosis & Treatment in Anesthesiology, Shandong Second Medical University, Weifang, Shandong Province, China
- Pain and Sleep Medicine, The Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, China
| | - QinYao Zhao
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong, China
| | - XiaoFang Zhu
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong, China
| | - ShuangJiao Cao
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong, China
| | - John P. Williams
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jianxiong An
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Shandong Second Medical University, Weifang, Shandong, China
- Institute for Innovation Diagnosis & Treatment in Anesthesiology, Shandong Second Medical University, Weifang, Shandong Province, China
- Pain and Sleep Medicine, The Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, China
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
2
|
Celik M, Aydin P, Civelek MS, Akgun N, Karakoy Z, Ozcelik C, Tanriverdiyeva G, Toktay E. Avanafil Mitigates Testicular Ischemia/Reperfusion Injury via NLRP3 Pathway Modulation in Rats. Reprod Sci 2024; 31:3391-3399. [PMID: 39302541 DOI: 10.1007/s43032-024-01696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE In our study, the effectiveness of avanafil, a second-generation phosphodiesterase-5 (PDE5) inhibitor, on testicular torsion (TT) related ischemia/reperfusion injury via NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), which triggers inflammatory response, are studied molecularly, biochemically and histopathologically. MATERIAL AND METHOD This study was performed on 24 male Wistar albino rats randomized into four groups. Testicular ischemia/reperfusion (I/R) model was created for groups 2, 3 and 4. Groups 3 and 4, respectively, were administered a dose of 5 and 10 mg/kg avanafil before reperfusion by gavage. The testicles which were left in ischemia for two hours, were detorsioned for four hours. All animals were sacrificed after reperfusion. Testicular tissues were examined molecularly, biochemically and histopathologically. RESULTS The NLRP3, Interleukin-1β (IL-1β) and Tumor Necrosis alpha (TNF-α) mRNA expression levels were observed to be significantly increased in the I/R group compared to the healthy group (p < 0.001). After both doses of avanafil, NLRP3, IL-1β and TNF-α mRNA expression levels, which increased as a result of I/R, decreased in both avanafil groups. (p < 0.001). The greatest decrease was seen at the dose of 10 mg/kg (p < 0.001). Increased Malondialdehyde (MDA) levels due to I/R were statistically significantly decreased in both doses of avanafil (p < 0.001). Decreased Superoxide Dismutase (SOD) levels due to I/R damage increased statistically significantly in both doses of avanafil (p < 0.001). CONCLUSION It was found that avanafil can reduce the damage caused by testicular I/R and that it will find new applications in the future with the support of advanced experimental and clinical studies.
Collapse
Affiliation(s)
- Muhammet Celik
- Department of Biochemistry, Faculty of Medicine, Ataturk District, Ataturk University Campus, 25240, Yakutiye / Erzurum, Turkey.
| | - Pelin Aydin
- Department of Anesthesiology and Reanimation, Educational and Research Hospital, Erzurum, Turkey
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Maide Sena Civelek
- Department of Pharmacology, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Nurullah Akgun
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Zeynep Karakoy
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
- Department of Pharmacology, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Cihad Ozcelik
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Gulcin Tanriverdiyeva
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Erdem Toktay
- Department of Histology and Embryology, Faculty of Medicine, Ataturk University, Kafkas University, Kars, Turkey
| |
Collapse
|
3
|
Mu Y, Luo LB, Wu SJ, Gao Y, Qin XL, Zhao J, Liu Q, Yang J. Bezafibrate alleviates diabetes-induced spermatogenesis dysfunction by inhibiting inflammation and oxidative stress. Heliyon 2024; 10:e28284. [PMID: 38533024 PMCID: PMC10963653 DOI: 10.1016/j.heliyon.2024.e28284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
The metabolic disorders caused by diabetes can lead to various complications, including male spermatogenesis dysfunction. Exploring effective therapeutics that attenuate diabetes mellitus (DM)-induced male subfertility is of great importance. Pharmaceuticals targeting PPARα activation such as bezafibrate have been regarded as an important strategy for patients with diabetes. In this study, we use streptozocin (STZ) injection to establish a type 1 DM mice model and use bezafibrate to treat DM mice and evaluate the effects of bezafibrate on the spermatogenic function of the DM male mice. Bezafibrate treatment exhibited protective effects on DM-induced spermatogenesis deficiency, as reflected by increased testis weight, improved histological morphology of testis, elevated sperm parameters, increased serum testosterone concentration as well as increased mRNA levels of steroidogenesis enzymes. Meanwhile, testicular cell apoptosis, inflammation accumulation and oxidative stress status were also shown to be alleviated by bezafibrate compared with the DM group. In vivo and in vitro studies, PPARα specific inhibitor and PPARα knockout mice were further used to investigate the role of PPARα in the protective effects of bezafibrate on DM-induced spermatogenesis dysfunction. Our results indicated that the protection of bezafibrate on DM-induced spermatogenesis deficiency was abrogated by PPARα inhibition or deletion. Our study suggested that bezafibrate administration could ameliorate DM-induced spermatogenesis dysfunction and may represent a novel practical strategy for male infertility.
Collapse
Affiliation(s)
- Yang Mu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ling-Bo Luo
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shu-juan Wu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yue Gao
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiao-lin Qin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing Zhao
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qian Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| |
Collapse
|
4
|
Baqerkhani M, Soleimanzadeh A, Mohammadi R. Effects of intratesticular injection of hypertonic mannitol and saline on the quality of donkey sperm, indicators of oxidative stress and testicular tissue pathology. BMC Vet Res 2024; 20:99. [PMID: 38468237 PMCID: PMC10926677 DOI: 10.1186/s12917-024-03915-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
OBJECTIVES The aim of the present study was to examine donkey sperm quality after intratesticular injection of hypertonic mannitol (HM) and saline (HS). METHODS Randomly assigned to five treatment groups were 15 adult male donkeys: (1) Control group (no treatment), (2) Surgery group (surgical castration for testosterone control), (3) NS group (normal saline intratesticular injection), (4) HS group (hypertonic saline), and (5) HM group. We injected 20 mL per testicle. We took 5 mL blood from all donkeys before injection. Castration was performed under general anesthesia 60 days later. Samples included blood and testicular tissue. Total motility (TM), progressive motility (PM), movementy features, DNA damage, morphology, viability, and plasma membrane functionality were evaluated. Hormone analyses, histomorphometric studies and oxidative stress indices including total antioxidant capacity (TAC), glutathione peroxidase (GPx), glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), and NADP+/NADPH were evaluated. Apoptosis, pyroptosis-related Bax, Caspase-1, GSDMD, and Bcl-2 expression were also assessed. RESULTS In HS and HM groups, testosterone, epididymal sperm count, motility, viability, and plasma membrane functionality dropped while sperm DNA damage increased. HS and HM groups had significantly lower histomorphometric parameters, TAC, GPx, SOD, GSH, and Bcl-2 gene expression. MDA, NADP+/NADPH, Bax, Caspase-1, and GSDMD gene expression were substantially higher in the HS and HM groups than in the control group. CONCLUSIONS Toxic effects of hypertonic saline and mannitol on reproductive parameters were seen following, hence, they might be considered as a good chemical sterilizing treatment in donkeys.
Collapse
Affiliation(s)
- Mohammadreza Baqerkhani
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, P.O. Box: 57561-51818, Urmia, Iran
| | - Ali Soleimanzadeh
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, P.O. Box: 57561-51818, Urmia, Iran.
| | - Rahim Mohammadi
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
5
|
Minas A, Costa LVS, Miyazaki MA, Antoniassi MP. Insight toward inflammasome complex contribution to male infertility. Am J Reprod Immunol 2023; 90:e13734. [PMID: 37491934 DOI: 10.1111/aji.13734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 07/27/2023] Open
Abstract
During the last decades, a wide range of factors involved in the physiopathology of male infertility disease have been discussed. The inflammation role in some of the main infertility-related diseases has been studied, such as varicocele, spinal cord injury and obesity. Inflammation is the main response of the immune system to infection or cell damage, leading to intense inflammatory cytokine release during the loss of homeostasis. One of the first steps toward pro-inflammatory cytokines release is the recognition of dangerous signals by the immune cells, including pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). These molecules can activate an important multiprotein complex, called inflammasome. Although these complexes have been studied during the last decades, their participation in male infertility has gained attention recently. Considering the inflammasome complex's high potential to be targeted for drug therapy, this review tries to shed light on current literature. Therefore, in the current review paper, we aimed to discuss the inflammasome complex activation, involvement in different male infertility conditions, and localization in the male reproductive tract.
Collapse
Affiliation(s)
- Aram Minas
- Department of Surgery, Division of Urology, Human Reproduction Section, São Paulo Federal University, São Paulo, Brazil
| | - Lucas Vasconcelos Soares Costa
- Laboratory of Ontogeny of Lymphocytes, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Mika Alexia Miyazaki
- Department of Surgery, Division of Urology, Human Reproduction Section, São Paulo Federal University, São Paulo, Brazil
| | - Mariana Pereira Antoniassi
- Department of Surgery, Division of Urology, Human Reproduction Section, São Paulo Federal University, São Paulo, Brazil
| |
Collapse
|
6
|
Yang Y, Jin S, Zhang J, Chen W, Lu Y, Chen J, Yan Z, Shen B, Ning Y, Shi Y, Chen J, Wang J, Xu S, Jia P, Teng J, Fang Y, Song N, Ding X. Acid-sensing ion channel 1a exacerbates renal ischemia-reperfusion injury through the NF-κB/NLRP3 inflammasome pathway. J Mol Med (Berl) 2023; 101:877-890. [PMID: 37246982 PMCID: PMC10300185 DOI: 10.1007/s00109-023-02330-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/30/2023]
Abstract
Ischemia-reperfusion injury (IRI) is the main cause of acute kidney injury (AKI), and there is no effective therapy. Microenvironmental acidification is generally observed in ischemic tissues. Acid-sensing ion channel 1a (ASIC1a) can be activated by a decrease in extracellular pH which mediates neuronal IRI. Our previous study demonstrated that, ASIC1a inhibition alleviates renal IRI. However, the underlying mechanisms have not been fully elucidated. In this study, we determined that renal tubule-specific deletion of ASIC1a in mice (ASIC1afl/fl/CDH16cre) attenuated renal IRI, and reduced the expression of NLRP3, ASC, cleaved-caspase-1, GSDMD-N, and IL-1β. Consistent with these in vivo results, inhibition of ASIC1a by the specific inhibitor PcTx-1 protected HK-2 cells from hypoxia/reoxygenation (H/R) injury, and suppressed H/R-induced NLRP3 inflammasome activation. Mechanistically, the activation of ASIC1a by either IRI or H/R induced the phosphorylation of NF-κB p65, which translocates to the nucleus and promotes the transcription of NLRP3 and pro-IL-1β. Blocking NF-κB by treatment with BAY 11-7082 validated the roles of H/R and acidosis in NLRP3 inflammasome activation. This further confirmed that ASIC1a promotes NLRP3 inflammasome activation, which requires the NF-κB pathway. In conclusion, our study suggests that ASIC1a contributes to renal IRI by affecting the NF-κB/NLRP3 inflammasome pathway. Therefore, ASIC1a may be a potential therapeutic target for AKI. KEY MESSAGES: Knockout of ASIC1a attenuated renal ischemia-reperfusion injury. ASIC1a promoted the NF-κB pathway and NLRP3 inflammasome activation. Inhibition of the NF-κB mitigated the NLRP3 inflammasome activation induced by ASIC1a.
Collapse
Affiliation(s)
- Yan Yang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China
| | - Shi Jin
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China
| | - Jian Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China
| | - Weize Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China
| | - Yufei Lu
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China
| | - Jun Chen
- Department of Pathology, Changzheng Hospital, Naval Military Medical University, Shanghai, China
| | - Zhixin Yan
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China
| | - Bo Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China
| | - Yichun Ning
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China
| | - Yiqin Shi
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China
| | - Jing Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China
| | - Jialin Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China
| | - Sujuan Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China
| | - Ping Jia
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China
| | - Jie Teng
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China
| | - Nana Song
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China.
- Fudan Zhangjiang Institute, Shanghai, China.
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Medical Center of Kidney; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Hemodialysis quality control center of Shanghai, Shanghai, 200032, China.
| |
Collapse
|
7
|
Hosseini E, Kohan-Ghadr HR, Bazrafkan M, Amorim CA, Askari M, Zakeri A, Mousavi SN, Kafaeinezhad R, Afradiasbagharani P, Esfandyari S, Nazari M. Rescuing fertility during COVID-19 infection: exploring potential pharmacological and natural therapeutic approaches for comorbidity, by focusing on NLRP3 inflammasome mechanism. J Assist Reprod Genet 2023; 40:1173-1185. [PMID: 36892705 PMCID: PMC9995769 DOI: 10.1007/s10815-023-02768-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/28/2023] [Indexed: 03/10/2023] Open
Abstract
The respiratory system was primarily considered the only organ affected by Coronavirus disease 2019 (COVID-19). As the pandemic continues, there is an increasing concern from the scientific community about the future effects of the virus on male and female reproductive organs, infertility, and, most significantly, its impact on the future generation. The general presumption is that if the primary clinical symptoms of COVID-19 are not controlled, we will face several challenges, including compromised infertility, infection-exposed cryopreserved germ cells or embryos, and health complications in future generations, likely connected to the COVID-19 infections of parents and ancestors. In this review article, we dedicatedly studied severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) virology, its receptors, and the effect of the virus to induce the activation of inflammasome as the main arm of the innate immune response. Among inflammasomes, nucleotide oligomerization domain-like receptor protein, pyrin domain containing 3 (NLRP3) inflammasome pathway activation is partly responsible for the inflicted damages in both COVID-19 infection and some reproductive disorders, so the main focus of the discussion is on NLRP3 inflammasome in the pathogenesis of COVID-19 infection alongside in the reproductive biology. In addition, the potential effects of the virus on male and female gonad functions were discussed, and we further explored the potential natural and pharmacological therapeutic approaches for comorbidity via NLRP3 inflammasome neutralization to develop a hypothesis for averting the long-term repercussions of COVID-19. Since activation of the NLRP3 inflammasome pathway contributes to the damage caused by COVID-19 infection and some reproductive disorders, NLRP3 inflammasome inhibitors have a great potential to be considered candidates for alleviating the pathological effects of the COVID-19 infection on the germ cells and reproductive tissues. This would impede the subsequent massive wave of infertility that may threaten the patients.
Collapse
Affiliation(s)
- Elham Hosseini
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Obstetrics and Gynecology, Mousavi Hospital, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamid-Reza Kohan-Ghadr
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI USA
| | - Mahshid Bazrafkan
- Reproductive Biotechnology Research Center, Avicenna Research Institute (ARI), ACECR, Tehran, Iran
| | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Maryam Askari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Armin Zakeri
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyedeh Neda Mousavi
- Department of Nutrition, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Raheleh Kafaeinezhad
- Department of Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | | | - Sahar Esfandyari
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Mahboobeh Nazari
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
8
|
He KX, Ning JZ, Li W, Cheng F. Emodin alleviates testicular ischemia-reperfusion injury through the inhibition of NLRP3-mediated pyroptosis. Tissue Cell 2023; 82:102069. [PMID: 36921491 DOI: 10.1016/j.tice.2023.102069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
Ischemia-reperfusion injury (IRI) is a major cause of injury after testicular torsion and can lead to permanent impairment of spermatogenesis. Emodin (6-methyl-1,3,8-trihydroxyanthraquinone) has potent anti-inflammatory effects and may be protective against IRI in various organs. Herein, we evaluated the effects of emodin on pyroptosis in spermatogenic cells and its role in the process of testicular IRI. A testicular torsion/detorsion (TTD) mouse model and an oxygen-glucose deprivation/reperfusion (OGD/R) germ cell model were established. Hematoxylin and eosin staining was performed to evaluate the testicular ischemic injury. The expression of pyroptosis-related proteins and reactive oxygen species production in testis tissues were detected using Western blotting, quantitative real-time PCR, malondialdehyde and superoxide dismutase assay kits and immunohistochemistry. Cell viability and cytotoxicity were evaluated using Cell Counting Kit-8 and lactate dehydrogenase assay kit. Enzyme-linked immunosorbent assay, immunofluorescence and immunoblotting were performed to assess inflammatory protein levels. The results revealed that pyroptosis and inflammation levels were upregulated after testicular IRI, and emodin inhibited inflammation and pyroptosis by acting on NOD-like receptor thermal protein domain-associated protein 3 (NLRP3). Emodin exerts protective effects on testicular IRI by acting on the NLRP3 signaling pathway and inhibiting IRI-mediated pyroptosis. Emodin treatment attenuated testicular IRI and inhibited pyroptosis. Inhibitory effects of emodin on pyroptosis were attributed to the inhibition of NLRP3 inflammasomes. Thus, emodin could be an alternative treatment for testicular IRI.
Collapse
Affiliation(s)
- Kai-Xiang He
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Jin-Zhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| |
Collapse
|
9
|
Almarzouq D, Al-Maghrebi M. NADPH Oxidase-Mediated Testicular Oxidative Imbalance Regulates the TXNIP/NLRP3 Inflammasome Axis Activation after Ischemia Reperfusion Injury. Antioxidants (Basel) 2023; 12:antiox12010145. [PMID: 36671008 PMCID: PMC9855003 DOI: 10.3390/antiox12010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Oxidative stress, inflammation and germ cell death are the main characteristics of testicular ischemia reperfusion injury (tIRI), which is considered as the underlying mechanism for testicular torsion and detorsion. The study aimed to examine the effect of tIRI-activated NADPH oxidase (NOX) on the expression of the NLRP3 inflammasome pathway components. Three groups of male Sprague-Dawley rats (n = 12 each) were studied: sham, unilateral tIRI only and tIRI treated with apocynin, a NOX-specific inhibitor. The tIRI rat model was subjected to 1 h of ischemia followed by 4 h of reperfusion. H&E staining, real time PCR, biochemical assays, and Western blot were utilized to evaluate spermatogenic damage, gene expression, oxidative stress markers, and NLRP3 pathway components, respectively. As a result of tIRI, decreased total antioxidant capacity and suppressed activities of superoxide dismutase and catalase were associated with spermatogenic arrest. The components of the NLRP3 inflammasome pathway (TXNIP, NLRP3, ASC, caspase-1, GSDMD, MMP-9) were upregulated transcriptionally and post-transcriptionally during tIRI. In parallel, tissue inflammation was demonstrated by a marked increase in the concentrations of myeloperoxidase, IL-1β, and IL-18. Apocynin treatment prevented testicular oxidative stress and inflammation. Thus, NOX inhibition by apocynin prevented ROS accumulation, proinflammatory cytokine overexpression and NLRP3 inflammasome activation during tIRI.
Collapse
|
10
|
Yang X, Liu P, Cui Y, Song M, Zhang X, Zhang C, Jiang Y, Li Y. T-2 Toxin Caused Mice Testicular Inflammation Injury via ROS-Mediated NLRP3 Inflammasome Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14043-14051. [PMID: 36260425 DOI: 10.1021/acs.jafc.2c05317] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
T-2 toxin treatment causes male reproduction system dysfunction, although the exact mechanism remains unclear. In this research, male Kunming mice and TM4 cells were treated with varying concentrations of the T-2 toxin for evaluating the adverse effect of T-2 toxin on male reproductive function. MCC950 or NAC was used to block NLRP3 inflammasome activation and eliminate reactive oxygen species (ROS) accumulation in the TM4 cell, respectively. The results showed that: (1) T-2 toxin caused testicular atrophy, destroyed the microstructure and ultrastructure of the testis, and caused sperm deformities; (2) T-2 toxin increased the content and gene expressions of TNF-α and IL-6 and decreased the IL-10 content and gene expression, causing testis and TM4 cell inflammatory injury; (3) T-2 toxin activated NLRP3 inflammasome in the testis and TM4 cells and caused ROS accumulation in the testis; (4) suppressing NLRP3 inflammasome activation using 20 nM MCC950 alleviated the TM4 cell inflammatory damage caused via the T-2 toxin; nevertheless, 20 nM MCC950 did not reduce ROS accumulation in TM4 cells; and (5) NAC relieved the inflammatory damage in TM4 cells by inhibiting NLRP3 inflammasome activation. Taken together, T-2 toxin caused testicular inflammation injury through ROS-mediated NLRP3 inflammasome activation, resulting in male reproductive dysfunction.
Collapse
Affiliation(s)
- Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Pengli Liu
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yilong Cui
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Miao Song
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Cong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yibao Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
11
|
Ayobami AFOLABI O, Adebola ALABI B, Adedamola AJIKE R, Simeon OYEKUNLE O, ADEGOKE W, Adebayo OJETOLA A. Evaluation of testicular torsion management in Ogbomoso, South-Western Nigeria and surgical detorsion-augmented treatment with phytochemical fractions of Corchorus olitorius leaf in expermiental rats. Saudi J Biol Sci 2022; 30:103495. [DOI: 10.1016/j.sjbs.2022.103495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/12/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022] Open
|
12
|
Ghafouri-Fard S, Shoorei H, Poornajaf Y, Hussen BM, Hajiesmaeili Y, Abak A, Taheri M, Eghbali A. NLRP3: Role in ischemia/reperfusion injuries. Front Immunol 2022; 13:926895. [PMID: 36238294 PMCID: PMC9552576 DOI: 10.3389/fimmu.2022.926895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/01/2022] [Indexed: 12/05/2022] Open
Abstract
NLR family pyrin domain containing 3 (NLRP3) is expressed in immune cells, especially in dendritic cells and macrophages and acts as a constituent of the inflammasome. This protein acts as a pattern recognition receptor identifying pathogen-associated molecular patterns. In addition to recognition of pathogen-associated molecular patterns, it recognizes damage-associated molecular patterns. Triggering of NLRP3 inflammasome by molecules ATP released from injured cells results in the activation of the inflammatory cytokines IL-1β and IL-18. Abnormal activation of NLRP3 inflammasome has been demonstrated to stimulate inflammatory or metabolic diseases. Thus, NLRP3 is regarded as a proper target for decreasing activity of NLRP3 inflammasome. Recent studies have also shown abnormal activity of NLRP3 in ischemia/reperfusion (I/R) injuries. In the current review, we have focused on the role of this protein in I/R injuries in the gastrointestinal, neurovascular and cardiovascular systems.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Yadollah Poornajaf
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | | | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- *Correspondence: Mohammad Taheri, ; Ahmad Eghbali,
| | - Ahmad Eghbali
- Anesthesiology Research Center, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Ahmad Eghbali,
| |
Collapse
|
13
|
Mu Y, Yin TL, Zhang Y, Yang J, Wu YT. Diet-induced obesity impairs spermatogenesis: the critical role of NLRP3 in Sertoli cells. Inflamm Regen 2022; 42:24. [PMID: 35915511 PMCID: PMC9344614 DOI: 10.1186/s41232-022-00203-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/22/2022] [Indexed: 01/02/2023] Open
Abstract
Background Accumulating evidence indicates a key role of Sertoli cell (SC) malfunction in spermatogenesis impairment induced by obesity. Nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) is expressed in SCs, but the role of NLRP3 in the pathological process of obesity-induced male infertility remains unclear. Methods NLRP3-deficient mice were fed a high-fat diet for 24 weeks to establish obesity-related spermatogenesis impairment. In another set of experiments, a lentiviral vector containing a microRNA (miR)-451 inhibitor was injected into AMP-activated protein kinase α (AMPKα)-deficient mouse seminiferous tubules. Human testis samples were obtained by testicular puncture from men with obstructive azoospermia whose samples exhibited histologically normal spermatogenesis. Isolated human SCs were treated with palmitic acid (PA) to mimic obesity model in vitro. Results Increased NLRP3 expression was observed in the testes of obese rodents. NLRP3 was also upregulated in PA-treated human SCs. NLRP3 deficiency attenuated obesity-related male infertility. SC-derived NLRP3 promoted interleukin-1β (IL-1β) secretion to impair testosterone synthesis and sperm performance and increased matrix metalloproteinase-8 (MMP-8) expression to degrade occludin via activation of nuclear factor-kappa B (NF-κB). Increased miR-451 caused by obesity, decreased AMPKα expression and sequentially increased NADPH oxidase activity were responsible for the activation of NLRP3. miR-451 inhibition protected against obesity-related male infertility, and these protective effects were abolished by AMPKα deficiency in mice. Conclusions NLRP3 promoted obesity-related spermatogenesis impairment. Increased miR-451 expression, impaired AMPKα pathway and the subsequent ROS production were responsible for NLRP3 activation. Our study provides new insight into the mechanisms underlying obesity-associated male infertility. Supplementary Information The online version contains supplementary material available at 10.1186/s41232-022-00203-z.
Collapse
Affiliation(s)
- Yang Mu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tai-Lang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yan-Ting Wu
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
14
|
Arab HH, Elhemiely AA, El-Sheikh AAK, Khabbaz HJA, Arafa ESA, Ashour AM, Kabel AM, Eid AH. Repositioning Linagliptin for the Mitigation of Cadmium-Induced Testicular Dysfunction in Rats: Targeting HMGB1/TLR4/NLRP3 Axis and Autophagy. Pharmaceuticals (Basel) 2022; 15:852. [PMID: 35890148 PMCID: PMC9319949 DOI: 10.3390/ph15070852] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Cadmium, a ubiquitous environmental toxicant, disrupts testicular function and fertility. The dipeptidyl peptidase-4 inhibitor linagliptin has shown pronounced anti-inflammatory and anti-apoptotic features; however, its effects against cadmium-evoked testicular impairment have not been examined. Herein, the present study investigated targeting inflammation, apoptosis, and autophagy by linagliptin for potential modulation of cadmium-induced testicular dysfunction in rats. After 60 days of cadmium chloride administration (5 mg/kg/day, by gavage), testes, epididymis, and blood were collected for analysis. The present findings revealed that linagliptin improved the histopathological lesions, including spermatogenesis impairment and germ cell loss. Moreover, it improved sperm count/motility and serum testosterone. The favorable effects of linagliptin were mediated by curbing testicular inflammation seen by dampening of HMGB1/TLR4 pathway and associated lowering of nuclear NF-κBp65. In tandem, linagliptin suppressed the activation of NLRP3 inflammasome/caspase 1 axis with consequent lowering of the pro-inflammatory IL-1β and IL-18. Jointly, linagliptin attenuated testicular apoptotic responses seen by Bax downregulation, Bcl-2 upregulation, and suppressed caspase 3 activity. With respect to autophagy, linagliptin enhanced the testicular autophagy flux seen by lowered accumulation of p62 SQSTM1 alongside upregulation of Beclin 1. The observed autophagy stimulation was associated with elevated AMPK (Ser487) phosphorylation and lowered mTOR (Ser2448) phosphorylation, indicating AMPK/mTOR pathway activation. In conclusion, inhibition of testicular HMGB1/TLR4/NLRP3 pro-inflammatory axis and apoptosis alongside stimulation of autophagy were implicated in the favorable actions of linagliptin against cadmium-triggered testicular impairment.
Collapse
Affiliation(s)
- Hany H. Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Alzahraa A. Elhemiely
- Department of Pharmacology, Egyptian Drug Authority (EDA), Giza 12654, Egypt; (A.A.E.); (A.H.E.)
| | - Azza A. K. El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Hana J. Al Khabbaz
- Biochemistry Division, College of Pharmacy, Riyadh Elm University, P.O. Box 84891, Riyadh 11681, Saudi Arabia;
| | - El-Shaimaa A. Arafa
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Ahmed M. Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia;
| | - Ahmed M. Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt;
| | - Ahmed H. Eid
- Department of Pharmacology, Egyptian Drug Authority (EDA), Giza 12654, Egypt; (A.A.E.); (A.H.E.)
| |
Collapse
|
15
|
Sano M, Komiyama H, Shinoda R, Ozawa R, Watanabe H, Karasawa T, Takahashi M, Torii Y, Iwata H, Kuwayama T, Shirasuna K. NLRP3 inflammasome is involved in testicular inflammation induced by lipopolysaccharide in mice. Am J Reprod Immunol 2022; 87:e13527. [PMID: 35148014 DOI: 10.1111/aji.13527] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
PROBLEM Systemic inflammation induced by infection, which is associated with testicular inflammation, predisposes males to subfertility. Recently, the nucleotide-binding oligomerization domain, leucine-rich repeat-, and pyrin domain-containing 3 (NLRP3) inflammasome was identified as a key mediator of inflammation, and excessive activation of the NLRP3 inflammasome was shown to contribute to the pathogenesis of a wide variety of diseases. However, the mechanisms underlying infectious inflammation in the testis remain unclear. We investigated the effect of lipopolysaccharide (LPS)-induced systemic inflammation on the role of the NLRP3 inflammasome in murine testes. METHOD OF STUDY We performed in vivo and in vitro studies using an LPS-induced model of NLRP3 inflammasome activation and testicular inflammation. RESULTS Intraperitoneal administration of LPS significantly impaired sperm motility in the epididymis of wild type (WT) and NLRP3-knockout (KO) mice. LPS administration stimulated interleukin (IL)-1β production and secretion in the testes of WT mice, and these adverse effects were improved in the testes of NLRP3-KO mice. LPS administration also stimulated neutrophil infiltration as well as its chemoattractant C-C motif chemokine ligand 2 (CCL2) in WT testes, which were suppressed in NLRP3-KO testes. In in vitro cell culture, treatment with LPS and NLRP3 inflammasome activation significantly induced IL-1β and CCL2 secretion from WT but not NLRP3-KO testicular cells. CONCLUSIONS Taken together, our results suggest that testicular cells have the potential to secrete IL-1β and CCL2 in an NLRP3 inflammasome-dependent manner and that these cytokines from the testis may further exacerbate testicular function, resulting in subfertility during infectious diseases.
Collapse
Affiliation(s)
- Michiya Sano
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Hiromu Komiyama
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Riina Shinoda
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Ren Ozawa
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Hiroyuki Watanabe
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yasushi Torii
- Laboratory of Animal Health, Department of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Hisataka Iwata
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Takehito Kuwayama
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Koumei Shirasuna
- Laboratory of Animal Reproduction, Department of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| |
Collapse
|
16
|
Lang Y, Chu F, Liu L, Zheng C, Li C, Shen D, Liu S, Zhang W, Cui L, Zhu J. Potential role of BAY11-7082, a NF-κB blocker inhibiting experimental autoimmune encephalomyelitis in C57BL/6J mice via declining NLRP3 inflammasomes. Clin Exp Immunol 2021; 207:378-386. [PMID: 35553640 PMCID: PMC9113142 DOI: 10.1093/cei/uxab022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/03/2021] [Accepted: 11/20/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory autoimmune demyelinating disease of the central nervous system. NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome, is implicated in the pathogenesis of MS and its animal model, experimental autoimmune encephalomyelitis (EAE). However, the exact mechanism by which NLRP3 inflammasome is involved in the development of MS and EAE is not clear. NF-kappaB (NF-κB) is associated with the activity of NLRP3 inflammasomes, but the role of NF-κB is controversial. We sought to demonstrate that both NF-κB and NLRP3 contribute to development of MS and EAE, and NF-κB pathway is positively correlated with NLRP3 activation in EAE. The inhibitor of NF-κB and NLRP3, BAY11-7082, can prevent and treat EAE. BAY11-7082 (5mg/kg/i.p and 20 mg/kg/i.p) was intraperitoneally administered to EAE mice at the time of second injection of pertussis toxin (BAY11-7082 prevention group) or at the onset of symptoms (BAY11-7082 treatment group). mRNA expressions of NLRP3 were determined by qPCR. Protein expressions of NLRP3, NF-κBp65, and phosphorylated-p65 were determined by Western blotting. Serum levels of inflammatory cytokines were measured by Cytometric Bead Array. Mice treated with BAY11-7082 (both prevention and treatment groups) showed lower clinical scores and attenuated pathological changes. NLRP3 inflammasome and activity of NF-κB in spinal cord of EAE mice was higher than that in control group. However, the level of NLRP3 inflammasome decreased in BAY11-7082 prevention and treatment groups. BAY11-7082 is a promising therapeutic agent for MS. NLRP3 activation in EAE maybe related with NF-κB pathway.
Collapse
Affiliation(s)
- Yue Lang
- Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Fengna Chu
- Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Lingling Liu
- Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Chao Zheng
- Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Chunrong Li
- Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Donghui Shen
- Department of neurology, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Shan Liu
- Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Weiguanliu Zhang
- Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Li Cui
- Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jie Zhu
- Department of Neurology, First Hospital of Jilin University, Changchun, Jilin Province, China.,Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
17
|
Ning JZ, He KX, Cheng F, Li W, Yu WM, Li HY, Rao T, Ruan Y. Long Non-coding RNA MEG3 Promotes Pyroptosis in Testicular Ischemia-Reperfusion Injury by Targeting MiR-29a to Modulate PTEN Expression. Front Cell Dev Biol 2021; 9:671613. [PMID: 34222244 PMCID: PMC8249820 DOI: 10.3389/fcell.2021.671613] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/24/2021] [Indexed: 01/14/2023] Open
Abstract
Increasing evidence shows that the abnormal long non-coding RNAs (lncRNAs) expression is closely related to ischemia-reperfusion injury (I/R) progression. Studies have previously described that lncRNA MEG3 regulates pyroptosis in various organs I/R. Nevertheless, the related mechanisms of MEG3 in testicular I/R has not been clarified. The aim of this research is to unravel underlying mechanisms of the regulation of pyroptosis mediated by MEG3 during testicular I/R. We have established a testicular torsion/detorsion (T/D) model and an oxygen-glucose deprivation/reperfusion (OGD/R)-treated spermatogenic cell model. Testicular ischemic injury was assessed by H&E staining. Western blotting, quantitative real-time PCR, MDA, and SOD tests and immunohistochemistry measured the expression of MEG3 and related proteins and the level of ROS production in testicular tissues. Quantitative real-time PCR and western blotting determined the relative expression of MEG3, miR-29a, and relevant proteins in GC-1. Cell viability and cytotoxicity were measured by CCK-8 and LDH assays. Secretion and expression levels of inflammatory proteins were determined by ELISA, immunofluorescence and western blotting. The interaction among MEG3, miR-29a, and PTEN was validated through a dual luciferase reporter assay and Ago2-RIP. In this research, we identified that MEG3 was upregulated in animal specimens and GC-1. In loss of function or gain of function assays, we verified that MEG3 could promote pyroptosis. Furthermore, we found that MEG3 negatively regulated miR-29a expression at the posttranscriptional level and promoted PTEN expression, and further promoted pyroptosis. Therefore, we explored the interaction among MEG3, miR-29a and PTEN and found that MEG3 directly targeted miR-29a, and miR-29a targeted PTEN. Overexpression of miR-29a effectively eliminated the upregulation of PTEN induced by MEG3, indicating that MEG3 regulates PTEN expression by targeting miR-29a. In summary, our research indicates that MEG3 contributes to pyroptosis by regulating miR-29a and PTEN during testicular I/R, indicating that MEG3 may be a potential therapeutic target in testicular torsion.
Collapse
Affiliation(s)
- Jin-Zhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kai-Xiang He
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei-Min Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao-Yong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuan Ruan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Abstract
OBJECTIVE The exact mechanism, by which spinal cord injury (SCI) leads to a male subfertility is not well-known. Present study was conducted to determine the mechanisms that lead to the elevated end-product cytokines and inflammasomes in the testes of an SCI rat model. Moreover, we evaluated the inflammasome components following SCI in testis over a defined time periods. METHODS Weight drop technique was used to induce SCI at the level of the T10 vertebra in male Wistar rats. The animals were sacrificed at specific time intervals (3, 7, 14, 21, and 28 day's post-SCI). mRNA levels of inflammasomes and cytokines were measured by real-time PCR, germ cells apoptosis was evaluated by TUNEL staining, and the epithelium of seminiferous tubules by Miller's and Johnsen's scores. RESULTS The results showed activation of Nlrp3 in the testes of SCI animals at different time points. Expression of Nlrp3 and IL-1β sharply increased 14 days after the SCI. Upregulation of IL-1β and IL-18 at days 14 and 21 post-SCI might disintegrate the epithelium of seminiferous tubules at day 14 and induce germ cells apoptosis, increase abnormal sperm cells, and attenuate motility and viability at 21 days post-SCI. CONCLUSION This study provided further evidence of innate immunity activation in testes that could lead to more disruption of spermatogenesis in SCI patients at specific times.
Collapse
|
19
|
Izadi M, Cegolon L, Javanbakht M, Sarafzadeh A, Abolghasemi H, Alishiri G, Zhao S, Einollahi B, Kashaki M, Jonaidi-Jafari N, Asadi M, Jafari R, Fathi S, Nikoueinejad H, Ebrahimi M, Imanizadeh S, Ghazale AH. Ozone therapy for the treatment of COVID-19 pneumonia: A scoping review. Int Immunopharmacol 2021; 92:107307. [PMID: 33476982 PMCID: PMC7752030 DOI: 10.1016/j.intimp.2020.107307] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 01/25/2023]
Abstract
Severe forms of COVID-19 can evolve into pneumonia, featured by acute respiratory failure due to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In viral diseases, the replication of viruses is seemingly stimulated by an imbalance between pro-oxidant and antioxidant activity as well as by the deprivation of antioxidant mechanisms. In COVID-19 pneumonia, oxidative stress also appears to be highly detrimental to lung tissues. Although inhaling ozone (O3) gas has been shown to be toxic to the lungs, recent evidence suggests that its administration via appropriate routes and at small doses can paradoxically induce an adaptive reaction capable of decreasing the endogenous oxidative stress. Ozone therapy is recommended to counter the disruptive effects of severe COVID-19 on lung tissues, especially if administered in early stages of the disease, thereby preventing the progression to ARDS.
Collapse
Affiliation(s)
- Morteza Izadi
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Luca Cegolon
- Local Health Unit N. 2 "Marca Trevigiana", Public Health Department, Treviso, Italy
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Ali Sarafzadeh
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hassan Abolghasemi
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gholamhossein Alishiri
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shi Zhao
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mandana Kashaki
- Shahid Akbarabadi Clinical Research Development, Unit (ShACRDU), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Mosa Asadi
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ramezan Jafari
- Department of Radiology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Hassan Nikoueinejad
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Ebrahimi
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sina Imanizadeh
- Student Research Committee (SRC), Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Hosein Ghazale
- Student Research Committee (SRC), Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Antonuccio P, Marini HR, Micali A, Romeo C, Granese R, Retto A, Martino A, Benvenga S, Cuzzocrea S, Impellizzeri D, Di Paola R, Fusco R, Cervellione RM, Minutoli L. The Nutraceutical N-Palmitoylethanolamide (PEA) Reveals Widespread Molecular Effects Unmasking New Therapeutic Targets in Murine Varicocele. Nutrients 2021; 13:nu13030734. [PMID: 33668991 PMCID: PMC7996616 DOI: 10.3390/nu13030734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/26/2022] Open
Abstract
Varicocele is an age-related disease with no current medical treatments positively impacting infertility. Toll-like receptor 4 (TLR4) expression is present in normal testis with an involvement in the immunological reactions. The role of peroxisome proliferator-activated receptor-α (PPAR-α), a nuclear receptor, in fertility is still unclear. N-Palmitoylethanolamide (PEA), an emerging nutraceutical compound present in plants and animal foods, is an endogenous PPAR-α agonist with well-demonstrated anti-inflammatory and analgesics characteristics. In this model of mice varicocele, PPAR-α and TLR4 receptors’ roles were investigated through the administration of ultra-micronized PEA (PEA-um). Male wild-type (WT), PPAR-α knockout (KO), and TLR4 KO mice were used. A group underwent sham operation and administration of vehicle or PEA-um (10 mg/kg i.p.) for 21 days. Another group (WT, PPAR-α KO, and TLR4 KO) underwent surgical varicocele and was treated with vehicle or PEA-um (10 mg/kg i.p.) for 21 days. At the end of treatments, all animals were euthanized. Both operated and contralateral testes were processed for histological and morphometric assessment, for PPAR-α, TLR4, occludin, and claudin-11 immunohistochemistry and for PPAR-α, TLR4, transforming growth factor-beta3 (TGF-β3), phospho-extracellular signal-Regulated-Kinase (p-ERK) 1/2, and nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) Western blot analysis. Collectively, our data showed that administration of PEA-um revealed a key role of PPAR-α and TLR4 in varicocele pathophysiology, unmasking new nutraceutical therapeutic targets for future varicocele research and supporting surgical management of male infertility.
Collapse
Affiliation(s)
- Pietro Antonuccio
- Department of Human Pathology of Adult and Childhood, University of Messina, 98125 Messina, Italy; (P.A.); (C.R.); (R.G.); (A.R.); (A.M.)
| | - Herbert Ryan Marini
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (S.B.); (L.M.)
| | - Antonio Micali
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy;
| | - Carmelo Romeo
- Department of Human Pathology of Adult and Childhood, University of Messina, 98125 Messina, Italy; (P.A.); (C.R.); (R.G.); (A.R.); (A.M.)
| | - Roberta Granese
- Department of Human Pathology of Adult and Childhood, University of Messina, 98125 Messina, Italy; (P.A.); (C.R.); (R.G.); (A.R.); (A.M.)
| | - Annalisa Retto
- Department of Human Pathology of Adult and Childhood, University of Messina, 98125 Messina, Italy; (P.A.); (C.R.); (R.G.); (A.R.); (A.M.)
| | - Antonia Martino
- Department of Human Pathology of Adult and Childhood, University of Messina, 98125 Messina, Italy; (P.A.); (C.R.); (R.G.); (A.R.); (A.M.)
| | - Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (S.B.); (L.M.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (S.C.); (D.I.); (R.F.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (S.C.); (D.I.); (R.F.)
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (S.C.); (D.I.); (R.F.)
- Correspondence: ; Tel.: +39-090-2213655; Fax: +39-090-2213300
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (S.C.); (D.I.); (R.F.)
| | | | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (S.B.); (L.M.)
| |
Collapse
|
21
|
NLRP3 Inflammasome: A New Pharmacological Target for Reducing Testicular Damage Associated with Varicocele. Int J Mol Sci 2021; 22:ijms22031319. [PMID: 33525681 PMCID: PMC7865407 DOI: 10.3390/ijms22031319] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Many bioactive natural compounds are being increasingly used for therapeutics and nutraceutical applications to counteract male infertility, particularly varicocele. The roles of selenium and Polydeoxyribonucleotide (PDRN) were investigated in an experimental model of varicocele, with particular regard to the role of NLRP3 inflammasome. Male rats underwent sham operation and were daily administered with vehicle, seleno-L-methionine (Se), PDRN, and with the association Se-PDRN. Another group of rats were operated for varicocele. After twenty-eight days, sham and varicocele rats were sacrificed and both testes were weighted and analyzed. All the other rats were challenged for one month with the same compounds. In varicocele animals, lower testosterone levels, testes weight, NLRP3 inflammasome, IL-1β and caspase-1 increased gene expression were demonstrated. TUNEL assay showed an increased number of apoptotic cells. Structural and ultrastructural damage to testes was also shown. PDRN alone significantly improved all considered parameters more than Se. The Se-PDRN association significantly improved all morphological parameters, significantly increased testosterone levels, and reduced NLRP3 inflammasome, caspase-1 and IL-1β expression and TUNEL-positive cell numbers. Our results suggest that NLRP3 inflammasome can be considered an interesting target in varicocele and that Se-PDRN may be a new medical approach in support to surgery.
Collapse
|
22
|
Benvenga S, Micali A, Pallio G, Vita R, Malta C, Puzzolo D, Irrera N, Squadrito F, Altavilla D, Minutoli L. Effects of Myo-inositol Alone and in Combination with Seleno-Lmethionine on Cadmium-Induced Testicular Damage in Mice. Curr Mol Pharmacol 2020; 12:311-323. [PMID: 31250768 DOI: 10.2174/1874467212666190620143303] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/11/2019] [Accepted: 04/22/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Cadmium (Cd) impairs gametogenesis and damages the blood-testis barrier. OBJECTIVE As the primary mechanism of Cd-induced damage is oxidative stress, the effects of two natural antioxidants, myo-inositol (MI) and seleno-L-methionine (Se), were evaluated in mice testes. METHODS Eighty-four male C57 BL/6J mice were divided into twelve groups: 0.9% NaCl (vehicle; 1 ml/kg/day i.p.); Se (0.2 mg/kg/day per os); Se (0.4 mg/kg/day per os); MI (360 mg/kg/day per os); MI plus Se (0.2 mg/kg/day); MI plus Se (0.4 mg/kg/day); CdCl2 (2 mg/kg/day i.p.) plus vehicle; CdCl2 plus MI; CdCl2 plus Se (0.2 mg/kg/day); CdCl2 plus Se (0.4 mg/kg/day); CdCl2 plus MI plus Se (0.2 mg/kg/day); and CdCl2 plus MI plus Se (0.4 mg/kg/day). After 14 days, testes were processed for biochemical, structural and immunohistochemical analyses. RESULTS CdCl2 increased iNOS and TNF-α expression and Malondialdehyde (MDA) levels, lowered glutathione (GSH) and testosterone, induced testicular lesions, and almost eliminated claudin-11 immunoreactivity. Se administration at 0.2 or 0.4 mg/kg significantly reduced iNOS and TNF-α expression, maintained GSH, MDA and testosterone levels, structural changes and low claudin-11 immunoreactivity. MI alone or associated with Se at 0.2 or 0.4 mg/kg significantly reduced iNOS and TNF-α expression and MDA levels, increased GSH and testosterone levels, ameliorated structural organization and increased claudin-11 patches number. CONCLUSION We demonstrated a protective effect of MI, a minor role of Se and an evident positive role of the association between MI and Se on Cd-induced damages of the testis. MI alone or associated with Se might protect testes in subjects exposed to toxicants, at least to those with behavior similar to Cd.
Collapse
Affiliation(s)
- Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University Hospital "G. Martino", Messina, Italy
| | - Antonio Micali
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University Hospital "G. Martino", Messina, Italy
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University Hospital "G. Martino", Messina, Italy
| | - Roberto Vita
- Department of Clinical and Experimental Medicine, University Hospital "G. Martino", Messina, Italy
| | - Consuelo Malta
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University Hospital "G. Martino", Messina, Italy
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University Hospital "G. Martino", Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University Hospital "G. Martino", Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University Hospital "G. Martino", Messina, Italy
| | - Domenica Altavilla
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University Hospital "G. Martino", Messina, Italy
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University Hospital "G. Martino", Messina, Italy
| |
Collapse
|
23
|
Jiang W, Li M, He F, Zhu L. Inhibition of NLRP3 inflammasome attenuates spinal cord injury‐induced lung injury in mice. J Cell Physiol 2018; 234:6012-6022. [PMID: 30589073 DOI: 10.1002/jcp.27233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 07/16/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Wu Jiang
- Department of Orthopedics Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Maoqiang Li
- Department of Orthopedics Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Fan He
- Department of Orthopedics Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Liulong Zhu
- Department of Orthopedics Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine Hangzhou China
| |
Collapse
|
24
|
Hirik E, Suleyman B, Mammadov R, Yapanoglu T, Cimen FK, Cetin N, Kurt N. Effect of anakinra, an interleukin one beta antagonist, on oxidative testicular damage induced in rats with ischemia reperfusion. Rev Int Androl 2018; 16:87-94. [DOI: 10.1016/j.androl.2017.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/26/2017] [Accepted: 03/12/2017] [Indexed: 12/25/2022]
|
25
|
Walenta L, Schmid N, Schwarzer JU, Köhn FM, Urbanski HF, Behr R, Strauss L, Poutanen M, Mayerhofer A. NLRP3 in somatic non-immune cells of rodent and primate testes. Reproduction 2018; 156:231-238. [PMID: 29907661 DOI: 10.1530/rep-18-0111] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022]
Abstract
NLRP3 is part of the NLRP3 inflammasome and a global sensor of cellular damage. It was recently discovered in rodent Sertoli cells. We investigated NLRP3 in mouse, human and non-human primate (marmoset and rhesus macaque) testes, employing immunohistochemistry. Sertoli cells of all species expressed NLRP3, and the expression preceded puberty. In addition, peritubular cells of the adult human testes expressed NLRP3. NLRP3 and associated genes (PYCARD, CASP1, IL1B) were also found in isolated human testicular peritubular cells and the mouse Sertoli cell line TM4. Male infertility due to impairments of spermatogenesis may be related to sterile inflammatory events. We observed that the expression of NLRP3 was altered in the testes of patients suffering from mixed atrophy syndrome, in which tubules with impairments of spermatogenesis showed prominent NLRP3 staining. In order to explore a possible role of NLRP3 in male infertility, associated with sterile testicular inflammation, we studied a mouse model of male infertility. These human aromatase-expressing transgenic mice (AROM+) develop testicular inflammation and impaired spermatogenesis during aging, and the present data show that this is associated with strikingly elevated Nlrp3 expression in the testes compared to WT controls. Interference by aromatase inhibitor treatment significantly reduced increased Nlrp3 levels. Thus, throughout species NLRP3 is expressed by somatic cells of the testis, which are involved in testicular immune surveillance. We conclude that NLRP3 may be a novel player in testicular immune regulation.
Collapse
Affiliation(s)
- Lena Walenta
- Cell Biology - Anatomy IIIBiomedical Center Munich (BMC), Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Nina Schmid
- Cell Biology - Anatomy IIIBiomedical Center Munich (BMC), Ludwig-Maximilians-Universität München, Martinsried, Germany
| | | | | | - Henryk F Urbanski
- Division of NeuroscienceOregon National Primate Research Center, Beaverton, Oregon, USA
| | - Rüdiger Behr
- Platform Degenerative DiseasesGerman Primate Center, Göttingen, Germany
| | - Leena Strauss
- Institute of BiomedicineResearch Center for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Matti Poutanen
- Institute of BiomedicineResearch Center for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Artur Mayerhofer
- Cell Biology - Anatomy IIIBiomedical Center Munich (BMC), Ludwig-Maximilians-Universität München, Martinsried, Germany
| |
Collapse
|
26
|
Bazrafkan M, Nikmehr B, Shahverdi A, Hosseini SR, Hassani F, Poorhassan M, Mokhtari T, Abolhassani F, Choobineh H, Beyer C, Hassanzadeh G. Lipid Peroxidation and Its Role in the Expression of NLRP1a and NLRP3 Genes in Testicular Tissue of Male Rats: a Model of Spinal Cord Injury. IRANIAN BIOMEDICAL JOURNAL 2018; 22:151-9. [PMID: 29034676 PMCID: PMC5889500 DOI: 10.22034/ibj.22.3.151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background: The majority of male patients with spinal cord injury (SCI) suffer from infertility. Nucleotide-binding oligomerization domain-like receptors NOD-like receptors (NLRs) are a kind of receptors that corporate in the inflammasome complex. Recent studies have introduced the inflammasome as the responsible agent for secreting cytokines in semen. Reactive oxygen species (ROS) is one of the elements that trigger inflammasome activation. Genital infections in SCI can lead to ROS generation. We investigated the relation between lipid peroxidation and inflammasome complex activity in testicular tissue of SCI rats. Methods: Adult male rats (n=20), weighting 200-250 g, were included and divided into four groups: three experimental groups, including SCI1, SCI3, and SCI7, i.e. the rats were subjected to SCI procedure and sacrificed after one, three, and seven days, respectively and a control group. We performed a moderate, midline spinal contusion injury at thoracic level 10. The animals were anesthetized, and testes were collected for measurement of gene expression by real-time PCR. Caudal parts of epididymis were collected for malondialdehyde (MDA) measurement. Results: No NLRP1a mRNA overexpression was seen in the testes of control and SCI groups. After seven days from SCI surgery, NLRP3 mRNA expression was significantly increased in SCI7 animals (p ≤ 0.05). There was a significant difference in MDA level in SCI7 versus control group, as well as SCI1 and SCI3 animals (p ≤ 0.05). Conclusion: NLRP3 overexpression occurs due to the increased ROS production in testis tissue of SCI rats
Collapse
Affiliation(s)
- Mahshid Bazrafkan
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Banafsheh Nikmehr
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Seyed Reza Hosseini
- Department of Urology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Hassani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Embryology, Royan Institiute, Tehran, Iran
| | - Mahnaz Poorhassan
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Mokhtari
- Department of Anatomy, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Research center of nervous system stem cells, Department of Anatomy, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Farid Abolhassani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Choobineh
- School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Liu J, Mochida K, Hasegawa A, Inoue K, Ogura A. Identification of quantitative trait loci associated with the susceptibility of mouse spermatozoa to cryopreservation. J Reprod Dev 2017; 64:117-127. [PMID: 29269609 PMCID: PMC5902899 DOI: 10.1262/jrd.2017-148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although it is known that the susceptibility of mouse spermatozoa to freezing-thawing varies greatly with genetic background, the underlying mechanisms remain to be elucidated. In this study, to map genetic regions responsible for the susceptibility of spermatozoa to freezing-thawing, we performed in vitro fertilization using spermatozoa from recombinant inbred mice derived from the C57BL/6J and DBA/2J strains, whose spermatozoa showed distinct fertilization abilities after freezing. Genome-wide interval mapping identified two suggestive quantitative trait loci (QTL) associated with fertilization on chromosomes 1 and 11. The strongest QTL on chromosome 11 included 70 genes at 59.237260-61.324742 Mb and another QTL on chromosome 1 included 43 genes at 153.969506-158.217850 Mb. These regions included at least 15 genes involved with testicular expression and possibly with capacitation or sperm motility. Specifically, the Abl2 gene on chromosome 1, which may affect subcellular actin distribution, had polymorphisms between C57BL/6J and DBA/2J that caused at least three amino acid substitutions. A correlation analysis using recombinant inbred strains revealed that the fertilization rate was strongly correlated with the capacitation rate of frozen-thawed spermatozoa after preincubation. This result is consistent with the fact that C57BL/6J frozen-thawed spermatozoa recover their fertilization capacity following treatment with methyl-β-cyclodextrin to enhance sperm capacitation. Thus, our data provide important clues to the molecular mechanisms underlying cryodamage to mouse spermatozoa.
Collapse
Affiliation(s)
- Jinsha Liu
- RIKEN BioResource Center, Ibaraki 305-0074, Japan.,Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki 305-8572, Japan
| | | | | | - Kimiko Inoue
- RIKEN BioResource Center, Ibaraki 305-0074, Japan.,Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Atsuo Ogura
- RIKEN BioResource Center, Ibaraki 305-0074, Japan.,Graduate School of Life and Environmental Science, University of Tsukuba, Ibaraki 305-8572, Japan.,The Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
28
|
Jiang W, Li M, He F, Zhou S, Zhu L. Targeting the NLRP3 inflammasome to attenuate spinal cord injury in mice. J Neuroinflammation 2017; 14:207. [PMID: 29070054 PMCID: PMC5657095 DOI: 10.1186/s12974-017-0980-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/12/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a devastating disease, which results in tissue loss and neurologic dysfunction. NLRP3 inflammasome plays an important role in the mechanism of diverse diseases. However, no studies have demonstrated the role of NLRP3 inflammasome and the effects of NLRP3 inflammasome inhibitors in a mouse model of SCI. We investigated whether inhibition of NLRP3 inflammasome activation by the pharmacologic inhibitor BAY 11-7082 or A438079 could exert neuroprotective effects in a mouse model of SCI. METHODS SCI was performed using an aneurysm clip with a closing force of 30 g at the level of the T6-T7 vertebra for 1 min. Motor recovery was evaluated by an open-field test. Neuronal death was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling and Nissl staining. Mitochondrial dysfunction was determined by quantitative real-time polymerase chain reaction (qPCR), western blot, and detection of mitochondrial membrane potential level. Microglia/macrophage activation and astrocytic response were evaluated by immunofluorescence labeling. RESULTS Inhibition of NLRP3 inflammasome activation by pharmacologic inhibitor BAY 11-7082 or A438079 reduced neuronal death, attenuated spinal cord anatomic damage, and promoted motor recovery. Furthermore, BAY 11-7082 or A438079 directly attenuated the levels of NLRP3 inflammasome and proinflammatory cytokines. Moreover, BAY 11-7082 or A438079 alleviated microglia/macrophage activation, neutrophils infiltration, and reactive gliosis, as well as mitochondrial dysfunction. CONCLUSIONS Collectively, our results demonstrate that pharmacologic suppression of NLRP3 inflammasome activation controls neuroinflammation, attenuates mitochondrial dysfunction, alleviates the severity of spinal cord damage, and improves neurological recovery after SCI. These data strongly indicate that the NLRP3 inflammasome is a vital contributor to the secondary damage of SCI in mice.
Collapse
Affiliation(s)
- Wu Jiang
- Hangzhou First People's Hospital, Nanjing Medical University, No. 261 Huansha Road, Shangcheng District, Hangzhou, 310006, China
| | - Maoqiang Li
- Hangzhou First People's Hospital, Nanjing Medical University, No. 261 Huansha Road, Shangcheng District, Hangzhou, 310006, China
| | - Fan He
- Hangzhou First People's Hospital, Nanjing Medical University, No. 261 Huansha Road, Shangcheng District, Hangzhou, 310006, China
| | - Shaobo Zhou
- Hangzhou First People's Hospital, Nanjing Medical University, No. 261 Huansha Road, Shangcheng District, Hangzhou, 310006, China
| | - Liulong Zhu
- Hangzhou First People's Hospital, Nanjing Medical University, No. 261 Huansha Road, Shangcheng District, Hangzhou, 310006, China.
| |
Collapse
|
29
|
Fusco R, Gugliandolo E, Biundo F, Campolo M, Di Paola R, Cuzzocrea S. Inhibition of inflammasome activation improves lung acute injury induced by carrageenan in a mouse model of pleurisy. FASEB J 2017; 31:3497-3511. [PMID: 28461340 DOI: 10.1096/fj.201601349r] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/11/2017] [Indexed: 12/25/2022]
Abstract
The inflammasome NLRP3 is a molecular pathway activated by a wide range of cellular insults to elicit innate immune defenses through the activation of caspase-1 and the maturation of proinflammatory cytokines, such as IL-1β and IL-18. The expression of NRLP3 is abnormally elevated in numerous human inflammatory diseases, including pulmonary diseases. An injection of carrageenan (CAR) into the pleural cavity triggered an acute inflammatory response, leading to tissue damage, inflammatory exudates, leukocyte infiltration, and increased myeloperoxidase activity. The aim of this study was to assess the effect of the inflammasome blocking agents BAY 11-7082 (30 mg/kg, i.p.) and Brilliant Blue G (BBG) (45.5 mg/kg, i.p.) in a mouse model of CAR-induced pleurisy. Treatment with BAY 11-7082 or BBG 1 h after CAR injection attenuated pulmonary membrane thickening and polymorphonuclear leukocyte infiltration, reduced NF-κB translocation in the nucleus, and inhibited the assembly of the NRLP3/ASC/caspase-1 complex. Treatment with BAY 11-7082 or BBG also down-regulated iNOS, nitrotyrosine, and poly-ADP-ribosyl polymerase expression and inhibited CAR-induced apoptosis. Our results demonstrate that treatment with inflammasome-blocking agents can significantly reduce the development of acute CAR-induced lung injury.-Fusco, R. Gugliandolo, E., Biundo, F., Campolo, M., Di Paola, R., Cuzzocrea, S. Inhibition of inflammasome activation improves lung acute injury induced by carrageenan in a mouse model of pleurisy.
Collapse
Affiliation(s)
- Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy
| | - Flavia Biundo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy;
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy;
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
30
|
Yu G, Bai Z, Chen Z, Chen H, Wang G, Wang G, Liu Z. The NLRP3 inflammasome is a potential target of ozone therapy aiming to ease chronic renal inflammation in chronic kidney disease. Int Immunopharmacol 2017; 43:203-209. [PMID: 28038382 DOI: 10.1016/j.intimp.2016.12.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 01/08/2023]
|
31
|
BAY 11-7082 inhibits the NF-κB and NLRP3 inflammasome pathways and protects against IMQ-induced psoriasis. Clin Sci (Lond) 2017; 131:487-498. [PMID: 28096316 DOI: 10.1042/cs20160645] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 11/17/2022]
Abstract
BAY 11-7082 antagonizes I-κB kinase-β preventing nuclear translocation of nuclear factor-κB (NF-κB); it also inhibits NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation. NF-κB is involved in psoriasis, whereas the role of NLRP3 is controversial. We investigated BAY 11-7082 effects in an experimental model of psoriasis-like dermatitis. Psoriasis-like lesions were induced by a topical application of imiquimod (IMQ) cream (62.5 mg/day) on the shaved back skin of C57BL/6 and NLRP3 knockout (KO) mice for 7 consecutive days. Sham psoriasis animals were challenged with Vaseline cream. Sham and IMQ animals were randomized to receive BAY 11-7082 (20 mg/kg/i.p.) or its vehicle (100 μl/i.p of 0.9% NaCl). Skin of IMQ animals developed erythema, scales, thickening and epidermal acanthosis. IMQ skin samples showed increased expression of pNF-κB and NLRP3 activation. BAY 11-7082 blunted epidermal thickness, acanthosis and inflammatory infiltrate. BAY 11-7082 reduced pNF-κB, NLRP3, tumour necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1β expression, blunted the phosphorylation of signal transducer and activators of transcription 3 (STAT3) and decreased IL-23 levels. In addition, BAY 11-7082 reawakened the apoptotic machinery. NLRP3 KO animals showed a reduced total histological score but persistent mild acanthosis, dermal thickness and expression of pNF-κB and pSTAT3, following IMQ application. Our data suggest that BAY 11-7082 might represent an interesting approach for the management of psoriasis-like dermatitis depending on the dual inhibition of NF-κB and NLRP3.
Collapse
|
32
|
ROS-Mediated NLRP3 Inflammasome Activation in Brain, Heart, Kidney, and Testis Ischemia/Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2183026. [PMID: 27127546 PMCID: PMC4835650 DOI: 10.1155/2016/2183026] [Citation(s) in RCA: 386] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/03/2016] [Accepted: 03/10/2016] [Indexed: 12/27/2022]
Abstract
Ischemia and reperfusion (I/R) causes a reduction in arterial blood supply to tissues, followed by the restoration of perfusion and consequent reoxygenation. The reestablishment of blood flow triggers further damage to the ischemic tissue through reactive oxygen species (ROS) accumulation, interference with cellular ion homeostasis, and inflammatory responses to cell death. In normal conditions, ROS mediate important beneficial responses. When their production is prolonged or elevated, harmful events are observed with peculiar cellular changes. In particular, during I/R, ROS stimulate tissue inflammation and induce NLRP3 inflammasome activation. The mechanisms underlying the activation of NLRP3 are several and not completely elucidated. It was recently shown that NLRP3 might sense directly the presence of ROS produced by normal or malfunctioning mitochondria or indirectly by other activators of NLRP3. Aim of the present review is to describe the current knowledge on the role of NLRP3 in some organs (brain, heart, kidney, and testis) after I/R injury, with particular regard to the role played by ROS in its activation. Furthermore, as no specific therapy for the prevention or treatment of the high mortality and morbidity associated with I/R is available, the state of the art of the development of novel therapeutic approaches is illustrated.
Collapse
|
33
|
Celebi M, Paul AGA. Assessment of ischaemia-reperfusion injury in the mice testis by using contrast ultrasound molecular imaging. Andrologia 2016; 48:907-913. [DOI: 10.1111/and.12531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2015] [Indexed: 11/30/2022] Open
Affiliation(s)
- M. Celebi
- Cardiovascular Division; University of Virginia School of Medicine; Charlottesville VA USA
- Department of Reproduction; University of Ondokuz Mayis; Veterinary Faculty; Samsun Turkey
| | - A. G. A. Paul
- Department of Pathology; University of Virginia School of Medicine; Charlottesville VA USA
| |
Collapse
|