1
|
Olğaç A, Jordan PM, Kretzer C, Werz O, Banoglu E. Discovery of novel microsomal prostaglandin E 2 synthase 1 (mPGES-1) inhibitors by a structurally inspired virtual screening study. J Mol Graph Model 2025; 136:108962. [PMID: 39893902 DOI: 10.1016/j.jmgm.2025.108962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/11/2024] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Prostaglandin (PG) E2 is a pro-inflammatory lipid mediator derived from the metabolism of arachidonic acid (AA) by cyclooxygenases (COX) and PGE2 synthases. Nonsteroidal anti-inflammatory drugs (NSAIDs), commonly used in the treatment of inflammation, nonselectively inhibit COX activity and decrease PGE2 production. However, these drugs cause gastrointestinal bleeding and several cardiovascular complications. Therefore, inhibiting microsomal PGE2 Synthase-1 (mPGES-1) to block PGE2 production downstream of COX is expected to yield safer and more effective treatments for inflammation, cancer, and cardiovascular diseases. At present, there are no mPGES-1 inhibitors available on the market, but ongoing research continuously evaluates new compounds in both preclinical and clinical stages. Here, we conducted a high throughput virtual screening campaign to discover novel mPGES-1 inhibitor scaffolds. This campaign utilized physicochemical filtering alongside both structure-aware ligand-based approaches (shape screening templates and pharmacophore models, which were generated based on the 3D binding modes of the co-crystallized mPGES-1 inhibitors) and structure-based strategies (refinement with docking and molecular dynamics). Thirty-four compounds were selected and biologically tested for mPGES-1 inhibition in a cell-free assay using microsomes from interleukin-1β-stimulated A549 cells as the source of mPGES-1. The most potent compound inhibited the remaining enzyme activity with an IC50 value of 6.46 μM in a cell-free assay for PGE2 production. We also compared the binding patterns of the most active compounds identified in this study with those of co-crystallized inhibitors using molecular dynamics simulations. This comparison underscored the crucial role of ionic interactions, π-π interactions, hydrogen bonds, and water bridges involving specific amino acids. Our results highlight the importance of these interaction networks within the binding cavity in various binding scenarios. Ultimately, the insights gained from this study could assist in designing and developing new mPGES-1 inhibitors.
Collapse
Affiliation(s)
- Abdurrahman Olğaç
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06560, Ankara, Turkey; Department of Drug Discovery, Evias Pharmaceutical R&D Ltd., Gazi Teknopark, 06830, Ankara, Turkey
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Christian Kretzer
- Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06560, Ankara, Turkey.
| |
Collapse
|
2
|
Babaoglu ZY, Kilic D. Virtual screening, molecular simulations and bioassays: Discovering novel microsomal prostaglandin E Synthase-1 (mPGES-1) inhibitors. Comput Biol Med 2023; 155:106616. [PMID: 36780799 DOI: 10.1016/j.compbiomed.2023.106616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/05/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible prostaglandin E synthase expressed following exposure to pro-inflammatory stimuli. The mPGES-1 enzyme represents a new target for the therapeutic treatment of acute and chronic inflammatory disorders and cancer. In the present study, compounds from the ZINC15 database with an indole scaffold were docked at the mPGES-1 binding site using Glide (high-throughput virtual screening [HTVS], standard precision [SP] and extra precision [XP]), and the stabilities of the complexes were determined by molecular simulation studies. Following HTVS, the top 10% compounds were retained and further screened by SP. Again, the top 10% of these compounds were retained. Finally, the Glide XP scores of the compounds were determined, 20% were analyzed, and the Prime MM-GBSA total free binding energies of the compounds were calculated. The molecular simulations (100 ns) of the reference ligand, LVJ, and the two best-scoring compounds were performed with the Desmond program to analyze the dynamics of the target protein-ligand complexes. In human lung cells treated with the hit compounds, cell viability by colorimetric method and PGE2 levels by immunoassay method were determined. These in vitro experiments demonstrated that the two indole-containing hit compounds are potential novel inhibitors of mPGES-1 and are, therefore, potential therapeutic agents for cancer/inflammation therapies. Moreover, the compounds are promising lead mPGES-1 inhibitors for novel molecule design.
Collapse
Affiliation(s)
| | - Deryanur Kilic
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
3
|
Zhang YY, Yao YD, Luo JF, Liu ZQ, Huang YM, Wu FC, Sun QH, Liu JX, Zhou H. Microsomal prostaglandin E 2 synthase-1 and its inhibitors: Molecular mechanisms and therapeutic significance. Pharmacol Res 2021; 175:105977. [PMID: 34798265 DOI: 10.1016/j.phrs.2021.105977] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 12/17/2022]
Abstract
Inflammation is closely linked to the abnormal phospholipid metabolism chain of cyclooxygenase-2/microsomal prostaglandin E2 synthase-1/prostaglandin E2 (COX-2/mPGES-1/PGE2). In clinical practice, non-steroidal anti-inflammatory drugs (NSAIDs) as upstream COX-2 enzyme activity inhibitors are widely used to block COX-2 cascade to relieve inflammatory response. However, NSAIDs could also cause cardiovascular and gastrointestinal side effects due to its inhibition on other prostaglandins generation. To avoid this, targeting downstream mPGES-1 instead of upstream COX is preferable to selectively block overexpressed PGE2 in inflammatory diseases. Some mPGES-1 inhibitor candidates including synthetic compounds, natural products and existing anti-inflammatory drugs have been proved to be effective in in vitro experiments. After 20 years of in-depth research on mPGES-1 and its inhibitors, ISC 27864 have completed phase II clinical trial. In this review, we intend to summarize mPGES-1 inhibitors focused on their inhibitory specificity with perspectives for future drug development.
Collapse
Affiliation(s)
- Yan-Yu Zhang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Yun-Da Yao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Jin-Fang Luo
- Guizhou University of Traditional Chinese Medicine, Huaxi District, Guiyang City, Guizhou Province 550025, PR China
| | - Zhong-Qiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 510006, PR China
| | - Yu-Ming Huang
- Hunan Zhengqing Pharmaceutical Company Group Ltd, Huaihua City, Hunan Province, PR China
| | - Fei-Chi Wu
- Hunan Zhengqing Pharmaceutical Company Group Ltd, Huaihua City, Hunan Province, PR China
| | - Qin-Hua Sun
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua City, Hunan Province 418000, PR China.
| | - Jian-Xin Liu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province 310053, PR China.
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province 510006, PR China; Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai City, Guangdong Province 519000, PR China.
| |
Collapse
|
4
|
Ho JD, Lee MR, Rauch CT, Aznavour K, Park JS, Luz JG, Antonysamy S, Condon B, Maletic M, Zhang A, Hickey MJ, Hughes NE, Chandrasekhar S, Sloan AV, Gooding K, Harvey A, Yu XP, Kahl SD, Norman BH. Structure-based, multi-targeted drug discovery approach to eicosanoid inhibition: Dual inhibitors of mPGES-1 and 5-lipoxygenase activating protein (FLAP). Biochim Biophys Acta Gen Subj 2020; 1865:129800. [PMID: 33246032 DOI: 10.1016/j.bbagen.2020.129800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/27/2020] [Accepted: 11/20/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND Due to the importance of both prostaglandins (PGs) and leukotrienes (LTs) as pro-inflammatory mediators, and the potential for eicosanoid shunting in the presence of pathway target inhibitors, we have investigated an approach to inhibiting the formation of both PGs and LTs as part of a multi-targeted drug discovery effort. METHODS We generated ligand-protein X-ray crystal structures of known inhibitors of microsomal prostaglandin E2 synthase-1 (mPGES-1) and the 5-Lipoxygenase Activating Protein (FLAP), with their respective proteins, to understand the overlapping pharmacophores. We subsequently used molecular modeling and structure-based drug design (SBDD) to identify hybrid structures intended to inhibit both targets. RESULTS This work enabled the preparation of compounds 4 and 5, which showed potent in vitro inhibition of both targets. SIGNIFICANCE Our findings enhance the structural understanding of mPGES-1 and FLAP's unique ligand binding pockets and should accelerate the discovery of additional dual inhibitors for these two important integral membrane protein drug targets.
Collapse
Affiliation(s)
- Joseph D Ho
- Lilly Biotechnology Center, San Diego, CA 92121, USA.
| | - Matthew R Lee
- Lilly Biotechnology Center, San Diego, CA 92121, USA
| | | | | | | | - John G Luz
- Lilly Biotechnology Center, San Diego, CA 92121, USA
| | | | | | - Milan Maletic
- Lilly Biotechnology Center, San Diego, CA 92121, USA
| | - Aiping Zhang
- Lilly Biotechnology Center, San Diego, CA 92121, USA
| | | | | | | | - Ashley V Sloan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | - Karen Gooding
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | - Anita Harvey
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | - Xiao-Peng Yu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | - Steven D Kahl
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | - Bryan H Norman
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA.
| |
Collapse
|
5
|
Robertson-Plouch C, Stille JR, Liu P, Smith C, Brown D, Warner M, Hu L, Fisher MJ. A randomized clinical efficacy study targeting mPGES1 or EP4 in dogs with spontaneous osteoarthritis. Sci Transl Med 2020; 11:11/516/eaaw9993. [PMID: 31666405 DOI: 10.1126/scitranslmed.aaw9993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022]
Abstract
Canine studies of spontaneous osteoarthritis (OA) pain add valuable data supporting drug treatment mechanisms that may translate to humans. A multicenter, randomized, double-blind, placebo- and active-controlled study was conducted in client-owned dogs with moderate OA pain to evaluate efficacy of LYA, an inhibitor of microsomal prostaglandin E synthase-1 (mPGES1), an EP4 antagonist (LYB), and carprofen, versus placebo. Of 255 dogs screened, 163 were randomized (placebo/LYA/LYB/carprofen: n = 43/39/42/39) and 158 completed treatment. Efficacy versus placebo was assessed using Bayesian mixed-effect model for repeated measure analyses of the Canine Brief Pain Inventory (CBPI) pain interference score (PIS; primary endpoint), pain severity score, and overall impression, as well as the Liverpool Osteoarthritis in Dogs (LOAD) mobility score. The posterior probability that the difference to placebo was <0 at week 2 was 80% for LYA and 54% for LYB for CBPI PIS (both <95% predefined threshold). For secondary endpoints, the posterior probability that the difference to placebo was <0 at week 2 ranged from 89 to 96% for LYA and from 56 to 89% for LYB. The posterior probabilities comparing carprofen to placebo groups were ≥90% for all efficacy endpoints. The proportion of dogs with one or more adverse event was not significantly different from placebo (32.6%) for LYA (35.9%) or carprofen (25.6%), but the rate for LYB (59.5%) was higher versus placebo (P = 0.017). LYA treatment demonstrated consistent improvement in all efficacy measures, suggesting that inhibition of mPGES1 may be an effective treatment for chronic pain associated with OA.
Collapse
Affiliation(s)
| | - John R Stille
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA.
| | - Peng Liu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Claire Smith
- Eli Lilly and Company, Erl Wood Manor, Windlesham, Surrey GU20 6PH, UK
| | - Dorothy Brown
- Elanco, Eli Lilly and Company, Indianapolis, IN 46140, USA.,School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Margaret Warner
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Leijun Hu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Matthew J Fisher
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| |
Collapse
|
6
|
Kalčic F, Kolman V, Ajani H, Zídek Z, Janeba Z. Polysubstituted Pyrimidines as mPGES‐1 Inhibitors: Discovery of Potent Inhibitors of PGE
2
Production with Strong Anti‐inflammatory Effects in Carrageenan‐Induced Rat Paw Edema. ChemMedChem 2020; 15:1398-1407. [DOI: 10.1002/cmdc.202000258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/12/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Filip Kalčic
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 166 10 Prague 6 Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University Hlavova 8 128 43 Prague 2 Czech Republic
| | - Viktor Kolman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 166 10 Prague 6 Czech Republic
| | - Haresh Ajani
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 166 10 Prague 6 Czech Republic
| | - Zdeněk Zídek
- Institute of Experimental Medicine of the Czech Academy of Sciences Vídeňská 1083 142 20 Prague 4 Czech Republic
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 166 10 Prague 6 Czech Republic
| |
Collapse
|
7
|
Miyamoto DK, Flaxman HA, Wu HY, Gao J, Woo CM. Discovery of a Celecoxib Binding Site on Prostaglandin E Synthase (PTGES) with a Cleavable Chelation-Assisted Biotin Probe. ACS Chem Biol 2019; 14:2527-2532. [PMID: 31650837 DOI: 10.1021/acschembio.9b00511] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The coxibs are a subset of nonsteroidal anti-inflammatory drugs (NSAIDs) that primarily target cyclooxygenase-2 (COX-2) to inhibit prostaglandin signaling and reduce inflammation. However, mechanisms to inhibit other members of the prostaglandin signaling pathway may improve selectivity and reduce off-target toxicity. Here, we report a novel binding site for celecoxib on prostaglandin E synthase (PTGES), which is an enzyme downstream of COX-2 in the prostaglandin signaling pathway, using a cleavable chelation-assisted biotin probe 6. Evaluation of the multifunctional probe 6 revealed significantly improved tagging efficiencies attributable to the embedded picolyl functional group. Application of the probe 6 within the small molecule interactome mapping by photoaffinity labeling (SIM-PAL) platform using photo-celecoxib as a reporter for celecoxib identified PTGES and other membrane proteins in the top eight enriched proteins from A549 cells. Four binding sites to photo-celecoxib were mapped by the probe 6, including a binding site with PTGES. The binding interaction with PTGES was validated by competitive displacement with celecoxib and licofelone, which is a known PTGES inhibitor, and was used to generate a structural model of the interaction. The identification of photo-celecoxib interactions with membrane proteins, including the direct binding site on the membrane protein PTGES, will inform further functional followup and the design of new selective inhibitors of the prostaglandin signaling pathway.
Collapse
Affiliation(s)
- David K. Miyamoto
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| | - Hope A. Flaxman
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| | - Hung-Yi Wu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| | - Jinxu Gao
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| | - Christina M. Woo
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| |
Collapse
|
8
|
Chen J, Si M, Wang Y, Liu L, Zhang Y, Zhou A, Wei W. Ginsenoside metabolite compound K exerts anti-inflammatory and analgesic effects via downregulating COX2. Inflammopharmacology 2018; 27:157-166. [PMID: 29946770 DOI: 10.1007/s10787-018-0504-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/01/2018] [Indexed: 01/02/2023]
Abstract
OBJECTIVE The present study aimed to evaluate the anti-inflammatory and analgesic activities of the ginsenoside metabolite compound K (CK) and its mechanisms. METHODS Mice model of xylene-induced ear swelling and rat model of carrageenan-induced paw swelling were used to evaluate the effect of CK on acute inflammation. The analgesic effect of CK was evaluated on heat-, acetic acid-, and carrageenan-induced hyperalgesia. The levels of prostaglandin E2 (PGE2), cyclooxygenase-1 (COX-1), and COX-2 in carrageenan-induced rat paw swelling and gastric mucosa were detected by enzyme-linked immunosorbent assay (ELISA). COX-1 and COX-2 expressions in carrageenan-induced rat paw swelling and gastric mucosa were detected by western blotting. In vitro effect of CK (10-9, 10-8, 10-7, 10-6, 10-5 M) on COX-1 and COX-2 activities was evaluated by measuring the production of 6-keto-PGF1α and PGE2 in rat peritoneal macrophages. RESULTS CK at doses of 7, 14, 28, 56, 112, and 224 mg/kg alleviated xylene-induced ear oedema, whereas CK at 40, 80, and 160 mg/kg alleviated carrageenan-induced paw oedema. CK at 224 mg/kg showed an analgesic effect against acetic acid-induced pain. CK at 40, 80, and 160 mg/kg significantly increased rat inflammatory pain threshold, but had no effect on heat-induced pain threshold. CK at 10, 20, 40, 80, and 160 mg/kg reduced PGE2 level in the paw tissue, but showed no effect on that in the gastric mucosa. CK at 20, 40, 80, and 160 mg/kg decreased COX-2 expression in the paw tissue and gastric mucosa, but exhibited no effect on COX-1 expression or on COX-1 and COX-2 activities. CONCLUSION CK exerted anti-inflammatory and analgesic effects, possibly by reducing the catalytic synthesis of PGE2 via downregulation of COX-2 expression.
Collapse
Affiliation(s)
- Jingyu Chen
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Meishan Road 81, Hefei, 230032, China
| | - Min Si
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Meishan Road 81, Hefei, 230032, China
| | - Ying Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Meishan Road 81, Hefei, 230032, China
| | - Lihua Liu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Meishan Road 81, Hefei, 230032, China
| | - Yunfang Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Meishan Road 81, Hefei, 230032, China
| | - Aiwu Zhou
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Meishan Road 81, Hefei, 230032, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Meishan Road 81, Hefei, 230032, China.
| |
Collapse
|
9
|
Muthukaman N, Deshmukh S, Tambe M, Pisal D, Tondlekar S, Shaikh M, Sarode N, Kattige VG, Sawant P, Pisat M, Karande V, Honnegowda S, Kulkarni A, Behera D, Jadhav SB, Sangana RR, Gudi GS, Khairatkar-Joshi N, Gharat LA. Alleviating CYP and hERG liabilities by structure optimization of dihydrofuran-fused tricyclic benzo[d]imidazole series - Potent, selective and orally efficacious microsomal prostaglandin E synthase-1 (mPGES-1) inhibitors: Part-2. Bioorg Med Chem Lett 2018. [PMID: 29519738 DOI: 10.1016/j.bmcl.2018.02.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In an effort to identify CYP and hERG clean mPGES-1 inhibitors from the dihydrofuran-fused tricyclic benzo[d]imidazole series lead 7, an extensive structure-activity relationship (SAR) studies were performed. Optimization of A, D and E-rings in 7 afforded many potent compounds with human whole blood potency in the range of 160-950 nM. Selected inhibitors 21d, 21j, 21m, 21n, 21p and 22b provided selectivity against COX-enzymes and mPGES-1 isoforms (mPGES-2 and cPGES) along with sufficient selectivity against prostanoid synthases. Most of the tested analogs demonstrated required metabolic stability in liver microsomes, low hERG and CYP liability. Oral pharmacokinetics and bioavailability of lead compounds 21j, 21m and 21p are discussed in multiple species like rat, guinea pig, dog, and cynomolgus monkey. Besides, these compounds revealed low to moderate activity against human pregnane X receptor (hPXR). The selected lead 21j further demonstrated in vivo efficacy in acute hyperalgesia (ED50: 39.6 mg/kg) and MIA-induced osteoarthritic pain models (ED50: 106 mg/kg).
Collapse
Affiliation(s)
- Nagarajan Muthukaman
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Sanjay Deshmukh
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Macchindra Tambe
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Dnyandeo Pisal
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Shital Tondlekar
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Mahamadhanif Shaikh
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Neelam Sarode
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Vidya G Kattige
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Pooja Sawant
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Monali Pisat
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Vikas Karande
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Srinivasa Honnegowda
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Abhay Kulkarni
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Dayanidhi Behera
- Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Satyawan B Jadhav
- Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Ramchandra R Sangana
- Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Girish S Gudi
- Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Neelima Khairatkar-Joshi
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Laxmikant A Gharat
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India.
| |
Collapse
|
10
|
Norman BH, Fisher MJ, Schiffler MA, Kuklish SL, Hughes NE, Czeskis BA, Cassidy KC, Abraham TL, Alberts JJ, Luffer-Atlas D. Identification and Mitigation of Reactive Metabolites of 2-Aminoimidazole-Containing Microsomal Prostaglandin E Synthase-1 Inhibitors Terminated Due to Clinical Drug-Induced Liver Injury. J Med Chem 2018; 61:2041-2051. [DOI: 10.1021/acs.jmedchem.7b01806] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Muthukaman N, Tambe M, Deshmukh S, Pisal D, Tondlekar S, Shaikh M, Sarode N, Kattige VG, Pisat M, Sawant P, Honnegowda S, Karande V, Kulkarni A, Behera D, Jadhav SB, Sangana RR, Gudi GS, Khairatkar-Joshi N, Gharat LA. Discovery of furan and dihydrofuran-fused tricyclic benzo[d]imidazole derivatives as potent and orally efficacious microsomal prostaglandin E synthase-1 (mPGES-1) inhibitors: Part-1. Bioorg Med Chem Lett 2017; 27:5131-5138. [PMID: 29100801 DOI: 10.1016/j.bmcl.2017.10.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/18/2017] [Accepted: 10/25/2017] [Indexed: 01/28/2023]
Abstract
This letter describes the synthesis and biological evaluation of furan and dihydrofuran-fused tricyclic benzo[d]imidazole derivatives as novel mPGES-1 inhibitors, capable of inhibiting an increased PGE2 production in the disease state. Structure-activity optimization afforded many potent mPGES-1 inhibitors having <50 nM potencies in the A549 cellular assay and adequate metabolic stability in liver microsomes. Lead compounds 8l and 8m demonstrated reasonable in vitro pharmacology and pharmacokinetic properties over other compounds. In particular, 8m revealed satisfactory oral pharmacokinetics and bioavailability in multiple species like rat, guinea pig, dog and cynomolgus monkey. In addition, the representative compound 8m showed in vivo efficacy by inhibiting LPS-induced thermal hyperalgesia with an ED50 of 14.3 mg/kg in guinea pig.
Collapse
Affiliation(s)
- Nagarajan Muthukaman
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Macchindra Tambe
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Sanjay Deshmukh
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Dnyandeo Pisal
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Shital Tondlekar
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Mahamadhanif Shaikh
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Neelam Sarode
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Vidya G Kattige
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Monali Pisat
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Pooja Sawant
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Srinivasa Honnegowda
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Vikas Karande
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Abhay Kulkarni
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Dayanidhi Behera
- Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Satyawan B Jadhav
- Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Ramchandra R Sangana
- Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Girish S Gudi
- Drug Metabolism and Pharmacokinetics, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Neelima Khairatkar-Joshi
- Biological Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India
| | - Laxmikant A Gharat
- Chemical Research, Glenmark Pharmaceuticals Limited, Glenmark Research Center, Navi Mumbai, Maharashtra 400709, India.
| |
Collapse
|
12
|
Tuure L, Hämäläinen M, Whittle BJ, Moilanen E. Microsomal Prostaglandin E Synthase-1 Expression in Inflammatory Conditions Is Downregulated by Dexamethasone: Seminal Role of the Regulatory Phosphatase MKP-1. Front Pharmacol 2017; 8:646. [PMID: 28983247 PMCID: PMC5613146 DOI: 10.3389/fphar.2017.00646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/31/2017] [Indexed: 11/13/2022] Open
Abstract
Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible enzyme situated downstream of cyclo-oxygenase-2, promoting the excessive PGE2 production in inflammation. Dexamethasone is known to suppress mPGES-1 but the mechanisms regulating mPGES-1 expression remain poorly known. MKP-1 is a phosphatase controlling the proinflammatory MAP kinase pathways p38 and JNK, thus limiting the inflammatory responses. We have now investigated the role of MKP-1 and MAP kinases p38 and JNK in the regulation of mPGES-1 expression by dexamethasone. Dexamethasone increased MKP-1 and decreased mPGES-1 expression in J774 macrophages and in peritoneal macrophages from wild-type but not from MKP-1 deficient mice. Dexamethasone also reduced p38 and JNK phosphorylation along with enhancement of MKP-1, while inhibition of JNK reduced mPGES-1 expression. These findings were also translated to in vivo conditions as dexamethasone downregulated mPGES-1 expression in paw inflammation in wild-type but not in MKP-1 deficient mice. In conclusion, dexamethasone was found to downregulate mPGES-1 expression through enhanced MKP-1 expression and reduced JNK phosphorylation in inflammatory conditions. The results extend the understanding on the regulation of mPGES-1 expression and highlight the potential of MKP-1 as an anti-inflammatory drug target.
Collapse
Affiliation(s)
- Lauri Tuure
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences, University of Tampere, Tampere University HospitalTampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences, University of Tampere, Tampere University HospitalTampere, Finland
| | - Brendan J Whittle
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences, University of Tampere, Tampere University HospitalTampere, Finland.,William Harvey Research Institute, Barts and the London School of MedicineLondon, United Kingdom
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences, University of Tampere, Tampere University HospitalTampere, Finland
| |
Collapse
|
13
|
Ozen G, Gomez I, Daci A, Deschildre C, Boubaya L, Teskin O, Uydeş-Doğan BS, Jakobsson PJ, Longrois D, Topal G, Norel X. Inhibition of microsomal PGE synthase-1 reduces human vascular tone by increasing PGI 2 : a safer alternative to COX-2 inhibition. Br J Pharmacol 2017; 174:4087-4098. [PMID: 28675448 DOI: 10.1111/bph.13939] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/29/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE The side effects of cyclooxygenase-2 (COX-2) inhibitors on the cardiovascular system could be associated with reduced prostaglandin (PG)I2 synthesis. Microsomal PGE synthase-1 (mPGES-1) catalyses the formation of PGE2 from COX-derived PGH2 . This enzyme is induced under inflammatory conditions and constitutes an attractive target for novel anti-inflammatory drugs. However, it is not known whether mPGES-1 inhibitors could be devoid of cardiovascular side effects. The aim of this study was to compare, in vitro, the effects of mPGES-1 and COX-2 inhibitors on vascular tone in human blood vessels. EXPERIMENTAL APPROACH The vascular tone and prostanoid release from internal mammary artery (IMA) and saphenous vein (SV) incubated for 30 min with inhibitors of mPGES-1 or COX-2 were investigated under normal and inflammatory conditions. KEY RESULTS In inflammatory conditions, mPGES-1 and COX-2 proteins were more expressed, and increased levels of PGE2 and PGI2 were released. COX-2 and NOS inhibitors increased noradrenaline induced vascular contractions in IMA under inflammatory conditions while no effect was observed in SV. Interestingly, the mPGES-1 inhibitor significantly reduced (30-40%) noradrenaline-induced contractions in both vessels. This effect was reversed by an IP (PGI2 receptor) antagonist but not modified by NOS inhibition. Moreover, PGI2 release was increased with the mPGES-1 inhibitor and decreased with the COX-2 inhibitor, while both inhibitors reduced PGE2 release. CONCLUSIONS AND IMPLICATIONS In contrast to COX-2 inhibition, inhibition of mPGES-1 reduced vasoconstriction by increasing PGI2 synthesis. Targeting mPGES-1 could provide a lower risk of cardiovascular side effects, compared with those of the COX-2 inhibitors. LINKED ARTICLES This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.
Collapse
Affiliation(s)
- Gulsev Ozen
- INSERM U1148, Paris, France.,Faculty of Pharmacy, Department of Pharmacology, Istanbul University, Istanbul, Turkey
| | - Ingrid Gomez
- INSERM U1148, Paris, France.,Department of Infection, Immunity and Cardiovascular Disease, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, UK
| | - Armond Daci
- Faculty of Pharmacy, Department of Pharmacology, Istanbul University, Istanbul, Turkey
| | | | | | - Onder Teskin
- Department of Cardiovascular Surgery, Aile Hospital, Istanbul, Turkey
| | - B Sonmez Uydeş-Doğan
- Faculty of Pharmacy, Department of Pharmacology, Istanbul University, Istanbul, Turkey
| | - Per-Johan Jakobsson
- Unit of Rheumatology, Department of Medicine Solna, Karolinska Institute and Unit of Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Dan Longrois
- INSERM U1148, Paris, France.,AP-HP CHU X. Bichat, Department of Anesthesia and Intensive Care, University Paris Diderot, Sorbonne Paris-Cité, UMR-S1148, Paris, France
| | - Gokce Topal
- Faculty of Pharmacy, Department of Pharmacology, Istanbul University, Istanbul, Turkey
| | - Xavier Norel
- INSERM U1148, Paris, France.,University Paris Diderot, Sorbonne Paris-Cité, UMR-S1148, Paris, France
| |
Collapse
|
14
|
Abstract
Acute and chronic pain complaints, although common, are generally poorly served by existing therapies. This unmet clinical need reflects a failure to develop novel classes of analgesics with superior efficacy, diminished adverse effects and a lower abuse liability than those currently available. Reasons for this include the heterogeneity of clinical pain conditions, the complexity and diversity of underlying pathophysiological mechanisms, and the unreliability of some preclinical pain models. However, recent advances in our understanding of the neurobiology of pain are beginning to offer opportunities for developing novel therapeutic strategies and revisiting existing targets, including modulating ion channels, enzymes and G-protein-coupled receptors.
Collapse
|
15
|
Chandrasekhar S, Yu X, Harvey AK, Oskins JL, Lin C, Wang X, Blanco M, Fisher MJ, Kuklish SL, Schiffler MA, Vetman T, Warshawsky AM, York JS, Bendele AM, Chambers MG. Analgesic and anti-inflammatory properties of novel, selective, and potent EP4 receptor antagonists. Pharmacol Res Perspect 2017; 5:e00316. [PMID: 28603634 PMCID: PMC5464344 DOI: 10.1002/prp2.316] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 11/07/2022] Open
Abstract
Prostaglandin (PG) E2 is the key driver of inflammation associated with arthritic conditions. Inhibitors of PGE 2 production (NSAIDs and Coxibs) are used to treat these conditions, but carry significant side effect risks due to the inhibition of all prostanoids that play important physiological function. The activities of PGE 2 are transduced through various receptor sub-types. Prostaglandin E2 type 4 receptor (EP4) is associated with the development of inflammation and autoimmunity. We therefore are interested in identifying novel EP4 antagonists to treat the signs and symptoms of arthritis without the potential side effects of PGE 2 modulators such as NSAIDs and Coxibs. Novel EP4 antagonists representing distinct chemical scaffolds were identified using a variety of in vitro functional assays and were shown to be selective and potent. The compounds were shown to be efficacious in animal models of analgesia, inflammation, and arthritis.
Collapse
Affiliation(s)
| | - Xiao‐Peng Yu
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndiana46285
| | - Anita K. Harvey
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndiana46285
| | - Jennifer L. Oskins
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndiana46285
| | - Chaohua Lin
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndiana46285
| | - Xushan Wang
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndiana46285
| | - Maria‐Jesus Blanco
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndiana46285
| | - Matthew J. Fisher
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndiana46285
| | - Steven L. Kuklish
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndiana46285
| | | | - Tatiana Vetman
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndiana46285
| | - Alan M. Warshawsky
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndiana46285
| | - Jeremy S. York
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndiana46285
| | | | - Mark G. Chambers
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndiana46285
| |
Collapse
|
16
|
Tricyclic 4,4-dimethyl-3,4-dihydrochromeno[3,4- d ]imidazole derivatives as microsomal prostaglandin E 2 synthase-1 (mPGES-1) inhibitors: SAR and in vivo efficacy in hyperalgesia pain model. Bioorg Med Chem Lett 2017; 27:2594-2601. [DOI: 10.1016/j.bmcl.2017.03.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/08/2017] [Accepted: 03/23/2017] [Indexed: 01/25/2023]
|
17
|
Xia Z, Yan A. Computational models for the classification of mPGES-1 inhibitors with fingerprint descriptors. Mol Divers 2017; 21:661-675. [PMID: 28484935 DOI: 10.1007/s11030-017-9743-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 04/16/2017] [Indexed: 12/13/2022]
Abstract
Human microsomal prostaglandin [Formula: see text] synthase (mPGES)-1 is a promising drug target for inflammation and other diseases with inflammatory symptoms. In this work, we built classification models which were able to classify mPGES-1 inhibitors into two groups: highly active inhibitors and weakly active inhibitors. A dataset of 1910 mPGES-1 inhibitors was separated into a training set and a test set by two methods, by a Kohonen's self-organizing map or by random selection. The molecules were represented by different types of fingerprint descriptors including MACCS keys (MACCS), CDK fingerprints, Estate fingerprints, PubChem fingerprints, substructure fingerprints and 2D atom pairs fingerprint. First, we used a support vector machine (SVM) to build twelve models with six types of fingerprints and found that MACCS had some advantage over the other fingerprints in modeling. Next, we used naïve Bayes (NB), random forest (RF) and multilayer perceptron (MLP) methods to build six models with MACCS only and found that models using RF and MLP methods were better than NB. Finally, all the models with MACCS keys were used to make predictions on an external test set of 41 compounds. In summary, the models built with MACCS keys and using SVM, RF and MLP methods show good prediction performance on the test sets and the external test set. Furthermore, we made a structure-activity relationship analysis between mPGES-1 and its inhibitors based on the information gain of fingerprints and could pinpoint some key functional groups for mPGES-1 activity. It was found that highly active inhibitors usually contained an amide group, an aromatic ring or a nitrogen heterocyclic ring, and several heteroatoms substituents such as fluorine and chlorine. The carboxyl group and sulfur atom groups mainly appeared in weakly active inhibitors.
Collapse
Affiliation(s)
- Zhonghua Xia
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, P.O. Box 53, 15 BeiSanHuan East Road, Beijing, 100029, People's Republic of China
| | - Aixia Yan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, P.O. Box 53, 15 BeiSanHuan East Road, Beijing, 100029, People's Republic of China.
| |
Collapse
|
18
|
Partridge KM, Antonysamy S, Bhattachar SN, Chandrasekhar S, Fisher MJ, Fretland A, Gooding K, Harvey A, Hughes NE, Kuklish SL, Luz JG, Manninen PR, McGee JE, Mudra DR, Navarro A, Norman BH, Quimby SJ, Schiffler MA, Sloan AV, Warshawsky AM, Weller JM, York JS, Yu XP. Discovery and characterization of [(cyclopentyl)ethyl]benzoic acid inhibitors of microsomal prostaglandin E synthase-1. Bioorg Med Chem Lett 2017; 27:1478-1483. [DOI: 10.1016/j.bmcl.2016.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 11/25/2022]
|
19
|
Pereira-Leite C, Nunes C, Jamal SK, Cuccovia IM, Reis S. Nonsteroidal Anti-Inflammatory Therapy: A Journey Toward Safety. Med Res Rev 2016; 37:802-859. [PMID: 28005273 DOI: 10.1002/med.21424] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/27/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023]
Abstract
The efficacy of nonsteroidal anti-inflammatory drugs (NSAIDs) against inflammation, pain, and fever has been supporting their worldwide use in the treatment of painful conditions and chronic inflammatory diseases until today. However, the long-term therapy with NSAIDs was soon associated with high incidences of adverse events in the gastrointestinal tract. Therefore, the search for novel drugs with improved safety has begun with COX-2 selective inhibitors (coxibs) being straightaway developed and commercialized. Nevertheless, the excitement has fast turned to disappointment when diverse coxibs were withdrawn from the market due to cardiovascular toxicity. Such events have once again triggered the emergence of different strategies to overcome NSAIDs toxicity. Here, an integrative review is provided to address the breakthroughs of two main approaches: (i) the association of NSAIDs with protective mediators and (ii) the design of novel compounds to target downstream and/or multiple enzymes of the arachidonic acid cascade. To date, just one phosphatidylcholine-associated NSAID has already been approved for commercialization. Nevertheless, the preclinical and clinical data obtained so far indicate that both strategies may improve the safety of nonsteroidal anti-inflammatory therapy.
Collapse
Affiliation(s)
- Catarina Pereira-Leite
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Cláudia Nunes
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Sarah K Jamal
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Iolanda M Cuccovia
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Salette Reis
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
20
|
Liu X, Wang D, Yu C, Li T, Liu J, Sun S. Potential Antifungal Targets against a Candida Biofilm Based on an Enzyme in the Arachidonic Acid Cascade-A Review. Front Microbiol 2016; 7:1925. [PMID: 27999568 PMCID: PMC5138225 DOI: 10.3389/fmicb.2016.01925] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/16/2016] [Indexed: 11/21/2022] Open
Abstract
Candida is an important opportunistic fungal pathogen, especially in biofilm associated infections. The formation of a Candida biofilm can decrease Candida sensitivity to antifungal drugs and cause drug resistance. Although many effective antifungal drugs are available, their applications are limited due to their high toxicity and cost. Seeking new antifungal agents that are effective against biofilm-associated infection is an urgent need. Many research efforts are underway, and some progress has been made in this field. It has been shown that the arachidonic acid cascade plays an important role in fungal morphogenesis and pathogenicity. Notably, prostaglandin E2 (PGE2) can promote the formation of a Candida biofilm. Recently, the inhibition of PGE2 has received much attention. Studies have shown that cyclooxygenase (COX) inhibitors, such as aspirin, ibuprofen, and indomethacin, combined with fluconazole can significantly reduce Candida adhesion and biofilm development and increase fluconazole susceptibility; the MIC of fluconazole can be decrease from 64 to 2 μg/ml when used in combination with ibuprofen. In addition, in vivo studies have also confirmed the antifungal activities of these inhibitors. In this article, we mainly review the relationship between PGE2 and Candida biofilm, summarize the antifungal activities of COX inhibitors and analyze the possible antifungal activity of microsomal prostaglandin E synthase-1 (MPGES-1) inhibitors; additionally, other factors that influence PGE2 production are also discussed. Hopefully this review can disclose potential antifungal targets based on the arachidonic acid cascade and provide a prevailing strategy to alleviate Candida albicans biofilm formation.
Collapse
Affiliation(s)
- Xinning Liu
- Department of Clinical Pharmacy, Taishan Medical University Taian, China
| | - Decai Wang
- Department of Clinical Pharmacy, Taishan Medical University Taian, China
| | - Cuixiang Yu
- Respiration Medicine, Qianfoshan Hospital Affiliated to Shandong University Jinan, China
| | - Tao Li
- Intensive Care Unit, Qianfoshan Hospital Affiliated to Shandong University Jinnan, China
| | - Jianqiao Liu
- General Practice, Shandong Provincial Hospital Jinnan, China
| | - Shujuan Sun
- Pharmaceutical Department, Qianfoshan Hospital Affiliated to Shandong University Jinnan, China
| |
Collapse
|
21
|
Simultaneous Inhibition of PGE2 and PGI2 Signals Is Necessary to Suppress Hyperalgesia in Rat Inflammatory Pain Models. Mediators Inflamm 2016; 2016:9847840. [PMID: 27478311 PMCID: PMC4961812 DOI: 10.1155/2016/9847840] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/30/2016] [Accepted: 06/05/2016] [Indexed: 01/17/2023] Open
Abstract
Prostaglandin E2 (PGE2) is well known as a mediator of inflammatory symptoms such as fever, arthritis, and inflammatory pain. In the present study, we evaluated the analgesic effect of our selective PGE2 synthesis inhibitor, compound I, 2-methyl-2-[cis-4-([1-(6-methyl-3-phenylquinolin-2-yl)piperidin-4-yl]carbonyl amino)cyclohexyl] propanoic acid, in rat yeast-induced acute and adjuvant-induced chronic inflammatory pain models. Although this compound suppressed the synthesis of PGE2 selectively, no analgesic effect was shown in both inflammatory pain models. Prostacyclin (PGI2) also plays crucial roles in inflammatory pain, so we evaluated the involvement of PGI2 signaling in rat inflammatory pain models using prostacyclin receptor (IP) antagonist, RO3244019. RO3244019 showed no analgesic effect in inflammatory pain models, but concomitant administration of compound I and RO3244019 showed analgesic effects comparable to celecoxib, a specific cyclooxygenase- (COX-) 2 inhibitor. Furthermore, coadministration of PGE2 receptor 4 (EP4) antagonist, CJ-023423, and RO3244019 also showed an analgesic effect. These findings suggest that both PGE2 signaling, especially through the EP4 receptor, and PGI2 signaling play critical roles in inflammatory pain and concurrent inhibition of both signals is important for suppression of inflammatory hyperalgesia.
Collapse
|
22
|
Sheena Mary Y, Aswathy VV, Panicker CY, Bielenica A, Brzózka P, Savczenko O, Armaković S, Armaković SJ, Van Alsenoy C. Spectroscopic, single crystal XRD structure, DFT and molecular dynamics investigation of 1-(3-chloro-4-fluorophenyl)-3-[3-(trifluoromethyl)phenyl]thiourea. RSC Adv 2016. [DOI: 10.1039/c6ra21396k] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The title compound 1-(3-chloro-4-fluorophenyl)-3-[3-(trifluoromethyl) phenyl]thiourea (ANF-2) was synthesized and structurally characterized by single crystal XRD.
Collapse
Affiliation(s)
- Y. Sheena Mary
- Department of Physics
- Fatima Mata National College
- Kollam
- India
| | - V. V. Aswathy
- Department of Physics
- Fatima Mata National College
- Kollam
- India
| | | | - Anna Bielenica
- Chair and Department of Biochemistry
- Medical University of Warsaw
- 02-097 Warszawa
- Poland
| | - Paulina Brzózka
- Department of Inorganic and Analytical Chemistry
- Faculty of Pharmacy
- Medical University of Warsaw
- 02-097 Warszawa
- Poland
| | | | - Stevan Armaković
- University of Novi Sad
- Faculty of Sciences
- Department of Physics
- 21000 Novi Sad
- Serbia
| | - Sanja J. Armaković
- University of Novi Sad
- Faculty of Sciences
- Department of Chemistry
- Biochemistry and Environmental Protection
- 21000 Novi Sad
| | | |
Collapse
|