1
|
Gupta SK, Ali KH, Lee S, Seo YH. Exploring new histone deacetylase 6 inhibitors and their effects on reversing the α-tubulin deacetylation and cell morphology changes caused by methamphetamine. Arch Pharm Res 2023; 46:795-807. [PMID: 37777709 DOI: 10.1007/s12272-023-01467-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023]
Abstract
Indazole-based HDAC6 inhibitors with novel zinc-binding modifications were synthesized and evaluated to determine their potential to inhibit HDAC6. The analogs were subjected to a histone deacetylase (HDAC) enzyme assay, which led to identification of compounds 3a and 3b. Both compounds demonstrated higher potency and selectivity as HDAC6 inhibitors with IC50 values of 9.1 nM and 9.0 nM, respectively, and highlighted the importance of the hydroxamic acid moiety for binding to Zn2+ inside the catalytic pocket of HDAC enzymes. In the neuroblastoma SH-SY5Y cell line, both compounds efficiently acetylated α-tubulin but not histone H3 at a low concentration of 0.5 µM. Moreover, compounds 3a and 3b effectively reversed the deacetylation of α-tubulin caused by methamphetamine in the SH-SY5Y cell line, suggesting the potential usefulness of HDAC6 selective inhibition in restoring blood brain barrier integrity by reversing methamphetamine-induced deacetylation.
Collapse
Affiliation(s)
- Sunil K Gupta
- College of Pharmacy, Keimyung University, Daegu, 42601, South Korea
| | - Khan Hashim Ali
- College of Pharmacy, Keimyung University, Daegu, 42601, South Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu, 42601, South Korea
| | - Young Ho Seo
- College of Pharmacy, Keimyung University, Daegu, 42601, South Korea.
| |
Collapse
|
2
|
Dwivedi Y, Shelton RC. Genomics in Treatment Development. ADVANCES IN NEUROBIOLOGY 2023; 30:363-385. [PMID: 36928858 DOI: 10.1007/978-3-031-21054-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The Human Genome Project mapped the 3 billion base pairs in the human genome, which ushered in a new generation of genomically focused treatment development. While this has been very successful in other areas, neuroscience has been largely devoid of such developments. This is in large part because there are very few neurological or mental health conditions that are related to single-gene variants. While developments in pharmacogenomics have been somewhat successful, the use of genetic information in practice has to do with drug metabolism and adverse reactions. Studies of drug metabolism related to genetic variations are an important part of drug development. However, outside of cancer biology, the actual translation of genomic information into novel therapies has been limited. Epigenetics, which relates in part to the effects of the environment on DNA, is a promising newer area of relevance to CNS disorders. The environment can induce chemical modifications of DNA (e.g., cytosine methylation), which can be induced by the environment and may represent either shorter- or longer-term changes. Given the importance of environmental influences on CNS disorders, epigenetics may identify important treatment targets in the future.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Richard C Shelton
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
3
|
Murphy MD, Heller EA. Convergent actions of stress and stimulants via epigenetic regulation of neural circuitry. Trends Neurosci 2022; 45:955-967. [PMID: 36280459 PMCID: PMC9671852 DOI: 10.1016/j.tins.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/21/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022]
Abstract
The dorsal striatum integrates prior and current information to guide appropriate decision-making. Chronic stress and stimulant exposure interferes with decision-making, and can confer similar cognitive and behavioral inflexibilities. This review examines the literature on acute and chronic regulation of the epigenome by stress and stimulants. Recent evidence suggests that exposures to stress and stimulants share similarities in the manners in which they regulate the dorsal striatum epigenome through DNA methylation, transposable element activity, and histone post-translational modifications. These findings suggest that chronic stress and stimulant exposure leads to the accumulation of epigenetic modifications that impair immediate and future neuron function and activity. Such epigenetic mechanisms represent potential therapeutic targets for ameliorating convergent symptoms of stress and addiction.
Collapse
Affiliation(s)
- Michael D Murphy
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elizabeth A Heller
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Cunha C, Smiley JF, Chuhma N, Shah R, Bleiwas C, Menezes EC, Seal RP, Edwards RH, Rayport S, Ansorge MS, Castellanos FX, Teixeira CM. Perinatal interference with the serotonergic system affects VTA function in the adult via glutamate co-transmission. Mol Psychiatry 2021; 26:4795-4812. [PMID: 32398719 PMCID: PMC7657958 DOI: 10.1038/s41380-020-0763-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 04/07/2020] [Accepted: 04/27/2020] [Indexed: 11/29/2022]
Abstract
Serotonin and dopamine are associated with multiple psychiatric disorders. How they interact during development to affect subsequent behavior remains unknown. Knockout of the serotonin transporter or postnatal blockade with selective serotonin reuptake inhibitors (SSRIs) leads to novelty-induced exploration deficits in adulthood, potentially involving the dopamine system. Here, we show in the mouse that raphe nucleus serotonin neurons activate ventral tegmental area dopamine neurons via glutamate co-transmission and that this co-transmission is reduced in animals exposed postnatally to SSRIs. Blocking serotonin neuron glutamate co-transmission mimics this SSRI-induced hypolocomotion, while optogenetic activation of dopamine neurons reverses this hypolocomotor phenotype. Our data demonstrate that serotonin neurons modulate dopamine neuron activity via glutamate co-transmission and that this pathway is developmentally malleable, with high serotonin levels during early life reducing co-transmission, revealing the basis for the reduced novelty-induced exploration in adulthood due to postnatal SSRI exposure.
Collapse
Affiliation(s)
- Catarina Cunha
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - John F Smiley
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Nao Chuhma
- Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Relish Shah
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
| | - Cynthia Bleiwas
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
| | - Edenia C Menezes
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
| | - Rebecca P Seal
- Department of Neurobiology and Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Robert H Edwards
- Departments of Neurology and Physiology, University of California, San Francisco School of Medicine, San Francisco, CA, 94143, USA
| | - Stephen Rayport
- Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Mark S Ansorge
- Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Francisco X Castellanos
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Catia M Teixeira
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA.
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
5
|
Saad L, Zwiller J, Kalsbeek A, Anglard P. Epigenetic Regulation of Circadian Clocks and Its Involvement in Drug Addiction. Genes (Basel) 2021; 12:1263. [PMID: 34440437 PMCID: PMC8394526 DOI: 10.3390/genes12081263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Based on studies describing an increased prevalence of addictive behaviours in several rare sleep disorders and shift workers, a relationship between circadian rhythms and addiction has been hinted for more than a decade. Although circadian rhythm alterations and molecular mechanisms associated with neuropsychiatric conditions are an area of active investigation, success is limited so far, and further investigations are required. Thus, even though compelling evidence connects the circadian clock to addictive behaviour and vice-versa, yet the functional mechanism behind this interaction remains largely unknown. At the molecular level, multiple mechanisms have been proposed to link the circadian timing system to addiction. The molecular mechanism of the circadian clock consists of a transcriptional/translational feedback system, with several regulatory loops, that are also intricately regulated at the epigenetic level. Interestingly, the epigenetic landscape shows profound changes in the addictive brain, with significant alterations in histone modification, DNA methylation, and small regulatory RNAs. The combination of these two observations raises the possibility that epigenetic regulation is a common plot linking the circadian clocks with addiction, though very little evidence has been reported to date. This review provides an elaborate overview of the circadian system and its involvement in addiction, and we hypothesise a possible connection at the epigenetic level that could further link them. Therefore, we think this review may further improve our understanding of the etiology or/and pathology of psychiatric disorders related to drug addiction.
Collapse
Affiliation(s)
- Lamis Saad
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands;
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jean Zwiller
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- Centre National de la Recherche Scientifique (CNRS), 75016 Paris, France
| | - Andries Kalsbeek
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands;
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Patrick Anglard
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), 75013 Paris, France
| |
Collapse
|
6
|
Saad L, Kalsbeek A, Zwiller J, Anglard P. Rhythmic Regulation of DNA Methylation Factors and Core-Clock Genes in Brain Structures Activated by Cocaine or Sucrose: Potential Role of Chromatin Remodeling. Genes (Basel) 2021; 12:genes12081195. [PMID: 34440369 PMCID: PMC8392220 DOI: 10.3390/genes12081195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/25/2022] Open
Abstract
The circadian system interacts with the mesocorticolimbic reward system to modulate reward and memory in a time-of-day dependent manner. The circadian discrimination of reward, however, remains difficult to address between natural reinforcers and drugs of abuse. Circadian rhythms control cocaine sensitization and conversely cocaine causes long-term alteration in circadian periodicity in part through the serotonergic neurotransmission. Since neural circuits activated by cocaine and natural reinforcers do not completely overlap, we compared the effect of cocaine with that of sucrose, a strong reinforcer in rodents, by using passive chronic administration. The expression of fifteen genes playing a major role in DNA methylation (Dnmts, Tets), circadian rhythms (Clock, Bmal1, Per1/2, Cry1/2, Rev-Erbβ, Dbp1), appetite, and satiety (Orexin, Npy) was analyzed in dopamine projection areas like the prefrontal cortex, the caudate putamen, and the hypothalamus interconnected with the reward system. The corresponding proteins of two genes (Orexin, Per2) were examined by IHC. For many factors controlling biological and cognitive functions, striking opposite responses were found between the two reinforcers, notably for genes controlling DNA methylation/demethylation processes and in global DNA methylation involved in chromatin remodeling. The data are consistent with a repression of critical core-clock genes by cocaine, suggesting that, consequently, both agents differentially modulate day/night cycles. Whether observed cocaine and sucrose-induced changes in DNA methylation in a time dependent manner are long lasting or contribute to the establishment of addiction requires further neuroepigenetic investigation. Understanding the mechanisms dissociating drugs of abuse from natural reinforcers remains a prerequisite for the design of selective therapeutic tools for compulsive behaviors.
Collapse
Affiliation(s)
- Lamis Saad
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, 1066 EA Amsterdam, The Netherlands
| | - Andries Kalsbeek
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, 1066 EA Amsterdam, The Netherlands
- Correspondence: (A.K.); or (P.A.)
| | - Jean Zwiller
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- CNRS, Centre National de la Recherche Scientifique, 75016 Paris, France
| | - Patrick Anglard
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- INSERM, Institut National de la Santé et de la Recherche Médicale, 75013 Paris, France
- Correspondence: (A.K.); or (P.A.)
| |
Collapse
|
7
|
Villani C, Carli M, Castaldo AM, Sacchetti G, Invernizzi RW. Fluoxetine increases brain MeCP2 immuno-positive cells in a female Mecp2 heterozygous mouse model of Rett syndrome through endogenous serotonin. Sci Rep 2021; 11:14690. [PMID: 34282222 PMCID: PMC8290043 DOI: 10.1038/s41598-021-94156-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Motor skill deficit is a common and invalidating symptom of Rett syndrome (RTT), a rare disease almost exclusively affecting girls during the first/second year of life. Loss-of-function mutations of the methyl-CpG-binding protein2 (MECP2; Mecp2 in rodents) gene is the cause in most patients. We recently found that fluoxetine, a selective serotonin (5-HT) reuptake inhibitor and antidepressant drug, fully rescued motor coordination deficits in Mecp2 heterozygous (Mecp2 HET) mice acting through brain 5-HT. Here, we asked whether fluoxetine could increase MeCP2 expression in the brain of Mecp2 HET mice, under the same schedule of treatment improving motor coordination. Fluoxetine increased the number of MeCP2 immuno-positive (MeCP2+) cells in the prefrontal cortex, M1 and M2 motor cortices, and in dorsal, ventral and lateral striatum. Fluoxetine had no effect in the CA3 region of the hippocampus or in any of the brain regions of WT mice. Inhibition of 5-HT synthesis abolished the fluoxetine-induced rise of MeCP2+ cells. These findings suggest that boosting 5-HT transmission is sufficient to enhance the expression of MeCP2 in several brain regions of Mecp2 HET mice. Fluoxetine-induced rise of MeCP2 could potentially rescue motor coordination and other deficits of RTT.
Collapse
Affiliation(s)
- Claudia Villani
- Laboratory Neurochemistry and Behavior, Neuroscience Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Mirjana Carli
- Laboratory Neurochemistry and Behavior, Neuroscience Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Anna Maria Castaldo
- Laboratory Neurochemistry and Behavior, Neuroscience Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Giuseppina Sacchetti
- Laboratory Neurochemistry and Behavior, Neuroscience Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Roberto William Invernizzi
- Laboratory Neurochemistry and Behavior, Neuroscience Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy.
| |
Collapse
|
8
|
Kringel D, Malkusch S, Lötsch J. Drugs and Epigenetic Molecular Functions. A Pharmacological Data Scientometric Analysis. Int J Mol Sci 2021; 22:7250. [PMID: 34298869 PMCID: PMC8311652 DOI: 10.3390/ijms22147250] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Interactions of drugs with the classical epigenetic mechanism of DNA methylation or histone modification are increasingly being elucidated mechanistically and used to develop novel classes of epigenetic therapeutics. A data science approach is used to synthesize current knowledge on the pharmacological implications of epigenetic regulation of gene expression. Computer-aided knowledge discovery for epigenetic implications of current approved or investigational drugs was performed by querying information from multiple publicly available gold-standard sources to (i) identify enzymes involved in classical epigenetic processes, (ii) screen original biomedical scientific publications including bibliometric analyses, (iii) identify drugs that interact with epigenetic enzymes, including their additional non-epigenetic targets, and (iv) analyze computational functional genomics of drugs with epigenetic interactions. PubMed database search yielded 3051 hits on epigenetics and drugs, starting in 1992 and peaking in 2016. Annual citations increased to a plateau in 2000 and show a downward trend since 2008. Approved and investigational drugs in the DrugBank database included 122 compounds that interacted with 68 unique epigenetic enzymes. Additional molecular functions modulated by these drugs included other enzyme interactions, whereas modulation of ion channels or G-protein-coupled receptors were underrepresented. Epigenetic interactions included (i) drug-induced modulation of DNA methylation, (ii) drug-induced modulation of histone conformations, and (iii) epigenetic modulation of drug effects by interference with pharmacokinetics or pharmacodynamics. Interactions of epigenetic molecular functions and drugs are mutual. Recent research activities on the discovery and development of novel epigenetic therapeutics have passed successfully, whereas epigenetic effects of non-epigenetic drugs or epigenetically induced changes in the targets of common drugs have not yet received the necessary systematic attention in the context of pharmacological plasticity.
Collapse
Affiliation(s)
- Dario Kringel
- Institute of Clinical Pharmacology, Goethe-University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (D.K.); (S.M.)
| | - Sebastian Malkusch
- Institute of Clinical Pharmacology, Goethe-University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (D.K.); (S.M.)
| | - Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe-University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (D.K.); (S.M.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
9
|
Changes in the Expression of DNA Methylation Related Genes in Leukocytes of Persons with Alcohol and Drug Dependence. ACTA MEDICA BULGARICA 2020. [DOI: 10.2478/amb-2020-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Background and objectives. Though numerous studies have shown that the dysregulation of the epigenetic control is involved in disease manifestation, limited data is available on the transcriptional activity of DNA methylation related genes in alcohol and drug addiction. With regard to this, in this study we analyzed the expression levels of genes involved in DNA methylation, including DNMT1, DNMT3a, MeCP2, MBD1, MBD2, MBD3 and MBD4, in blood samples of alcohol and drug dependent persons in comparison to healthy abstainers.
Methods. The study included 51 participants: 16 persons with alcohol dependence, 17 persons with drug dependence and 18 clinically healthy controls. To detect the relative mRNA expression levels of the studied genes, Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis was applied.
Results. Of the seven studied genes, four showed altered expression. MeCP2 and MBD1 were downregulated in the alcohol dependent group (FC = 0.805, p = 0.015 and FC = 0.846, p = 0.034, respectively), while DNMT1 and MBD4 were upregulated in the group with drug dependence (FC = 1.262, p = 0.001 and FC = 1.249, p = 0.005, respectively). No statistically significant changes in the relative mRNA expression were found for DNMT3a, MBD2 and MBD3 genes.
Conclusions. Our results are indicative for a role of DNA methylation related genes in alcohol and drug addiction mediated through changes in their transcriptional activity. Studies in this direction will enable better understanding of the underlying mechanisms of addictions supporting the development of more effective therapeutic strategies.
Collapse
|
10
|
Baratta AM, Rathod RS, Plasil SL, Seth A, Homanics GE. Exposure to drugs of abuse induce effects that persist across generations. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:217-277. [PMID: 33461664 PMCID: PMC8167819 DOI: 10.1016/bs.irn.2020.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Substance use disorders are highly prevalent and continue to be one of the leading causes of disability in the world. Notably, not all people who use addictive drugs develop a substance use disorder. Although substance use disorders are highly heritable, patterns of inheritance cannot be explained purely by Mendelian genetic mechanisms. Vulnerability to developing drug addiction depends on the interplay between genetics and environment. Additionally, evidence from the past decade has pointed to the role of epigenetic inheritance in drug addiction. This emerging field focuses on how environmental perturbations, including exposure to addictive drugs, induce epigenetic modifications that are transmitted to the embryo at fertilization and modify developmental gene expression programs to ultimately impact subsequent generations. This chapter highlights intergenerational and transgenerational phenotypes in offspring following a history of parental drug exposure. Special attention is paid to parental preconception exposure studies of five drugs of abuse (alcohol, cocaine, nicotine, cannabinoids, and opiates) and associated behavioral and physiological outcomes in offspring. The highlighted studies demonstrate that parental exposure to drugs of abuse has enduring effects that persist into subsequent generations. Understanding the contribution of epigenetic inheritance in drug addiction may provide clues for better treatments and therapies for substance use disorders.
Collapse
Affiliation(s)
- Annalisa M Baratta
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Richa S Rathod
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Sonja L Plasil
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Amit Seth
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Gregg E Homanics
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
11
|
Fluoxetine rescues rotarod motor deficits in Mecp2 heterozygous mouse model of Rett syndrome via brain serotonin. Neuropharmacology 2020; 176:108221. [PMID: 32652084 DOI: 10.1016/j.neuropharm.2020.108221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/24/2020] [Accepted: 06/20/2020] [Indexed: 01/28/2023]
Abstract
Motor skill is a specific area of disability of Rett syndrome (RTT), a rare disorder occurring almost exclusively in girls, caused by loss-of-function mutations of the X-linked methyl-CpG-binding protein2 (MECP2) gene, encoding the MECP2 protein, a member of the methyl-CpG-binding domain nuclear proteins family. Brain 5-HT, which is defective in RTT patients and Mecp2 mutant mice, regulates motor circuits and SSRIs enhance motor skill learning and plasticity. In the present study, we used heterozygous (Het) Mecp2 female and Mecp2-null male mice to investigate whether fluoxetine, a SSRI with pleiotropic effects on neuronal circuits, rescues motor coordination deficits. Repeated administration of 10 mg/kg fluoxetine fully rescued rotarod deficit in Mecp2 Het mice regardless of age, route of administration or pre-training to rotarod. The motor improvement was confirmed in the beam walking test while no effect was observed in the hanging-wire test, suggesting a preferential action of fluoxetine on motor coordination. Citalopram mimicked the effects of fluoxetine, while the inhibition of 5-HT synthesis abolished the fluoxetine-induced improvement of motor coordination. Mecp2 null mice, which responded poorly to fluoxetine in the rotarod, showed reduced 5-HT synthesis in the prefrontal cortex, hippocampus and striatum, and reduced efficacy of fluoxetine in raising extracellular 5-HT as compared to female mutants. No sex differences were observed in the ability of fluoxetine to desensitize 5-HT1A autoreceptors upon repeated administration. These findings indicate that fluoxetine rescues motor coordination in Mecp2 Het mice through its ability to enhance brain 5-HT and suggest that drugs enhancing 5-HT neurotransmission may have beneficial effects on motor symptoms of RTT.
Collapse
|
12
|
Saad L, Sartori M, Pol Bodetto S, Romieu P, Kalsbeek A, Zwiller J, Anglard P. Regulation of Brain DNA Methylation Factors and of the Orexinergic System by Cocaine and Food Self-Administration. Mol Neurobiol 2019; 56:5315-5331. [PMID: 30603957 DOI: 10.1007/s12035-018-1453-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/07/2018] [Indexed: 12/22/2022]
Abstract
Inhibitors of DNA methylation and orexin type-1 receptor antagonists modulate the neurobiological effects driving drugs of abuse and natural reinforcers by activating common brain structures of the mesolimbic reward system. In this study, we applied a self-administration paradigm to assess the involvement of factors regulating DNA methylation processes and satiety or appetite signals. These factors include Dnmts and Tets, miR-212/132, orexins, and orx-R1 genes. The study focused on dopamine projection areas such as the prefrontal cortex (PFCx) and caudate putamen (CPu) and in the hypothalamus (HP) that is interconnected with the reward system. Striking changes were observed in response to both reinforcers, but differed depending on contingent and non-contingent delivery. Expression also differed in the PFCx and the CPu. Cocaine and food induced opposite effects on Dnmt3a expression in both brain structures, whereas they repressed both miRs to a different extent, without affecting their primary transcript in the CPu. Unexpectedly, orexin mRNAs were found in the CPu, suggesting a transport from their transcription site in the HP. The orexin receptor1 gene was found to be induced by cocaine in the PFCx, consistent with a regulation by DNA methylation. Global levels of 5-methylcytosines in the PFCx were not significantly altered by cocaine, suggesting that it is rather their distribution that contributes to long-lasting behaviors. Together, our data demonstrate that DNA methylation regulating factors are differentially altered by cocaine and food. At the molecular level, they support the idea that neural circuits activated by both reinforcers do not completely overlap.
Collapse
Affiliation(s)
- Lamis Saad
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Neuropôle de Strasbourg, Université de Strasbourg, Strasbourg, France
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Maxime Sartori
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Neuropôle de Strasbourg, Université de Strasbourg, Strasbourg, France
- IGBMC, Inserm U 964, CNRS UMR 7104, University of Strasbourg, Illkirch, France
| | - Sarah Pol Bodetto
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Neuropôle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Pascal Romieu
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Neuropôle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Andries Kalsbeek
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jean Zwiller
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Neuropôle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Patrick Anglard
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Neuropôle de Strasbourg, Université de Strasbourg, Strasbourg, France.
- INSERM, Institut National de la Santé et de la Recherche Médicale, Paris, France.
| |
Collapse
|
13
|
Glover ME, McCoy CR, Shupe EA, Unroe KA, Jackson NL, Clinton SM. Perinatal exposure to the SSRI paroxetine alters the methylome landscape of the developing dentate gyrus. Eur J Neurosci 2019; 50:1843-1870. [PMID: 30585666 DOI: 10.1111/ejn.14315] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/28/2018] [Accepted: 12/12/2018] [Indexed: 12/24/2022]
Abstract
Evidence in humans and rodents suggests that perinatal exposure to selective serotonin reuptake inhibitor (SSRI) antidepressants can have serious long-term consequences in offspring exposed in utero or infancy via breast milk. In spite of this, there is limited knowledge of how perinatal SSRI exposure impacts brain development and adult behaviour. Children exposed to SSRIs in utero exhibit increased internalizing behaviour and abnormal social behaviour between the ages of 3 and 6, and increased risk of depression in adolescence; however, the neurobiological changes underlying this behaviour are poorly understood. In rodents, perinatal SSRI exposure perturbs hippocampal gene expression and alters adult emotional behaviour (including increased depression-like behaviour). The present study demonstrates that perinatal exposure to the SSRI paroxetine leads to DNA hypomethylation and reduces DNA methyltransferase 3a (Dnmt3a) mRNA expression in the hippocampus during the second and third weeks of life. Next-generation sequencing identified numerous differentially methylated genomic regions, including altered methylation and transcription of several dendritogenesis-related genes. We then tested the hypothesis that transiently decreasing Dnmt3a expression in the early postnatal hippocampus would mimic the behavioural effects of perinatal SSRI exposure. We found that siRNA-mediated knockdown of Dnmt3a in the dentate gyrus during the second to third week of life produced greater depression-like behaviour in adult female (but not male) offspring, akin to the behavioural consequences of perinatal SSRI exposure. Overall, these data suggest that perinatal SSRI exposure may increase depression-like behaviours, at least in part, through reduced Dnmt3a expression in the developing hippocampus.
Collapse
Affiliation(s)
| | | | | | - Keaton A Unroe
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia
| | - Nateka L Jackson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | | |
Collapse
|
14
|
Persico AM, Ricciardello A, Cucinotta F. The psychopharmacology of autism spectrum disorder and Rett syndrome. HANDBOOK OF CLINICAL NEUROLOGY 2019; 165:391-414. [DOI: 10.1016/b978-0-444-64012-3.00024-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
De Sa Nogueira D, Merienne K, Befort K. Neuroepigenetics and addictive behaviors: Where do we stand? Neurosci Biobehav Rev 2018; 106:58-72. [PMID: 30205119 DOI: 10.1016/j.neubiorev.2018.08.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/28/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022]
Abstract
Substance use disorders involve long-term changes in the brain that lead to compulsive drug seeking, craving, and a high probability of relapse. Recent findings have highlighted the role of epigenetic regulations in controlling chromatin access and regulation of gene expression following exposure to drugs of abuse. In the present review, we focus on data investigating genome-wide epigenetic modifications in the brain of addicted patients or in rodent models exposed to drugs of abuse, with a particular focus on DNA methylation and histone modifications associated with transcriptional studies. We highlight critical factors for epigenomic studies in addiction. We discuss new findings related to psychostimulants, alcohol, opiate, nicotine and cannabinoids. We examine the possible transmission of these changes across generations. We highlight developing tools, specifically those that allow investigation of structural reorganization of the chromatin. These have the potential to increase our understanding of alteration of chromatin architecture at gene regulatory regions. Neuroepigenetic mechanisms involved in addictive behaviors could explain persistent phenotypic effects of drugs and, in particular, vulnerability to relapse.
Collapse
Affiliation(s)
- David De Sa Nogueira
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, CNRS, Université de Strasbourg, Team 3 « Abuse of Drugs and Neuroadaptations », Faculté de Psychologie, 12 rue Goethe, F-67000, France
| | - Karine Merienne
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, CNRS, Université de Strasbourg, Team 1 « Dynamics of Memory and Epigenetics », Faculté de Psychologie, 12 rue Goethe, F-67000, France
| | - Katia Befort
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, CNRS, Université de Strasbourg, Team 3 « Abuse of Drugs and Neuroadaptations », Faculté de Psychologie, 12 rue Goethe, F-67000, France.
| |
Collapse
|
16
|
Cotto B, Li H, Tuma RF, Ward SJ, Langford D. Cocaine-mediated activation of microglia and microglial MeCP2 and BDNF production. Neurobiol Dis 2018; 117:28-41. [PMID: 29859319 PMCID: PMC6051925 DOI: 10.1016/j.nbd.2018.05.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/09/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022] Open
Abstract
The molecular substrates underlying cocaine reinforcement and addiction have been studied for decades, with a primary focus on signaling molecules involved in modulation of neuronal communication. Brain-derived neurotrophic factor (BDNF) is an important signaling molecule involved in neuronal dendrite and spine modulation. Methyl CpG binding protein 2 (MeCP2) binds to the promoter region of BDNF to negatively regulate its expression and cocaine can recruit MeCP2 to alter the expression of genes such as BDNF that are involved in synaptic plasticity. For several decades, BDNF has been implicated in mediating synaptic plasticity associated with cocaine abuse, and most studies report that neurons are the primary source for BDNF production in the brain. The current study assessed the effects of intravenous cocaine self-administration on microglial activation, and MeCP2 and BDNF expression in reward regions of the brain in vivo, as well as determined specific effects of cocaine exposure on MeCP2 and BDNF expression in human primary neurons and microglia. The results from this study highlight a distinct molecular pathway in microglia through which cocaine increases BDNF, including the phosphorylation of MeCP2 its subsequent translocation from the nucleus to the cytosol, which frees the BDNF promoter and permits its transcriptional activation. Results from these studies show for the first time that cocaine self-administration increases microglial activation, and that microglial MeCP2 is a sensitive target of cocaine resulting in increased release of BDNF from microglia, and possibly contributing to cocaine-induced synaptic plasticity.
Collapse
Affiliation(s)
- Bianca Cotto
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hongbo Li
- Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ronald F Tuma
- Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Sara Jane Ward
- Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Dianne Langford
- Department of Neuroscience, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
17
|
Transgenerational consequences of prepregnancy chronic morphine use on spatial learning and hippocampal Mecp2 and Hdac2 expression. Neuroreport 2018; 29:739-744. [DOI: 10.1097/wnr.0000000000001025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Evaluation of the rewarding properties of nicotine and caffeine by implementation of a five-choice conditioned place preference task in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:160-172. [PMID: 29481898 DOI: 10.1016/j.pnpbp.2018.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/25/2018] [Accepted: 02/02/2018] [Indexed: 12/22/2022]
Abstract
The rewarding properties of drugs in zebrafish can be studied using the conditioned place preference (CPP) paradigm. Most devices that have been used for CPP consist of two-half tanks with or without a central chamber. Here we evaluated the rewarding effects of nicotine and caffeine using a tank with five arms distributed radially from a central chamber that we have denoted Fish Tank Radial Maze (FTRM). Zebrafish were trained to associate nicotine or caffeine with a coloured arm. In testing sessions to assess CPP induction, between two and five different arms were available to explore. We found that when offering the two arms, one of them associated to the drug mediating conditioning for 14 days, zebrafish showed nicotine-induced CPP but not caffeine-induced CPP. When zebrafish had the option to explore drug-paired arms together with new coloured arms as putative distractors, the nicotine-CPP strength was maintained for at least three days. The presence of novel environments induced caffeine-CPP, which was still positive after three days of testing sessions. Complementary behavioural data supported these findings. Nicotine-CPP was prevented by the histone deacetylase inhibitor phenylbutyrate administered during conditioning; however, there were no effects on caffeine-CPP. The specific acetylation of lysine 9 in histone 3 (H3-K9) was increased in nicotine-conditioned zebrafish brains. This study suggests that novel environmental cues facilitate drug-environment associations, and hence, the use of drugs of abuse.
Collapse
|
19
|
Park SW, Seo MK, Lee JG, Hien LT, Kim YH. Effects of maternal separation and antidepressant drug on epigenetic regulation of the brain-derived neurotrophic factor exon I promoter in the adult rat hippocampus. Psychiatry Clin Neurosci 2018; 72:255-265. [PMID: 28990703 DOI: 10.1111/pcn.12609] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/25/2017] [Accepted: 10/03/2017] [Indexed: 12/15/2022]
Abstract
AIM Early life stress can induce epigenetic changes through genetic and environmental interactions and is a risk factor for depression. Brain-derived neurotrophic factor (BDNF) has been implicated in the pathophysiology of depression and antidepressant drug action. We investigated epigenetic changes at the BDNF exon I promoter in the hippocampus of adult rats subjected to maternal separation (MS) during early life and treated with an antidepressant drug as adults. METHODS Rat pups were subjected to MS from postnatal day 1 to 21 and received chronic escitalopram (ESC) as adults. We assessed the effects of MS and ESC on BDNF exon I and DNA methyltransferases (DNMT) mRNA levels (quantitative reverse-transcription polymerase chain reaction), acetylated histone H3, and MeCP2 binding to the BDNF promoter I (chromatin immunoprecipitation followed by real-time polymerase chain reaction), and BDNF protein levels (enzyme-linked immunosorbent assay). RESULTS The levels of BDNF protein, exon I mRNA, histone H3 acetylation, and DNMT1 and DNMT3a mRNA were altered in the MS group compared with the control group. Significant decreases were observed in the BDNF protein, exon I mRNA, and histone H3 acetylation levels and there were significant increases in DNMT1 and DNMT3a mRNA levels. The comparison between the MS + ESC and MS groups revealed significant increases in BDNF protein, exon I mRNA, and histone H3 acetylation levels and significant decreases in MeCP2 and DNMT1 and DNMT3a mRNA levels. CONCLUSION These findings indicate that MS induced epigenetic changes at the BDNF exon I promoter and these changes were prevented by antidepressant drug treatment during adulthood.
Collapse
Affiliation(s)
- Sung Woo Park
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea.,Departments of Health Science and Technology, Graduate School, Inje University, Busan, Republic of Korea.,Department of Convergence Biomedical Science, College of Medicine, Inje University, Busan, Republic of Korea
| | - Mi Kyoung Seo
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| | - Jung Goo Lee
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea.,Departments of Health Science and Technology, Graduate School, Inje University, Busan, Republic of Korea.,Department of Psychiatry, College of Medicine, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea
| | - Le Thi Hien
- Departments of Health Science and Technology, Graduate School, Inje University, Busan, Republic of Korea
| | - Young Hoon Kim
- Department of Psychiatry, Gongju National Hospital, Gongju, Republic of Korea
| |
Collapse
|
20
|
Smith ACW, Kenny PJ. MicroRNAs regulate synaptic plasticity underlying drug addiction. GENES, BRAIN, AND BEHAVIOR 2018; 17:e12424. [PMID: 28873276 PMCID: PMC5837931 DOI: 10.1111/gbb.12424] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/11/2017] [Accepted: 09/01/2017] [Indexed: 12/22/2022]
Abstract
Chronic use of drugs of abuse results in neurochemical, morphological and behavioral plasticity that underlies the emergence of compulsive drug seeking and vulnerability to relapse during periods of attempted abstinence. Identifying and reversing addiction-relevant plasticity is seen as a potential point of pharmacotherapeutic intervention in drug-addicted individuals. Despite considerable advances in our understanding of the actions of drugs of abuse in the brain, this information has thus far yielded few novel treatment options addicted individuals. MicroRNAs are small noncoding RNAs that can each regulate the translation of hundreds to thousands of messenger RNAs. The highly pleiotropic nature of miRNAs has focused attention on their contribution to addiction-relevant structural and functional plasticity in the brain and their potential utility as targets for medications development. In this review, we discuss the roles of miRNAs in synaptic plasticity underlying the development of addiction and then briefly discuss the possibility of using circulating miRNA as biomarkers for addiction.
Collapse
Affiliation(s)
- A. C. W. Smith
- The Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - P. J. Kenny
- The Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
21
|
Jiang C, Cui N, Zhong W, Johnson CM, Wu Y. Breathing abnormalities in animal models of Rett syndrome a female neurogenetic disorder. Respir Physiol Neurobiol 2017; 245:45-52. [PMID: 27884797 PMCID: PMC5438903 DOI: 10.1016/j.resp.2016.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/17/2016] [Accepted: 11/20/2016] [Indexed: 02/08/2023]
Abstract
A characteristic feature of Rett syndrome (RTT) is abnormal breathing accompanied by several other neurological and cognitive disorders. Since RTT rodent models became available, studies have begun shedding insight into the breathing abnormalities at behavioral, cellular and molecular levels. Defects are found in several groups of brainstem neurons involved in respiratory control, and potential neural mechanisms have been suggested. The findings in animal models are helpful in therapeutic strategies for people with RTT with respect to lowering sudden and unexpected death, preventing secondary developmental consequences, and improving the quality of lives.
Collapse
Affiliation(s)
- Chun Jiang
- Department of Biology, Georgia State University, Atlanta, USA.
| | - Ningren Cui
- Department of Biology, Georgia State University, Atlanta, USA
| | - Weiwei Zhong
- Department of Biology, Georgia State University, Atlanta, USA
| | | | - Yang Wu
- Department of Biology, Georgia State University, Atlanta, USA
| |
Collapse
|
22
|
Vaillancourt K, Ernst C, Mash D, Turecki G. DNA Methylation Dynamics and Cocaine in the Brain: Progress and Prospects. Genes (Basel) 2017; 8:genes8050138. [PMID: 28498318 PMCID: PMC5448012 DOI: 10.3390/genes8050138] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/04/2017] [Indexed: 12/27/2022] Open
Abstract
Cytosine modifications, including DNA methylation, are stable epigenetic marks that may translate environmental change into transcriptional regulation. Research has begun to investigate DNA methylation dynamics in relation to cocaine use disorders. Specifically, DNA methylation machinery, including methyltransferases and binding proteins, are dysregulated in brain reward pathways after chronic cocaine exposure. In addition, numerous methylome-wide and candidate promoter studies have identified differential methylation, at the nucleotide level, in rodent models of cocaine abuse and drug seeking behavior. This review highlights the current progress in the field of cocaine-related methylation, and offers considerations for future research.
Collapse
Affiliation(s)
- Kathryn Vaillancourt
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Verdun, QC H4H 1R3, Canada.
| | - Carl Ernst
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Verdun, QC H4H 1R3, Canada.
| | - Deborah Mash
- Department of Neurology, University of Miami Miller School of Medicine, University of Miami, Coral Gables, FL 33146, USA.
| | - Gustavo Turecki
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Verdun, QC H4H 1R3, Canada.
| |
Collapse
|
23
|
Weaver ICG, Korgan AC, Lee K, Wheeler RV, Hundert AS, Goguen D. Stress and the Emerging Roles of Chromatin Remodeling in Signal Integration and Stable Transmission of Reversible Phenotypes. Front Behav Neurosci 2017; 11:41. [PMID: 28360846 PMCID: PMC5350110 DOI: 10.3389/fnbeh.2017.00041] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 02/24/2017] [Indexed: 01/02/2023] Open
Abstract
The influence of early life experience and degree of parental-infant attachment on emotional development in children and adolescents has been comprehensively studied. Structural and mechanistic insight into the biological foundation and maintenance of mammalian defensive systems (metabolic, immune, nervous and behavioral) is slowly advancing through the emerging field of developmental molecular (epi)genetics. Initial evidence revealed that differential nurture early in life generates stable differences in offspring hypothalamic-pituitary-adrenal (HPA) regulation, in part, through chromatin remodeling and changes in DNA methylation of specific genes expressed in the brain, revealing physical, biochemical and molecular paths for the epidemiological concept of gene-environment interactions. Herein, a primary molecular mechanism underpinning the early developmental programming and lifelong maintenance of defensive (emotional) responses in the offspring is the alteration of chromatin domains of specific genomic regions from a condensed state (heterochromatin) to a transcriptionally accessible state (euchromatin). Conversely, DNA methylation promotes the formation of heterochromatin, which is essential for gene silencing, genomic integrity and chromosome segregation. Therefore, inter-individual differences in chromatin modifications and DNA methylation marks hold great potential for assessing the impact of both early life experience and effectiveness of intervention programs—from guided psychosocial strategies focused on changing behavior to pharmacological treatments that target chromatin remodeling and DNA methylation enzymes to dietary approaches that alter cellular pools of metabolic intermediates and methyl donors to affect nutrient bioavailability and metabolism. In this review article, we discuss the potential molecular mechanism(s) of gene regulation associated with chromatin modeling and programming of endocrine (e.g., HPA and metabolic or cardiovascular) and behavioral (e.g., fearfulness, vigilance) responses to stress, including alterations in DNA methylation and the role of DNA repair machinery. From parental history (e.g., drugs, housing, illness, nutrition, socialization) to maternal-offspring exchanges of nutrition, microbiota, antibodies and stimulation, the nature of nurture provides not only mechanistic insight into how experiences propagate from external to internal variables, but also identifies a composite therapeutic target, chromatin modeling, for gestational/prenatal stress, adolescent anxiety/depression and adult-onset neuropsychiatric disease.
Collapse
Affiliation(s)
- Ian C G Weaver
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Austin C Korgan
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Kristen Lee
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Ryan V Wheeler
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Amos S Hundert
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| | - Donna Goguen
- Department of Psychology and Neuroscience, and Department of Psychiatry, Dalhousie University Halifax, NS, Canada
| |
Collapse
|
24
|
Regulation and function of MeCP2 Ser421 phosphorylation in U50488-induced conditioned place aversion in mice. Psychopharmacology (Berl) 2017; 234:913-923. [PMID: 28116477 PMCID: PMC5321784 DOI: 10.1007/s00213-017-4527-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 01/05/2017] [Indexed: 12/22/2022]
Abstract
RATIONALE Phosphorylation of the methyl DNA-binding protein MeCP2 at Ser421 (pMeCP2-S421) is induced in corticolimbic brain regions during exposure to drugs of abuse and modulates reward-driven behaviors. However, whether pMeCP2-S421 is also involved in behavioral adaptations to aversive drugs is unknown. OBJECTIVES Our goal was to establish the role and regulation of pMeCP2-S421 in corticolimbic brain regions of mice upon acute treatment with the kappa opioid receptor agonist U50488 and during the expression of U50488-induced conditioned place aversion (CPA). METHODS pMeCP2-S421 levels were measured in the nucleus accumbens (NAc), prelimbic cortex, infralimbic cortex (ILC), and basolateral amygdala (BLA) of male mice after intraperitoneal administration of U50488 and upon the expression of U50488-induced CPA. Fos was measured as marker of neural activity in the same brain regions. U50488-induced CPA and Fos levels were compared between knockin (KI) mice that lack pMeCP2-S421 and their wild-type (WT) littermates. RESULTS U50488 administration acutely induced pMeCP2-S421 and Fos selectively in the NAc but did not alter MeCP2 levels in any brain region. U50488-induced CPA was associated with decreased pMeCP2-S421 in the ILC and BLA and induced Fos in the BLA. MeCP2 KI mice showed CPA indistinguishable from their WT littermates, but they also showed less BLA Fos induction upon CPA. CONCLUSION These data are the first to show that pMeCP2-S421 is induced in the brain acutely after U50488 administration but not upon U50488-induced CPA. Although pMeCP2-S421 is not required for U50488-induced CPA, this phosphorylation event may contribute to molecular plasticities in brain regions that govern aversive behaviors.
Collapse
|
25
|
Drug Addiction and DNA Modifications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:105-125. [DOI: 10.1007/978-3-319-53889-1_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Fonteneau M, Filliol D, Anglard P, Befort K, Romieu P, Zwiller J. Inhibition of DNA methyltransferases regulates cocaine self-administration by rats: a genome-wide DNA methylation study. GENES BRAIN AND BEHAVIOR 2016; 16:313-327. [PMID: 27762100 DOI: 10.1111/gbb.12354] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/07/2016] [Accepted: 10/18/2016] [Indexed: 12/31/2022]
Abstract
DNA methylation is a major epigenetic process which regulates the accessibility of genes to the transcriptional machinery. In the present study, we investigated whether modifying the global DNA methylation pattern in the brain would alter cocaine intake by rats, using the cocaine self-administration test. The data indicate that treatment of rats with the DNA methyltransferase inhibitors 5-aza-2'-deoxycytidine (dAZA) and zebularine enhanced the reinforcing properties of cocaine. To obtain some insights about the underlying neurobiological mechanisms, a genome-wide methylation analysis was undertaken in the prefrontal cortex of rats self-administering cocaine and treated with or without dAZA. The study identified nearly 189 000 differentially methylated regions (DMRs), about half of them were located inside gene bodies, while only 9% of DMRs were found in the promoter regions of genes. About 99% of methylation changes occurred outside CpG islands. Gene expression studies confirmed the inverse correlation usually observed between increased methylation and transcriptional activation when methylation occurs in the gene promoter. This inverse correlation was not observed when methylation took place inside gene bodies. Using the literature-based Ingenuity Pathway Analysis, we explored how the differentially methylated genes were related. The analysis showed that increase in cocaine intake by rats in response to DNA methyltransferase inhibitors underlies plasticity mechanisms which mainly concern axonal growth and synaptogenesis as well as spine remodeling. Together with the Akt/PI3K pathway, the Rho-GTPase family was found to be involved in the plasticity underlying the effect of dAZA on the observed behavioral changes.
Collapse
Affiliation(s)
- M Fonteneau
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, CNRS, Université de Strasbourg, Strasbourg, France
| | - D Filliol
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, CNRS, Université de Strasbourg, Strasbourg, France
| | - P Anglard
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, CNRS, Université de Strasbourg, Strasbourg, France
| | - K Befort
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, CNRS, Université de Strasbourg, Strasbourg, France
| | - P Romieu
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, CNRS, Université de Strasbourg, Strasbourg, France
| | - J Zwiller
- Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
27
|
Lewis CR, Bastle RM, Manning TB, Himes SM, Fennig P, Conrad PR, Colwell J, Pagni BA, Hess LA, Matekel CG, Newbern JM, Olive MF. Interactions between Early Life Stress, Nucleus Accumbens MeCP2 Expression, and Methamphetamine Self-Administration in Male Rats. Neuropsychopharmacology 2016; 41:2851-2861. [PMID: 27312406 PMCID: PMC5061895 DOI: 10.1038/npp.2016.96] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 05/16/2016] [Accepted: 06/02/2016] [Indexed: 02/01/2023]
Abstract
Early life stress (ELS) is highly related to the development of psychiatric illnesses in adulthood, including substance use disorders. A recent body of literature suggests that long-lasting changes in the epigenome may be a mechanism by which experiences early in life can alter neurobiological and behavioral phenotypes in adulthood. In this study, we replicate our previous findings that ELS, in the form of prolonged maternal separation, increases adult methamphetamine self-administration (SA) in male rats as compared with handled controls. In addition, we show new evidence that both ELS and methamphetamine SA alter the expression of the epigenetic regulator methyl CpG-binding protein 2 (MeCP2) in key brain reward regions, particularly in the nucleus accumbens (NAc) core. In turn, viral-mediated knockdown of MeCP2 expression in the NAc core reduces methamphetamine SA, as well as saccharin intake. Furthermore, NAc core MeCP2 knockdown reduces methamphetamine, but not saccharin, SA on a progressive ratio schedule of reinforcement. These data suggest that NAc core MeCP2 may be recruited by both ELS and methamphetamine SA and promote the development of certain aspects of drug abuse-related behavior. Taken together, functional interactions between ELS, methamphetamine SA, and the expression of MeCP2 in the NAc may represent novel mechanisms that can ultimately be targeted for intervention in individuals with adverse early life experiences who are at risk for developing substance use disorders.
Collapse
Affiliation(s)
- Candace R Lewis
- Department of Psychology, Arizona State University, Tempe, AZ, USA,Arizona State University, 950 S McAllister Avenue, Tempe, AZ 85281, USA, Tel: +1 602 680 8786, E-mail:
| | - Ryan M Bastle
- Interdepartmental Graduate Program in Neuroscience, Arizona State University, Tempe, AZ, USA
| | - Tawny B Manning
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - Sarah M Himes
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - Paulette Fennig
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - Phoebe R Conrad
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - Jenna Colwell
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - Broc A Pagni
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - Lyndsay A Hess
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | | | - Jason M Newbern
- Interdepartmental Graduate Program in Neuroscience, Arizona State University, Tempe, AZ, USA,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, USA,Interdepartmental Graduate Program in Neuroscience, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
28
|
Insight from animal models of environmentally driven epigenetic changes in the developing and adult brain. Dev Psychopathol 2016; 28:1229-1243. [PMID: 27687803 DOI: 10.1017/s095457941600081x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The efforts of many neuroscientists are directed toward understanding the appreciable plasticity of the brain and behavior. In recent years, epigenetics has become a core of this focus as a prime mechanistic candidate for behavioral modifications. Animal models have been instrumental in advancing our understanding of environmentally driven changes to the epigenome in the developing and adult brain. This review focuses mainly on such discoveries driven by adverse environments along with their associated behavioral outcomes. While much of the evidence discussed focuses on epigenetics within the central nervous system, several peripheral studies in humans who have experienced significant adversity are also highlighted. As we continue to unravel the link between epigenetics and phenotype, discerning the complexity and specificity of epigenetic changes induced by environments is an important step toward understanding optimal development and how to prevent or ameliorate behavioral deficits bred by disruptive environments.
Collapse
|
29
|
Veeraragavan S, Wan YW, Connolly DR, Hamilton SM, Ward CS, Soriano S, Pitcher MR, McGraw CM, Huang SG, Green JR, Yuva LA, Liang AJ, Neul JL, Yasui DH, LaSalle JM, Liu Z, Paylor R, Samaco RC. Loss of MeCP2 in the rat models regression, impaired sociability and transcriptional deficits of Rett syndrome. Hum Mol Genet 2016; 25:3284-3302. [PMID: 27365498 PMCID: PMC5179927 DOI: 10.1093/hmg/ddw178] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/18/2016] [Accepted: 06/08/2016] [Indexed: 01/31/2023] Open
Abstract
Mouse models of the transcriptional modulator Methyl-CpG-Binding Protein 2 (MeCP2) have advanced our understanding of Rett syndrome (RTT). RTT is a 'prototypical' neurodevelopmental disorder with many clinical features overlapping with other intellectual and developmental disabilities (IDD). Therapeutic interventions for RTT may therefore have broader applications. However, the reliance on the laboratory mouse to identify viable therapies for the human condition may present challenges in translating findings from the bench to the clinic. In addition, the need to identify outcome measures in well-chosen animal models is critical for preclinical trials. Here, we report that a novel Mecp2 rat model displays high face validity for modelling psychomotor regression of a learned skill, a deficit that has not been shown in Mecp2 mice. Juvenile play, a behavioural feature that is uniquely present in rats and not mice, is also impaired in female Mecp2 rats. Finally, we demonstrate that evaluating the molecular consequences of the loss of MeCP2 in both mouse and rat may result in higher predictive validity with respect to transcriptional changes in the human RTT brain. These data underscore the similarities and differences caused by the loss of MeCP2 among divergent rodent species which may have important implications for the treatment of individuals with disease-causing MECP2 mutations. Taken together, these findings demonstrate that the Mecp2 rat model is a complementary tool with unique features for the study of RTT and highlight the potential benefit of cross-species analyses in identifying potential disease-relevant preclinical outcome measures.
Collapse
Affiliation(s)
- Surabi Veeraragavan
- Department of Molecular and Human Genetics
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Ying-Wooi Wan
- Department of Molecular and Human Genetics
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Daniel R Connolly
- Department of Molecular and Human Genetics
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | | | - Christopher S Ward
- Department of Pediatrics, Section of Neurology
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Sirena Soriano
- Department of Molecular and Human Genetics
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Meagan R Pitcher
- Program in Translational Biology and Molecular Medicine
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Christopher M McGraw
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Sharon G Huang
- Department of Molecular and Human Genetics
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | | | - Lisa A Yuva
- Department of Molecular and Human Genetics
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Agnes J Liang
- Department of Molecular and Human Genetics
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Jeffrey L Neul
- Department of Pediatrics, Section of Neurology
- Program in Translational Biology and Molecular Medicine
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Dag H Yasui
- Rowe Program in Human Genetics, University of California Davis, Davis, CA, USA
| | - Janine M LaSalle
- Rowe Program in Human Genetics, University of California Davis, Davis, CA, USA
| | - Zhandong Liu
- Department of Pediatrics, Section of Neurology
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | | | - Rodney C Samaco
- Department of Molecular and Human Genetics
- Program in Translational Biology and Molecular Medicine
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
30
|
Glover ME, Clinton SM. Of rodents and humans: A comparative review of the neurobehavioral effects of early life SSRI exposure in preclinical and clinical research. Int J Dev Neurosci 2016; 51:50-72. [PMID: 27165448 PMCID: PMC4930157 DOI: 10.1016/j.ijdevneu.2016.04.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 02/08/2023] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) have been a mainstay pharmacological treatment for women experiencing depression during pregnancy and postpartum for the past 25 years. SSRIs act via blockade of the presynaptic serotonin transporter and result in a transient increase in synaptic serotonin. Long-lasting changes in cellular function such as serotonergic transmission, neurogenesis, and epigenetics, are thought to underlie the therapeutic benefits of SSRIs. In recent years, though, growing evidence in clinical and preclinical settings indicate that offspring exposed to SSRIs in utero or as neonates exhibit long-lasting behavioral adaptions. Clinically, children exposed to SSRIs in early life exhibit increased internalizing behavior reduced social behavior, and increased risk for depression in adolescence. Similarly, rodents exposed to SSRIs perinatally exhibit increased traits of anxiety- or depression-like behavior. Furthermore, certain individuals appear to be more susceptible to early life SSRI exposure than others, suggesting that perinatal SSRI exposure may pose greater risks for negative outcome within certain populations. Although SSRIs trigger a number of intracellular processes that likely contribute to their therapeutic effects, early life antidepressant exposure during critical neurodevelopmental periods may elicit lasting negative effects in offspring. In this review, we cover the basic development and structure of the serotonin system, how the system is affected by early life SSRI exposure, and the behavioral outcomes of perinatal SSRI exposure in both clinical and preclinical settings. We review recent evidence indicating that perinatal SSRI exposure perturbs the developing limbic system, including altered serotonergic transmission, neurogenesis, and epigenetic processes in the hippocampus, which may contribute to behavioral domains (e.g., sociability, cognition, anxiety, and behavioral despair) that are affected by perinatal SSRI treatment. Identifying the molecular mechanisms that underlie the deleterious behavioral effects of perinatal SSRI exposure may highlight biological mechanisms in the etiology of mood disorders. Moreover, because recent studies suggest that certain individuals may be more susceptible to the negative consequences of early life SSRI exposure than others, understanding mechanisms that drive such susceptibility could lead to individualized treatment strategies for depressed women who are or plan to become pregnant.
Collapse
Affiliation(s)
| | - Sarah M Clinton
- Department of Psychiatry, University of Alabama-Birmingham, USA.
| |
Collapse
|
31
|
Ausió J. MeCP2 and the enigmatic organization of brain chromatin. Implications for depression and cocaine addiction. Clin Epigenetics 2016; 8:58. [PMID: 27213019 PMCID: PMC4875624 DOI: 10.1186/s13148-016-0214-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/20/2016] [Indexed: 12/21/2022] Open
Abstract
Methyl CpG binding protein 2 (MeCP2) is a highly abundant chromosomal protein within the brain. It is hence not surprising that perturbations in its genome-wide distribution, and at particular loci within this tissue, can result in widespread neurological disorders that transcend the early implications of this protein in Rett syndrome (RTT). Yet, the details of its role and involvement in chromatin organization are still poorly understood. This paper focuses on what is known to date about all of this with special emphasis on the relation to different epigenetic modifications (DNA methylation, histone acetylation/ubiquitination, MeCP2 phosphorylation and miRNA). We showcase all of the above in two particular important neurological functional alterations in the brain: depression (major depressive disorder [MDD]) and cocaine addiction, both of which affect the MeCP2 homeostasis and result in significant changes in the overall levels of these epigenetic marks.
Collapse
Affiliation(s)
- Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6 Canada
| |
Collapse
|
32
|
Pearson BL, Defensor EB, Blanchard DC, Blanchard RJ. Applying the ethoexperimental approach to neurodevelopmental syndrome research reveals exaggerated defensive behavior in Mecp2 mutant mice. Physiol Behav 2016; 146:98-104. [PMID: 26066729 DOI: 10.1016/j.physbeh.2015.03.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 02/07/2023]
Abstract
Rett syndrome is a Pervasive Developmental Disorder (PDD) associated with de novo mutations of the methyl CpG-binding protein 2 (MECP2) gene. Mecp2 functions as a transcription factor that regulates the expression of hundreds of genes. Identification of the role of Mecp2 in specific neurodevelopmental symptoms remains an important research aim. We previously demonstrated that male mice possessing a truncation mutation in Mecp2 are hyper-social. We predicted that reduced fear or anxiety might underlie this enhanced affiliation. In order to probe risk assessment and anxiety-like behavior, we compared Mecp2 truncation mutants to their wild-type littermates in the elevated plus maze and elevated zero maze. Additionally, subjects were administered the mouse defense test battery to evaluate unconditioned fear- and panic-like behavior to a graded set of threat scenarios and a predator stimulus. Mutant mice showed no significant changes in anxiety-like behavior. Yet, they displayed hyper-reactive escape and defensive behaviors to an animate predatory threat stimulus. Notably, mutant mice engaged in exaggerated active defense responding to threat stimuli at nearly all phases of the fear battery. These results reveal abnormalities in emotion regulation in Mecp2 mutants particularly in response to ecologically relevant threats. This hyper-responsivity suggests that transcriptional targets of Mecp2 are critical to emotion regulation. Moreover, we suggest that detailed analysis of defensive behavior and aggression with ethologically relevant tasks provides an avenue to interrogate gene-behavior mechanisms of neurodevelopmental and other psychiatric conditions.
Collapse
|
33
|
Seo MK, Ly NN, Lee CH, Cho HY, Choi CM, Nhu LH, Lee JG, Lee BJ, Kim GM, Yoon BJ, Park SW, Kim YH. Early life stress increases stress vulnerability through BDNF gene epigenetic changes in the rat hippocampus. Neuropharmacology 2016; 105:388-397. [PMID: 26877199 DOI: 10.1016/j.neuropharm.2016.02.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/20/2016] [Accepted: 02/08/2016] [Indexed: 12/15/2022]
Abstract
Early life stress (ELS) exerts long-lasting epigenetic influences on the brain and makes an individual susceptible to later depression. It is poorly understood whether ELS and subsequent adult chronic stress modulate epigenetic mechanisms. We examined the epigenetic mechanisms of the BDNF gene in the hippocampus, which may underlie stress vulnerability to postnatal maternal separation (MS) and adult restraint stress (RS). Rat pups were separated from their dams (3 h/day from P1-P21). When the pups reached adulthood (8 weeks old), we introduced RS (2 h/day for 3 weeks) followed by escitalopram treatment. We showed that both the MS and RS groups expressed reduced levels of total and exon IV BDNF mRNA. Furthermore, RS potentiated MS-induced decreases in these expression levels. Similarly, both the MS and RS groups showed decreased levels of acetylated histone H3 and H4 at BDNF promoter IV, and RS exacerbated MS-induced decreases of H3 and H4 acetylation. Both the MS and RS groups had increased MeCP2 levels at BDNF promoter IV, as well as increased HDAC5 mRNA, and the combination of MS and RS exerted a greater effect on these parameters than did RS alone. In the forced swimming test, the immobility time of the MS + RS group was significantly higher than that of the RS group. Additionally, chronic escitalopram treatment recovered these alterations. Our results suggest that postnatal MS and subsequent adult RS modulate epigenetic changes in the BDNF gene, and that these changes may be related to behavioral phenotype. These epigenetic mechanisms are involved in escitalopram action.
Collapse
Affiliation(s)
- Mi Kyoung Seo
- Paik Institute for Clinical Research, Republic of Korea
| | - Nguyen Ngoc Ly
- Department of Health Science and Technology, Graduate School of Inje University, Republic of Korea
| | - Chan Hong Lee
- Paik Institute for Clinical Research, Republic of Korea
| | - Hye Yeon Cho
- Paik Institute for Clinical Research, Republic of Korea
| | - Cheol Min Choi
- Department of Health Science and Technology, Graduate School of Inje University, Republic of Korea
| | - Le Hoa Nhu
- Department of Health Science and Technology, Graduate School of Inje University, Republic of Korea
| | - Jung Goo Lee
- Paik Institute for Clinical Research, Republic of Korea; Department of Health Science and Technology, Graduate School of Inje University, Republic of Korea; Department of Psychiatry, School of Medicine, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea
| | - Bong Ju Lee
- Department of Psychiatry, School of Medicine, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea
| | - Gyung-Mee Kim
- Department of Psychiatry, School of Medicine, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea
| | - Bong June Yoon
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sung Woo Park
- Paik Institute for Clinical Research, Republic of Korea; Department of Health Science and Technology, Graduate School of Inje University, Republic of Korea.
| | - Young Hoon Kim
- Paik Institute for Clinical Research, Republic of Korea; Department of Health Science and Technology, Graduate School of Inje University, Republic of Korea; Department of Psychiatry, School of Medicine, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea.
| |
Collapse
|
34
|
Kim TW, Lee SJ, Oh BM, Lee H, Uhm TG, Min JK, Park YJ, Yoon SR, Kim BY, Kim JW, Choe YK, Lee HG. Epigenetic modification of TLR4 promotes activation of NF-κB by regulating methyl-CpG-binding domain protein 2 and Sp1 in gastric cancer. Oncotarget 2016; 7:4195-209. [PMID: 26675260 PMCID: PMC4826199 DOI: 10.18632/oncotarget.6549] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/23/2015] [Indexed: 12/17/2022] Open
Abstract
Toll-like receptor 4 (TLR4) is important in promoting the immune response in various cancers. Recently, TLR4 is highly expressed in a stage-dependent manner in gastric cancer, but the regulatory mechanism of TLR4 expression has been not elucidated it. Here, we investigated the mechanism underlying regulation of TLR4 expression through promoter methylation and histone modification between transcriptional regulation and silencing of the TLR4 gene in gastric cancer cells. Chromatin immunoprecipitation was carried out to screen for factors related to TLR4 methylation such as MeCP2, HDAC1, and Sp1 on the TLR4 promoter. Moreover, DNA methyltransferase inhibitor 5-aza-deoxycytidine (5-aza-dC) induced demethylation of the TLR4 promoter and increased H3K4 trimethylation and Sp1 binding to reactivate silenced TLR4. In contrast, although the silence of TLR4 activated H3K9 trimethylation and MeCP2 complex, combined treatment with TLR4 agonist and 5-aza-dC upregulated H3K4 trimethylation and activated with transcription factors as Sp1 and NF-κB. This study demonstrates that recruitment of the MeCP2/HDAC1 repressor complex increases the low levels of TLR4 expression through epigenetic modification of DNA and histones on the TLR4 promoter, but Sp1 activates TLR4 high expression by hypomethylation and NF-κB signaling in gastric cancer cells.
Collapse
Affiliation(s)
- Tae Woo Kim
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology (UST), Yuseong-gu, Daejeon, Republic of Korea
| | - Seon-Jin Lee
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology (UST), Yuseong-gu, Daejeon, Republic of Korea
| | - Byung Moo Oh
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology (UST), Yuseong-gu, Daejeon, Republic of Korea
| | - Heesoo Lee
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology (UST), Yuseong-gu, Daejeon, Republic of Korea
| | - Tae Gi Uhm
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Jeong-Ki Min
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Young-Jun Park
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Bo-Yeon Kim
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Republic of Korea
| | - Jong Wan Kim
- Department of Laboratory Medicine, College of Medicine, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Yong-Kyung Choe
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
| | - Hee Gu Lee
- Genome Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, Republic of Korea
- Department of Biomolecular Science, University of Science and Technology (UST), Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
35
|
Marballi K, Genabai NK, Blednov YA, Harris RA, Ponomarev I. Alcohol consumption induces global gene expression changes in VTA dopaminergic neurons. GENES BRAIN AND BEHAVIOR 2015; 15:318-26. [PMID: 26482798 DOI: 10.1111/gbb.12266] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/28/2015] [Accepted: 10/16/2015] [Indexed: 12/22/2022]
Abstract
Alcoholism is associated with dysregulation in the neural circuitry that mediates motivated and goal-directed behaviors. The dopaminergic (DA) connection between the ventral tegmental area (VTA) and the nucleus accumbens is viewed as a critical component of the neurocircuitry mediating alcohol's rewarding and behavioral effects. We sought to determine the effects of binge alcohol drinking on global gene expression in VTA DA neurons. Alcohol-preferring C57BL/6J × FVB/NJ F1 hybrid female mice were exposed to a modified drinking in the dark (DID) procedure for 3 weeks, while control animals had access to water only. Global gene expression of laser-captured tyrosine hydroxylase (TH)-positive VTA DA neurons was measured using microarrays. A total of 644 transcripts were differentially expressed between the drinking and nondrinking mice, and 930 transcripts correlated with alcohol intake during the last 2 days of drinking in the alcohol group. Bioinformatics analysis of alcohol-responsive genes identified molecular pathways and networks perturbed in DA neurons by alcohol consumption, which included neuroimmune and epigenetic functions, alcohol metabolism and brain disorders. The majority of genes with high and specific expression in DA neurons were downregulated by or negatively correlated with alcohol consumption, suggesting a decreased activity of DA neurons in high drinking animals. These changes in the DA transcriptome provide a foundation for alcohol-induced neuroadaptations that may play a crucial role in the transition to addiction.
Collapse
Affiliation(s)
- K Marballi
- Waggoner Center for Alcohol and Addiction Research and The College of Pharmacy, The University of Texas at Austin, Austin
| | - N K Genabai
- Waggoner Center for Alcohol and Addiction Research and The College of Pharmacy, The University of Texas at Austin, Austin.,Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Y A Blednov
- Waggoner Center for Alcohol and Addiction Research and The College of Pharmacy, The University of Texas at Austin, Austin
| | - R A Harris
- Waggoner Center for Alcohol and Addiction Research and The College of Pharmacy, The University of Texas at Austin, Austin
| | - I Ponomarev
- Waggoner Center for Alcohol and Addiction Research and The College of Pharmacy, The University of Texas at Austin, Austin
| |
Collapse
|
36
|
Kubota T, Miyake K, Hariya N, Mochizuki K. Epigenomic-basis of Preemptive Medicine for Neurodevelopmental Disorders. Curr Genomics 2015; 16:175-82. [PMID: 26069457 PMCID: PMC4460221 DOI: 10.2174/1389202916666150216221312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 11/24/2022] Open
Abstract
Neurodevelopmental disorders (NDs) are currently thought to be caused by either genetic
defects or various environmental factors. Recent studies have demonstrated that congenital NDs can
result not only from changes in DNA sequence in neuronal genes but also from changes to the secondary
epigenomic modifications of DNA and histone proteins. Thus, epigenomic assays, as well as genomic
assays, are currently performed for diagnosis of the congenital NDs. It is recently known that
the epigenomic modifications can be altered by various environmental factors, which potentially cause
acquired NDs. Furthermore these alterations can potentially be restored taking advantage of use of reversibility in epigenomics.
Therefore, epigenome-based early diagnosis and subsequent intervention, by using drugs that restore epigenomic
alterations, will open up a new era of preemptive medicine for congenital and acquired NDs.
Collapse
Affiliation(s)
- Takeo Kubota
- Department of Epigenetic Medicine, Faculty of Medicine, University of Yamanashi, Japan
| | - Kunio Miyake
- Department of Epigenetic Medicine, Faculty of Medicine, University of Yamanashi, Japan
| | - Natsuyo Hariya
- Department of Epigenetic Medicine, Faculty of Medicine, University of Yamanashi, Japan
| | - Kazuki Mochizuki
- Department of Local Produce and Food Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Japan
| |
Collapse
|
37
|
Zwiller J. [Epigenetics and drug addiction: a focus on MeCP2 and on histone acetylation]. Med Sci (Paris) 2015; 31:439-46. [PMID: 25958763 DOI: 10.1051/medsci/20153104019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic drug exposure alters gene expression in the brain, which is believed to underlie compulsive drug seeking and drug taking behavior. Recent evidence shows that drug-induced long-term neuroadaptations in the brain are mediated in part by epigenetic mechanisms. By remodeling chromatin, this type of regulation contributes to drug-induced synaptic plasticity that translates into behavioral modifications. How drug-induced alterations in DNA methylation regulate gene expression is reviewed here, with a focus on MeCP2, a protein binding methylated DNA. The importance of histone modifications, especially acetylation is also discussed, with an emphasis on the effects of inhibitors of histone deacetylases on drug-induced behavioral changes. The precise identification of the epigenetic mechanisms that are under the control of drugs of abuse may help to uncover novel targets for the treatment of drug seeking and relapse.
Collapse
Affiliation(s)
- Jean Zwiller
- Laboratoire de neurosciences cognitives et adaptatives, UMR 7364, CNRS, université de Strasbourg, faculté de psychologie, 12 rue Goethe, 67000 Strasbourg, France
| |
Collapse
|
38
|
Xiong GJ, Yang Y, Cao J, Mao RR, Xu L. Fluoxetine treatment reverses the intergenerational impact of maternal separation on fear and anxiety behaviors. Neuropharmacology 2015; 92:1-7. [DOI: 10.1016/j.neuropharm.2014.12.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/12/2014] [Accepted: 12/18/2014] [Indexed: 01/23/2023]
|
39
|
Gurnot C, Martin-Subero I, Mah SM, Weikum W, Goodman SJ, Brain U, Werker JF, Kobor MS, Esteller M, Oberlander TF, Hensch TK. Prenatal antidepressant exposure associated with CYP2E1 DNA methylation change in neonates. Epigenetics 2015; 10:361-72. [PMID: 25891251 DOI: 10.1080/15592294.2015.1026031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Some but not all neonates are affected by prenatal exposure to serotonin reuptake inhibitor antidepressants (SRI) and maternal mood disturbances. Distinguishing the impact of these 2 exposures is challenging and raises critical questions about whether pharmacological, genetic, or epigenetic factors can explain the spectrum of reported outcomes. Using unbiased DNA methylation array measurements followed by a detailed candidate gene approach, we examined whether prenatal SRI exposure was associated with neonatal DNA methylation changes and whether such changes were associated with differences in birth outcomes. Prenatal SRI exposure was first associated with increased DNA methylation status primarily at CYP2E1(β(Non-exposed) = 0.06, β(SRI-exposed) = 0.30, FDR = 0); however, this finding could not be distinguished from the potential impact of prenatal maternal depressed mood. Then, using pyrosequencing of CYP2E1 regulatory regions in an expanded cohort, higher DNA methylation status--both the mean across 16 CpG sites (P < 0.01) and at each specific CpG site (P < 0.05)--was associated with exposure to lower 3rd trimester maternal depressed mood symptoms only in the SRI-exposed neonates, indicating a maternal mood x SRI exposure interaction. In addition, higher DNA methylation levels at CpG2 (P = 0.04), CpG9 (P = 0.04) and CpG10 (P = 0.02), in the interrogated CYP2E1 region, were associated with increased birth weight independently of prenatal maternal mood, SRI drug exposure, or gestational age at birth. Prenatal SRI antidepressant exposure and maternal depressed mood were associated with altered neonatal CYP2E1 DNA methylation status, which, in turn, appeared to be associated with birth weight.
Collapse
Affiliation(s)
- Cécile Gurnot
- a Center for Brain Science; Department of Molecular Cellular Biology; Harvard University ; Cambridge , MA , USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zimmermann CA, Hoffmann A, Raabe F, Spengler D. Role of mecp2 in experience-dependent epigenetic programming. Genes (Basel) 2015; 6:60-86. [PMID: 25756305 PMCID: PMC4377834 DOI: 10.3390/genes6010060] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/18/2015] [Accepted: 02/28/2015] [Indexed: 12/28/2022] Open
Abstract
Mutations in the X-linked gene MECP2, the founding member of a family of proteins recognizing and binding to methylated DNA, are the genetic cause of a devastating neurodevelopmental disorder in humans, called Rett syndrome. Available evidence suggests that MECP2 protein has a critical role in activity-dependent neuronal plasticity and transcription during brain development. Moreover, recent studies in mice show that various posttranslational modifications, notably phosphorylation, regulate Mecp2’s functions in learning and memory, drug addiction, depression-like behavior, and the response to antidepressant treatment. The hypothalamic-pituitary-adrenal (HPA) axis drives the stress response and its deregulation increases the risk for a variety of mental disorders. Early-life stress (ELS) typically results in sustained HPA-axis deregulation and is a major risk factor for stress related diseases, in particular major depression. Interestingly, Mecp2 protein has been shown to contribute to ELS-dependent epigenetic programming of Crh, Avp, and Pomc, all of these genes enhance HPA-axis activity. Hereby ELS regulates Mecp2 phosphorylation, DNA binding, and transcriptional activities in a tissue-specific and temporospatial manner. Overall, these findings suggest MECP2 proteins are so far underestimated and have a more dynamic role in the mediation of the gene-environment dialog and epigenetic programming of the neuroendocrine stress system in health and disease.
Collapse
Affiliation(s)
- Christoph A Zimmermann
- Max Planck Institute of Psychiatry, Translational Research, Kraepelinstr. 2-10, Munich 80804, Germany.
| | - Anke Hoffmann
- Max Planck Institute of Psychiatry, Translational Research, Kraepelinstr. 2-10, Munich 80804, Germany.
| | - Florian Raabe
- Max Planck Institute of Psychiatry, Translational Research, Kraepelinstr. 2-10, Munich 80804, Germany.
| | - Dietmar Spengler
- Max Planck Institute of Psychiatry, Translational Research, Kraepelinstr. 2-10, Munich 80804, Germany.
| |
Collapse
|
41
|
Abstract
The Developmental Origins of Health and Disease (DOHaD) hypothesis refers to the concept that 'malnutrition during the fetal period induces a nature of thrift in fetuses, such that they have a higher change of developing non-communicable diseases, such as obesity and diabetes, if they grow up in the current well-fed society.' Epigenetics is a chemical change in DNA and histones that affects how genes are expressed without alterations of DNA sequences. Several lines of evidence suggest that malnutrition during the fetal period alters the epigenetic expression status of metabolic genes in the fetus and that this altered expression can persist, and possibly lead to metabolic disorders. Similarly, mental stress during the neonatal period can alter the epigenetic expression status of neuronal genes in neonates. Moreover, such environmental, stress-induced, epigenetic changes are transmitted to the next generation via an acquired epigenetic status in sperm. The advantage of epigenetic modifications over changes in genetic sequences is their potential reversibility; thus, epigenetic alterations are potentially reversed with gene expression. Therefore, we potentially establish 'preemptive medicine,' that, in combination with early detection of abnormal epigenetic status and early administration of epigenetic-restoring drugs may prevent the development of disorders associated with the DOHaD.
Collapse
|
42
|
Fernandes S, Salta S, Summavielle T. Methamphetamine promotes α-tubulin deacetylation in endothelial cells: the protective role of acetyl-l-carnitine. Toxicol Lett 2015; 234:131-8. [PMID: 25703822 DOI: 10.1016/j.toxlet.2015.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 11/15/2022]
Abstract
Methamphetamine (METH) is a powerful psychostimulant drug used worldwide for its reinforcing properties. In addition to the classic long-lasting monoaminergic-disrupting effects extensively described in the literature, METH has been consistently reported to increase blood brain barrier (BBB) permeability, both in vivo and in vitro, as a result of tight junction and cytoskeleton disarrangement. Microtubules play a critical role in cell stability, which relies on post-translational modifications such as α-tubulin acetylation. As there is evidence that psychostimulants drugs modulate the expression of histone deacetylases (HDACs), we hypothesized that in endothelial cells METH-mediation of cytoplasmatic HDAC6 activity could affect tubulin acetylation and further contribute to BBB dysfunction. To validate our hypothesis, we exposed the bEnd.3 endothelial cells to increasing doses of METH and verified that it leads to an extensive α-tubulin deacetylation mediated by HDACs activation. Furthermore, since we recently reported that acetyl-l-carnitine (ALC), a natural occurring compound, prevents BBB structural loss in a context of METH exposure, we reasoned that ALC could also preserve the acetylation of microtubules under METH action. The present results confirm that ALC is able to prevent METH-induced deacetylation providing effective protection on microtubule acetylation. Although further investigation is still needed, HDACs regulation may become a new therapeutic target for ALC.
Collapse
Affiliation(s)
- S Fernandes
- Rua Alfredo Allen, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Rua do Campo Alegre, 823, Addiction Biology Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4150-180 Porto, Portugal; Rua Valente Perfeito, 322, School of Allied Health Sciences - Polytechnic Institute of Porto (ESTSP-IPP), 4400-330 Vila Nova de Gaia, Portugal; Alameda Prof. Hernâni Monteiro, Faculdade de Medicina da Universidade do Porto (FMUP), 4200-319 Porto, Portugal.
| | - S Salta
- Rua Alfredo Allen, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Rua do Campo Alegre, 823, Addiction Biology Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4150-180 Porto, Portugal; Rua Valente Perfeito, 322, School of Allied Health Sciences - Polytechnic Institute of Porto (ESTSP-IPP), 4400-330 Vila Nova de Gaia, Portugal.
| | - T Summavielle
- Rua Alfredo Allen, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Rua do Campo Alegre, 823, Addiction Biology Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4150-180 Porto, Portugal; Rua Valente Perfeito, 322, School of Allied Health Sciences - Polytechnic Institute of Porto (ESTSP-IPP), 4400-330 Vila Nova de Gaia, Portugal.
| |
Collapse
|
43
|
Long-term effects of neonatal treatment with fluoxetine on cognitive performance in Ts65Dn mice. Neurobiol Dis 2015; 74:204-18. [DOI: 10.1016/j.nbd.2014.12.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 11/18/2014] [Accepted: 12/01/2014] [Indexed: 11/23/2022] Open
|
44
|
Tesone-Coelho C, Morel LJ, Bhatt J, Estevez L, Naudon L, Giros B, Zwiller J, Daugé V. Vulnerability to opiate intake in maternally deprived rats: implication of MeCP2 and of histone acetylation. Addict Biol 2015; 20:120-31. [PMID: 23980619 DOI: 10.1111/adb.12084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We previously showed that maternal deprivation predisposes male rats to anxiety, accompanied with an increase in their opiate consumption. In the present report, we searched for brain epigenetic mechanisms that possibly underlie this increase. For that, we examined the expression of the methyl-CpG-binding protein MeCP2 and of the histone deacetylases HDAC2 and HDAC3, as well as the acetylation status of histone H3 and H4 in mesolimbic structures of adult maternally deprived rats, using immunohistochemistry and Western blot analysis. A long-lasting increase in MeCP2 expression was found throughout the striatum of deprived rats. Enhanced HDAC2 expression and increased nuclear HDAC activity in the nucleus accumbens of deprived rats were associated with lower acetylation levels of histone H3 and H4. Treatment for 3 weeks with the HDAC inhibitor sodium valproate abolished HDAC activation together with the decrease in the acetylation levels of histone H4, and was accompanied with normalized oral morphine consumption. The data indicate that epigenetic mechanisms induced by early adverse environment memorize life experience to trigger greater opiate vulnerability during adult life. They suggest that sodium valproate may lessen vulnerability to opiate intake, particularly in subgroups of individuals subjected to adverse postnatal environments.
Collapse
Affiliation(s)
| | - Lydie J. Morel
- Institut National de la Santé et de la Recherche Médicale (INSERM); Université Pierre et Marie Curie; France
- Centre National de la Recherche Scientifique (CNRS); Université Pierre et Marie Curie; France
- UPMC Université Paris 6; France
| | - Jeena Bhatt
- Institut National de la Santé et de la Recherche Médicale (INSERM); Université Pierre et Marie Curie; France
- Centre National de la Recherche Scientifique (CNRS); Université Pierre et Marie Curie; France
- UPMC Université Paris 6; France
| | - Lucie Estevez
- Institut National de la Santé et de la Recherche Médicale (INSERM); Université Pierre et Marie Curie; France
- Centre National de la Recherche Scientifique (CNRS); Université Pierre et Marie Curie; France
- UPMC Université Paris 6; France
| | - Laurent Naudon
- Institut National de la Santé et de la Recherche Médicale (INSERM); Université Pierre et Marie Curie; France
- Centre National de la Recherche Scientifique (CNRS); Université Pierre et Marie Curie; France
- UPMC Université Paris 6; France
| | - Bruno Giros
- Institut National de la Santé et de la Recherche Médicale (INSERM); Université Pierre et Marie Curie; France
- Centre National de la Recherche Scientifique (CNRS); Université Pierre et Marie Curie; France
- UPMC Université Paris 6; France
- Department of Psychiatry; Douglas Hospital Research Center; McGill University; Canada
| | - Jean Zwiller
- Centre National de la Recherche Scientifique (CNRS); Université de Strasbourg; France
| | - Valérie Daugé
- Institut National de la Santé et de la Recherche Médicale (INSERM); Université Pierre et Marie Curie; France
- Centre National de la Recherche Scientifique (CNRS); Université Pierre et Marie Curie; France
- UPMC Université Paris 6; France
| |
Collapse
|
45
|
Differential regulation of MeCP2 and PP1 in passive or voluntary administration of cocaine or food. Int J Neuropsychopharmacol 2014; 17:2031-44. [PMID: 24936739 DOI: 10.1017/s1461145714000972] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cocaine exposure induces changes in the expression of numerous genes, in part through epigenetic modifications. We have initially shown that cocaine increases the expression of the chromatin remodeling protein methyl-CpG binding protein 2 (MeCP2) and characterized the protein phosphatase-1Cβ (PP1Cβ) gene, as repressed by passive i.p. cocaine injections through a Mecp2-mediated mechanism involving de novo DNA methylation. Both proteins being involved in learning and memory processes, we investigated whether voluntary cocaine administration would similarly affect their expression using an operant self-administration paradigm. Passive and voluntary i.v. cocaine intake was found to induce Mecp2 and to repress PP1Cβ in the prefrontal cortex and the caudate putamen. This observation is consistent with the role of Mecp2 acting as a transcriptional repressor of PP1Cβ and shows that passive intake was sufficient to alter their expression. Surprisingly, striking differences were observed under the same conditions in food-restricted rats tested for food pellet delivery. In the prefrontal cortex and throughout the striatum, both proteins were induced by food operant conditioning, but remained unaffected by passive food delivery. Although cocaine and food activate a common reward circuit, changes observed in the expression of other genes such as reelin and GAD67 provide new insights into molecular mechanisms differentiating neuroadaptations triggered by each reinforcer. The identification of hitherto unknown genes differentially regulated by drugs of abuse and a natural reinforcer should improve our understanding of how two rewarding stimuli differ in their ability to drive behavior.
Collapse
|
46
|
Chase K, Sharma RP. Epigenetic developmental programs and adipogenesis. Epigenetics 2014; 8:1133-40. [DOI: 10.4161/epi.26027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
47
|
van de Wiel SMW, Verheij MM, Homberg JR. Designing modulators of 5-hydroxytryptamine signaling to treat abuse disorders. Expert Opin Drug Discov 2014; 9:1293-306. [DOI: 10.1517/17460441.2014.959925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
48
|
Chapleau CA, Lane J, Pozzo-Miller L, Percy AK. Evaluation of current pharmacological treatment options in the management of Rett syndrome: from the present to future therapeutic alternatives. ACTA ACUST UNITED AC 2014; 8:358-69. [PMID: 24050745 DOI: 10.2174/15748847113086660069] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/14/2013] [Accepted: 02/21/2013] [Indexed: 11/22/2022]
Abstract
Neurodevelopmental disorders are a large family of conditions of genetic or environmental origin that are characterized by deficiencies in cognitive and behavioral functions. The therapeutic management of individuals with these disorders is typically complex and is limited to the treatment of specific symptoms that characterize each disorder. The neurodevelopmental disorder Rett syndrome (RTT) is the leading cause of severe intellectual disability in females. Mutations in the gene encoding the transcriptional regulator methyl-CpG-binding protein 2 (MECP2), located on the X chromosome, have been confirmed in more than 95% of individuals meeting diagnostic criteria for classical RTT. RTT is characterized by an uneventful early infancy followed by stagnation and regression of growth, motor, language, and social skills later in development. This review will discuss the genetics, pathology, and symptoms that distinguish RTT from other neurodevelopmental disorders associated with intellectual disability. Because great progress has been made in the basic and clinical science of RTT, the goal of this review is to provide a thorough assessment of current pharmacotherapeutic options to treat the symptoms associated with this disorder. Furthermore, we will highlight recent discoveries made with novel pharmacological interventions in experimental preclinical phases, and which have reversed pathological phenotypes in mouse and cell culture models of RTT and may result in clinical trials.
Collapse
Affiliation(s)
- Christopher A Chapleau
- Department of Pediatrics, CIRC-320, The University of Alabama at Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294-0021, USA.
| | | | | | | |
Collapse
|
49
|
Lewis CR, Olive MF. Early-life stress interactions with the epigenome: potential mechanisms driving vulnerability toward psychiatric illness. Behav Pharmacol 2014; 25:341-51. [PMID: 25003947 PMCID: PMC4119485 DOI: 10.1097/fbp.0000000000000057] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Throughout the 20th century a body of literature concerning the long-lasting effects of the early environment was produced. Adverse experiences in early life, or early-life stress (ELS), is associated with a higher risk of developing various psychiatric illnesses. The mechanisms driving the complex interplay between ELS and adult phenotype has baffled many investigators for decades. Over the last decade, the new field of neuroepigenetics has emerged as one possible mechanism by which ELS can have far-reaching effects on adult phenotype, behavior, and risk for psychiatric illness. Here we review two commonly investigated epigenetic mechanisms, histone modifications and DNA methylation, and the emerging field of neuroepigenetics as they relate to ELS. We discuss the current animal literature demonstrating ELS-induced epigenetic modulation of gene expression that results in altered adult phenotypes. We also briefly discuss other areas in which neuroepigenetics has emerged as a potential mechanism underlying environmental and genetic interactions.
Collapse
Affiliation(s)
- Candace Renee Lewis
- Arizona State University, Tempe, AZ, 930 S McAllister Ave, Tempe, AZ 85281, , Phone: (602) 680 – 8786
| | - Michael Foster Olive
- Arizona State University, Tempe, AZ, 930 S McAllister Ave, Tempe, AZ 85281, , Phone: (480) 727-9557
| |
Collapse
|
50
|
Repeated treatment with electroconvulsive seizures induces HDAC2 expression and down-regulation of NMDA receptor-related genes through histone deacetylation in the rat frontal cortex. Int J Neuropsychopharmacol 2014; 17:1487-500. [PMID: 24606669 DOI: 10.1017/s1461145714000248] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The enzymatic activity of histone deacetylases (HDACs) leads to a histone deacetylation-mediated condensed chromatic structure, resulting in transcriptional repression, which has been implicated in the modifications of neural circuits and behaviors. Repeated treatment with electroconvulsive seizure (ECS) induces changes in histone acetylation, expression of various genes, and intrabrain cellular changes, including neurogenesis. In this study, we examined the effects of repeated ECS on the expression of class I HDACs and related changes in histone modifications and gene expression in the rat frontal cortex. Ten days of repeated ECS treatments (E10X) up-regulated HDAC2 expression at the mRNA and protein levels in the rat frontal cortex compared with sham-treated controls; this was evident in the nuclei of neuronal cells in the prefrontal, cingulate, orbital, and insular cortices. Among the known HDAC2 target genes, mRNA expression of N-methyl-d-aspartate (NMDA) receptor signaling-related genes, including early growth response-1 (Egr1), c-Fos, glutamate receptor, ionotropic, N-methyl d-aspartate 2A (Nr2a), Nr2b, neuritin1 (Nrn1), and calcium/calmodulin-dependent protein kinase II alpha (Camk2α), were decreased, and the histone acetylation of H3 and/or H4 proteins was also reduced by E10X. Chromatin immunoprecipitation analysis revealed that HDAC2 occupancy in the promoters of down-regulated genes was increased significantly. Moreover, administration of sodium butyrate, a HDAC inhibitor, during the course of E10X ameliorated the ECS-induced down-regulation of genes in the rat frontal cortex. These findings suggest that induction of HDAC2 by repeated ECS treatment could play an important role in the down-regulation of NMDA receptor signaling-related genes in the rat frontal cortex through histone modification.
Collapse
|