1
|
Pandey AM, Malwal SR, Valladares-Delgado M, Labrador-Fagúndez L, Stella BG, Díaz-Pérez LJ, Rey-Cibati A, Singh D, Stampolaki M, Hong S, Gennis RB, Kolocouris A, Benaim G, Oldfield E. Anti-Parasitics with a Triple Threat: Targeting Parasite Enzymes, the Proton Motive Force, and Host Cell-Mediated Killing. ACS Infect Dis 2025. [PMID: 40327058 DOI: 10.1021/acsinfecdis.5c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
We investigated the effects of the tuberculosis drug candidate SQ109 (8a) and of its analog MeSQ109 (8b) against Leishmania mexicana in promastigote and amastigote forms and against host cell macrophages finding potent activity (1.7 nM) for MeSQ109 against the intracellular forms, as well as low toxicity (∼61 μM) to host cells, resulting in a selectivity index of ∼36,000. We then investigated the mechanism of action of MeSQ109, finding that it targeted parasite mitochondria, collapsing the proton motive force, as well as targeting acidocalcisomes, rapidly increasing the intracellular Ca2+ concentration. Using an E. coli inverted membrane vesicle assay, we investigated the pH gradient collapse for SQ109 and 17 analogs, finding that there was a significant correlation (on average, R = 0.67, p = 0.008) between pH gradient collapse and cell growth inhibition in Trypanosoma brucei, T. cruzi, L. donovani, and Plasmodium falciparum. We also investigated pH gradient collapse with other antileishmanial agents: azoles, antimonials, benzofurans, amphotericin B, and miltefosine. The enhanced activity against intracellular trypanosomatids is seen with Leishmania spp. grown in macrophages but not with Trypanosoma cruzi in epithelial cells and is proposed to be due in part to host-based killing, based on the recent observation that SQ109 is known to convert macrophages to a pro-inflammatory (M1) phenotype.
Collapse
Affiliation(s)
- Akanksha M Pandey
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Satish R Malwal
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mariana Valladares-Delgado
- Unidad de Señalización Celular y Bioquímica de Parásitos, Instituto de Estudios Avanzados (IDEA), Caracas 1050, Venezuela
- Department of Cell Physiology and Molecular Biophysics, Texas Tech Health Science Center, Lubbock, Texas 79430, United States
| | - Liesangerli Labrador-Fagúndez
- Unidad de Señalización Celular y Bioquímica de Parásitos, Instituto de Estudios Avanzados (IDEA), Caracas 1050, Venezuela
| | - Bruno G Stella
- Unidad de Señalización Celular y Bioquímica de Parásitos, Instituto de Estudios Avanzados (IDEA), Caracas 1050, Venezuela
| | - Luis José Díaz-Pérez
- Unidad de Señalización Celular y Bioquímica de Parásitos, Instituto de Estudios Avanzados (IDEA), Caracas 1050, Venezuela
| | - André Rey-Cibati
- Unidad de Señalización Celular y Bioquímica de Parásitos, Instituto de Estudios Avanzados (IDEA), Caracas 1050, Venezuela
| | - Davinder Singh
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Marianna Stampolaki
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Sangjin Hong
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Gustavo Benaim
- Unidad de Señalización Celular y Bioquímica de Parásitos, Instituto de Estudios Avanzados (IDEA), Caracas 1050, Venezuela
- Instituto de Biología Experimental, Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1050, Venezuela
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Xiong J, Lu H, Jiang Y. Mechanisms of Azole Potentiation: Insights from Drug Repurposing Approaches. ACS Infect Dis 2025; 11:305-322. [PMID: 39749640 DOI: 10.1021/acsinfecdis.4c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The emergence of azole resistance and tolerance in pathogenic fungi has emerged as a significant public health concern, emphasizing the urgency for innovative strategies to bolster the efficacy of azole-based treatments. Drug repurposing stands as a promising and practical avenue for advancing antifungal therapy, with the potential for swift clinical translation. This review offers a comprehensive overview of azole synergistic agents uncovered through drug repurposing strategies, alongside an in-depth exploration of the mechanisms by which these agents augment azole potency. Drawing from these mechanisms, we delineate strategies aimed at enhancing azole effectiveness, such as inhibiting efflux pumps to elevate azole concentrations within fungal cells, intensifying ergosterol synthesis inhibition, mitigating fungal cell resistance to azoles, and disrupting biological processes extending beyond ergosterol synthesis. This review is beneficial for the development of these potentiators, as it meticulously examines instances and provides nuanced discussions on the mechanisms underlying the progression of azole potentiators through drug repurposing strategies.
Collapse
Affiliation(s)
- Juan Xiong
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| |
Collapse
|
3
|
Vijayasurya, Gupta S, Shah S, Pappachan A. Drug repurposing for parasitic protozoan diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:23-58. [PMID: 38942539 DOI: 10.1016/bs.pmbts.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Protozoan parasites are major hazards to human health, society, and the economy, especially in equatorial regions of the globe. Parasitic diseases, including leishmaniasis, malaria, and others, contribute towards majority of morbidity and mortality. Around 1.1 million people die from these diseases annually. The lack of licensed vaccinations worsens the worldwide impact of these diseases, highlighting the importance of safe and effective medications for their prevention and treatment. However, the appearance of drug resistance in parasites continuously affects the availability of medications. The demand for novel drugs motivates global antiparasitic drug discovery research, necessitating the implementation of many innovative ways to maintain a continuous supply of promising molecules. Drug repurposing has come out as a compelling tool for drug development, offering a cost-effective and efficient alternative to standard de novo approaches. A thorough examination of drug repositioning candidates revealed that certain drugs may not benefit significantly from their original indications. Still, they may exhibit more pronounced effects in other disorders. Furthermore, certain medications can produce a synergistic effect, resulting in enhanced therapeutic effectiveness when given together. In this chapter, we outline the approaches employed in drug repurposing (sometimes referred to as drug repositioning), propose novel strategies to overcome these hurdles and fully exploit the promise of drug repurposing. We highlight a few major human protozoan diseases and a range of exemplary drugs repurposed for various protozoan infections, providing excellent outcomes for each disease.
Collapse
Affiliation(s)
- Vijayasurya
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Swadha Gupta
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Smit Shah
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - Anju Pappachan
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India.
| |
Collapse
|
4
|
Hang S, Lu H, Jiang Y. Marine-Derived Metabolites Act as Promising Antifungal Agents. Mar Drugs 2024; 22:180. [PMID: 38667797 PMCID: PMC11051449 DOI: 10.3390/md22040180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
The incidence of invasive fungal diseases (IFDs) is on the rise globally, particularly among immunocompromised patients, leading to significant morbidity and mortality. Current clinical antifungal agents, such as polyenes, azoles, and echinocandins, face increasing resistance from pathogenic fungi. Therefore, there is a pressing need for the development of novel antifungal drugs. Marine-derived secondary metabolites represent valuable resources that are characterized by varied chemical structures and pharmacological activities. While numerous compounds exhibiting promising antifungal activity have been identified, a comprehensive review elucidating their specific underlying mechanisms remains lacking. In this review, we have compiled a summary of antifungal compounds derived from marine organisms, highlighting their diverse mechanisms of action targeting various fungal cellular components, including the cell wall, cell membrane, mitochondria, chromosomes, drug efflux pumps, and several biological processes, including vesicular trafficking and the growth of hyphae and biofilms. This review is helpful for the subsequent development of antifungal drugs due to its summary of the antifungal mechanisms of secondary metabolites from marine organisms.
Collapse
Affiliation(s)
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, 200092 Shanghai, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, 200092 Shanghai, China
| |
Collapse
|
5
|
Duan Z, Tong J, Zheng N, Zeng R, Liu Y, Li M. Interaction of Amiodarone with Azoles Against Aspergillus Planktonic Cells and Biofilms in vitro. Mycopathologia 2022; 187:517-526. [PMID: 36219382 DOI: 10.1007/s11046-022-00672-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/15/2022] [Indexed: 10/17/2022]
Abstract
Aspergillus spp. is the most common clinical pathogen of invasive fungal infection with high mortality. Existing treatments for Aspergillus spp. infection are still inefficient and accompanied by drug resistance, so it is still urgent to find new treatment approaches. The antiarrhythmic drug amiodarone (AMD) has demonstrated antifungal activity against a range of fungi. This study evaluated the efficacy of AMD in combination with triazoles for Aspergillus spp. infection. We tested the combined effect of AMD and three triazole drugs, namely, itraconazole (ITR), voriconazole (VRC), and posaconazole (POS), on the planktonic cells and biofilms of 20 strains of Aspergillus spp. via a checkerboard microdilution assay derived from 96-well plate-based method. Our results reveal that the combination of AMD with ITR or POS against Aspergillus biofilms has synergistic fungicidal effects. By contrast, the combination of AMD with VRC exhibits no antagonistic and synergistic effects. In this way, the use of AMD in combination with ITR or POS could be an effective adjunctive treatment for Aspergillus spp. infection.
Collapse
Affiliation(s)
- Zhimin Duan
- Hospital for Skin Diseases (Institute of Dermatology), Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, Jiangsu, China
| | - Jianbo Tong
- Department of Dermatology, The First Affiliated Hospital of Nanchang University and Institute of Dermatology, Jiangxi Academy of Clinical Medical Sciences, No. 17 Yongwaizheng Street, Nanchang, 330001, Jiangxi, China
| | - Nana Zheng
- Hospital for Skin Diseases (Institute of Dermatology), Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, Jiangsu, China
| | - Rong Zeng
- Hospital for Skin Diseases (Institute of Dermatology), Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, Jiangsu, China.
| | - Yuzhen Liu
- Department of Dermatology, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, Jiangsu, China.
| | - Min Li
- Hospital for Skin Diseases (Institute of Dermatology), Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, Jiangsu, China. .,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
6
|
Barbosa JMC, Pedra-Rezende Y, Pereira LD, de Melo TG, Barbosa HS, Lannes-Vieira J, de Castro SL, Daliry A, Salomão K. Benznidazole and amiodarone combined treatment attenuates cytoskeletal damage in Trypanosoma cruzi-infected cardiac cells. Front Cell Infect Microbiol 2022; 12:975931. [PMID: 36093188 PMCID: PMC9452897 DOI: 10.3389/fcimb.2022.975931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
Chagas disease (CD), a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, is an important public health problem mainly in Latin America, leading to approximately 12,000 annual deaths. Current etiological treatment for CD is limited to two nitro compounds, benznidazole (Bz) and nifurtimox (Nif), both presenting relevant limitations. Different approaches have been employed to establish more effective and safer schemes to treat T. cruzi infection, mostly based on drug repurposing and combination therapies. Amiodarone (AMD), an antiarrhythmic medicament of choice for patients with the chronic cardiac form of CD, is also recognized as a trypanocidal agent. Therefore, our aim is to investigate the combined treatment Bz + AMD on trypomastigote viability, control of T. cruzi intracellular form proliferation, and recovery of the infection-induced cytoskeleton alterations in cardiac cells. The combination of Bz + AMD did not improve the direct trypanocidal effect of AMD on the infective blood trypomastigote and replicative intracellular forms of the parasite. Otherwise, the treatment of T. cruzi-infected cardiac cells with Bz plus AMD attenuated the infection-triggered cytoskeleton damage of host cells and the cytotoxic effects of AMD. Thus, the combined treatment Bz + AMD may favor parasite control and hamper tissue damage.
Collapse
Affiliation(s)
| | | | | | | | - Helene Santos Barbosa
- Laboratóriode de Biologia Estrutural, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Joseli Lannes-Vieira
- Laboratório de Biologia das Interações, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Anissa Daliry
- Laboratório de Investigação Cardiovascular, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Kelly Salomão
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
- *Correspondence: Kelly Salomão,
| |
Collapse
|
7
|
Experimental Combination Therapy with Amiodarone and Low-Dose Benznidazole in a Mouse Model of Trypanosoma cruzi Acute Infection. Microbiol Spectr 2022; 10:e0185221. [PMID: 35138142 PMCID: PMC8826820 DOI: 10.1128/spectrum.01852-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chagas disease (CD), caused by Trypanosoma cruzi, affects approximately 6 to 7 million people in Latin America, with cardiomyopathy being the clinical manifestation most commonly associated with patient death during the acute phase. The etiological treatment of CD is restricted to benznidazole (Bz) and nifurtimox (Nif), which involve long periods of administration, frequent side effects, and low efficacy in the chronic phase. Thus, combined therapies emerge as an important tool in the treatment of CD, allowing the reduction of Bz dose and treatment duration. In this sense, amiodarone (AMD), the most efficient antiarrhythmic drug currently available and prescribed to CD patients, is a potential candidate for combined treatment due to its known trypanocidal activity. However, the efficacy of AMD during the acute phase of CD and its interaction with Bz or Nif are still unknown. In the present study, using a well-established murine model of the acute phase of CD, we observed that the Bz/AMD combination was more effective in reducing the peak parasitemia than both monotherapy treatments. Additionally, the Bz/AMD combination reduced (i) interleukin-6 (IL-6) levels in cardiac tissue, (ii) P-wave duration, and (iii) frequency of arrhythmia in infected animals and (iv) restored gap junction integrity in cardiac tissue. Therefore, our study validates AMD as a promising candidate for combined therapy with Bz, reinforcing the strategy of combined therapy for CD. IMPORTANCE Chagas disease affects approximately 6 to 7 million people worldwide, with cardiomyopathy being the clinical manifestation that most commonly leads to patient death. The etiological treatment of Chagas disease is limited to drugs (benznidazole and nifurtimox) with relatively high toxicity and therapeutic failures. In this sense, amiodarone, the most effective currently available antiarrhythmic drug prescribed to patients with Chagas disease, is a potential candidate for combined treatment due to its known trypanocidal effect. In the present study, we show that combined treatment with benznidazole and amiodarone improves the trypanocidal effect and reduces cardiac damage in acutely T. cruzi-infected mice.
Collapse
|
8
|
Kurian SM, Lichius A, Read ND. Ca2+ Signalling Differentially Regulates Germ-Tube Formation and Cell Fusion in Fusarium oxysporum. J Fungi (Basel) 2022; 8:jof8010090. [PMID: 35050029 PMCID: PMC8780837 DOI: 10.3390/jof8010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
Fusarium oxysporum is an important plant pathogen and an emerging opportunistic human pathogen. Germination of conidial spores and their fusion via conidial anastomosis tubes (CATs) are significant events during colony establishment in culture and on host plants and, hence, very likely on human epithelia. CAT fusion exhibited by conidial germlings of Fusarium species has been postulated to facilitate mitotic recombination, leading to heterokaryon formation and strains with varied genotypes and potentially increased virulence. Ca2+ signalling is key to many of the important physiological processes in filamentous fungi. Here, we tested pharmacological agents with defined modes of action in modulation of the mammalian Ca2+ signalling machinery for their effect on germination and CAT-mediated cell fusion in F. oxysporum. We found various drug-specific and dose-dependent effects. Inhibition of calcineurin by FK506 or cyclosporin A, as well as chelation of extracellular Ca2+ by BAPTA, exclusively inhibit CAT induction but not germ-tube formation. On the other hand, inhibition of Ca2+ channels by verapamil, calmodulin inhibition by calmidazolium, and inhibition of mitochondrial calcium uniporters by RU360 inhibited both CAT induction and germ-tube formation. Thapsigargin, an inhibitor of mammalian sarco/endoplasmic reticulum Ca2+ ATPase (SERCA), partially inhibited CAT induction but had no effect on germ-tube formation. These results provide initial evidence for morphologically defining roles of Ca2+-signalling components in the early developmental stages of F. oxysporum colony establishment—most notably, the indication that calcium ions act as self-signalling molecules in this process. Our findings contribute an important first step towards the identification of Ca2+ inhibitors with fungas-specific effects that could be exploited for the treatment of infected plants and humans.
Collapse
Affiliation(s)
- Smija M. Kurian
- Manchester Fungal Infection Group, University of Manchester, Manchester M13 9NT, UK;
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
- Correspondence:
| | - Alexander Lichius
- Department of Microbiology, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Nick D. Read
- Manchester Fungal Infection Group, University of Manchester, Manchester M13 9NT, UK;
| |
Collapse
|
9
|
Striking Back against Fungal Infections: The Utilization of Nanosystems for Antifungal Strategies. Int J Mol Sci 2021; 22:ijms221810104. [PMID: 34576268 PMCID: PMC8466259 DOI: 10.3390/ijms221810104] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Fungal infections have become a major health concern, given that invasive infections by Candida, Cryptococcus, and Aspergillus species have led to millions of mortalities. Conventional antifungal drugs including polyenes, echinocandins, azoles, allylamins, and antimetabolites have been used for decades, but their limitations include off-target toxicity, drug-resistance, poor water solubility, low bioavailability, and weak tissue penetration, which cannot be ignored. These drawbacks have led to the emergence of novel antifungal therapies. In this review, we discuss the nanosystems that are currently utilized for drug delivery and the application of antifungal therapies.
Collapse
|
10
|
A Unique Dual-Readout High-Throughput Screening Assay To Identify Antifungal Compounds with Aspergillus fumigatus. mSphere 2021; 6:e0053921. [PMID: 34406854 PMCID: PMC8386399 DOI: 10.1128/msphere.00539-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Treatment of invasive mold infections is limited by the lack of adequate drug options that are effective against these fatal infections. High-throughput screening of molds using traditional antifungal assays of growth is problematic and has greatly limited our ability to identify new mold-active agents. Here, we present a high-throughput screening platform for use with Aspergillus fumigatus, the most common causative agent of invasive mold infections, for the discovery of novel mold-active antifungals. This assay detects cell lysis through the release of the cytosolic enzyme adenylate kinase and, thus, is not dependent on changes in biomass or metabolism to detect antifungal activity. The ability to specifically detect cell lysis is a unique aspect of this assay that allows identification of molecules that disrupt fungal cell integrity, such as cell wall-active molecules. We also found that germinating A. fumigatus conidia release low levels of adenylate kinase and that a reduction in this background allowed us to identify molecules that inhibit conidial germination, expanding the potential for discovery of novel antifungal compounds. Here, we describe the validation of this assay and proof-of-concept pilot screens that identified a novel antifungal compound, PIK-75, that disrupts cell wall integrity. This screening assay provides a novel platform for high-throughput screens with A. fumigatus for the identification of anti-mold drugs. IMPORTANCE Fungal infections caused by molds have the highest mortality rates of human fungal infections. These devastating infections are hard to treat and available antifungal drugs are often not effective. Therefore, the identification of new antifungal drugs with mold activity is critical. Drug screening with molds is challenging and there are limited assays available to identify new antifungal compounds directly with these organisms. Here, we present an assay suitable for use for high-throughput screening with a common mold pathogen. This assay has exciting future potential for the identification of new drugs to treat these fatal infections.
Collapse
|
11
|
Li W, Shrivastava M, Lu H, Jiang Y. Calcium-calcineurin signaling pathway in Candida albicans: A potential drug target. Microbiol Res 2021; 249:126786. [PMID: 33989979 DOI: 10.1016/j.micres.2021.126786] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 12/26/2022]
Abstract
Increased morbidity and mortality of candidiasis are a notable threat to the immunocompromised patients. At present, the types of drugs available to treat C. albicans infection are relatively limited. Moreover, the emergence of antifungal drug resistance of C. albicans makes the treatment of C. albicans infection more difficult. The calcium-calcineurin signaling pathway plays a crucial role in the survival and pathogenicity of C. albicans and may act as a potential target against C. albicans. In this review, we summarized functions of the calcium-calcineurin signaling pathway in several biological processes, compared the differences of this signaling pathway between C. albicans and humans, and described anti-C. albicans activity of inhibitors of this signaling pathway. We believe that targeting the calcium-calcineurin signaling pathway is a promising strategy to cope with C. albicans infection.
Collapse
Affiliation(s)
- Wanqian Li
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | | | - Hui Lu
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yuanying Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Oliveira NK, Frank LA, Squizani ED, Reuwsaat JCV, Marques BM, Motta H, Garcia AWA, Kinskovski UP, Barcellos VA, Schrank A, Pohlmann AR, Staats CC, Guterres SS, Vainstein MH, Kmetzsch L. New nanotechnological formulation based on amiodarone-loaded lipid core nanocapsules displays anticryptococcal effect. Eur J Pharm Sci 2021; 162:105816. [PMID: 33757827 DOI: 10.1016/j.ejps.2021.105816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/21/2021] [Accepted: 03/18/2021] [Indexed: 01/01/2023]
Abstract
Cryptococcus neoformans is the etiological agent of cryptococcal meningoencephalitis. The recommended available treatment has low efficiency, with high toxicity and resistance as recurrent problems. In the search of new treatment protocols, the proposal of new pharmacological approaches is considered an innovative strategy, mainly nanotechnological systems considering fungal diseases. The antiarrhythmic drug amiodarone has demonstrated antifungal activity against a range of fungi, including C. neoformans. Here, considering the importance of calcium storage mediated by transporters on cryptococcal virulence, we evaluated the use of the calcium channel blocker amiodarone as an alternative therapy for cryptococcosis. C. neoformans displayed high sensitivity to amiodarone, which was also synergistic with fluconazole. Amiodarone treatment influenced some virulence factors, interrupting the calcium-calcineurin signaling pathway. Experiments with murine cryptococcosis models revealed that amiodarone treatment increased the fungal burden in the lungs, while its combination with fluconazole did not improve treatment compared to fluconazole alone. In addition, we have developed different innovative nanotechnological formulations, one of which combining two drugs with different mechanisms of action. Lipid-core nanocapsules (LNC) loaded with amiodarone (LNCAMD), fluconazole (LNCFLU) and both (LNCAMD+FLU) were produced to achieve a better efficacy in vivo. In an intranasal model of treatment, all the LNC formulations had an antifungal effect. In an intraperitoneal treatment, LNCAMD showed an enhanced anticryptococcal effect compared to the free drug, whereas LNCFLU or LNCAMD+FLU displayed no differences from the free drugs. In this way, nanotechnology using amiodarone formulations could be an effective therapy for cryptococcal infections.
Collapse
Affiliation(s)
| | - Luiza Abrahão Frank
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil
| | - Eamim Daidrê Squizani
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Heryk Motta
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Uriel Perin Kinskovski
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Augusto Schrank
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriana Raffin Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil; Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil
| | - Charley Christian Staats
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Sílvia Stanisçuaski Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre RS, Brazil
| | - Marilene Henning Vainstein
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lívia Kmetzsch
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
13
|
Benaim G, Paniz-Mondolfi AE, Sordillo EM. The Rationale for Use of Amiodarone and its Derivatives for the Treatment of Chagas' Disease and Leishmaniasis. Curr Pharm Des 2021; 27:1825-1833. [PMID: 32988342 DOI: 10.2174/1381612826666200928161403] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/26/2020] [Accepted: 08/01/2020] [Indexed: 11/22/2022]
Abstract
The repurposing or repositioning of previously-approved drugs has become an accepted strategy for the expansion of the pharmacopeia for neglected diseases. Accordingly, amiodarone, an inexpensive and extensively- used class III antiarrhythmic has been proposed as a treatment for Chagas' disease and leishmaniasis. Amiodarone has a potent trypanocidal and leishmanicidal action, mainly acting through the disruption of parasite intracellular Ca2+ homeostasis, which is a recognized target of different drugs that have activity against trypanosomatids. Amiodarone collapses the mitochondrial electrochemical potential (Δφm) and induces the rapid alkalinization of parasite acidocalcisomes, driving a large increase in the intracellular Ca2+ concentration. Amiodarone also inhibits oxidosqualene cyclase activity, a key enzyme in the ergosterol synthesis pathway that is essential for trypanosomatid survival. In combination, these three effects lead to parasite death. Dronedarone, a drug synthesized to minimize some of the adverse effects of amiodarone, displays trypanocidal and leishmanicidal activity through the same mechanisms, but curiously, being more potent on Leishmaniasis than its predecessor. In vitro studies suggest that other recently-synthesized benzofuran derivatives can act through the same mechanisms, and produce similar effects on different trypanosomatid species. Recently, the combination of amiodarone and itraconazole has been used successfully to treat 121 dogs naturally-infected by T. cruzi, strongly supporting the potential therapeutic use of this combination against human trypanosomatid infections.
Collapse
Affiliation(s)
- Gustavo Benaim
- Instituto de Estudios Avanzados (IDEA) , Caracas, Venezuela
| | | | - Emilia Mia Sordillo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
14
|
Drug repurposing strategies in the development of potential antifungal agents. Appl Microbiol Biotechnol 2021; 105:5259-5279. [PMID: 34151414 PMCID: PMC8214983 DOI: 10.1007/s00253-021-11407-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Abstract The morbidity and mortality caused by invasive fungal infections are increasing across the globe due to developments in transplant surgery, the use of immunosuppressive agents, and the emergence of drug-resistant fungal strains, which has led to a challenge in terms of treatment due to the limitations of three classes of drugs. Hence, it is imperative to establish effective strategies to identify and design new antifungal drugs. Drug repurposing is a potential way of expanding the application of existing drugs. Recently, various existing drugs have been shown to be useful in the prevention and treatment of invasive fungi. In this review, we summarize the currently used antifungal agents. In addition, the most up-to-date information on the effectiveness of existing drugs with antifungal activity is discussed. Moreover, the antifungal mechanisms of existing drugs are highlighted. These data will provide valuable knowledge to stimulate further investigation and clinical application in this field. Key points • Conventional antifungal agents have limitations due to the occurrence of drug-resistant strains. • Non-antifungal drugs act as antifungal agents in various ways toward different targets. • Non-antifungal drugs with antifungal activity are demonstrated as effective antifungal strategies.
Collapse
|
15
|
Squizani ED, Reuwsaat JC, Motta H, Tavanti A, Kmetzsch L. Calcium: a central player in Cryptococcus biology. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Muraca G, Berti IR, Sbaraglini ML, Fávaro WJ, Durán N, Castro GR, Talevi A. Trypanosomatid-Caused Conditions: State of the Art of Therapeutics and Potential Applications of Lipid-Based Nanocarriers. Front Chem 2020; 8:601151. [PMID: 33324615 PMCID: PMC7726426 DOI: 10.3389/fchem.2020.601151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
Trypanosomatid-caused conditions (African trypanosomiasis, Chagas disease, and leishmaniasis) are neglected tropical infectious diseases that mainly affect socioeconomically vulnerable populations. The available therapeutics display substantial limitations, among them limited efficacy, safety issues, drug resistance, and, in some cases, inconvenient routes of administration, which made the scenarios with insufficient health infrastructure settings inconvenient. Pharmaceutical nanocarriers may provide solutions to some of these obstacles, improving the efficacy-safety balance and tolerability to therapeutic interventions. Here, we overview the state of the art of therapeutics for trypanosomatid-caused diseases (including approved drugs and drugs undergoing clinical trials) and the literature on nanolipid pharmaceutical carriers encapsulating approved and non-approved drugs for these diseases. Numerous studies have focused on the obtention and preclinical assessment of lipid nanocarriers, particularly those addressing the two currently most challenging trypanosomatid-caused diseases, Chagas disease, and leishmaniasis. In general, in vitro and in vivo studies suggest that delivering the drugs using such type of nanocarriers could improve the efficacy-safety balance, diminishing cytotoxicity and organ toxicity, especially in leishmaniasis. This constitutes a very relevant outcome, as it opens the possibility to extended treatment regimens and improved compliance. Despite these advances, last-generation nanosystems, such as targeted nanocarriers and hybrid systems, have still not been extensively explored in the field of trypanosomatid-caused conditions and represent promising opportunities for future developments. The potential use of nanotechnology in extended, well-tolerated drug regimens is particularly interesting in the light of recent descriptions of quiescent/dormant stages of Leishmania and Trypanosoma cruzi, which have been linked to therapeutic failure.
Collapse
Affiliation(s)
- Giuliana Muraca
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
- Administración Nacional de Medicamentos, Alimentos y Tecnología Médica (ANMAT), Buenos Aires, Argentina
| | - Ignacio Rivero Berti
- Laboratorio de Nanobiomateriales, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), La Plata, Argentina
| | - María L. Sbaraglini
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
| | - Wagner J. Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Nelson Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Nanomedicine Research Unit (Nanomed), Federal University of ABC (UFABC), Santo André, Brazil
| | - Guillermo R. Castro
- Laboratorio de Nanobiomateriales, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), La Plata, Argentina
| | - Alan Talevi
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
| |
Collapse
|
17
|
Alexander AJT, Muñoz A, Marcos JF, Read ND. Calcium homeostasis plays important roles in the internalization and activities of the small synthetic antifungal peptide PAF26. Mol Microbiol 2020; 114:521-535. [PMID: 32898933 DOI: 10.1111/mmi.14532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/01/2020] [Accepted: 05/17/2020] [Indexed: 01/22/2023]
Abstract
Fungal diseases are responsible for the deaths of over 1.5 million people worldwide annually. Antifungal peptides represent a useful source of antifungals with novel mechanisms-of-action, and potentially provide new methods of overcoming resistance. Here we investigate the mode-of-action of the small, rationally designed synthetic antifungal peptide PAF26 using the model fungus Neurospora crassa. Here we show that the cell killing activity of PAF26 is dependent on extracellular Ca2+ and the presence of fully functioning fungal Ca2+ homeostatic/signaling machinery. In a screen of mutants with deletions in Ca2+ -signaling machinery, we identified three mutants more tolerant to PAF26. The Ca2+ ATPase NCA-2 was found to be involved in the initial interaction of PAF26 with the cell envelope. The vacuolar Ca2+ channel YVC-1 was shown to be essential for its accumulation and concentration within the vacuolar system. The Ca2+ channel CCH-1 was found to be required to prevent the translocation of PAF26 across the plasma membrane. In the wild type, Ca2+ removal from the medium resulted in the peptide remaining trapped in small vesicles as in the Δyvc-1 mutant. It is, therefore, apparent that cell killing by PAF26 is complex and unusually dependent on extracellular Ca2+ and components of the Ca2+ -regulatory machinery.
Collapse
Affiliation(s)
- Akira J T Alexander
- Institute of Infection, Immunity & Inflammation, The University of Glasgow, Glasgow, Scotland
| | - Alberto Muñoz
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Jose F Marcos
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA) , Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Nick D Read
- Manchester Fungal Infection Group, Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, UK
| |
Collapse
|
18
|
Screening Repurposing Libraries for Identification of Drugs with Novel Antifungal Activity. Antimicrob Agents Chemother 2020; 64:AAC.00924-20. [PMID: 32660991 DOI: 10.1128/aac.00924-20] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fungal organisms are ubiquitous in nature, and progress of modern medicine is creating an expanding number of severely compromised patients susceptible to a variety of opportunistic fungal infections. These infections are difficult to diagnose and treat, leading to high mortality rates. The limited antifungal arsenal, the toxicity of current antifungal drugs, the development of resistance, and the emergence of new multidrug-resistant fungi, all highlight the urgent need for new antifungal agents. Unfortunately, the development of a novel antifungal is a rather long and expensive proposition, and no new classes of antifungal agents have reached the market in the last 2 decades. Drug repurposing, or finding new indications for old drugs, represents a promising alternative pathway to drug development that is particularly appealing within the academic environment. In the last few years, there has been a growing interest in repurposing approaches in the antifungal arena, with multiple groups of investigators having performed screenings of different repurposing libraries against different pathogenic fungi in search for drugs with previously unrecognized antifungal effects. Overall, these repurposing efforts may lead to the fast deployment of drugs with novel antifungal activity, which can rapidly bring benefits to patients, while at the same time reducing health care costs.
Collapse
|
19
|
Ittzes B, Szentkiralyi E, Szabo Z, Batai IZ, Gyorffy O, Kovacs T, Batai I, Kerenyi M. Amiodarone that has antibacterial effect against human pathogens may represent a novel catheter lock. Acta Microbiol Immunol Hung 2020; 67:133-137. [PMID: 32634110 DOI: 10.1556/030.2020.01144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/09/2020] [Indexed: 11/19/2022]
Abstract
Infection is one of the most feared hospital-acquired complications. Infusion therapy is frequently administered through a central line. Infusions facilitating bacterial growth may be a source of central line-associated bloodstream infections. On the other hand, medications that kill bacteria may protect against this kind of infection and may be used as a catheter lock.In this study, we examined the impact of amiodarone on bacterial growth. Amiodarone is used for controlling cardiac arrhythmias and can be administered as an infusion for weeks. Standard microbiological methods have been used to study the growth of laboratory strains and clinical isolates of Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, and multidrug-resistant Acinetobacter baumannii in amiodarone. The minimum inhibitory concentration (MIC) of amiodarone was determined. Bacterial growth from in use amiodarone syringes and giving sets was also investigated.Most examined strains were killed within 1 min in amiodarone. The other strains were killed within 1 h. The MICs of amiodarone were <0.5-32 μg/mL.Amiodarone infusion is unlikely to be responsible for bloodstream infections as contaminating bacteria are killed within 1 h. Amiodarone may also protect against central line infections if used as a catheter lock.
Collapse
Affiliation(s)
- Balazs Ittzes
- 1Department of Medical Microbiology, Medical School, University of Pecs, Pecs, Hungary.,5Department of Anaesthesia and Intensive Therapy, North Devon District Hospital, Barnstaple, Devon, UK
| | - Eva Szentkiralyi
- 1Department of Medical Microbiology, Medical School, University of Pecs, Pecs, Hungary
| | - Zoltan Szabo
- 2Department of Anaesthesiology and Intensive Therapy, Medical School, University of Pecs, Pecs, Hungary
| | - Istvan Z Batai
- 3Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pecs, Hungary
| | - Ors Gyorffy
- 1Department of Medical Microbiology, Medical School, University of Pecs, Pecs, Hungary.,4Department of Anaesthesiology and Intensive Therapy, St. Rafael Hospital, Zalaegerszeg, Hungary
| | - Tamas Kovacs
- 2Department of Anaesthesiology and Intensive Therapy, Medical School, University of Pecs, Pecs, Hungary.,4Department of Anaesthesiology and Intensive Therapy, St. Rafael Hospital, Zalaegerszeg, Hungary
| | - Istvan Batai
- 2Department of Anaesthesiology and Intensive Therapy, Medical School, University of Pecs, Pecs, Hungary
| | - Monika Kerenyi
- 1Department of Medical Microbiology, Medical School, University of Pecs, Pecs, Hungary
| |
Collapse
|
20
|
Królewska-Golińska K, Cieślak MJ, Sobczak M, Dolot R, Radzikowska-Cieciura E, Napiórkowska M, Wybrańska I, Nawrot B. Novel Benzo[B]Furans with Anti-Microtubule Activity Upregulate Expression of Apoptotic Genes and Arrest Leukemia Cells in G2/M Phase. Anticancer Agents Med Chem 2019; 19:375-388. [PMID: 30465514 DOI: 10.2174/1871520619666181122123552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Novel derivatives of benzo[b]furan were found to be highly toxic towards human chronic myelogenous (K562), acute myelogenous (HL-60) and acute lymphoblastic (MOLT-4) leukemia cells. OBJECTIVE The objective was the characterization of the biological activity of novel benzofurans (influence on apoptosis, mitogen-activated protein kinases and on the cell cycle). Cellular protein(s) targeted by test benzofurans and mechanism of action were identified. METHODS The methods utilized in the study were chemical synthesis, fluorescence assays, flow cytometry, gene expression by DNA microarray and real-time RT-PCR, western blotting, cytotoxicity assays, pull-down assay, mass spectroscopy, in vitro polymerization of tubulin, molecular docking. RESULTS 1,1'-[3-(bromomethyl)-5,6- dimethoxy-1-benzofuran-2,7-diyldiethanone (1) and methyl 4-bromo-6- (dibromoacetyl)-5-hydroxy-2-methyl-1-benzofuran-3-carboxylate (2) induced apoptosis in K562 and MOLT-4 cells. The profiling of gene expression revealed that 1 and 2 increased the expression of proapoptotic genes involved in both receptor (TNFRSF 10A, TNFRSF 10B, CASP8) and mitochondrial (BAX, BID, NOXA, APAF1) pathways of apoptosis. Test benzo[b]furans activated c-Jun N-terminal kinase (JNK) and p38 kinase in K562 cells. Tubulin was identified as a protein target for benzo[b]furans in pull-down experiments with biotinylated 2. Test benzo[b]furans inhibited polymerization of tubulin monomers in vitro, decreased the level of cellular microtubules and arrested cells in a G2/M phase. Molecular docking suggests that benzo[b]furans 1 and 2 bind to tubulin via colchicine binding pocket and the complex is stabilized mainly by hydrophobic interactions. CONCLUSION Novel benzo[b]furans with anti-microtubule activity were identified. They induce apoptosis in cancer cells and cause G2/M cell cycle arrest. Biological activity of 1 and 2 makes them potential lead compounds for development as anticancer drugs.
Collapse
Affiliation(s)
- Karolina Królewska-Golińska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 112 Sienkiewicza Str., 90-363 Lodz, Poland
| | - Marcin J Cieślak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 112 Sienkiewicza Str., 90-363 Lodz, Poland
| | - Milena Sobczak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 112 Sienkiewicza Str., 90-363 Lodz, Poland
| | - Rafał Dolot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 112 Sienkiewicza Str., 90-363 Lodz, Poland
| | - Ewa Radzikowska-Cieciura
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 112 Sienkiewicza Str., 90-363 Lodz, Poland
| | - Mariola Napiórkowska
- Department of Medical Chemistry, Medical University of Warsaw, 3 Oczki Str., 02-007 Warsaw, Poland
| | - Iwona Wybrańska
- Department of Genetic Diagnostics and Nutrigenomics, Chair of Clinical Biochemistry, The Jagiellonian University, Medical College, 15 Kopernika Str., 31- 501 Krakow, Poland.,Department for Genetic Research and Nutrigenomics, The Malopolska Centre of Biotechnology Jagiellonian University, 7 Gronostajowa Str., 30-387 Krakow, Poland
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 112 Sienkiewicza Str., 90-363 Lodz, Poland
| |
Collapse
|
21
|
Bemani E, Oryan A, Bahrami S. Effectiveness of amiodarone in treatment of cutaneous leishmaniasis caused by Leishmania major. Exp Parasitol 2019; 205:107747. [PMID: 31442454 DOI: 10.1016/j.exppara.2019.107747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 01/19/2023]
Abstract
Development of new chemotherapeutic agents is an essential issue in the treatment and control of a disease. This study aimed to evaluate the anti-leishmanial activity of amiodarone, an antiarrhythmic class III drug, against Leishmania major, the most prevalent etiological agent of cutaneous leishmaniasis in the old world. The proliferation of promastigotes and intracellular amastigotes in the absence or presence of amiodarone was estimated, in an in vitro study. For in vivo study, five weeks after infection of BALB/c mice with L. major, when the lesions appeared at the injection site, the mice were divided into four groups (n = 6 each); treatment was conducted for 28 consecutive days with vehicle, amiodarone at 40 mg/kg orally and glucantime at 60 mg/kg intraperitoneally. Therapy with amiodarone reduced the size of lesions compared to the untreated group after 12 days. Amiodarone decreased the parasite load and inflammatory responses, particularly the macrophages containing amastigotes, and enhanced granulation tissue formation in the dermis and subcutaneous area. The Tumor necrosis factor-α and Interleukin-6 levels were significantly lower in the cell culture supernatants of the inguinal lymph node in the amiodarone treated group compared to the vehicle and untreated groups. Amiodarone significantly increased the activity of glutathione peroxidase in comparison to the vehicle and untreated groups but did not affect the plasma levels of superoxide dismutase, malondialdehyde, adiponectin, and ferric reducing ability of plasma. Therefore, the anti- L. major activity and immunomodulatory effects of amiodarone reduced the parasitic load and enhanced wound healing in cutaneous leishmaniasis in BALB/c mice. Amiodarone reduced the lesion surface area, but it did not cure it completely.
Collapse
Affiliation(s)
- E Bemani
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - A Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - S Bahrami
- Department of Parasitology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
22
|
Synthesis of New Derivatives of Benzofuran as Potential Anticancer Agents. Molecules 2019; 24:molecules24081529. [PMID: 31003438 PMCID: PMC6514909 DOI: 10.3390/molecules24081529] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/02/2022] Open
Abstract
The results of our previous research indicated that some derivatives of benzofurans, particularly halogeno-derivatives, are selectively toxic towards human leukemia cells. Continuing our work with this group of compounds we here report new data on the synthesis as well as regarding the physico-chemical and biological characterization of fourteen new derivatives of benzofurans, including six brominated compounds. The structures of all new compounds were established by spectroscopic methods (1H- and, 13C-NMR, ESI MS), and elemental analyses. Their cytotoxicity was evaluated against K562 (leukemia), MOLT-4 (leukemia), HeLa (cervix carcinoma), and normal cells (HUVEC). Five compounds (1c, 1e, 2d, 3a, 3d) showed significant cytotoxic activity against all tested cell lines and selectivity for cancer cell lines. The SAR analysis (structure-activity relationship analysis) indicated that the presence of bromine introduced to a methyl or acetyl group that was attached to the benzofuran system increased their cytotoxicity both in normal and cancer cells.
Collapse
|
23
|
Oryan A, Bemani E, Bahrami S. Emerging role of amiodarone and dronedarone, as antiarrhythmic drugs, in treatment of leishmaniasis. Acta Trop 2018; 185:34-41. [PMID: 29689189 DOI: 10.1016/j.actatropica.2018.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 12/14/2022]
Abstract
Leishmaniasis is a group of human and animal diseases causing 20,000-40,000 annual deaths and its etiological agents belong to the Leishmania genus. The most current treatment against leishmaniasis is chemotherapy. Pentavalent antimonials such as glucantime and pentostam have been administrated as the first-line drugs in treatment of various forms of leishmaniasis. The second-line drugs such as amphotericin B, liposomal amphotericin B, miltefosine, pentamidine, azole drugs and paromomycin are used in resistant cases to pentavalent antimonials. Because of drawbacks of the first-line and second-line drugs including adverse side effects on different organs, increasing resistance, high cost, need to hospitalization and long-term treatment, it is necessary to find an alternative drug for leishmaniasis treatment. Several investigations have reported the effectiveness of amiodarone, the most commonly used antiarrhythmic drug, against fungi, Trypanosomes and Leishmania spp. in vitro, in vivo and clinical conditions. Moreover, the beneficial effects of dronedarone, amiodarone analogues, against Trypanosoma cruzi and Leishmania mexicana have recently been demonstrated and such treatment regimens resulted in lower side effects. The anti- leishmanial and anti- trypanosomal effectiveness of amiodarone and dronedarone has been attributed to destabilization of intracellular Ca2+ homeostasis, inhibition of sterol biosynthesis and collapse of mitochondrial membrane potential. Because of relative low cost, excellent pharmacokinetic properties, easy accessibility and beneficial effects of amiodarone and dronedarone on leishmaniasis, they are proper candidates to replace the current drugs used in leishmaniasis treatment.
Collapse
Affiliation(s)
- A Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - E Bemani
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - S Bahrami
- Department of Parasitology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
24
|
Calahorra M, Sánchez NS, Peña A. Influence of phenothiazines, phenazines and phenoxazine on cation transport in Candida albicans. J Appl Microbiol 2018; 125:1728-1738. [PMID: 30153370 DOI: 10.1111/jam.14092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/24/2018] [Accepted: 08/16/2018] [Indexed: 11/26/2022]
Abstract
AIMS (i) To analyse the increase in calcium ion uptake caused by several cationic dyes on Candida albicans, (ii) to postulate a mechanism, (iii) to define the effects of Zn ions on the phenomenon, and (iv) to propose the use of the dyes or their derivatives against C. albicans. METHODS AND RESULTS Cells were grown in yeast peptone dextrose medium and starved. We measured the hydrophobic solvent/water partition coefficients and the dyes uptake by the cells and found no correlation with their hydrophobicity. Most of the dyes caused an increase in K+ efflux (in correlation with a decrease in 86 Rb+ uptake), and a raise in Ca2+ uptake except for those used as Zn salts, but not of their HCl salts. Respiration and acidification of the medium were modified only with few dyes and interestingly, when exposing cultures to nile blue, neutral red and toluidine blue ZnCl2 a decrease in C. albicans growth was observed. CONCLUSIONS We propose a general mechanism for the stimulation of Ca2+ uptake by the dyes used. Some of the dyes tested might be used as agents against C. albicans, probably combined with other agents. Moreover, the effects of Zn ions on Ca2+ uptake and on cell growth open possibilities of further studies, not only of their effects, but also of the mechanism of Ca2+ transport in C. albicans and other yeasts. SIGNIFICANCE AND IMPACT OF THE STUDY This study, in conjunction with previously published results, contribute to the basic research regarding ion transport in C. albicans and the role of zinc in this process. Besides, suggests the additional use of dyes, along with other antifungals agents, as combined therapy against candidiasis. Derived dyes from those used also might be possible therapeutic agents against this disease.
Collapse
Affiliation(s)
- M Calahorra
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - N S Sánchez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - A Peña
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
25
|
Venturini TP, Al-Hatmi AM, Rossato L, Azevedo MI, Keller JT, Weiblen C, Santurio JM, Alves SH. Do antibacterial and antifungal combinations have better activity against clinically relevant fusarium species? in vitro synergism. Int J Antimicrob Agents 2018; 51:784-788. [DOI: 10.1016/j.ijantimicag.2017.10.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 10/26/2017] [Accepted: 10/28/2017] [Indexed: 11/16/2022]
|
26
|
Liu N, Tu J, Dong G, Wang Y, Sheng C. Emerging New Targets for the Treatment of Resistant Fungal Infections. J Med Chem 2018; 61:5484-5511. [DOI: 10.1021/acs.jmedchem.7b01413] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Na Liu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Jie Tu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Guoqiang Dong
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Yan Wang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| |
Collapse
|
27
|
Squizani ED, Oliveira NK, Reuwsaat JCV, Marques BM, Lopes W, Gerber AL, de Vasconcelos ATR, Lev S, Djordjevic JT, Schrank A, Vainstein MH, Staats CC, Kmetzsch L. Cryptococcal dissemination to the central nervous system requires the vacuolar calcium transporter Pmc1. Cell Microbiol 2017; 20. [PMID: 29113016 DOI: 10.1111/cmi.12803] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 12/26/2022]
Abstract
Cryptococcus neoformans is a basidiomycetous yeast and the cause of cryptococcosis in immunocompromised individuals. The most severe form of the disease is meningoencephalitis, which is one of the leading causes of death in HIV/AIDS patients. In order to access the central nervous system, C. neoformans relies on the activity of certain virulence factors such as urease, which allows transmigration through the blood-brain barrier. In this study, we demonstrate that the calcium transporter Pmc1 enables C. neoformans to penetrate the central nervous system, because the pmc1 null mutant failed to infect and to survive within the brain parenchyma in a murine systemic infection model. To investigate potential alterations in transmigration pathways in these mutants, global expression profiling of the pmc1 mutant strain was undertaken, and genes associated with urease, the Ca2+ -calcineurin pathway, and capsule assembly were identified as being differentially expressed. Also, a decrease in urease activity was observed in the calcium transporter null mutants. Finally, we demonstrate that the transcription factor Crz1 regulates urease activity and that the Ca2+ -calcineurin signalling pathway positively controls the transcription of calcium transporter genes and factors related to transmigration.
Collapse
Affiliation(s)
| | | | | | | | - William Lopes
- Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Alexandra L Gerber
- Laboratório Nacional de Computação Científica (LNCC), Petrópolis, RJ, Brazil
| | | | - Sophie Lev
- Fungal Pathogenesis Laboratory, Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Julianne T Djordjevic
- Fungal Pathogenesis Laboratory, Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | | | | | | | - Lívia Kmetzsch
- Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
28
|
Amiodarone and itraconazole improve the activity of pentavalent antimonial in the treatment of experimental cutaneous leishmaniasis. Int J Antimicrob Agents 2017; 50:159-165. [DOI: 10.1016/j.ijantimicag.2017.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 06/05/2017] [Accepted: 06/17/2017] [Indexed: 01/30/2023]
|
29
|
|
30
|
Ribeiro NDQ, Costa MC, Magalhães TFF, Carneiro HCS, Oliveira LV, Fontes ACL, Santos JRA, Ferreira GF, Araujo GRDS, Alves V, Frases S, Paixão TA, de Resende Stoianoff MA, Santos DA. Atorvastatin as a promising anticryptococcal agent. Int J Antimicrob Agents 2017; 49:695-702. [PMID: 28450174 DOI: 10.1016/j.ijantimicag.2017.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/16/2017] [Accepted: 01/22/2017] [Indexed: 11/25/2022]
Abstract
Cryptococcosis caused by Cryptococcus gattii leads to pneumonia and meningoencephalitis, and has a high mortality rate worldwide due to the inadequacy of available therapy and increasing drug resistance. There is a need to develop effective treatments, and drug repositioning is an interesting alternative to achieve new strategies to treat cryptococcosis. Atorvastatin (ATO), a statin currently used to treat hypercholesterolaemia, was tested in this study as an adjuvant to control infections caused by C. gattii. Several aspects of the effect of ATO on the host and the yeast were evaluated, with particular focus on the association of ATO with fluconazole (FLC), which (i) reduced ergosterol content in the cell membrane and altered properties of the polysaccharide capsule of C. gattii; (ii) increased the production of reactive oxygen species by macrophages; and (iii) reduced yeast phagocytosis and the intracellular proliferation rate. In an animal model, infected mice treated with ATO + FLC showed increased survival, improved clinical condition, and reduced fungal burden in the lungs and brain. This study is the first to perform in vivo tests with ATO + FLC for the treatment of cryptococcosis. The results suggest that ATO may be an important adjuvant for the treatment of cryptococcosis.
Collapse
Affiliation(s)
- Noelly de Queiroz Ribeiro
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Marliete Carvalho Costa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | | | - Hellem Cristina Silva Carneiro
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Lorena Vívien Oliveira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Alide Caroline Lima Fontes
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Julliana Ribeiro Alves Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil; Laboratório de Micologia, Universidade Ceuma, São Luís, Maranhão, Brazil
| | - Gabriela Freitas Ferreira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil; Departamento de Farmácia, Universidade Federal de Juiz de Fora-Campus Governador Valadares, Governador Valadares, Brazil
| | - Glauber Ribeiro de Sousa Araujo
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinícius Alves
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiane Alves Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | | | - Daniel Assis Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil.
| |
Collapse
|
31
|
Stanić M, Križak S, Jovanović M, Pajić T, Ćirić A, Žižić M, Zakrzewska J, Antić TC, Todorović N, Živić M. Growth inhibition of fungus Phycomyces blakesleeanus by anion channel inhibitors anthracene-9-carboxylic and niflumic acid attained through decrease in cellular respiration and energy metabolites. MICROBIOLOGY-SGM 2017; 163:364-372. [PMID: 28100310 DOI: 10.1099/mic.0.000429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Increasing resistance of fungal strains to known fungicides has prompted identification of new candidates for fungicides among substances previously used for other purposes. We have tested the effects of known anion channel inhibitors anthracene-9-carboxylic acid (A9C) and niflumic acid (NFA) on growth, energy metabolism and anionic current of mycelium of fungus Phycomyces blakesleeanus. Both inhibitors significantly decreased growth and respiration of mycelium, but complete inhibition was only achieved by 100 and 500 µM NFA for growth and respiration, respectively. A9C had no effect on respiration of human NCI-H460 cell line and very little effect on cucumber root sprout clippings, which nominates this inhibitor for further investigation as a potential new fungicide. Effects of A9C and NFA on respiration of isolated mitochondria of P. blakesleeanus were significantly smaller, which indicates that their inhibitory effect on respiration of mycelium is indirect. NMR spectroscopy showed that both A9C and NFA decrease the levels of ATP and polyphosphates in the mycelium of P. blakesleeanus, but only A9C caused intracellular acidification. Outwardly rectifying, fast inactivating instantaneous anionic current (ORIC) was also reduced to 33±5 and 21±3 % of its pre-treatment size by A9C and NFA, respectively, but only in the absence of ATP. It can be assumed from our results that the regulation of ORIC is tightly linked to cellular energy metabolism in P. blakesleeanus, and the decrease in ATP and polyphosphate levels could be a direct cause of growth inhibition.
Collapse
Affiliation(s)
- Marina Stanić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Strahinja Križak
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Mirna Jovanović
- Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Tanja Pajić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Ana Ćirić
- Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Milan Žižić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Joanna Zakrzewska
- Institute of General and Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Tijana Cvetić Antić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Nataša Todorović
- Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Miroslav Živić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| |
Collapse
|
32
|
Klukovich R, Courchesne WE. Functions of Saccharomyces cerevisiae Ecm27p, a putative Na+/Ca2+ exchanger, in calcium homeostasis, carbohydrate storage and cell cycle reentry from the quiescent phase. Microbiol Res 2016; 186-187:81-9. [DOI: 10.1016/j.micres.2016.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/25/2016] [Accepted: 03/31/2016] [Indexed: 01/13/2023]
|
33
|
Svetaz LA, Postigo A, Butassi E, Zacchino SA, Sortino MA. Antifungal drugs combinations: a patent review 2000-2015. Expert Opin Ther Pat 2016; 26:439-53. [DOI: 10.1517/13543776.2016.1146693] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
34
|
Yenush L. Potassium and Sodium Transport in Yeast. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:187-228. [DOI: 10.1007/978-3-319-25304-6_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Components of the calcium-calcineurin signaling pathway in fungal cells and their potential as antifungal targets. EUKARYOTIC CELL 2015; 14:324-34. [PMID: 25636321 DOI: 10.1128/ec.00271-14] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In recent years, the emergence of fungal resistance has become frequent, partly due to the widespread clinical use of fluconazole, which is minimally toxic and effective in the prevention and treatment of Candida albicans infections. The limited selection of antifungal drugs for clinical fungal infection therapy has prompted us to search for new antifungal drug targets. Calcium, which acts as the second messenger in both mammals and fungi, plays a direct role in controlling the expression patterns of its signaling systems and has important roles in cell survival. In addition, calcium and some of the components, mainly calcineurin, in the fungal calcium signaling pathway mediate fungal resistance to antifungal drugs. Therefore, an overview of the components of the fungal calcium-calcineurin signaling network and their potential roles as antifungal targets is urgently needed. The calcium-calcineurin signaling pathway consists of various channels, transporters, pumps, and other proteins or enzymes. Many transcriptional profiles have indicated that mutant strains that lack some of these components are sensitized to fluconazole or other antifungal drugs. In addition, many researchers have identified efficient compounds that exhibit antifungal activity by themselves or in combination with antifungal drugs by targeting some of the components in the fungal calcium-calcineurin signaling pathway. This targeting disrupts Ca(2+) homeostasis, which suggests that this pathway contains potential targets for the development of new antifungal drugs.
Collapse
|
36
|
Abstract
We tested the antituberculosis drug SQ109, which is currently in advanced clinical trials for the treatment of drug-susceptible and drug-resistant tuberculosis, for its in vitro activity against the trypanosomatid parasite Trypanosoma cruzi, the causative agent of Chagas disease. SQ109 was found to be a potent inhibitor of the trypomastigote form of the parasite, with a 50% inhibitory concentration (IC50) for cell killing of 50 ± 8 nM, but it had little effect (50% effective concentration [EC50], ∼80 μM) in a red blood cell hemolysis assay. It also inhibited extracellular epimastigotes (IC50, 4.6 ± 1 μM) and the clinically relevant intracellular amastigotes (IC50, ∼0.5 to 1 μM), with a selectivity index of ∼10 to 20. SQ109 caused major ultrastructural changes in all three life cycle forms, as observed by light microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). It rapidly collapsed the inner mitochondrial membrane potential (Δψm) in succinate-energized mitochondria, acting in the same manner as the uncoupler FCCP [carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone], and it caused the alkalinization of internal acidic compartments, effects that are likely to make major contributions to its mechanism of action. The compound also had activity against squalene synthase, binding to its active site; it inhibited sterol side-chain reduction and, in the amastigote assay, acted synergistically with the antifungal drug posaconazole, with a fractional inhibitory concentration index (FICI) of 0.48, but these effects are unlikely to account for the rapid effects seen on cell morphology and cell killing. SQ109 thus most likely acts, at least in part, by collapsing Δψ/ΔpH, one of the major mechanisms demonstrated previously for its action against Mycobacterium tuberculosis. Overall, the results suggest that SQ109, which is currently in advanced clinical trials for the treatment of drug-susceptible and drug-resistant tuberculosis, may also have potential as a drug lead against Chagas disease.
Collapse
|
37
|
Resistance-resistant antibiotics. Trends Pharmacol Sci 2014; 35:664-74. [PMID: 25458541 DOI: 10.1016/j.tips.2014.10.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/10/2014] [Accepted: 10/14/2014] [Indexed: 01/27/2023]
Abstract
New antibiotics are needed because drug resistance is increasing while the introduction of new antibiotics is decreasing. We discuss here six possible approaches to develop 'resistance-resistant' antibiotics. First, multitarget inhibitors in which a single compound inhibits more than one target may be easier to develop than conventional combination therapies with two new drugs. Second, inhibiting multiple targets in the same metabolic pathway is expected to be an effective strategy owing to synergy. Third, discovering multiple-target inhibitors should be possible by using sequential virtual screening. Fourth, repurposing existing drugs can lead to combinations of multitarget therapeutics. Fifth, targets need not be proteins. Sixth, inhibiting virulence factor formation and boosting innate immunity may also lead to decreased susceptibility to resistance. Although it is not possible to eliminate resistance, the approaches reviewed here offer several possibilities for reducing the effects of mutations and, in some cases, suggest that sensitivity to existing antibiotics may be restored in otherwise drug-resistant organisms.
Collapse
|
38
|
Combination of fluconazole with non-antifungal agents: A promising approach to cope with resistant Candida albicans infections and insight into new antifungal agent discovery. Int J Antimicrob Agents 2014; 43:395-402. [DOI: 10.1016/j.ijantimicag.2013.12.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 12/29/2022]
|
39
|
Hu L, Wang D, Liu L, Chen J, Xue Y, Shi Z. Ca(2+) efflux is involved in cinnamaldehyde-induced growth inhibition of Phytophthora capsici. PLoS One 2013; 8:e76264. [PMID: 24098458 PMCID: PMC3788004 DOI: 10.1371/journal.pone.0076264] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/22/2013] [Indexed: 01/06/2023] Open
Abstract
As a destructive fungus-like plant pathogen, the oomycete Phytophthoracapsici is unable to synthesize its own ergosterol as the potential target of fungicide cinnamaldehyde (CA). In this study, CA exerted efficient inhibitory effects on both mycelial growth (EC50=0.75 mM) and zoospore germination (MIC=0.4 mM) of P. capsici. CA-induced immediate Ca(2+) efflux from zoospores could be confirmed by the rapid decrease in intracellular Ca(2+) content determined by using Fluo-3 AM and the increase in extracellular Ca(2+) concentration determined by using ICP-AES (inductively coupled plasma atomic emission spectrometry). Blocking Ca(2+) influx with ruthenium red and verapamil led to a higher level of CA-induced Ca(2+) efflux, suggesting the simultaneous occurrence of Ca(2+) influx along with the Ca(2+) efflux under CA exposure. Further results showed that EGTA-induced decrease in intracellular Ca(2+) gave rise to the impaired vitality of P. capsici while the addition of exogenous Ca(2+) could suppress the growth inhibitory effect of CA. These results suggested that Ca(2+) efflux played an important role in CA-induced growth inhibition of P. capsici. The application of 3-phenyl-1-propanal, a CA analog without α,β- unsaturated bond, resulted in a marked Ca(2+) influx in zoospores but did not show any growth inhibitory effects. In addition, exogenous cysteine, an antagonist against the Michael addition (the nucleophilic addition of a carbanion or another nucleophile) between CA and its targets, could attenuate CA-induced growth inhibition of P. capsici by suppressing Ca(2+) efflux. Our results suggest that CA inhibits the growth of P. capsici by stimulating a transient Ca(2+) efflux via Michael addition, which provides important new insights into the antimicrobial action of CA.
Collapse
Affiliation(s)
- Liangbin Hu
- Institute of Food Safety and Monitoring Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Dede Wang
- Institute of Food Safety and Monitoring Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Plant Protect College, Nanjing Agricultural University, Nanjing, China
| | - Li Liu
- Institute of Food Safety and Monitoring Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Science, Nanjing Normal University, Nanjing, China
| | - Jian Chen
- Institute of Food Safety and Monitoring Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanfeng Xue
- Institute of Food Safety and Monitoring Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhiqi Shi
- Institute of Food Safety and Monitoring Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
40
|
Effects of chitosan on Candida albicans: conditions for its antifungal activity. BIOMED RESEARCH INTERNATIONAL 2013; 2013:527549. [PMID: 23844364 PMCID: PMC3703409 DOI: 10.1155/2013/527549] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/19/2013] [Indexed: 01/09/2023]
Abstract
The effects of low molecular weight (96.5 KDa) chitosan on the pathogenic yeast Candida albicans were studied. Low concentrations of chitosan, around 2.5 to 10 μg·mL−1 produced (a) an efflux of K+ and stimulation of extracellular acidification, (b) an inhibition of Rb+ uptake, (c) an increased transmembrane potential difference of the cells, and (d) an increased uptake of Ca2+. It is proposed that these effects are due to a decrease of the negative surface charge of the cells resulting from a strong binding of the polymer to the cells. At higher concentrations, besides the efflux of K+, it produced (a) a large efflux of phosphates and material absorbing at 260 nm, (b) a decreased uptake of Ca2+, (c) an inhibition of fermentation and respiration, and (d) the inhibition of growth. The effects depend on the medium used and the amount of cells, but in YPD high concentrations close to 1 mg·mL−1 are required to produce the disruption of the cell membrane, the efflux of protein, and the growth inhibition. Besides the findings at low chitosan concentrations, this work provides an insight of the conditions required for chitosan to act as a fungistatic or antifungal and proposes a method for the permeabilization of yeast cells.
Collapse
|
41
|
Butts A, DiDone L, Koselny K, Baxter BK, Chabrier-Rosello Y, Wellington M, Krysan DJ. A repurposing approach identifies off-patent drugs with fungicidal cryptococcal activity, a common structural chemotype, and pharmacological properties relevant to the treatment of cryptococcosis. EUKARYOTIC CELL 2013; 12:278-87. [PMID: 23243064 PMCID: PMC3571299 DOI: 10.1128/ec.00314-12] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 12/10/2012] [Indexed: 11/20/2022]
Abstract
New, more accessible therapies for cryptococcosis represent an unmet clinical need of global importance. We took a repurposing approach to identify previously developed drugs with fungicidal activity toward Cryptococcus neoformans, using a high-throughput screening assay designed to detect drugs that directly kill fungi. From a set of 1,120 off-patent medications and bioactive molecules, we identified 31 drugs/molecules with fungicidal activity, including 15 drugs for which direct antifungal activity had not previously been reported. A significant portion of the drugs are orally bioavailable and cross the blood-brain barrier, features key to the development of a widely applicable anticryptococcal agent. Structural analysis of this set revealed a common chemotype consisting of a hydrophobic moiety linked to a basic amine, features that are common to drugs that cross the blood-brain barrier and access the phagolysosome, two important niches of C. neoformans. Consistent with their fungicidal activity, the set contains eight drugs that are either additive or synergistic in combination with fluconazole. Importantly, we identified two drugs, amiodarone and thioridazine, with activity against intraphagocytic C. neoformans. Finally, the set of drugs is also enriched for molecules that inhibit calmodulin, and we have confirmed that seven drugs directly bind C. neoformans calmodulin, providing a molecular target that may contribute to the mechanism of antifungal activity. Taken together, these studies provide a foundation for the optimization of the antifungal properties of a set of pharmacologically attractive scaffolds for the development of novel anticryptococcal therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Damian J. Krysan
- Pediatrics
- Microbiology/Immunology, University of Rochester, Rochester, New York, USA
| |
Collapse
|
42
|
Synergistic effects of amiodarone and fluconazole on Candida tropicalis resistant to fluconazole. Antimicrob Agents Chemother 2013; 57:1691-700. [PMID: 23357774 DOI: 10.1128/aac.00966-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
There have recently been significant increases in the prevalence of systemic invasive fungal infections. However, the number of antifungal drugs on the market is limited in comparison to the number of available antibacterial drugs. This fact, coupled with the increased frequency of cross-resistance, makes it necessary to develop new therapeutic strategies. Combination drug therapies have become one of the most widely used and effective strategies to alleviate this problem. Amiodarone (AMD) is classically used for the treatment of atrial fibrillation and is the drug of choice for patients with arrhythmia. Recent studies have shown broad antifungal activity of the drug when administered in combination with fluconazole (FLC). In the present study, we induced resistance to fluconazole in six strains of Candida tropicalis and evaluated potential synergism between fluconazole and amiodarone. The evaluation of drug interaction was determined by calculating the fractional inhibitory concentration and by performing flow cytometry. We conclude that amiodarone, when administered in combination with fluconazole, exhibits activity against strains of C. tropicalis that are resistant to fluconazole, which most likely occurs via changes in the integrity of the yeast cell membrane and the generation of oxidative stress, mitochondrial dysfunction, and DNA damage that could lead to cell death by apoptosis.
Collapse
|
43
|
Hejchman E, Ostrowska K, Maciejewska D, Kossakowski J, Courchesne WE. Synthesis and antifungal activity of derivatives of 2- and 3-benzofurancarboxylic acids. J Pharmacol Exp Ther 2012; 343:380-8. [PMID: 22892340 DOI: 10.1124/jpet.112.196980] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We found that amiodarone has potent antifungal activity against a broad range of fungi, potentially defining a new class of antimycotics. Investigations into its molecular mechanisms showed amiodarone mobilized intracellular Ca2+, which is thought to be an important antifungal characteristic of its fungicidal activity. Amiodarone is a synthetic drug based on the benzofuran ring system, which is contained in numerous compounds that are both synthetic and isolated from natural sources with antifungal activity. To define the structural components responsible for antifungal activity, we synthesized a series of benzofuran derivatives and tested them for the inhibition of growth of two pathogenic fungi, Cryptococcus neoformans and Aspergillus fumigatus, to find new compounds with antifungal activity. We found several derivatives that inhibited fungal growth, two of which had significant antifungal activity. We were surprised to find that calcium fluxes in cells treated with these derivatives did not correlate directly with their antifungal effects; however, the derivatives did augment the amiodarone-elicited calcium flux into the cytoplasm. We conclude that antifungal activity of these new compounds includes changes in cytoplasmic calcium concentration. Analyses of these benzofuran derivatives suggest that certain structural features are important for antifungal activity. Antifungal activity drastically increased on converting methyl 7-acetyl-6-hydroxy-3-methyl-2-benzofurancarboxylate (2b) into its dibromo derivative, methyl 7-acetyl-5-bromo-6-hydroxy-3-bromomethyl-2-benzofurancarboxylate (4).
Collapse
Affiliation(s)
- Elzbieta Hejchman
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | | |
Collapse
|
44
|
Mollinedo F. Lipid raft involvement in yeast cell growth and death. Front Oncol 2012; 2:140. [PMID: 23087902 PMCID: PMC3467458 DOI: 10.3389/fonc.2012.00140] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/25/2012] [Indexed: 01/04/2023] Open
Abstract
The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na+, K+, and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Faustino Mollinedo
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas - Universidad de Salamanca Salamanca, Spain
| |
Collapse
|
45
|
Bagar T, Benčina M. Antiarrhythmic drug amiodarone displays antifungal activity, induces irregular calcium response and intracellular acidification of Aspergillus niger - amiodarone targets calcium and pH homeostasis of A. niger. Fungal Genet Biol 2012; 49:779-91. [PMID: 22906851 DOI: 10.1016/j.fgb.2012.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 06/18/2012] [Accepted: 07/23/2012] [Indexed: 10/28/2022]
Abstract
The rapidly developing resistance of fungi to antifungal drugs is a serious health problem. Today's drugs mainly target cell membrane composition and synthesis. Moreover, some of them have serious side effects. New antifungal drugs targeting different molecular pathways are necessary. Amiodarone, an FDA approved antiarrhythmic drug displays antifungal activity. It targets calcium and pH homeostasis. In concentrations above 25 μM, it inhibits the growth of the filamentous fungi Aspergillus niger. It triggers a biphasic calcium response accompanied by a high [Ca(2+)](c) resting level and an intracellular acidification from 7.5 to 6.0, both of which are concentration dependent. Both extracellular calcium and calcium from intracellular organelles are sources of the transient second cytosolic calcium peak, whose amplitude is 0.12 μM for cells treated with 0.1mM amiodarone. In P-type ATPase deficient A. niger strains pmrAΔ and pmcAΔ, the [Ca(2+)](c) resting level after amiodarone treatment is at least twice as high as that of the wild type, which correlates with fungal viability and hypersensitivity to amiodarone. A combination of amiodarone and amphotericin B is additive in terms of cell viability and cytosolic calcium influx. In contrast, a combination of azole drugs and amiodarone has a synergistic effect on the viability of fungi.
Collapse
Affiliation(s)
- Tanja Bagar
- Department of Biotechnology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | | |
Collapse
|
46
|
Youngsaye W, Dockendorff C, Vincent B, Hartland CL, Bittker JA, Dandapani S, Palmer M, Whitesell L, Lindquist S, Schreiber SL, Munoz B. Overcoming fluconazole resistance in Candida albicans clinical isolates with tetracyclic indoles. Bioorg Med Chem Lett 2012; 22:3362-5. [PMID: 22497765 PMCID: PMC3386803 DOI: 10.1016/j.bmcl.2012.02.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 02/13/2012] [Indexed: 11/20/2022]
Abstract
Continuing efforts to discover novel means of combating fluconazole resistance in Candida albicans have identified an indole derivative that sensitizes strains demonstrating resistance to fluconazole. This tetracycle (3, ML229) does not appear to act through established Hsp90 or calcineurin pathways to chemosensitize C. albicans, as determined in Saccharomyces cerevisiae models, and may be a useful probe to uncover alternative resistance pathways.
Collapse
Affiliation(s)
- Willmen Youngsaye
- Chemical Biology Platform and Probe Development Center, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Chris Dockendorff
- Chemical Biology Platform and Probe Development Center, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Benjamin Vincent
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
- Microbiology Graduate Program, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Cathy L. Hartland
- Chemical Biology Platform and Probe Development Center, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Joshua A. Bittker
- Chemical Biology Platform and Probe Development Center, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Sivaraman Dandapani
- Chemical Biology Platform and Probe Development Center, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Michelle Palmer
- Chemical Biology Platform and Probe Development Center, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Luke Whitesell
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Stuart L. Schreiber
- Chemical Biology Platform and Probe Development Center, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Benito Munoz
- Chemical Biology Platform and Probe Development Center, Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| |
Collapse
|
47
|
Campbell BC, Chan KL, Kim JH. Chemosensitization as a means to augment commercial antifungal agents. Front Microbiol 2012; 3:79. [PMID: 22393330 PMCID: PMC3289909 DOI: 10.3389/fmicb.2012.00079] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 02/15/2012] [Indexed: 11/13/2022] Open
Abstract
Antimycotic chemosensitization and its mode of action are of growing interest. Currently, use of antifungal agents in agriculture and medicine has a number of obstacles. Foremost of these is development of resistance or cross-resistance to one or more antifungal agents. The generally high expense and negative impact, or side effects, associated with antifungal agents are two further issues of concern. Collectively, these problems are exacerbated by efforts to control resistant strains, which can evolve into a treadmill of higher dosages for longer periods. This cycle in turn, inflates cost of treatment, dramatically. A further problem is stagnation in development of new and effective antifungal agents, especially for treatment of human mycoses. Efforts to overcome some of these issues have involved using combinations of available antimycotics (e.g., combination therapy for invasive mycoses). However, this approach has had inconsistent success and is often associated with a marked increase in negative side effects. Chemosensitization by natural compounds to increase effectiveness of commercial antimycotics is a somewhat new approach to dealing with the aforementioned problems. The potential for safe natural products to improve antifungal activity has been observed for over three decades. Chemosensitizing agents possess antifungal activity, but at insufficient levels to serve as antimycotics, alone. Their main function is to disrupt fungal stress response, destabilize the structural integrity of cellular and vacuolar membranes or stimulate production of reactive oxygen species, augmenting oxidative stress and apoptosis. Use of safe chemosensitizing agents has potential benefit to both agriculture and medicine. When co-applied with a commercial antifungal agent, an additive or synergistic interaction may occur, augmenting antifungal efficacy. This augmentation, in turn, lowers effective dosages, costs, negative side effects and, in some cases, countermands resistance.
Collapse
Affiliation(s)
- Bruce C. Campbell
- Plant Mycotoxin Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of AgricultureAlbany, CA, USA
| | - Kathleen L. Chan
- Plant Mycotoxin Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of AgricultureAlbany, CA, USA
| | - Jong H. Kim
- Plant Mycotoxin Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of AgricultureAlbany, CA, USA
| |
Collapse
|
48
|
Derivatives of benzo[b]furan. Part II. Structural studies of derivatives of 2- and 3-benzo[b]furancarboxylic acids. Struct Chem 2012. [DOI: 10.1007/s11224-012-9965-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
49
|
Adesse D, Goldenberg RC, Fortes FS, Jasmin, Iacobas DA, Iacobas S, Campos de Carvalho AC, de Narareth Meirelles M, Huang H, Soares MB, Tanowitz HB, Garzoni LR, Spray DC. Gap junctions and chagas disease. ADVANCES IN PARASITOLOGY 2011; 76:63-81. [PMID: 21884887 DOI: 10.1016/b978-0-12-385895-5.00003-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gap junction channels provide intercellular communication between cells. In the heart, these channels coordinate impulse propagation along the conduction system and through the contractile musculature, thereby providing synchronous and optimal cardiac output. As in other arrhythmogenic cardiac diseases, chagasic cardiomyopathy is associated with decreased expression of the gap junction protein connexin43 (Cx43) and its gene. Our studies of cardiac myocytes infected with Trypanosoma cruzi have revealed that synchronous contraction is greatly impaired and gap junction immunoreactivity is lost in infected cells. Such changes are not seen for molecules forming tight junctions, another component of the intercalated disc in cardiac myocytes. Transcriptomic studies of hearts from mouse models of Chagas disease and from acutely infected cardiac myocytes in vitro indicate profound remodelling of gene expression patterns involving heart rhythm determinant genes, suggesting underlying mechanisms of the functional pathology. One curious feature of the altered expression of Cx43 and its gene expression is that it is limited in both extent and location, suggesting that the more global deterioration in cardiac function may result in part from spread of damage signals from more seriously compromised cells to healthier ones.
Collapse
Affiliation(s)
- Daniel Adesse
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Paniz-Mondolfi AE, Pérez-Alvarez AM, Reyes-Jaimes O, Socorro G, Zerpa O, Slova D, Concepción JL. Concurrent Chagas' disease and borderline disseminated cutaneous leishmaniasis: The role of amiodarone as an antitrypanosomatidae drug. Ther Clin Risk Manag 2011; 4:659-63. [PMID: 18827865 PMCID: PMC2500262 DOI: 10.2147/tcrm.s2801] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The occurrence of mixed infections of Trypanosoma cruzi and Leishmania spp. is becoming a common feature in Central and South America due to overlapping endemic areas. Unfortunately, the possibilities for treating flagellated kinetoplastid infections are still very limited and most of the available drugs exhibit severe side effects. Although the development of new drugs for Leishmania has markedly improved in the last years, the tendency is still to employ antimonial compounds. On the other hand, treatment for Chagas’ disease is only available for the acute phase with no effective therapeutical options for chronic stage disease. The following case report substantiates the recently discovered effect of amiodarone as a nonconventional antiparasitic drug, particularly against Leishmania, breaching a new perspective in the therapeutic management of these important infectious parasitic diseases.
Collapse
Affiliation(s)
- Alberto E Paniz-Mondolfi
- Laboratorio de Estudio de Antígenos, Instituto de Biomedicina, "Hospital José Gregório Hernández", Instituto Venezolano de los Seguros Sociales Caracas, Venezuela
| | | | | | | | | | | | | |
Collapse
|