1
|
Tiek D, Song X, Yu X, Wu R, Iglesia R, Catezone A, McCortney K, Walshon J, Horbinski C, Jamshidi P, Castellani R, Vassar R, Miska J, Hu B, Cheng SY. Oxidative stress induced protein aggregation via GGCT produced pyroglutamic acid in drug resistant glioblastoma. iScience 2025; 28:111769. [PMID: 39949960 PMCID: PMC11821397 DOI: 10.1016/j.isci.2025.111769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/13/2024] [Accepted: 01/06/2025] [Indexed: 02/16/2025] Open
Abstract
Drug resistance is a major barrier to cancer therapies and remains poorly understood. Recently, non-mutational mechanisms of drug resistance have been proposed where a more plastic metabolic response can play a major role. Here, we show that upon drug resistance, glioblastoma (GBM) cells have increased oxidative stress, mitochondria function, and protein aggregation. Gamma (γ)-glutamylcyclotranserase (GGCT), an enzyme in the γ-glutamyl cycle for glutathione production, located on chromosome 7 which is commonly amplified in GBM is also increased upon resistance. We further observe that the byproduct of GGCT-pyroglutamic acid-can bind aggregating proteins and that genetic and pharmacological inhibition of GGCT prevents protein aggregation. Finally, we found increased protein aggregation, GGCT expression, and pyroglutamic acid staining in recurrent GBM patient samples, adjacent non-tumor brain, and Alzheimer's brains. These findings suggest a new pathway for protein aggregation within drug resistant brain cancer that should be further studied in other brain disorders.
Collapse
Affiliation(s)
- Deanna Tiek
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xiao Song
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xiaozhou Yu
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Runxin Wu
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rebeca Iglesia
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alicia Catezone
- Departments of Pathology and Neurological Surgery, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Katy McCortney
- Departments of Pathology and Neurological Surgery, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jordain Walshon
- Departments of Pathology and Neurological Surgery, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Craig Horbinski
- Departments of Pathology and Neurological Surgery, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Pouya Jamshidi
- Department of Pathology, Northwestern University Feinberg School of Medicine, The Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Chicago, IL 60611, USA
| | - Rudolph Castellani
- Department of Pathology, Northwestern University Feinberg School of Medicine, The Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Chicago, IL 60611, USA
| | - Robert Vassar
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, The Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Chicago, IL 60611, USA
| | - Jason Miska
- Department of Neurosurgery, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Bo Hu
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shi-Yuan Cheng
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
2
|
Alam J, Sabbagh MN. Perspective: Minimally clinically important "symptomatic" benefit associated with disease modification resulting from anti-amyloid immunotherapy. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2025; 11:e70035. [PMID: 39839076 PMCID: PMC11746071 DOI: 10.1002/trc2.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/23/2025]
Abstract
Despite some skepticism regarding the amyloid hypothesis, there is growing evidence that clearing amyloid by targeting specific species of amyloid (plaque, oligomers, fibrils, and protofibrils) for removal has therapeutic benefits. Specifically, there is growing evidence that, in mild cognitive impairment and mild dementia due to Alzheimer's disease (AD), robust and aggressive removal of amyloid can slow cognitive decline as measured by global instruments, composite measures, and cognitive testing. Furthermore, clinical efficacy signals coupled with clear biomarker changes provide the first evidence of disease modification. This effect seems to be in addition to symptomatic treatments and opens speculation that the effect of anti-amyloid monoclonal antibodies might be clinically meaningful through symptomatic amelioration that is a result of disease modification. Highlights Clearance of brain amyloid plaques may lead to a clinical benefit in patients with early AD.Aggregated Aβ may play a role in both disease expression and progression.Anti-amyloid monoclonal antibodies might be clinically meaningful through symptomatic amelioration resulting from disease modification.
Collapse
Affiliation(s)
- John Alam
- CervoMed, Inc.BostonMassachusettsUSA
| | - Marwan N. Sabbagh
- Department of NeurologyBarrow Neurological InstituteSt. Joseph's Hospital and Medical CenterPhoenixArizonaUSA
| |
Collapse
|
3
|
Schrempel S, Kottwitz AK, Piechotta A, Gnoth K, Büschgens L, Hartlage-Rübsamen M, Morawski M, Schenk M, Kleinschmidt M, Serrano GE, Beach TG, Rostagno A, Ghiso J, Heneka MT, Walter J, Wirths O, Schilling S, Roßner S. Identification of isoAsp7-Aβ as a major Aβ variant in Alzheimer's disease, dementia with Lewy bodies and vascular dementia. Acta Neuropathol 2024; 148:78. [PMID: 39625512 PMCID: PMC11615120 DOI: 10.1007/s00401-024-02824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 12/06/2024]
Abstract
The formation of amyloid-β (Aβ) aggregates in brain is a neuropathological hallmark of Alzheimer's disease (AD). However, there is mounting evidence that Aβ also plays a pathogenic role in other types of dementia and that specific post-translational Aβ modifications contribute to its pathogenic profile. The objective of this study was to test the hypothesis that distinct types of dementia are characterized by specific patterns of post-translationally modified Aβ variants. We conducted a comparative analysis and quantified Aβ as well as Aβ with pyroglutamate (pGlu3-Aβ and pGlu11-Aβ), N-truncation (Aβ(4-X)), isoaspartate racemization (isoAsp7-Aβ and isoAsp27-Aβ), phosphorylation (pSer8-Aβ and pSer26-Aβ) or nitration (3NTyr10-Aβ) modification in post mortem human brain tissue from non-demented control subjects in comparison to tissue classified as pre-symptomatic AD (Pre-AD), AD, dementia with Lewy bodies and vascular dementia. Aβ modification-specific immunohistochemical labelings of brain sections from the posterior superior temporal gyrus were examined by machine learning-based segmentation protocols and immunoassay analyses in brain tissue after sequential Aβ extraction were carried out. Our findings revealed that AD cases displayed the highest concentrations of all Aβ variants followed by dementia with Lewy bodies, Pre-AD, vascular dementia and non-demented controls. With both analytical methods, we identified the isoAsp7-Aβ variant as a highly abundant Aβ form in all clinical conditions, followed by Aβ(4-X), pGlu3-Aβ, pGlu11-Aβ and pSer8-Aβ. These Aβ variants were detected in distinct plaque types of compact, coarse-grained, cored and diffuse morphologies and, with varying frequencies, in cerebral blood vessels. The 3NTyr10-Aβ, pSer26-Aβ and isoAsp27-Aβ variants were not found to be present in Aβ plaques but were detected intraneuronally. There was a strong positive correlation between isoAsp7-Aβ and Thal phase and a moderate negative correlation between isoAsp7-Aβ and performance on the Mini Mental State Examination. Furthermore, the abundance of all Aβ variants was highest in APOE 3/4 carriers. In aggregation assays, the isoAsp7-Aβ, pGlu3-Aβ and pGlu11-Aβ variants showed instant fibril formation without lag phase, whereas Aβ(4-X), pSer26-Aβ and isoAsp27-Aβ did not form fibrils. We conclude that targeting Aβ post-translational modifications, and in particular the highly abundant isoAsp7-Aβ variant, might be considered for diagnostic and therapeutic approaches in different types of dementia. Hence, our findings might have implications for current antibody-based therapies of AD.
Collapse
Affiliation(s)
- Sarah Schrempel
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany
| | - Anna Katharina Kottwitz
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
- Center for Natural Product-based Therapeutics, Anhalt University of Applied Sciences, 06366, Köthen, Germany
| | - Anke Piechotta
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
| | - Kathrin Gnoth
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
- Center for Natural Product-based Therapeutics, Anhalt University of Applied Sciences, 06366, Köthen, Germany
| | - Luca Büschgens
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, 37075, Göttingen, Germany
| | - Maike Hartlage-Rübsamen
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany
| | - Markus Morawski
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany
| | - Mathias Schenk
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
| | - Martin Kleinschmidt
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
| | - Geidy E Serrano
- Civin Laboratory for Neuropathology, Brain and Body Donation Program, Banner Sun Health Research Institute, 10515 W Santa Fe Drive, Sun City, AZ, 85351, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Brain and Body Donation Program, Banner Sun Health Research Institute, 10515 W Santa Fe Drive, Sun City, AZ, 85351, USA
| | - Agueda Rostagno
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Jorge Ghiso
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg
| | - Jochen Walter
- Center of Neurology, Molecular Cell Biology, University Hospital Bonn, 53127, Bonn, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, 37075, Göttingen, Germany
| | - Stephan Schilling
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120, Halle (Saale), Germany
- Center for Natural Product-based Therapeutics, Anhalt University of Applied Sciences, 06366, Köthen, Germany
| | - Steffen Roßner
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany.
| |
Collapse
|
4
|
Wei C, Zhang H, Niu L, Zhong Q, Yan H, Wang J. 4D-QSAR, ADMET properties, and molecular dynamics simulations for designing N-substituted urea/thioureas as human glutaminyl cyclase inhibitors. Comput Biol Chem 2024; 112:108131. [PMID: 38968781 DOI: 10.1016/j.compbiolchem.2024.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/07/2024]
Abstract
Human glutaminyl cyclase (hQC) inhibitors have great potential to be used as anti- Alzheimer's disease (AD) agents by reducing the toxic pyroform of β-amyloid in the brains of AD patients. The four-dimensional quantitative structure activity relationship (4D-QSAR) model of N-substituted urea/thioureas was established with satisfying predictive ability and statistical reliability (Q2 = 0.521, R2 = 0.933, R2prep = 0.619). By utilizing the developed 4D-QSAR model, a set of new N-substituted urea/thioureas was designed and evaluated for their Absorption Distribution Metabolism Excretion and Toxicity (ADMET) properties. The results of molecular dynamics (MD) simulations, Principal component analysis (PCA), free energy landscape (FEL), dynamic cross-correlation matrix (DCCM) and molecular mechanics generalized Born Poisson-Boltzmann surface area (MM-PBSA) free energy calculations, revealed that the designed compounds were remained stable in protein binding pocket and compounds b ∼ f (-35.1 to -44.55 kcal/mol) showed higher binding free energy than that of compound 14 (-33.51 kcal/mol). The findings of this work will be a theoretical foundation for further research and experimental validation of urea/thiourea derivatives as hQC inhibitors.
Collapse
Affiliation(s)
- Chaochun Wei
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China
| | - Haolin Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China
| | - Lexuan Niu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China
| | - Qidi Zhong
- School of Pharmacy, North China University of Science and Technology, Tangshan 063210, PR China
| | - Hong Yan
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China.
| | - Juan Wang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
5
|
Höfling C, Ulrich L, Burghardt S, Donkersloot P, Opitz M, Geissler S, Schilling S, Cynis H, Michalski D, Roßner S. Focal Cerebral Ischemia Induces Expression of Glutaminyl Cyclase along with Downstream Molecular and Cellular Inflammatory Responses. Cells 2024; 13:1412. [PMID: 39272984 PMCID: PMC11394561 DOI: 10.3390/cells13171412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Glutaminyl cyclase (QC) and its isoenzyme (isoQC) catalyze the formation of N-terminal pyroglutamate (pGlu) from glutamine on a number of neuropeptides, peptide hormones and chemokines. Chemokines of the C-C ligand (CCL) motif family are known to contribute to inflammation in neurodegenerative conditions. Here, we used a model of transient focal cerebral ischemia to explore functional, cellular and molecular responses to ischemia in mice lacking genes for QC, isoQC and their substrate CCL2. Mice of the different genotypes were evaluated for functional consequences of stroke, infarct volume, activation of glia cells, and for QC, isoQC and CCL2 expression. The number of QC-immunoreactive, but not of isoQC-immunoreactive, neurons increased robustly in the infarct area at 24 and 72 h after ischemia. In parallel, immunohistochemical signals for the QC substrate CCL2 increased from 24 to 72 h after ischemia induction without differences between genotypes analyzed. The increase in CCL2 was accompanied by morphological activation of Iba1-immunoreactive microglia and recruitment of MHC-II-positive cells at 72 h after ischemia. Among other chemokines quantified in the brain tissue, CCL17 showed higher concentrations at 72 h compared to 24 h after ischemia. Collectively, these data suggest a critical role for QC in inflammatory processes in the stroke-affected brain.
Collapse
Affiliation(s)
- Corinna Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
- Department of Neurology, University of Leipzig, 04103 Leipzig, Germany;
| | - Luise Ulrich
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
| | - Sina Burghardt
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
| | - Philippa Donkersloot
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
| | - Michael Opitz
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
| | - Stefanie Geissler
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Molecular Drug Design and Target Validation, 06120 Halle, Germany; (S.G.); (S.S.); (H.C.)
| | - Stephan Schilling
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Molecular Drug Design and Target Validation, 06120 Halle, Germany; (S.G.); (S.S.); (H.C.)
- Faculty of Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, 06366 Köthen, Germany
| | - Holger Cynis
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Molecular Drug Design and Target Validation, 06120 Halle, Germany; (S.G.); (S.S.); (H.C.)
| | - Dominik Michalski
- Department of Neurology, University of Leipzig, 04103 Leipzig, Germany;
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; (C.H.)
| |
Collapse
|
6
|
Tassone G, Pozzi C, Mangani S. Metal Ion Binding to Human Glutaminyl Cyclase: A Structural Perspective. Int J Mol Sci 2024; 25:8279. [PMID: 39125848 PMCID: PMC11312887 DOI: 10.3390/ijms25158279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Glutaminyl-peptide cyclotransferases (QCs) convert the N-terminal glutamine or glutamate residues of protein and peptide substrates into pyroglutamate (pE) by releasing ammonia or a water molecule. The N-terminal pE modification protects peptides/proteins against proteolytic degradation by amino- or exopeptidases, increasing their stability. Mammalian QC is abundant in the brain and a large amount of evidence indicates that pE peptides are involved in the onset of neural human pathologies such as Alzheimer's and Huntington's disease and synucleinopathies. Hence, human QC (hQC) has become an intensively studied target for drug development against these diseases. Soon after its characterization, hQC was identified as a Zn-dependent enzyme, but a partial restoration of the enzyme activity in the presence of the Co(II) ion was also reported, suggesting a possible role of this metal ion in catalysis. The present work aims to investigate the structure of demetallated hQC and of the reconstituted enzyme with Zn(II) and Co(II) and their behavior in the presence of known inhibitors. Furthermore, our structural determinations provide a possible explanation for the presence of the mononuclear metal binding site of hQC, despite the presence of the same conserved metal binding motifs present in distantly related dinuclear aminopeptidase enzymes.
Collapse
Affiliation(s)
- Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy;
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy;
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via Luigi Sacconi 6, I-50019 Sesto Fiorentino, Italy
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy;
| |
Collapse
|
7
|
Babalola JA, Stracke A, Loeffler T, Schilcher I, Sideromenos S, Flunkert S, Neddens J, Lignell A, Prokesch M, Pazenboeck U, Strobl H, Tadic J, Leitinger G, Lass A, Hutter-Paier B, Hoefler G. Effect of astaxanthin in type-2 diabetes -induced APPxhQC transgenic and NTG mice. Mol Metab 2024; 85:101959. [PMID: 38763496 PMCID: PMC11153249 DOI: 10.1016/j.molmet.2024.101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024] Open
Abstract
OBJECTIVES Aggregation and misfolding of amyloid beta (Aβ) and tau proteins, suggested to arise from post-translational modification processes, are thought to be the main cause of Alzheimer's disease (AD). Additionally, a plethora of evidence exists that links metabolic dysfunctions such as obesity, type 2 diabetes (T2D), and dyslipidemia to the pathogenesis of AD. We thus investigated the combinatory effect of T2D and human glutaminyl cyclase activity (pyroglutamylation), on the pathology of AD and whether astaxanthin (ASX) treatment ameliorates accompanying pathophysiological manifestations. METHODS Male transgenic AD mice, APPxhQC, expressing human APP751 with the Swedish and the London mutation and human glutaminyl cyclase (hQC) enzyme and their non-transgenic (NTG) littermates were used. Both APPxhQC and NTG mice were allocated to 3 groups, control, T2D-control, and T2D-ASX. Mice were fed control or high fat diet ± ASX for 13 weeks starting at an age of 11-12 months. High fat diet fed mice were further treated with streptozocin for T2D induction. Effects of genotype, T2D induction, and ASX treatment were evaluated by analysing glycemic readouts, lipid concentration, Aβ deposition, hippocampus-dependent cognitive function and nutrient sensing using immunosorbent assay, ELISA-based assays, western blotting, immunofluorescence staining, and behavioral testing via Morris water maze (MWM), respectively. RESULTS APPxhQC mice presented a higher glucose sensitivity compared to NTG mice. T2D-induced brain dysfunction was more severe in NTG compared to the APPxhQC mice. T2D induction impaired memory functions while increasing hepatic LC3B, ABCA1, and p65 levels in NTG mice. T2D induction resulted in a progressive shift of Aβ from the soluble to insoluble form in APPxhQC mice. ASX treatment reversed T2D-induced memory dysfunction in NTG mice and in parallel increased hepatic pAKT while decreasing p65 and increasing cerebral p-S6rp and p65 levels. ASX treatment reduced soluble Aβ38 and Aβ40 and insoluble Aβ40 levels in T2D-induced APPxhQC mice. CONCLUSIONS We demonstrate that T2D induction in APPxhQC mice poses additional risk for AD pathology as seen by increased Aβ deposition. Although ASX treatment reduced Aβ expression in T2D-induced APPxhQC mice and rescued T2D-induced memory impairment in NTG mice, ASX treatment alone may not be effective in cases of T2D comorbidity and AD.
Collapse
Affiliation(s)
| | - Anika Stracke
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Austria
| | | | | | - Spyridon Sideromenos
- QPS Austria GmbH, Grambach, Austria; Medical University of Vienna, Vienna, Austria
| | | | | | | | | | - Ute Pazenboeck
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Austria
| | - Herbert Strobl
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Austria
| | - Jelena Tadic
- Institute of Molecular Biosciences, University of Graz, Austria
| | - Gerd Leitinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Austria
| | | | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology Medical University of Graz, Graz, Austria.
| |
Collapse
|
8
|
Mardanyan S, Sharoyan S, Antonyan A. Diversity of amyloid beta peptide actions. Rev Neurosci 2024; 35:387-398. [PMID: 38281140 DOI: 10.1515/revneuro-2023-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/16/2023] [Indexed: 01/30/2024]
Abstract
Fibril formation by amyloidogenic proteins and peptides is considered the cause of a number of incurable diseases. One of the most known amyloid diseases is Alzheimer's disease (AD). Traditionally, amyloidogenic beta peptides Aβ40 and Aβ42 (Aβs) are considered as main causes of AD and the foremost targets in AD fight. The main efforts in pharmacology are aimed at reducing Aβs concentration to prevent their accumulation, aggregation, formation of senile plaques, neuronal death, and neurodegeneration. However, a number of publications have demonstrated certain beneficial physiological effects of Aβs. Simultaneously, it is indicated that the effects of Aβs turn into pathological due to the development of certain diseases in the body. The accumulation of C- and N-terminal truncated Aβs under diverse conditions is supposed to play a role in AD development. The significance of transformation of glutamate residue at positions 3 or 11 of Aβs catalyzed by glutaminyl cyclase making them more degradation resistant, hydrophobic, and prone to aggregation, as well as the participation of dipeptidyl peptidase IV in these transformations are discussed. The experimental data presented confirm the maintenance of physiological, nonaggregated state of Aβs by plant preparations. In conclusion, this review suggests that in the fight against AD, instead of removing Aβs, preference should be given to the treatment of common diseases. Glutaminyl cyclase and dipeptidyl peptidase IV can be considered as targets in AD treatment. Flavonoids and plant preparations that possess antiamyloidogenic propensity are proposed as beneficial neuroprotective, anticancer, and antidiabetic food additives.
Collapse
Affiliation(s)
- Sona Mardanyan
- H. Buniatian Institute of Biochemistry of Armenian National Academy of Sciences, Yerevan 0014, Republic of Armenia
| | - Svetlana Sharoyan
- H. Buniatian Institute of Biochemistry of Armenian National Academy of Sciences, Yerevan 0014, Republic of Armenia
| | - Alvard Antonyan
- H. Buniatian Institute of Biochemistry of Armenian National Academy of Sciences, Yerevan 0014, Republic of Armenia
| |
Collapse
|
9
|
Mou J, Ning XL, Wang XY, Hou SY, Meng FB, Zhou C, Wu JW, Li C, Jia T, Wu X, Wu Y, Chen Y, Li GB. X-ray Structure-Guided Discovery of a Potent Benzimidazole Glutaminyl Cyclase Inhibitor That Shows Activity in a Parkinson's Disease Mouse Model. J Med Chem 2024; 67:8730-8756. [PMID: 38817193 DOI: 10.1021/acs.jmedchem.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The secretory glutaminyl cyclase (sQC) and Golgi-resident glutaminyl cyclase (gQC) are responsible for N-terminal protein pyroglutamation and associated with various human diseases. Although several sQC/gQC inhibitors have been reported, only one inhibitor, PQ912, is currently undergoing clinic trials for the treatment of Alzheimer's disease. We report an X-ray crystal structure of sQC complexed with PQ912, revealing that the benzimidazole makes "anchor" interactions with the active site zinc ion and catalytic triad. Structure-guided design and optimization led to a series of new benzimidazole derivatives exhibiting nanomolar inhibition for both sQC and gQC. In a MPTP-induced Parkinson's disease (PD) mouse model, BI-43 manifested efficacy in mitigating locomotor deficits through reversing dopaminergic neuronal loss, reducing microglia, and decreasing levels of the sQC/gQC substrates, α-synuclein, and CCL2. This study not only offers structural basis and new leads for drug discovery targeting sQC/gQC but also provides evidence supporting sQC/gQC as potential targets for PD treatment.
Collapse
Affiliation(s)
- Jun Mou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiang-Li Ning
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xin-Yue Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shu-Yan Hou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fan-Bo Meng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Cong Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jing-Wei Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunyan Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yongping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Behof WJ, Haynes JR, Whitmore CA, Cheung YY, Tantawy MN, Peterson TE, Wijesinghe P, Matsubara JA, Pham W. Synthesis and Evaluation of a Novel PET Radioligand for Imaging Glutaminyl Cyclase Activity as a Biomarker for Detecting Alzheimer's Disease. ACS Sens 2024; 9:2605-2613. [PMID: 38718161 PMCID: PMC11129349 DOI: 10.1021/acssensors.4c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/01/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Several new lines of research have demonstrated that a significant number of amyloid-β peptides found in Alzheimer's disease (AD) are truncated and undergo post-translational modification by glutaminyl cyclase (QC) at the N-terminal. Notably, QC's products of Abeta-pE3 and Abeta-pE11 have been active targets for investigational drug development. This work describes the design, synthesis, characterization, and in vivo validation of a novel PET radioligand, [18F]PB0822, for targeted imaging of QC. We report herein a simplified and robust chemistry for the synthesis of the standard compound, [19F]PB0822, and the corresponding [18F]PB0822 radioligand. The PET probe was developed with 99.9% radiochemical purity, a molar activity of 965 Ci.mmol-1, and an IC50 of 56.3 nM, comparable to those of the parent PQ912 inhibitor (62.5 nM). Noninvasive PET imaging showed that the probe is distributed in the brain 5 min after intravenous injection. Further, in vivo PET imaging with [18F]PB0822 revealed that AD 5XFAD mice harbor significantly higher QC activity than WT counterparts. The data also suggested that QC activity is found across different brain regions of the tested animals.
Collapse
Affiliation(s)
- William J Behof
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Justin R Haynes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Clayton A Whitmore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Yiu-Yin Cheung
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Mohammed N Tantawy
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Todd E Peterson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt Ingram Cancer Center, Nashville, Tennessee 37232, United States
| | - Printha Wijesinghe
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z3N9, Canada
| | - Joanne A Matsubara
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z3N9, Canada
| | - Wellington Pham
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee 37212, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Ingram Cancer Center, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
11
|
Lynch MA. A case for seeking sex-specific treatments in Alzheimer's disease. Front Aging Neurosci 2024; 16:1346621. [PMID: 38414633 PMCID: PMC10897030 DOI: 10.3389/fnagi.2024.1346621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/15/2024] [Indexed: 02/29/2024] Open
Abstract
There is no satisfactory explanation for the sex-related differences in the incidence of many diseases and this is also true of Alzheimer's disease (AD), where females have a higher lifetime risk of developing the disease and make up about two thirds of the AD patient population. The importance of understanding the cause(s) that account for this disproportionate distribution cannot be overestimated, and is likely to be a significant factor in the search for therapeutic strategies that will combat the disease and, furthermore, potentially point to a sex-targeted approach to treatment. This review considers the literature in the context of what is known about the impact of sex on processes targeted by drugs that are in clinical trial for AD, and existing knowledge on differing responses of males and females to these drugs. Current knowledge strongly supports the view that trials should make assessing sex-related difference in responses a priority with a focus on exploring the sex-stratified treatments.
Collapse
|
12
|
Feldman HH, Messer K, Qiu Y, Sabbagh M, Galasko D, Turner RS, Lopez O, Smith A, Durant J, Lupo JL, Revta C, Balasubramanian A, Kuehn-Wache K, Wassmann T, Schell-Mader S, Jacobs DM, Salmon DP, Léger G, DeMarco ML, Weber F, for the ADCS VIVA-MIND Study Group. Varoglutamstat: Inhibiting Glutaminyl Cyclase as a Novel Target of Therapy in Early Alzheimer's Disease. J Alzheimers Dis 2024; 101:S79-S93. [PMID: 39422941 PMCID: PMC11494639 DOI: 10.3233/jad-231126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2024] [Indexed: 10/19/2024]
Abstract
Background Varoglutamstat is a first-in-class, small molecule being investigated as a treatment for early Alzheimer's disease (AD). It is an inhibitor of glutaminyl cyclase (QC), the enzyme that post-translationally modifies amyloid-β (Aβ) peptides into a toxic form of pyroglutamate Aβ (pGlu-Aβ) and iso-QC which post-translationally modifies cytokine monocyte chemoattractant protein-1 (CCL2) into neuroinflammatory pGlu-CCL2. Early phase clinical trials identified dose margins for safety and tolerability of varoglutamstat and biomarker data supporting its potential for clinical efficacy in early AD. Objective Present the scientific rationale of varoglutamstat in the treatment of early AD and the methodology of the VIVA-MIND (NCT03919162) trial, which uses a seamless phase 2A-2B design. Our review also includes other pharmacologic approaches to pGlu-Aβ. Methods Phase 2A of the VIVA-MIND trial will determine the highest dose of varoglutamstat that is safe and well tolerated with sufficient plasma exposure and a calculated target occupancy. Continuous safety evaluation using a pre-defined safety stopping boundary will help determine the highest tolerated dose that will carry forward into phase 2B. An interim futility analysis of cognitive function and electroencephalogram changes will be conducted to inform the decision of whether to proceed with phase 2B. Phase 2B will assess the efficacy and longer-term safety of the optimal selected phase 2A dose through 72 weeks of treatment. Conclusions Varoglutamstat provides a unique dual mechanism of action addressing multiple pathogenic contributors to the disease cascade. VIVA-MIND provides a novel and efficient trial design to establish its optimal dosing, safety, tolerability, and efficacy in early AD.
Collapse
Affiliation(s)
- Howard H. Feldman
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
- Shiley-Marcos Alzheimer’s Disease Research Center, La Jolla, CA, USA
| | - Karen Messer
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
| | - Yuqi Qiu
- Department of Statistics, East China Normal University, Shanghai, China
| | - Marwan Sabbagh
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Douglas Galasko
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
- Shiley-Marcos Alzheimer’s Disease Research Center, La Jolla, CA, USA
| | - R. Scott Turner
- Department of Neurology, Georgetown University, Washington, DC, USA
| | - Oscar Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanda Smith
- USF Health Byrd Alzheimer’s Institute, Tampa, FL, USA
| | - January Durant
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
| | - Jody-Lynn Lupo
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
| | - Carolyn Revta
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
| | - Archana Balasubramanian
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
| | | | | | | | - Diane M. Jacobs
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
- Shiley-Marcos Alzheimer’s Disease Research Center, La Jolla, CA, USA
| | - David P. Salmon
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
- Shiley-Marcos Alzheimer’s Disease Research Center, La Jolla, CA, USA
| | - Gabriel Léger
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
| | - Mari L. DeMarco
- Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - for the ADCS VIVA-MIND Study Group
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Alzheimer’s Disease Cooperative Study, University of California San Diego, La Jolla, CA, USA
- Shiley-Marcos Alzheimer’s Disease Research Center, La Jolla, CA, USA
- Department of Statistics, East China Normal University, Shanghai, China
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
- Department of Neurology, Georgetown University, Washington, DC, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- USF Health Byrd Alzheimer’s Institute, Tampa, FL, USA
- Vivoryon Therapeutics NV, Halle, Germany
- Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Zhou Q, Cai J, Qin F, Liu J, Li C, Xiong W, Wang Y, Xu C, Wu H. Discovery of potential scaffolds for glutaminyl cyclase inhibitors: Virtual screening, synthesis, and evaluation. Bioorg Med Chem 2024; 97:117542. [PMID: 38104495 DOI: 10.1016/j.bmc.2023.117542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Glutaminyl cyclase (QC) plays a crucial role in the early stages of Alzheimer's disease (AD), thus inhibition of QC may be a promising strategy for the treatment of early AD. Therefore, QC inhibitors with novel chemical scaffolds may contribute to the development of additional anti-AD agents. We conducted a virtual screening of 3 million compounds from the Chemdiv and Enamine databases, to discover potential scaffolds for QC inhibitors. Three scaffolds, 120974, 147706, and 141449, were selected from this structure-based virtual screening through a combination of pharmacophore modeling, a receptor-ligand pharmacophore model, and the GALAHAD model, and furtherly filtered by chelation with zinc ion and docking properties. Consequently, three compounds, 1, 2, and 3, were designed and synthesized based on these three scaffolds, respectively. The IC50 of compounds 1 and 3 against QC were 14.19 ± 4.21 and 4.34 ± 0.35 μM, respectively. Our results indicate that the new scaffolds selected using a virtual screening process exhibit potential as novel QC inhibitors.
Collapse
Affiliation(s)
- Qingqing Zhou
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518055, China
| | - Jiaxin Cai
- School of Pharmacy, Shenzhen University Medical School, Shenzhen 518055, China
| | - Feixia Qin
- School of Pharmacy, Shenzhen University Medical School, Shenzhen 518055, China
| | - Jiao Liu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen 518055, China
| | - Chenyang Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen 518055, China
| | - Wei Xiong
- School of Pharmacy, Shenzhen University Medical School, Shenzhen 518055, China
| | - Yinan Wang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen 518055, China
| | - Chenshu Xu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen 518055, China.
| | - Haiqiang Wu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen 518055, China.
| |
Collapse
|
14
|
Coimbra JRM, Moreira PI, Santos AE, Salvador JAR. Therapeutic potential of glutaminyl cyclases: Current status and emerging trends. Drug Discov Today 2023; 28:103644. [PMID: 37244566 DOI: 10.1016/j.drudis.2023.103644] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Glutaminyl cyclase (QC) activity has been identified as a key effector in distinct biological processes. Human glutaminyl-peptide cyclotransferase (QPCT) and glutaminyl-peptide cyclotransferase-like (QPCTL) are considered attractive therapeutic targets in many human disorders, such as neurodegenerative diseases, and a range of inflammatory conditions, as well as for cancer immunotherapy, because of their capacity to modulate cancer immune checkpoint proteins. In this review, we explore the biological functions and structures of QPCT/L enzymes and highlight their therapeutic relevance. We also summarize recent developments in the discovery of small-molecule inhibitors targeting these enzymes, including an overview of preclinical and clinical studies.
Collapse
Affiliation(s)
- Judite R M Coimbra
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Paula I Moreira
- Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal; Laboratory of Physiology, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Armanda E Santos
- Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal; Laboratory of Biochemistry and Biology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal.
| |
Collapse
|
15
|
Chen D, Chen Q, Qin X, Tong P, Peng L, Zhang T, Xia C. Development and evolution of human glutaminyl cyclase inhibitors (QCIs): an alternative promising approach for disease-modifying treatment of Alzheimer's disease. Front Aging Neurosci 2023; 15:1209863. [PMID: 37600512 PMCID: PMC10435661 DOI: 10.3389/fnagi.2023.1209863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Human glutaminyl cyclase (hQC) is drawing considerable attention and emerging as a potential druggable target for Alzheimer's disease (AD) due to its close involvement in the pathology of AD via the post-translational pyroglutamate modification of amyloid-β. A recent phase 2a study has shown promising early evidence of efficacy for AD with a competitive benzimidazole-based QC inhibitor, PQ912, which also demonstrated favorable safety profiles. This finding has sparked new hope for the treatment of AD. In this review, we briefly summarize the discovery and evolution of hQC inhibitors, with a particular interest in classic Zinc binding group (ZBG)-containing chemicals reported in recent years. Additionally, we highlight several high-potency inhibitors and discuss new trends and challenges in the development of QC inhibitors as an alternative and promising disease-modifying therapy for AD.
Collapse
Affiliation(s)
- Daoyuan Chen
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Qingxiu Chen
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Xiaofei Qin
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Peipei Tong
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Liping Peng
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Tao Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Institute of Basic Medicine, Fujian Medical University, Fuzhou, China
| | - Chunli Xia
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| |
Collapse
|
16
|
Rashad A, Rasool A, Shaheryar M, Sarfraz A, Sarfraz Z, Robles-Velasco K, Cherrez-Ojeda I. Donanemab for Alzheimer's Disease: A Systematic Review of Clinical Trials. Healthcare (Basel) 2022; 11:healthcare11010032. [PMID: 36611492 PMCID: PMC9818878 DOI: 10.3390/healthcare11010032] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
Amyloid-β (Aβ) plaques and aggregated tau are two core mechanisms that contribute to the clinical deterioration of Alzheimer’s disease (AD). Recently, targeted-Aβ plaque reduction immunotherapies have been explored for their efficacy and safety as AD treatment. This systematic review critically reviews the latest evidence of Donanemab, a humanized antibody that targets the reduction in Aβ plaques, in AD patients. Comprehensive systematic search was conducted across PubMed/MEDLINE, CINAHL Plus, Web of Science, Cochrane, and Scopus. This study adhered to PRISMA Statement 2020 guidelines. Adult patients with Alzheimer’s disease being intervened with Donanemab compared to placebo or standard of care in the clinical trial setting were included. A total of 396 patients across four studies received either Donanemab or a placebo (228 and 168 participants, respectively). The Aβ-plaque reduction was found to be dependent upon baseline levels, such that lower baseline levels had complete amyloid clearance (<24.1 Centiloids). There was a slowing of overall tau levels accumulation as well as relatively reduced functional and cognitive decline noted on the Integrated Alzheimer’s Disease Rating Scale by 32% in the Donanemab arm. The safety of Donanemab was established with key adverse events related to Amyloid-Related Imaging Abnormalities (ARIA), ranging between 26.1 and 30.5% across the trials. There is preliminary support for delayed cognitive and functional decline with Donanemab among patients with mild-to-moderate AD. It remains unclear whether Donenameb extends therapeutic benefits that can modify and improve the clinical status of AD patients. Further trials can explore the interplay between Aβ-plaque reduction and toxic tau levels to derive meaningful clinical benefits in AD patients suffering from cognitive impairment.
Collapse
Affiliation(s)
- Areeba Rashad
- Department of Research and Publications, Fatima Jinnah Medical University, Lahore 54000, Pakistan
| | - Atta Rasool
- Department of Research, Services Institute of Medical Sciences, Lahore 54000, Pakistan
| | - Muhammad Shaheryar
- Department of Research, Rawal Institute of Health Sciences, Islamabad 45550, Pakistan
| | - Azza Sarfraz
- Department of Pediatrics and Child Health, The Aga Khan University, Karachi 74800, Pakistan
- Correspondence: (A.S.); (I.C.-O.)
| | - Zouina Sarfraz
- Department of Research and Publications, Fatima Jinnah Medical University, Lahore 54000, Pakistan
| | - Karla Robles-Velasco
- Department of Allergy, Immunology & Pulmonary Medicine, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| | - Ivan Cherrez-Ojeda
- Department of Allergy, Immunology & Pulmonary Medicine, Universidad Espíritu Santo, Samborondón 092301, Ecuador
- Correspondence: (A.S.); (I.C.-O.)
| |
Collapse
|
17
|
Tsai KC, Zhang YX, Kao HY, Fung KM, Tseng TS. Pharmacophore-driven identification of human glutaminyl cyclase inhibitors from foods, plants and herbs unveils the bioactive property and potential of Azaleatin in the treatment of Alzheimer's disease. Food Funct 2022; 13:12632-12647. [PMID: 36416361 DOI: 10.1039/d2fo02507h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of disabilities in old age and a rapidly growing condition in the elderly population. AD brings significant burden and has a devastating impact on public health, society and the global economy. Thus, developing new therapeutics to combat AD is imperative. Human glutaminyl cyclase (hQC), which catalyzes the formation of neurotoxic pyroglutamate (pE)-modified β-amyloid (Aβ) peptides, is linked to the amyloidogenic process that leads to the initiation of AD. Hence, hQC is an essential target for developing anti-AD therapeutics. Here, we systematically screened and identified hQC inhibitors from natural products by pharmacophore-driven inhibitor screening coupled with biochemical and biophysical examinations. We employed receptor-ligand pharmacophore generation to build pharmacophore models and Phar-MERGE and Phar-SEN for inhibitor screening through ligand-pharmacophore mapping. About 11 and 24 hits identified from the Natural Product and Traditional Chinese Medicine databases, respectively, showed diverse hQC inhibitory abilities. Importantly, the inhibitors TCM1 (Azaleatin; IC50 = 1.1 μM) and TCM2 (Quercetin; IC50 = 4.3 μM) found in foods and plants exhibited strong inhibitory potency against hQC. Furthermore, the binding affinity and molecular interactions were analyzed by surface plasmon resonance (SPR) and molecular modeling/simulations to explore the possible modes of action of Azaleatin and Quercetin. Our study successfully screened and characterized the foundational biochemical and biophysical properties of Azaleatin and Quercetin toward targeting hQC, unveiling their bioactive potential in the treatment of AD.
Collapse
Affiliation(s)
- Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan. .,Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Xuan Zhang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.
| | - Hsiang-Yun Kao
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.
| | - Kit-Man Fung
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan. .,Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Tien-Sheng Tseng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
18
|
Discovery of potent indazole-based human glutaminyl cyclase (QC) inhibitors as Anti-Alzheimer's disease agents. Eur J Med Chem 2022; 244:114837. [DOI: 10.1016/j.ejmech.2022.114837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/20/2022]
|
19
|
Upregulation of Glutaminyl Cyclase Contributes to ERS-Induced Apoptosis in PC12 Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4154697. [PMID: 36479306 PMCID: PMC9722295 DOI: 10.1155/2022/4154697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/22/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022]
Abstract
Glutaminyl cyclase (QC) is responsible for converting the N-terminal glutaminyl and glutamyl of the proteins into pyroglutamate (pE) through cyclization. It has been confirmed that QC catalyzes the formation of neurotoxic pE-modified Aβ in the brain of AD patients. But the effects of upregulated QC in diverse diseases have not been much clear until recently. Here, RNA sequencing was applied to identify differentially expressed genes (DEGs) in PC12 cells with QC overexpressing or knockdown. A total of 697 DEGs were identified in QC overexpressing cells while only 77 in QC knockdown cells. Multiple bioinformatic approaches revealed that the DEGs in QC overexpressing group were enriched in endoplasmic reticulum stress (ERS) related signaling pathways. The gene expression patterns of 23 DEGs were confirmed by RT-qPCR, in which the genes related to ERS showed the highest consistency. We also revealed the protein levels of GRP78, PERK, CHOP, and PARP-1, and caspase family was significantly upregulated by overexpressing QC. Moreover, overexpressing QC significantly increased apoptosis of PC12 cells in a time dependent manner. However, no significant alteration was observed in QC knockdown cells. Therefore, our study indicated that upregulated QC could induce ERS and apoptosis, which consequently trigger diseases by catalyzing the generation of pE-modified mediators.
Collapse
|
20
|
Yao W, Yang H, Yang J. Small-molecule drugs development for Alzheimer's disease. Front Aging Neurosci 2022; 14:1019412. [PMID: 36389082 PMCID: PMC9664938 DOI: 10.3389/fnagi.2022.1019412] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible, progressive neurodegenerative brain disorder with no effective therapeutic drugs currently. The complicated pathophysiology of AD is not well understood, although beta-amyloid (Aβ) cascade and hyperphosphorylated tau protein were regarded as the two main causes of AD. Other mechanisms, such as oxidative stress, deficiency of central cholinergic neurotransmitters, mitochondrial dysfunction, and inflammation, were also proposed and studied as targets in AD. This review aims to summarize the small-molecule drugs that were developed based on the pathogenesis and gives a deeper understanding of the AD. We hope that it could help scientists find new and better treatments to gradually conquer the problems related to AD in future.
Collapse
|
21
|
Kumari S, Maddeboina K, Bachu RD, Boddu SHS, Trippier PC, Tiwari AK. Pivotal role of nitrogen heterocycles in Alzheimer's disease drug discovery. Drug Discov Today 2022; 27:103322. [PMID: 35868626 DOI: 10.1016/j.drudis.2022.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/21/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a detrimental neurodegenerative disease that progressively worsens with time. Clinical options are limited and only provide symptomatic relief to AD patients. The search for effective anti-AD compounds is ongoing with a few already in Phase III clinical trials, yet to be approved. Heterocycles containing nitrogen are important to biological processes owing to their abundance in nature, their function as subunits of biological molecules and/or macromolecular structures, and their biological activities. The present review discusses previously used strategies, SAR, relevant in vitro and in vivo studies, and success stories of nitrogen-containing heterocyclic compounds in AD drug discovery. Also, we propose strategies for designing and developing novel potent anti-AD small molecules that can be used as treatments for AD.
Collapse
Affiliation(s)
- Shikha Kumari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA.
| | - Krishnaiah Maddeboina
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute/Atrium Health, Charlotte, NC 28204, USA
| | - Rinda Devi Bachu
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Sai H S Boddu
- College of Pharmacy and Health Sciences, Ajman University, UAE; Center of Medical and Bio-allied Health Sciences Research, Ajman University, P.O. Box 346, Ajman, UAE
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, UNMC Center for Drug Discovery, Fred & Pamela Buffett Cancer Center, Omaha, NE 68198, USA
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA; Center of Medical and Bio-allied Health Sciences Research, Ajman University, P.O. Box 346, Ajman, UAE; Department of Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
22
|
Park E, Song KH, Kim D, Lee M, Van Manh N, Kim H, Hong KB, Lee J, Song JY, Kang S. 2-Amino-1,3,4-thiadiazoles as Glutaminyl Cyclases Inhibitors Increase Phagocytosis through Modification of CD47-SIRPα Checkpoint. ACS Med Chem Lett 2022; 13:1459-1467. [PMID: 36105338 PMCID: PMC9465712 DOI: 10.1021/acsmedchemlett.2c00256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Abstract
Glutaminyl cyclases (QC, isoQC) convert N-terminal glutamine or glutamate into pyroglutamate (pGlu) on substrates. IsoQC has recently been demonstrated to promote pGlu formation on the N-terminus of CD47, the SIRPα binding site, contributing to the "don't eat me" cancer immune signaling of CD47-SIRPα. We developed new QC inhibitors by applying a structure-based optimization approach starting from fragments identified through library screening. Screening of metal binding fragments identified 5-(1H-benzimidazol-5-yl)-1,3,4-thiadiazol-2-amine (9) as a potent fragment, and further modification provided 5-(1-(3-methoxy-4-(3-(piperidin-1-yl)propoxy)benzyl)-1H-benzo[d]imidazol-5-yl)-1,3,4-thiadiazol-2-amine (22b) as a potent QC inhibitor. Treatment with 22b in A549 and H1975 lung cancer cells decreased the CD47/αhCD47-CC2C6 interaction, indicative of the CD47/SIRPα interaction, and enhanced the increased phagocytic activity of both THP-1 and U937 macrophages.
Collapse
Affiliation(s)
- Eunsun Park
- College
of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyung-Hee Song
- Division
of Radiation Biomedical Research, Korea
Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Darong Kim
- New
Drug Development Center, Daegu-Gyeongbuk
Medical Innovation Foundation, Daegu 41061, Republic
of Korea
| | - Minyoung Lee
- Medifron
DBT, 517ho, JEI-Platz,
186, Gasan digital 1-ro, Geumcheon-gu, Seoul 08502, Republic of Korea
| | - Nguyen Van Manh
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hee Kim
- Medifron
DBT, 517ho, JEI-Platz,
186, Gasan digital 1-ro, Geumcheon-gu, Seoul 08502, Republic of Korea
| | - Ki Bum Hong
- New
Drug Development Center, Daegu-Gyeongbuk
Medical Innovation Foundation, Daegu 41061, Republic
of Korea
| | - Jeewoo Lee
- College
of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jie-Young Song
- Division
of Radiation Biomedical Research, Korea
Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Soosung Kang
- College
of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
23
|
Zhang Y, Wang Y, Zhao Z, Peng W, Wang P, Xu X, Zhao C. Glutaminyl cyclases, the potential targets of cancer and neurodegenerative diseases. Eur J Pharmacol 2022; 931:175178. [DOI: 10.1016/j.ejphar.2022.175178] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/03/2022]
|
24
|
Evidence for Enhanced Efficacy of Passive Immunotherapy against Beta-Amyloid in CD33-Negative 5xFAD Mice. Biomolecules 2022; 12:biom12030399. [PMID: 35327591 PMCID: PMC8945487 DOI: 10.3390/biom12030399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/10/2022] Open
Abstract
Passive immunotherapy is a very promising approach for the treatment of Alzheimer’s disease (AD). Among the different antibodies under development, those targeting post-translationally modified Aβ peptides might combine efficient reduction in beta-amyloid accompanied by lower sequestration in peripheral compartments and thus anticipated and reduced treatment-related side effects. In that regard, we recently demonstrated that the antibody-mediated targeting of isoD7-modified Aβ peptides leads to the attenuation of AD-like amyloid pathology in 5xFAD mice. In order to assess novel strategies to enhance the efficacy of passive vaccination approaches, we investigated the role of CD33 for Aβ phagocytosis in transgenic mice treated with an isoD7-Aβ antibody. We crossbred 5xFAD transgenic mice with CD33 knock out (CD33KO) mice and compared the amyloid pathology in the different genotypes of the crossbreds. The knockout of CD33 in 5xFAD mice leads to a significant reduction in Aβ plaques and concomitant rescue of behavioral deficits. Passive immunotherapy of 5xFAD/CD33KO showed a significant increase in plaque-surrounding microglia compared to 5xFAD treated with the antibody. Additionally, we observed a stronger lowering of Aβ plaque load after passive immunotherapy in 5xFAD/CD33KO mice. The data suggest an additive effect of passive immunotherapy and CD33KO in terms of lowering Aβ pathology. Hence, a combination of CD33 antagonists and monoclonal antibodies might represent a strategy to enhance efficacy of passive immunotherapy in AD.
Collapse
|
25
|
Hoffmann T, Rahfeld JU, Schenk M, Ponath F, Makioka K, Hutter-Paier B, Lues I, Lemere CA, Schilling S. Combination of the Glutaminyl Cyclase Inhibitor PQ912 (Varoglutamstat) and the Murine Monoclonal Antibody PBD-C06 (m6) Shows Additive Effects on Brain Aβ Pathology in Transgenic Mice. Int J Mol Sci 2021; 22:ijms222111791. [PMID: 34769222 PMCID: PMC8584206 DOI: 10.3390/ijms222111791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/07/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Compelling evidence suggests that pyroglutamate-modified Aβ (pGlu3-Aβ; AβN3pG) peptides play a pivotal role in the development and progression of Alzheimer’s disease (AD). Approaches targeting pGlu3-Aβ by glutaminyl cyclase (QC) inhibition (Varoglutamstat) or monoclonal antibodies (Donanemab) are currently in clinical development. Here, we aimed at an assessment of combination therapy of Varoglutamstat (PQ912) and a pGlu3-Aβ-specific antibody (m6) in transgenic mice. Whereas the single treatments at subtherapeutic doses show moderate (16–41%) but statistically insignificant reduction of Aβ42 and pGlu-Aβ42 in mice brain, the combination of both treatments resulted in significant reductions of Aβ by 45–65%. Evaluation of these data using the Bliss independence model revealed a combination index of ≈1, which is indicative for an additive effect of the compounds. The data are interpreted in terms of different pathways, in which the two drugs act. While PQ912 prevents the formation of pGlu3-Aβ in different compartments, the antibody is able to clear existing pGlu3-Aβ deposits. The results suggest that combination of the small molecule Varoglutamstat and a pE3Aβ-directed monoclonal antibody may allow a reduction of the individual compound doses while maintaining the therapeutic effect.
Collapse
Affiliation(s)
- Torsten Hoffmann
- Vivoryon Therapeutics N.V., Weinbergweg 22, 06120 Halle, Germany;
- Correspondence: (T.H.); (S.S.)
| | - Jens-Ulrich Rahfeld
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Weinbergweg 22, 06120 Halle, Germany; (J.-U.R.); (M.S.)
| | - Mathias Schenk
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Weinbergweg 22, 06120 Halle, Germany; (J.-U.R.); (M.S.)
| | - Falk Ponath
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, USA; (F.P.); (K.M.); (C.A.L.)
| | - Koki Makioka
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, USA; (F.P.); (K.M.); (C.A.L.)
| | - Birgit Hutter-Paier
- QPS Austria GmbH, Department of Neuropharmacology, Parkring 12, A-8074 Grambach, Austria;
| | - Inge Lues
- Vivoryon Therapeutics N.V., Weinbergweg 22, 06120 Halle, Germany;
| | - Cynthia A. Lemere
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, 60 Fenwood Rd., Boston, MA 02115, USA; (F.P.); (K.M.); (C.A.L.)
| | - Stephan Schilling
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Weinbergweg 22, 06120 Halle, Germany; (J.-U.R.); (M.S.)
- Anhalt University of Applied Sciences, Bernburger Straße 55, 06366 Köthen, Germany
- Correspondence: (T.H.); (S.S.)
| |
Collapse
|
26
|
Van Manh N, Hoang VH, Ngo VTH, Ann J, Jang TH, Ha JH, Song JY, Ha HJ, Kim H, Kim YH, Lee J, Lee J. Discovery of highly potent human glutaminyl cyclase (QC) inhibitors as anti-Alzheimer's agents by the combination of pharmacophore-based and structure-based design. Eur J Med Chem 2021; 226:113819. [PMID: 34536669 DOI: 10.1016/j.ejmech.2021.113819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022]
Abstract
The inhibition of glutaminyl cyclase (QC) may provide a promising strategy for the treatment of early Alzheimer's disease (AD) by reducing the amount of the toxic pyroform of β-amyloid (AβΝ3pE) in the brains of AD patients. In this work, we identified potent QC inhibitors with subnanomolar IC50 values that were up to 290-fold higher than that of PQ912, which is currently being tested in Phase II clinical trials. Among the tested compounds, the cyclopentylmethyl derivative (214) exhibited the most potent in vitro activity (IC50 = 0.1 nM), while benzimidazole (227) showed the most promising in vivo efficacy, selectivity and druggable profile. 227 significantly reduced the concentration of pyroform Aβ and total Aβ in the brain of an AD animal model and improved the alternation behavior of mice during Y-maze tests. The crystal structure of human QC (hQC) in complex with 214 indicated tight binding at the active site, supporting that the specific inhibition of QC results in potent in vitro and in vivo activity. Considering the recent clinical success of donanemab, which targets AβΝ3pE, small molecule-based QC inhibitors may also provide potential therapeutic options for early-stage AD treatment.
Collapse
Affiliation(s)
- Nguyen Van Manh
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Van-Hai Hoang
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Van T H Ngo
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea; Graduate Department of Healthcare Science, Dainam University, Hanoi, Viet Nam
| | - Jihyae Ann
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae-Ho Jang
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Jung-Hye Ha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Jae Young Song
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061, Republic of Korea
| | - Hee-Jin Ha
- Medifron DBT, Seoul, 08502, Republic of Korea
| | - Hee Kim
- Medifron DBT, Seoul, 08502, Republic of Korea
| | | | - Jiyoun Lee
- Department of Global Medical Science, Sungshin University, Seoul, 01133, Republic of Korea
| | - Jeewoo Lee
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
27
|
Hartlage-Rübsamen M, Bluhm A, Moceri S, Machner L, Köppen J, Schenk M, Hilbrich I, Holzer M, Weidenfeller M, Richter F, Coras R, Serrano GE, Beach TG, Schilling S, von Hörsten S, Xiang W, Schulze A, Roßner S. A glutaminyl cyclase-catalyzed α-synuclein modification identified in human synucleinopathies. Acta Neuropathol 2021; 142:399-421. [PMID: 34309760 PMCID: PMC8357657 DOI: 10.1007/s00401-021-02349-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022]
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder that is neuropathologically characterized by degeneration of dopaminergic neurons of the substantia nigra (SN) and formation of Lewy bodies and Lewy neurites composed of aggregated α-synuclein. Proteolysis of α-synuclein by matrix metalloproteinases was shown to facilitate its aggregation and to affect cell viability. One of the proteolysed fragments, Gln79-α-synuclein, possesses a glutamine residue at its N-terminus. We argue that glutaminyl cyclase (QC) may catalyze the pyroglutamate (pGlu)79-α-synuclein formation and, thereby, contribute to enhanced aggregation and compromised degradation of α-synuclein in human synucleinopathies. Here, the kinetic characteristics of Gln79-α-synuclein conversion into the pGlu-form by QC are shown using enzymatic assays and mass spectrometry. Thioflavin T assays and electron microscopy demonstrated a decreased potential of pGlu79-α-synuclein to form fibrils. However, size exclusion chromatography and cell viability assays revealed an increased propensity of pGlu79-α-synuclein to form oligomeric aggregates with high neurotoxicity. In brains of wild-type mice, QC and α-synuclein were co-expressed by dopaminergic SN neurons. Using a specific antibody against the pGlu-modified neo-epitope of α-synuclein, pGlu79-α-synuclein aggregates were detected in association with QC in brains of two transgenic mouse lines with human α-synuclein overexpression. In human brain samples of PD and dementia with Lewy body subjects, pGlu79-α-synuclein was shown to be present in SN neurons, in a number of Lewy bodies and in dystrophic neurites. Importantly, there was a spatial co-occurrence of pGlu79-α-synuclein with the enzyme QC in the human SN complex and a defined association of QC with neuropathological structures. We conclude that QC catalyzes the formation of oligomer-prone pGlu79-α-synuclein in human synucleinopathies, which may—in analogy to pGlu-Aβ peptides in Alzheimer’s disease—act as a seed for pathogenic protein aggregation.
Collapse
|
28
|
Chandran R, Dileep KV. Exploring the binding mode of PQ912 against secretory glutaminyl cyclase through systematic exploitation of conformational ensembles. Chem Biol Drug Des 2021; 98:850-856. [PMID: 34423556 DOI: 10.1111/cbdd.13940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/15/2021] [Accepted: 08/07/2021] [Indexed: 12/01/2022]
Abstract
Secretory glutaminyl cyclase (sQC) plays an important role in the formation of the pyroglutamate-amyloid beta (pGlu-Aβ) peptide, one of the most abundant variants of Aβ found in the Alzheimer's disease (AD) brain. This post-translationally modified pGlu-Aβ possesses high toxicity and rapid aggregation propensity when compared to the wild-type Aβ (WT-Aβ). Since pGlu-Aβ acts as seed for WT-Aβ, the inhibition of sQC limits the formation of pGlu-Aβ and reduces the overall load of Aβ plaques in the AD brain. PQ912 is a potent inhibitor of sQC and has been enrolled in phase 2b clinical trial of the AD drug development pipeline; however, the binding mode of PQ912 against sQC is not elucidated yet. Understanding the binding mode of PQ912 is important as it helps in the discovery against AD where sQC as a target. To explore the binding mode of PQ912, we employed ensemble docking towards 9 sQC structures that differ either in active site geometry or in the bound ligands. Further pose clustering and binding energy calculations yielded three possible binding modes for PQ912. Finally, all atom molecular dynamics simulations determined the most energetically favorable binding mode for PQ912, in the active site of sQC, which is similar to that of LSB-09, a recently reported sQC inhibitor containing benzimidazole-6-carboxamide moiety.
Collapse
Affiliation(s)
- Remya Chandran
- Department of Biotechnology and Microbiology, Kannur University, Thalassery, Kerala, India
| | - Kalarickal V Dileep
- Laboratory for Computational and Structural Biology, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| |
Collapse
|
29
|
Zarini-Gakiye E, Amini J, Sanadgol N, Vaezi G, Parivar K. Recent Updates in the Alzheimer's Disease Etiopathology and Possible Treatment Approaches: A Narrative Review of Current Clinical Trials. Curr Mol Pharmacol 2021; 13:273-294. [PMID: 32321414 DOI: 10.2174/1874467213666200422090135] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/19/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most frequent subtype of incurable neurodegenerative dementias and its etiopathology is still not clearly elucidated. OBJECTIVE Outline the ongoing clinical trials (CTs) in the field of AD, in order to find novel master regulators. METHODS We strictly reviewed all scientific reports from Clinicaltrials.gov and PubMed databases from January 2010 to January 2019. The search terms were "Alzheimer's disease" or "dementia" and "medicine" or "drug" or "treatment" and "clinical trials" and "interventions". Manuscripts that met the objective of this study were included for further evaluations. RESULTS Drug candidates have been categorized into two main groups including antibodies, peptides or hormones (such as Ponezumab, Interferon β-1a, Solanezumab, Filgrastim, Levemir, Apidra, and Estrogen), and naturally-derived ingredients or small molecules (such as Paracetamol, Ginkgo, Escitalopram, Simvastatin, Cilostazo, and Ritalin-SR). The majority of natural candidates acted as anti-inflammatory or/and anti-oxidant and antibodies exert their actions via increasing amyloid-beta (Aβ) clearance or decreasing Tau aggregation. Among small molecules, most of them that are present in the last phases act as specific antagonists (Suvorexant, Idalopirdine, Intepirdine, Trazodone, Carvedilol, and Risperidone) or agonists (Dextromethorphan, Resveratrol, Brexpiprazole) and frequently ameliorate cognitive dysfunctions. CONCLUSION The presences of a small number of candidates in the last phase suggest that a large number of candidates have had an undesirable side effect or were unable to pass essential eligibility for future phases. Among successful treatment approaches, clearance of Aβ, recovery of cognitive deficits, and control of acute neuroinflammation are widely chosen. It is predicted that some FDA-approved drugs, such as Paracetamol, Risperidone, Escitalopram, Simvastatin, Cilostazoand, and Ritalin-SR, could also be used in off-label ways for AD. This review improves our ability to recognize novel treatments for AD and suggests approaches for the clinical trial design for this devastating disease in the near future.
Collapse
Affiliation(s)
- Elahe Zarini-Gakiye
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Javad Amini
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran,Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Gholamhassan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
30
|
Baumann N, Rösner T, Jansen JHM, Chan C, Marie Eichholz K, Klausz K, Winterberg D, Müller K, Humpe A, Burger R, Peipp M, Schewe DM, Kellner C, Leusen JHW, Valerius T. Enhancement of epidermal growth factor receptor antibody tumor immunotherapy by glutaminyl cyclase inhibition to interfere with CD47/signal regulatory protein alpha interactions. Cancer Sci 2021; 112:3029-3040. [PMID: 34058788 PMCID: PMC8353920 DOI: 10.1111/cas.14999] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/17/2021] [Accepted: 05/23/2021] [Indexed: 12/21/2022] Open
Abstract
Integrin associated protein (CD47) is an important target in immunotherapy, as it is expressed as a "don't eat me" signal on many tumor cells. Interference with its counter molecule signal regulatory protein alpha (SIRPα), expressed on myeloid cells, can be achieved with blocking Abs, but also by inhibiting the enzyme glutaminyl cyclase (QC) with small molecules. Glutaminyl cyclase inhibition reduces N-terminal pyro-glutamate formation of CD47 at the SIRPα binding site. Here, we investigated the impact of QC inhibition on myeloid effector cell-mediated tumor cell killing by epidermal growth factor receptor (EGFR) Abs and the influence of Ab isotypes. SEN177 is a QC inhibitor and did not interfere with EGFR Ab-mediated direct growth inhibition, complement-dependent cytotoxicity, or Ab-dependent cell-mediated cytotoxicity (ADCC) by mononuclear cells. However, binding of a human soluble SIRPα-Fc fusion protein to SEN177 treated cancer cells was significantly reduced in a dose-dependent manner, suggesting that pyro-glutamate formation of CD47 was affected. Glutaminyl cyclase inhibition in tumor cells translated into enhanced Ab-dependent cellular phagocytosis by macrophages and enhanced ADCC by polymorphonuclear neutrophilic granulocytes. Polymorphonuclear neutrophilic granulocyte-mediated ADCC was significantly more effective with EGFR Abs of human IgG2 or IgA2 isotypes than with IgG1 Abs, proposing that the selection of Ab isotypes could critically affect the efficacy of Ab therapy in the presence of QC inhibition. Importantly, QC inhibition also enhanced the therapeutic efficacy of EGFR Abs in vivo. Together, these results suggest a novel approach to specifically enhance myeloid effector cell-mediated efficacy of EGFR Abs by orally applicable small molecule QC inhibitors.
Collapse
Affiliation(s)
- Niklas Baumann
- Section for Stem Cell Transplantation and ImmunotherapyDepartment of Medicine IIChristian‐Albrechts‐University Kiel and University Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - Thies Rösner
- Section for Stem Cell Transplantation and ImmunotherapyDepartment of Medicine IIChristian‐Albrechts‐University Kiel and University Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - J. H. Marco Jansen
- Immunotherapy LaboratoryCenter for Translational ImmunologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Chilam Chan
- Immunotherapy LaboratoryCenter for Translational ImmunologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Klara Marie Eichholz
- Section for Stem Cell Transplantation and ImmunotherapyDepartment of Medicine IIChristian‐Albrechts‐University Kiel and University Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - Katja Klausz
- Section for Stem Cell Transplantation and ImmunotherapyDepartment of Medicine IIChristian‐Albrechts‐University Kiel and University Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - Dorothee Winterberg
- Pediatric Hematology/OncologyALL‐BFM Study GroupChristian‐Albrechts‐University Kiel and University Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - Kristina Müller
- Pediatric Hematology/OncologyALL‐BFM Study GroupChristian‐Albrechts‐University Kiel and University Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - Andreas Humpe
- Department of Transfusion Medicine, Cell Therapeutics and HemostaseologyUniversity HospitalLMU MunichMunichGermany
| | - Renate Burger
- Section for Stem Cell Transplantation and ImmunotherapyDepartment of Medicine IIChristian‐Albrechts‐University Kiel and University Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - Matthias Peipp
- Section for Stem Cell Transplantation and ImmunotherapyDepartment of Medicine IIChristian‐Albrechts‐University Kiel and University Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - Denis M. Schewe
- Pediatric Hematology/OncologyALL‐BFM Study GroupChristian‐Albrechts‐University Kiel and University Medical Center Schleswig‐Holstein, Campus KielKielGermany
| | - Christian Kellner
- Department of Transfusion Medicine, Cell Therapeutics and HemostaseologyUniversity HospitalLMU MunichMunichGermany
| | - Jeanette H. W. Leusen
- Immunotherapy LaboratoryCenter for Translational ImmunologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Thomas Valerius
- Section for Stem Cell Transplantation and ImmunotherapyDepartment of Medicine IIChristian‐Albrechts‐University Kiel and University Medical Center Schleswig‐Holstein, Campus KielKielGermany
| |
Collapse
|
31
|
Coimbra JRM, Salvador JAR. A patent review of glutaminyl cyclase inhibitors (2004-present). Expert Opin Ther Pat 2021; 31:809-836. [PMID: 33896339 DOI: 10.1080/13543776.2021.1917549] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Glutaminyl cyclase (QC) enzymes catalyze the post-translational processing of several substrates with N-terminal glutamine or glutamate to form pyroglutamate (pE) residue. In addition to physiological functions, emerging evidence demonstrates that human QCs play a part in pathological processes in diverse diseases such as Alzheimer's disease (AD), inflammatory and cancer diseases.Areas covered: In recent years, efforts to effectively develop QC small-molecule inhibitors have been made and different chemical classes have been disclosed. This review summarizes the patents/applications regarding QC inhibitors released from 2004 (first patent) to now. The patents are mostly described in terms of chemical structures, biochemical/pharmacological activities, and potential clinical applications.Expert opinion: For more than 15 years of research, the knowledge on the QC activity domain has considerably increased and therapeutic potential of QC inhibitors has been explored. An important number of studies and patents have been published to expand the use of QC inhibitors. QC enzymes are pharmacologically interesting targets to be used as an AD-modifying therapy, or for other QC-associated disorder. Distinct classes of chemical scaffolds and potential clinical uses have been claimed by various organizations. For the coming years, there is much to experience in the QC field.
Collapse
Affiliation(s)
- Judite R M Coimbra
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology (CNC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
32
|
Xu C, Wang YN, Wu H. Glutaminyl Cyclase, Diseases, and Development of Glutaminyl Cyclase Inhibitors. J Med Chem 2021; 64:6549-6565. [PMID: 34000808 DOI: 10.1021/acs.jmedchem.1c00325] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pyroglutamate (pE) modification, catalyzed mainly by glutaminyl cyclase (QC), is prevalent throughout nature and is particularly important in mammals including humans for the maturation of hormones, peptides, and proteins. In humans, the upregulation of QC is involved in multiple diseases and conditions including Alzheimer's disease, Huntington's disease, melanomas, thyroid carcinomas, accelerated atherosclerosis, septic arthritics, etc. This upregulation catalyzes the generation of modified mediators such as pE-amyloid beta (Aß) and pE-chemokine ligand 2 (CCL2) peptides. Not surprisingly, QC has emerged as a reasonable target for the development of therapeutics to combat these diseases and conditions. In this manuscript the deleterious effects of upregulated QC resulting in disease manifestation are reviewed, along with progress on the development of QC inhibitors.
Collapse
Affiliation(s)
- Chenshu Xu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yi-Nan Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Haiqiang Wu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
33
|
Vijayan D, Chandra R. Amyloid Beta Hypothesis in Alzheimer's Disease: Major Culprits and Recent Therapeutic Strategies. Curr Drug Targets 2021; 21:148-166. [PMID: 31385768 DOI: 10.2174/1389450120666190806153206] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/13/2019] [Accepted: 07/26/2019] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia and has been a global concern for several years. Due to the multi-factorial nature of the disease, AD has become irreversible, fatal and imposes a tremendous socio-economic burden. Even though experimental medicines suggested moderate benefits, AD still lacks an effective treatment strategy for the management of symptoms or cure. Among the various hypotheses that describe development and progression of AD, the amyloid hypothesis has been a long-term adherent to the AD due to the involvement of various forms of Amyloid beta (Aβ) peptides in the impairment of neuronal and cognitive functions. Hence, majority of the drug discovery approaches in the past have focused on the prevention of the accumulation of Aβ peptides. Currently, there are several agents in the phase III clinical trials that target Aβ or the various macromolecules triggering Aβ deposition. In this review, we present the state of the art knowledge on the functional aspects of the key players involved in the amyloid hypothesis. Furthermore, we also discuss anti-amyloid agents present in the Phase III clinical trials.
Collapse
Affiliation(s)
- Dileep Vijayan
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Remya Chandra
- Department of Biotechnology and Microbiology, Thalassery Campus, Kannur University, Kerala Pin 670 661, India
| |
Collapse
|
34
|
Kumar A, Bagri K, Nimbhal M, Kumar P. In silico exploration of the fingerprints triggering modulation of glutaminyl cyclase inhibition for the treatment of Alzheimer's disease using SMILES based attributes in Monte Carlo optimization. J Biomol Struct Dyn 2020; 39:7181-7193. [PMID: 32795153 DOI: 10.1080/07391102.2020.1806111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease is the most common neurodegenerative disorder and being a social burden Alzheimer's has become an economic liability on developing countries. With limited understanding regarding the cause of disease, it is commonly identified by extracellular deposit of amyloid β (Aβ) peptides as senile plaques. Pyroglutamated Aβ is identified from the brain of AD patients and constituted the majority of total Aβ present. The formation of Pyroglutamated Aβ could be hindered by the use of Glutaminyl cyclase inhibitors and could efficiently improve the symptoms of Alzheimer's. The literature revealed the competence of quantitative structure activity/property relationship studies in drug discovery. The present work explores the efficiency of Monte Carlo based QSAR modelling studies on a dataset of 125 Glutaminyl cyclase inhibitors with pKi taken as the endpoint for QSAR analysis. The dataset is divided into training, subtraining, calibration and validation sets resulting in the generation of five random splits. The validation is performed in accordance with the Organization of Economic Corporation and Development principles. The values of R2, Q2, index of ideality of correlation, concordance correlation coefficient, av. rm2 and delta rm2 of calibration set of the best split are found to be 0.9012, 0.8775, 0.9479, 0.9435, 0.8347 and 0.0847, respectively. The structural features responsible for increasing the inhibitory activity are identified. These structural features are added to a base compound from the dataset to design six novel molecules. These new molecules possess improved inhibitory activity as compare to the base compound. The results are further supported by docking studies.Communicated by Vsevolod Makeev.
Collapse
Affiliation(s)
- Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Kiran Bagri
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Manisha Nimbhal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
35
|
Neddens J, Daurer M, Flunkert S, Beutl K, Loeffler T, Walker L, Attems J, Hutter-Paier B. Correlation of pyroglutamate amyloid β and ptau Ser202/Thr205 levels in Alzheimer's disease and related murine models. PLoS One 2020; 15:e0235543. [PMID: 32645028 PMCID: PMC7347153 DOI: 10.1371/journal.pone.0235543] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/17/2020] [Indexed: 01/14/2023] Open
Abstract
Senile plaques frequently contain Aβ-pE(3), a N-terminally truncated Aβ species that is more closely linked to AD compared to other Aβ species. Tau protein is highly phosphorylated at several residues in AD, and specifically phosphorylation at Ser202/Thr205 is known to be increased in AD. Several studies suggest that formation of plaques and tau phosphorylation might be linked to each other. To evaluate if Aβ-pE(3) and ptau Ser202/Thr205 levels correlate in human and transgenic AD mouse models, we analyzed human cortical and hippocampal brain tissue of different Braak stages as well as murine brain tissue of two transgenic mouse models for levels of Aβ-pE(3) and ptau Ser202/Thr205 and correlated the data. Our results show that Aβ-pE(3) formation is increased at early Braak stages while ptau Ser202/Thr205 mostly increases at later stages. Further analyses revealed strongest correlations between the two pathologies in the temporal, frontal, cingulate, and occipital cortex, however correlation in the hippocampus was weaker. Evaluation of murine transgenic brain tissue demonstrated a slow but steady increase of Aβ-pE(3) from 6 to 12 months of age in the cortex and hippocampus of APPSL mice, and a very early and strong Aβ-pE(3) increase in 5xFAD mice. ptau Ser202/Thr205 levels increased at the age of 9 months in APPSL mice and at 6 months in 5xFAD mice. Our results show that Aβ-pE(3) and ptau Ser202/Thr205 levels strongly correlate in human as well as murine tissues, suggesting that tau phosphorylation might be amplified by Aβ-pE(3).
Collapse
Affiliation(s)
| | | | | | - Kerstin Beutl
- QPS Austria GmbH, Grambach, Austria
- FH Joanneum Graz, Graz, Austria
| | | | - Lauren Walker
- Translational and Clinical Research Institute and Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Johannes Attems
- Translational and Clinical Research Institute and Newcastle University Institute for Ageing, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | | |
Collapse
|
36
|
Hettmann T, Gillies SD, Kleinschmidt M, Piechotta A, Makioka K, Lemere CA, Schilling S, Rahfeld JU, Lues I. Development of the clinical candidate PBD-C06, a humanized pGlu3-Aβ-specific antibody against Alzheimer's disease with reduced complement activation. Sci Rep 2020; 10:3294. [PMID: 32094456 PMCID: PMC7040040 DOI: 10.1038/s41598-020-60319-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/08/2020] [Indexed: 11/09/2022] Open
Abstract
In clinical trials with early Alzheimer's patients, administration of anti-amyloid antibodies reduced amyloid deposits, suggesting that immunotherapies may be promising disease-modifying interventions against Alzheimer's disease (AD). Specific forms of amyloid beta (Aβ) peptides, for example post-translationally modified Aβ peptides with a pyroglutamate at the N-terminus (pGlu3, pE3), are attractive antibody targets, due to pGlu3-Aβ's neo-epitope character and its propensity to form neurotoxic oligomeric aggregates. We have generated a novel anti-pGlu3-Aβ antibody, PBD-C06, which is based on a murine precursor antibody that binds with high specificity to pGlu3-Aβ monomers, oligomers and fibrils, including mixed aggregates of unmodified Aβ and pGlu3-Aβ peptides. PBD-C06 was generated by first grafting the murine antigen binding sequences onto suitable human variable light and heavy chains. Subsequently, the humanized antibody was de-immunized and site-specific mutations were introduced to restore original target binding, to eliminate complement activation and to improve protein stability. PBD-C06 binds with the same specificity and avidity as its murine precursor antibody and elimination of C1q binding did not compromise Fcγ-receptor binding or in vitro phagocytosis. Thus, PBD-C06 was specifically designed to target neurotoxic aggregates and to avoid complement-mediated inflammatory responses, in order to lower the risk for vasogenic edemas in the clinic.
Collapse
Affiliation(s)
- Thore Hettmann
- Vivoryon Therapeutics AG, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Stephen D Gillies
- Provenance Biopharmaceuticals, 70 Bedford Rd, Carlisle, MA, 01741, USA
| | - Martin Kleinschmidt
- Fraunhofer Institute for Cell Therapy and Immunology, Department Molecular Drug Biochemistry and Therapy, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Anke Piechotta
- Fraunhofer Institute for Cell Therapy and Immunology, Department Molecular Drug Biochemistry and Therapy, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Koki Makioka
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Cynthia A Lemere
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Stephan Schilling
- Vivoryon Therapeutics AG, Weinbergweg 22, 06120, Halle (Saale), Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Department Molecular Drug Biochemistry and Therapy, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Jens-Ulrich Rahfeld
- Vivoryon Therapeutics AG, Weinbergweg 22, 06120, Halle (Saale), Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, Department Molecular Drug Biochemistry and Therapy, Weinbergweg 22, 06120, Halle (Saale), Germany.
| | - Inge Lues
- Vivoryon Therapeutics AG, Weinbergweg 22, 06120, Halle (Saale), Germany
| |
Collapse
|
37
|
Briels C, Stam C, Scheltens P, Bruins S, Lues I, Gouw A. In pursuit of a sensitive EEG functional connectivity outcome measure for clinical trials in Alzheimer’s disease. Clin Neurophysiol 2020; 131:88-95. [DOI: 10.1016/j.clinph.2019.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/19/2019] [Accepted: 09/15/2019] [Indexed: 01/01/2023]
|
38
|
Wirths O, Zampar S. Emerging roles of N- and C-terminally truncated Aβ species in Alzheimer’s disease. Expert Opin Ther Targets 2019; 23:991-1004. [DOI: 10.1080/14728222.2019.1702972] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Oliver Wirths
- Department of Psychiatry and Psychotherapy, Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - Silvia Zampar
- Department of Psychiatry and Psychotherapy, Molecular Psychiatry, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| |
Collapse
|
39
|
Abstract
A diverse range of N-terminally truncated and modified forms of amyloid-β (Aβ) oligomers have been discovered in Alzheimer’s disease brains, including the pyroglutamate-Aβ (AβpE3). AβpE3 species are shown to be more neurotoxic when compared with the full-length Aβ peptide. Findings visibly suggest that glutaminyl cyclase (QC) catalyzed the generation of cerebral AβpE3, and therapeutic effects are achieved by reducing its activity. In recent years, efforts to effectively develop QC inhibitors have been pursued worldwide. The inhibitory activity of current QC inhibitors is mainly triggered by zinc-binding groups that coordinate Zn2+ ion in the active site and other common features. Herein, we summarized the current state of discovery and evolution of QC inhibitors as a potential Alzheimer’s disease-modifying strategy.
Collapse
|
40
|
Wang X, Wang L, Yu X, Li Y, Liu Z, Zou Y, Zheng Y, He Z, Wu H. Glutaminyl cyclase inhibitor exhibits anti-inflammatory effects in both AD and LPS-induced inflammatory model mice. Int Immunopharmacol 2019; 75:105770. [DOI: 10.1016/j.intimp.2019.105770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/13/2019] [Accepted: 07/18/2019] [Indexed: 01/08/2023]
|
41
|
High-throughput genome-wide phenotypic screening via immunomagnetic cell sorting. Nat Biomed Eng 2019; 3:796-805. [DOI: 10.1038/s41551-019-0454-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
|
42
|
Vijayan DK, Zhang KY. Human glutaminyl cyclase: Structure, function, inhibitors and involvement in Alzheimer’s disease. Pharmacol Res 2019; 147:104342. [DOI: 10.1016/j.phrs.2019.104342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/19/2019] [Accepted: 07/02/2019] [Indexed: 12/20/2022]
|
43
|
Hoang VH, Ngo VTH, Cui M, Manh NV, Tran PT, Ann J, Ha HJ, Kim H, Choi K, Kim YH, Chang H, Macalino SJY, Lee J, Choi S, Lee J. Discovery of Conformationally Restricted Human Glutaminyl Cyclase Inhibitors as Potent Anti-Alzheimer's Agents by Structure-Based Design. J Med Chem 2019; 62:8011-8027. [PMID: 31411468 DOI: 10.1021/acs.jmedchem.9b00751] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is an incurable, progressive neurodegenerative disease whose pathogenesis cannot be defined by one single element but consists of various factors; thus, there is a call for alternative approaches to tackle the multifaceted aspects of AD. Among the potential alternative targets, we aim to focus on glutaminyl cyclase (QC), which reduces the toxic pyroform of β-amyloid in the brains of AD patients. On the basis of a putative active conformation of the prototype inhibitor 1, a series of N-substituted thiourea, urea, and α-substituted amide derivatives were developed. The structure-activity relationship analyses indicated that conformationally restrained inhibitors demonstrated much improved QC inhibition in vitro compared to nonrestricted analogues, and several selected compounds demonstrated desirable therapeutic activity in an AD mouse model. The conformational analysis of a representative inhibitor indicated that the inhibitor appeared to maintain the Z-E conformation at the active site, as it is critical for its potent activity.
Collapse
Affiliation(s)
- Van-Hai Hoang
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Van T H Ngo
- Laboratory of Theoretical and Computational Biophysics & Faculty of Pharmacy , Ton Duc Thang University , Ho Chi Minh City 75307 , Vietnam
| | - Minghua Cui
- National Leading Research Laboratory of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Nguyen Van Manh
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Phuong-Thao Tran
- Department of Pharmaceutical Chemistry , Hanoi University of Pharmacy , Hanoi 10000 , Vietnam
| | - Jihyae Ann
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Hee-Jin Ha
- Medifron DBT , Sandanro 349 , Danwon-Gu, Ansan-City , Gyeonggi-Do 15426 , Republic of Korea
| | - Hee Kim
- Medifron DBT , Sandanro 349 , Danwon-Gu, Ansan-City , Gyeonggi-Do 15426 , Republic of Korea
| | - Kwanghyun Choi
- Medifron DBT , Sandanro 349 , Danwon-Gu, Ansan-City , Gyeonggi-Do 15426 , Republic of Korea
| | - Young-Ho Kim
- Medifron DBT , Sandanro 349 , Danwon-Gu, Ansan-City , Gyeonggi-Do 15426 , Republic of Korea
| | - Hyerim Chang
- National Leading Research Laboratory of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Stephani Joy Y Macalino
- National Leading Research Laboratory of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Jiyoun Lee
- Department of Global Medical Science , Sungshin University , Seoul 01133 , Republic of Korea
| | - Sun Choi
- National Leading Research Laboratory of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences , Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Jeewoo Lee
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| |
Collapse
|
44
|
Glutaminyl cyclase is an enzymatic modifier of the CD47- SIRPα axis and a target for cancer immunotherapy. Nat Med 2019; 25:612-619. [PMID: 30833751 PMCID: PMC7025889 DOI: 10.1038/s41591-019-0356-z] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/14/2019] [Indexed: 12/28/2022]
Abstract
Cancer cells can evade immune surveillance through the expression of inhibitory ligands that bind their cognate receptors on immune effector cells. Expression of programmed death ligand 1 in tumor microenvironments is a major immune checkpoint for tumor-specific T cell responses as it binds to programmed cell death protein-1 on activated and dysfunctional T cells1. The activity of myeloid cells such as macrophages and neutrophils is likewise regulated by a balance between stimulatory and inhibitory signals. In particular, cell surface expression of the CD47 protein creates a 'don't eat me' signal on tumor cells by binding to SIRPα expressed on myeloid cells2-5. Using a haploid genetic screen, we here identify glutaminyl-peptide cyclotransferase-like protein (QPCTL) as a major component of the CD47-SIRPα checkpoint. Biochemical analysis demonstrates that QPCTL is critical for pyroglutamate formation on CD47 at the SIRPα binding site shortly after biosynthesis. Genetic and pharmacological interference with QPCTL activity enhances antibody-dependent cellular phagocytosis and cellular cytotoxicity of tumor cells. Furthermore, interference with QPCTL expression leads to a major increase in neutrophil-mediated killing of tumor cells in vivo. These data identify QPCTL as a novel target to interfere with the CD47 pathway and thereby augment antibody therapy of cancer.
Collapse
|
45
|
Bender P, Egger A, Westermann M, Taudte N, Sculean A, Potempa J, Möller B, Buchholz M, Eick S. Expression of human and Porphyromonas gingivalis glutaminyl cyclases in periodontitis and rheumatoid arthritis-A pilot study. Arch Oral Biol 2018; 97:223-230. [PMID: 30399509 DOI: 10.1016/j.archoralbio.2018.10.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Human glutaminyl cyclases (QC and isoQC) play an important role in maintaining inflammatory conditions. Meanwhile a glutaminyl cyclase synthesized by Porphyromonas gingivalis (PgQC), a key pathogen in developing periodontitis and a potential link of periodontitis with rheumatoid arthritis (RA), was discovered. This study was aimed to determine the expression of QC, isoQC and PgQC in patients with chronic periodontitis (CP) and RA. DESIGN Thirty volunteers were enrolled in a pilot study and divided into 3 groups (healthy, CP and RA individuals). Blood samples, biofilm and gingival crevicular fluid (GCF) were analysed for mRNA expression of QC, isoQC and P. gingivalis QC. Major bacteria being associated with periodontal disease were quantified in subgingival biofilm and protein levels for monocyte chemoattractant protein (MCP)-1, MCP-3 and interleukin (IL)-1β) were determined in the GCF. Expression of PgQC on the mRNA and protein levels was assessed in two P. gingivalis strains. RESULTS PgQC is expressed in P. gingivalis strains and the protein seems to be located mainly in peri-plasmatic space. mRNA expression of QC was significantly increased in the peripheral blood from RA patients vs. healthy subjects and CP patients (p = 0.013 and p = 0.003, respectively). In GCF of RA patients, QC mRNA was detected more frequently than in healthy controls (p = 0.043). In these samples IL-1β levels were also elevated compared to GCF from periodontally healthy individuals (p = 0.003). PgQC was detected in eight out of the 13 P. gingivalis positive biofilm samples. CONCLUSION Activity of QC may play a supportive role in maintaining chronic periodontal inflammation and destruction in RA. PgQC is expressed in vivo but further research is needed to evaluate biological importance of this enzyme and if it constitutes a potential target in periodontal antimicrobial therapy.
Collapse
Affiliation(s)
- Philip Bender
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Andreas Egger
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Martin Westermann
- Center of Electron Microscopy, University Hospital of Jena, Jena, Germany
| | - Nadine Taudte
- Fraunhofer Institute for Cell Therapy and Immunology IZI-MWT, Halle/Saale, Germany
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University Krakow, Krakow, Poland; Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, USA
| | - Burkhard Möller
- Department of Rheumatology, Clinical Immunology and Allergology, University Hospital of Bern, Bern, Switzerland
| | - Mirko Buchholz
- Fraunhofer Institute for Cell Therapy and Immunology IZI-MWT, Halle/Saale, Germany
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
46
|
Scheltens P, Hallikainen M, Grimmer T, Duning T, Gouw AA, Teunissen CE, Wink AM, Maruff P, Harrison J, van Baal CM, Bruins S, Lues I, Prins ND. Safety, tolerability and efficacy of the glutaminyl cyclase inhibitor PQ912 in Alzheimer's disease: results of a randomized, double-blind, placebo-controlled phase 2a study. ALZHEIMERS RESEARCH & THERAPY 2018; 10:107. [PMID: 30309389 PMCID: PMC6182869 DOI: 10.1186/s13195-018-0431-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/10/2018] [Indexed: 01/10/2023]
Abstract
Background PQ912 is an inhibitor of the glutaminyl cyclase enzyme that plays a central role in the formation of synaptotoxic pyroglutamate-A-beta oligomers. We report on the first clinical study with PQ912 in subjects with biomarker-proven Alzheimer’s disease (AD). The aim was to determine the maximal tolerated dose, target occupancy and treatment-related pharmacodynamic effects. The exploratory efficacy readouts selected were tailored to the patient population with early AD. The therapeutic approach focuses on synaptic dysfunction as captured by various measures such as electroencephalography (EEG), synaptic biomarkers and sensitive cognitive tests. Methods This was a randomized, double-blind, placebo-controlled trial evaluating the safety, tolerability and efficacy of PQ912 800 mg twice daily (bid) for 12 weeks in subjects with mild cognitive impairment or mild dementia due to AD. The 120 enrolled subjects were treatment-naïve at the start of the study, had confirmed AD biomarkers in their cerebrospinal fluid at screening and had a Mini Mental State Examination score between 21 and 30. After 1 week of treatment with 400 mg bid, patients were up-titrated to 800 mg bid for 11 weeks. Patients were randomized 1:1 to either PQ912 or placebo. The primary composite endpoints were to assess safety and tolerability based on the number of patients who discontinued due to (serious) adverse events (safety), and based on dose adjustment during the treatment period and/or nonadherence to randomized treatment (tolerability). All randomized subjects who took at least one dose of the study treatment or placebo were used for safety analyses. Results There was no significant difference between treatments in the number of subjects with (serious) adverse events, although there were slightly more patients with a serious adverse event in the PQ912 group compared to placebo. More subjects treated with PQ912 discontinued treatment due to adverse events, mostly related to gastrointestinal and skin/subcutaneous tissue disorders. PQ912 treatment resulted in a significant reduction in glutaminyl cyclase activity, which resulted in an average target occupancy of > 90%. A significant reduction of theta power in the EEG frequency analysis and a significant improvement in the One Back test of our Neuropsychological Test Battery was observed. The exploratory biomarker readouts, neurogranin for synaptic toxicity and YKL-40 as a marker of inflammation, appear to be sensitive enough to serve as efficacy markers in the next phase 2b study. Conclusions The maximal tolerated dose of PQ912 has been identified and the results support future studies at still lower doses reaching > 50% target occupancy, a longer up-titration phase to potentially induce adaptation and longer treatment periods to confirm the early signals of efficacy as seen in this study. Trial registration Clinicaltrials.gov, NCT 02389413. Registered on 17 March 2015. Electronic supplementary material The online version of this article (10.1186/s13195-018-0431-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Philip Scheltens
- Alzheimer Center and Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands.
| | - Merja Hallikainen
- University of Eastern Finland, Institute of Clinical Medicine, Kuopio, Finland
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Thomas Duning
- Department of Neurology, University of Münster, Münster, Germany
| | - Alida A Gouw
- Alzheimer Center and Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands.,Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Department of Clinical Chemistry, Neurochemistry Laboratory and Biobank, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Alle Meije Wink
- Department of Radiology, Nuclear Medicine and PET Research, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | | | - John Harrison
- Alzheimer Center and Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Caroline M van Baal
- Julius Center for Health Sciences and Primary Care, UMC Utrecht, Utrecht, The Netherlands
| | | | | | - Niels D Prins
- Alzheimer Center and Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands.,Brain Research Center, Amsterdam, The Netherlands
| |
Collapse
|
47
|
The structure of the human glutaminyl cyclase–SEN177 complex indicates routes for developing new potent inhibitors as possible agents for the treatment of neurological disorders. J Biol Inorg Chem 2018; 23:1219-1226. [DOI: 10.1007/s00775-018-1605-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/16/2018] [Indexed: 12/17/2022]
|
48
|
Structure-activity relationship investigation of Phe-Arg mimetic region of human glutaminyl cyclase inhibitors. Bioorg Med Chem 2018; 26:3133-3144. [DOI: 10.1016/j.bmc.2018.04.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 11/20/2022]
|
49
|
Schilling S, Rahfeld JU, Lues I, Lemere CA. Passive Aβ Immunotherapy: Current Achievements and Future Perspectives. Molecules 2018; 23:molecules23051068. [PMID: 29751505 PMCID: PMC6099643 DOI: 10.3390/molecules23051068] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 12/28/2022] Open
Abstract
Passive immunotherapy has emerged as a very promising approach for the treatment of Alzheimer’s disease and other neurodegenerative disorders, which are characterized by the misfolding and deposition of amyloid peptides. On the basis of the amyloid hypothesis, the majority of antibodies in clinical development are directed against amyloid β (Aβ), the primary amyloid component in extracellular plaques. This review focuses on the current status of Aβ antibodies in clinical development, including their characteristics and challenges that came up in clinical trials with these new biological entities (NBEs). Emphasis is placed on the current view of common side effects observed with passive immunotherapy, so-called amyloid-related imaging abnormalities (ARIAs), and potential ways to overcome this issue. Among these new ideas, a special focus is placed on molecules that are directed against post-translationally modified variants of the Aβ peptide, an emerging approach for development of new antibody molecules.
Collapse
Affiliation(s)
- Stephan Schilling
- Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, 06120 Halle (Saale), Germany.
| | - Jens-Ulrich Rahfeld
- Fraunhofer Institute for Cell Therapy and Immunology, Department for Drug Design and Target Validation, 06120 Halle (Saale), Germany.
| | - Inge Lues
- Probiodrug AG, 06120 Halle (Saale), Germany.
| | - Cynthia A Lemere
- Ann Romney Center for Neurologic Diseases, Brigham and Womens's Hospital, Harvard Medical School, Boston, MA 02116, USA.
| |
Collapse
|
50
|
Hartlage-Rübsamen M, Bluhm A, Piechotta A, Linnert M, Rahfeld JU, Demuth HU, Lues I, Kuhn PH, Lichtenthaler SF, Roßner S, Höfling C. Immunohistochemical Evidence from APP-Transgenic Mice for Glutaminyl Cyclase as Drug Target to Diminish pE-Abeta Formation. Molecules 2018; 23:molecules23040924. [PMID: 29673150 PMCID: PMC6017857 DOI: 10.3390/molecules23040924] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023] Open
Abstract
Oligomeric assemblies of neurotoxic amyloid beta (Abeta) peptides generated by proteolytical processing of the amyloid precursor protein (APP) play a key role in the pathogenesis of Alzheimer’s disease (AD). In recent years, a substantial heterogeneity of Abeta peptides with distinct biophysical and cell biological properties has been demonstrated. Among these, a particularly neurotoxic and disease-specific Abeta variant is N-terminally truncated and modified to pyroglutamate (pE-Abeta). Cell biological and animal experimental studies imply the catalysis of this modification by the enzyme glutaminyl cyclase (QC). However, direct histopathological evidence in transgenic animals from comparative brain region and cell type-specific expression of transgenic hAPP and QC, on the one hand, and on the formation of pE-Abeta aggregates, on the other, is lacking. Here, using single light microscopic, as well as triple immunofluorescent, labeling, we report the deposition of pE-Abeta only in the brain regions of APP-transgenic Tg2576 mice with detectable human APP and endogenous QC expression, such as the hippocampus, piriform cortex, and amygdala. Brain regions showing human APP expression without the concomitant presence of QC (the anterodorsal thalamic nucleus and perifornical nucleus) do not display pE-Abeta plaque formation. However, we also identified brain regions with substantial expression of human APP and QC in the absence of pE-Abeta deposition (the Edinger-Westphal nucleus and locus coeruleus). In these brain regions, the enzymes required to generate N-truncated Abeta peptides as substrates for QC might be lacking. Our observations provide additional evidence for an involvement of QC in AD pathogenesis via QC-catalyzed pE-Abeta formation.
Collapse
Affiliation(s)
| | - Alexandra Bluhm
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany.
| | - Anke Piechotta
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120 Halle (Saale), Germany.
| | - Miriam Linnert
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120 Halle (Saale), Germany.
| | - Jens-Ulrich Rahfeld
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120 Halle (Saale), Germany.
| | - Hans-Ulrich Demuth
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, 06120 Halle (Saale), Germany.
| | - Inge Lues
- Probiodrug AG, 06120 Halle (Saale), Germany.
| | - Peer-Hendrik Kuhn
- Institute of Pathology, Technical University of Munich, 81675 Munich, Germany.
| | - Stefan F Lichtenthaler
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 81377 Munich, Germany.
- Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany.
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany.
- Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany.
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany.
| | - Corinna Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|