1
|
Karp F, León IE. Cannabinoids: Adaptogens or Not? Cannabis Cannabinoid Res 2025. [PMID: 40332769 DOI: 10.1089/can.2024.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025] Open
Abstract
Since ancient times, humanity has been exploring natural substances with the aim of increasing stress resistance, enhancing biochemical homeostasis, and treating different diseases. In this way, the objective of the present review is to compare the biological effects of cannabinoids (CNBs) with adaptogens, this exploration allows us to consider the controversy if they can be classified together considering the effects on the body. First, the work revises different features of adaptogens such as their chemical structure, ligand-receptors properties, and homeostasis-stress capabilities. Also, this review includes an overview of preclinical and clinical studies of the effect of adaptogens considering a broad spectrum of adverse biological, chemical, and physical factors. Then, the work does a review of the CNBs effects on the body including the principal uses for the treatment of several diseases as neurodegenerative disorders, arthritis, cancer, cardiovascular affections, diabetes, anxiety, chronic pain, among others. In addition, the different characteristics of the specific endocannabinoid system are described explaining the wide CNBs body effects. Finally, this review presents a comparative analysis between CNBs and adaptogens properties, expecting to contribute to understanding if CNBs can be classified as adaptogens.
Collapse
Affiliation(s)
- Federico Karp
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
| | - Ignacio E León
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- Cátedra de Fisiopatología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
2
|
Melo ESA, Asevedo EA, Duarte-Almeida JM, Nurkolis F, Syahputra RA, Park MN, Kim B, do Couto RO, Ribeiro RIMDA. Mechanisms of Cell Death Induced by Cannabidiol Against Tumor Cells: A Review of Preclinical Studies. PLANTS (BASEL, SWITZERLAND) 2025; 14:585. [PMID: 40006844 PMCID: PMC11859785 DOI: 10.3390/plants14040585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Commonly known as marijuana or hemp, Cannabis sativa L. (Cannabaceae), contains numerous active compounds, particularly cannabinoids, which have been extensively studied for their biological activities. Among these, cannabidiol (CBD) stands out for its therapeutic potential, especially given its non-psychotropic effects. This review evaluates the antitumor properties of CBD, highlighting its various mechanisms of action, including the induction of apoptosis, autophagy, and necrosis. By synthesizing findings from in vitro studies on the cell death mechanisms and signaling pathways activated by CBD in various human tumor cell lines, this literature review emphasizes the therapeutic promise of this natural antineoplastic agent. We conducted a comprehensive search of articles in PubMed, Scopus, Springer, Medline, Lilacs, and Scielo databases from 1984 to February 2022. Of the forty-three articles included, the majority (68.18%) reported that CBD activates apoptosis, while 18.18% observed simultaneous apoptosis and autophagy, 9.09% focused on autophagy alone, and 4.54% indicated necrosis. The antitumor effects of CBD appear to be mediated by transient receptor potential cation channels (TRPVs) in endometrial cancer, glioma, bladder cancer, and myeloma, with TRPV1, TRPV2, and TRPV4 playing key roles in activating apoptosis. This knowledge paves the way for innovative therapeutic strategies that may enhance cancer treatment outcomes while minimizing the toxicity and side effects associated with conventional therapies.
Collapse
Affiliation(s)
- Edilene S. A. Melo
- Experimental Pathology Laboratory, Dona Lindu Central-West Campus (CCO), Federal University of São João del-Rei (UFSJ), Sebastião Gonçalves Coelho 400, Chanadour, Divinopolis 35501-296, MG, Brazil; (E.S.A.M.); (E.A.A.)
| | - Estefani A. Asevedo
- Experimental Pathology Laboratory, Dona Lindu Central-West Campus (CCO), Federal University of São João del-Rei (UFSJ), Sebastião Gonçalves Coelho 400, Chanadour, Divinopolis 35501-296, MG, Brazil; (E.S.A.M.); (E.A.A.)
| | - Joaquim Maurício Duarte-Almeida
- Plant Cell Culture Laboratory, Dona Lindu Central-West Campus (CCO), Federal University of São João del-Rei, Sebastião Gonçalves Coelho 400, Chanadour, Divinopolis 35501-296, MG, Brazil;
| | - Fahrul Nurkolis
- Department of Biological Sciences, Faculty of Sciences and Technology, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta 55281, Indonesia;
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia;
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.N.P.); (B.K.)
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.N.P.); (B.K.)
| | - Renê Oliveira do Couto
- Pharmaceutical Development Laboratory, Dona Lindu Central-West Campus (CCO), Federal University of São João del-Rei, Sebastião Gonçalves Coelho 400, Chanadour, Divinopolis 35501-296, MG, Brazil;
| | - Rosy Iara Maciel de A. Ribeiro
- Experimental Pathology Laboratory, Dona Lindu Central-West Campus (CCO), Federal University of São João del-Rei (UFSJ), Sebastião Gonçalves Coelho 400, Chanadour, Divinopolis 35501-296, MG, Brazil; (E.S.A.M.); (E.A.A.)
| |
Collapse
|
3
|
Kadriya A, Forbes-Robertson S, Falah M. The Anticancer Activity of Cannabinol (CBN) and Cannabigerol (CBG) on Acute Myeloid Leukemia Cells. Molecules 2024; 29:5970. [PMID: 39770061 PMCID: PMC11676644 DOI: 10.3390/molecules29245970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Several cannabis plant-derived compounds, especially cannabinoids, exhibit therapeutic potential in numerous diseases and conditions. In particular, THC and CBD impart palliative, antiemetic, as well as anticancer effects. The antitumor effects include inhibition of cancerous cell growth and metastasis and induction of cell death, all mediated by cannabinoid interaction with the endocannabinoid system (ECS). However, the exact molecular mechanisms are still poorly understood. In addition, their effects on leukemia have scarcely been investigated. The current work aimed to assess the antileukemic effects of CBN and CBG on an acute monocytic leukemia cell line, the THP-1. THP-1 cell viability, morphology and cell cycle analyses were performed to determine potential cytotoxic, antiproliferative, and apoptotic effects of CBN and CBG. Western blotting was carried out to measure the expression of the proapoptotic p53. Both CBN and CBG inhibited cell growth and induced THP-1 cell apoptosis and cell cycle arrest in a dose- and time-dependent manner. CBN and CBG illustrated different dosage effects on THP-1 cells in the MTT assay (CBN > 40 μΜ, CBG > 1 μM) and flow cytometry (CBN > 5 μM, CBG > 40 μM), highlighting the cannabinoids' antileukemic activity. Our study hints at a direct correlation between p53 expression and CBG or CBN doses exceeding 50 μM, suggesting potential activation of p53-associated signaling pathways underlying these effects. Taken together, CBG and CBN exhibited suppressive, cell death-inducing effects on leukemia cells. However, further in-depth research will be needed to explore the molecular mechanisms driving the anticancer effects of CBN and CBG in the leukemia setting.
Collapse
Affiliation(s)
- Ahmad Kadriya
- Medical Research Institute, The Holy Family Hospital Nazareth, Nazareth 16100, Israel;
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | | | - Mizied Falah
- Medical Research Institute, The Holy Family Hospital Nazareth, Nazareth 16100, Israel;
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
4
|
Lteif A, Shebaby W, El Hage M, Azar-Atallah S, Mroue D, Mroueh M, Daher CF. Lebanese cannabis oil as a potential treatment for acute myeloid leukemia: In vitro and in vivo evaluations. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118512. [PMID: 38964627 DOI: 10.1016/j.jep.2024.118512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Cannabis sativa L. ssp. indica (Lam.) plant has been historically utilized as a natural herbal remedy for the treatment of several ailments. In Lebanon, cannabis extracts have long been traditionally used to treat arthritis, diabetes, and cancer. AIM OF THE STUDY The current study aims to investigate the anti-cancer properties of Lebanese cannabis oil extract (COE) on acute myeloid leukemia using WEHI-3 cells, and a WEHI-3-induced leukemia mouse model. MATERIALS AND METHODS WEHI-3 cells were treated with increasing concentrations of COE to determine the IC50 after 24, 48 and 72-h post treatment. Flow cytometry was utilized to identify the mode of cell death. Western blot assay was performed to assess apoptotic marker proteins. In vivo model was established by inoculating WEHI-3 cells in BALB/c mice, and treatment commencing 10 days post-inoculation and continued for a duration of 3 weeks. RESULTS COE exhibited significant cytotoxicity with IC50 of 7.76, 3.82, and 3.34 μg/mL at 24, 48, and 72 h respectively post-treatment. COE treatment caused an induction of apoptosis through an inhibition of the MAPK/ERK pathway and triggering a caspase-dependent apoptosis via the extrinsic and intrinsic modes independent of ROS production. Animals treated with COE exhibited a significantly higher survival rate, reduction in spleen weight as well as white blood cells count. CONCLUSION COE exhibited a potent anti-cancer activity against AML cells, both in vitro and in vivo. These findings emphasize the potential application of COE as a chemotherapeutic adjuvant in treatment of acute myeloid leukemia.
Collapse
Affiliation(s)
- Anthony Lteif
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Wassim Shebaby
- Departement of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Marissa El Hage
- Departement of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Shirine Azar-Atallah
- Departement of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Dima Mroue
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Mohamad Mroueh
- Departement of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, 1102 2801, Lebanon.
| | - Costantine F Daher
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon; Alice Ramez Chagoury School of Nursing, Lebanese American University, Byblos, 1102 2801, Lebanon.
| |
Collapse
|
5
|
Bauer L, Alkotub B, Ballmann M, Hasanzadeh Kafshgari M, Rammes G, Multhoff G. Cannabidiol (CBD) Protects Lung Endothelial Cells from Irradiation-Induced Oxidative Stress and Inflammation In Vitro and In Vivo. Cancers (Basel) 2024; 16:3589. [PMID: 39518030 PMCID: PMC11544820 DOI: 10.3390/cancers16213589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Objective: Radiotherapy, which is commonly used for the local control of thoracic cancers, also induces chronic inflammatory responses in the microvasculature of surrounding normal tissues such as the lung and heart that contribute to fatal radiation-induced lung diseases (RILDs) such as pneumonitis and fibrosis. In this study, we investigated the potential of cannabidiol (CBD) to attenuate the irradiation damage to the vasculature. Methods: We investigated the ability of CBD to protect a murine endothelial cell (EC) line (H5V) and primary lung ECs isolated from C57BL/6 mice from irradiation-induced damage in vitro and lung ECs (luECs) in vivo, by measuring the induction of oxidative stress, DNA damage, apoptosis (in vitro), and induction of inflammatory and pro-angiogenic markers (in vivo). Results: We demonstrated that a non-lethal dose of CBD reduces the irradiation-induced oxidative stress and early apoptosis of lung ECs by upregulating the expression of the cytoprotective mediator heme-oxygenase-1 (HO-1). The radiation-induced increased expression of inflammatory (ICAM-2, MCAM) and pro-angiogenic (VE-cadherin, Endoglin) markers was significantly reduced by a continuous daily treatment of C57BL/6 mice with CBD (i.p. 20 mg/kg body weight), 2 weeks before and 2 weeks after a partial irradiation of the lung (less than 20% of the lung volume) with 16 Gy. Conclusions: CBD has the potential to improve the clinical outcome of radiotherapy by reducing toxic side effects on the microvasculature of the lung.
Collapse
Affiliation(s)
- Lisa Bauer
- Department of Radiation Oncology, TUM School of Medicine and Health, University Hospital of the Technical University of Munich (TUM), 81675 Munich, Germany;
- Radiation Immuno-Oncology Group, Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, University Hospital of the Technical University of Munich (TUM), 81675 Munich, Germany;
| | - Bayan Alkotub
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München (HMGU), 85764 Neuherberg, Germany;
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, University Hospital of the Technical University of Munich (TUM), 81675 Munich, Germany
| | - Markus Ballmann
- Department of Anesthesiology and Intensive Care Medicine, TUM School of Medicine and Health, University Hospital of the Technical University of Munich (TUM), 81675 Munich, Germany; (M.B.); (G.R.)
| | - Morteza Hasanzadeh Kafshgari
- Radiation Immuno-Oncology Group, Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, University Hospital of the Technical University of Munich (TUM), 81675 Munich, Germany;
| | - Gerhard Rammes
- Department of Anesthesiology and Intensive Care Medicine, TUM School of Medicine and Health, University Hospital of the Technical University of Munich (TUM), 81675 Munich, Germany; (M.B.); (G.R.)
| | - Gabriele Multhoff
- Department of Radiation Oncology, TUM School of Medicine and Health, University Hospital of the Technical University of Munich (TUM), 81675 Munich, Germany;
- Radiation Immuno-Oncology Group, Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, University Hospital of the Technical University of Munich (TUM), 81675 Munich, Germany;
| |
Collapse
|
6
|
Li Y, Wu Q, Li X, Cournoyer P, Choudhuri S, Guo L, Chen S. Toxicity of cannabidiol and its metabolites in TM3 mouse Leydig cells: a comparison with primary human Leydig cells. Arch Toxicol 2024; 98:2677-2693. [PMID: 38630283 PMCID: PMC11272754 DOI: 10.1007/s00204-024-03754-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/27/2024] [Indexed: 07/26/2024]
Abstract
Cannabidiol (CBD), one of the major components extracted from the plant Cannabis sativa L., has been used as a prescription drug to treat seizures in many countries. CBD-induced male reproductive toxicity has been reported in animal models; however, the underlying mechanisms remain unclear. We previously reported that CBD induced apoptosis in primary human Leydig cells, which constitute the primary steroidogenic cell population in the testicular interstitium. In this study, we investigated the effects of CBD and its metabolites on TM3 mouse Leydig cells. CBD, at concentrations below 30 µM, reduced cell viability, induced G1 cell cycle arrest, and inhibited DNA synthesis. CBD induced apoptosis after exposure to high concentrations (≥ 50 µM) for 24 h or a low concentration (20 µM) for 6 days. 7-Hydroxy-CBD and 7-carboxy-CBD, the main CBD metabolites of CBD, exhibited the similar toxic effects as CBD. In addition, we conducted a time-course mRNA-sequencing analysis in both primary human Leydig cells and TM3 mouse Leydig cells to understand and compare the mechanisms underlying CBD-induced cytotoxicity. mRNA-sequencing analysis of CBD-treated human and mouse Leydig cells over a 5-day time-course indicated similar responses in both cell types. Mitochondria and lysosome dysfunction, oxidative stress, and autophagy were the major enriched pathways in both cell types. Taken together, these findings demonstrate comparable toxic effects and underlying mechanisms in CBD-treated mouse and primary human Leydig cells.
Collapse
Affiliation(s)
- Yuxi Li
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Patrick Cournoyer
- Office of the Commissioner, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Supratim Choudhuri
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA.
| |
Collapse
|
7
|
Beers JL, Zhou Z, Jackson KD. Advances and Challenges in Modeling Cannabidiol Pharmacokinetics and Hepatotoxicity. Drug Metab Dispos 2024; 52:508-515. [PMID: 38286636 PMCID: PMC11114601 DOI: 10.1124/dmd.123.001435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024] Open
Abstract
Cannabidiol (CBD) is a pharmacologically active metabolite of cannabis that is US Food and Drug Administration approved to treat seizures associated with Lennox-Gastaut syndrome, Dravet syndrome, and tuberous sclerosis complex in children aged 1 year and older. During clinical trials, CBD caused dose-dependent hepatocellular toxicity at therapeutic doses. The risk for toxicity was increased in patients taking valproate, another hepatotoxic antiepileptic drug, through an unknown mechanism. With the growing popularity of CBD in the consumer market, an improved understanding of the safety risks associated with CBD is needed to ensure public health. This review details current efforts to describe CBD pharmacokinetics and mechanisms of hepatotoxicity using both pharmacokinetic models and in vitro models of the liver. In addition, current evidence and knowledge gaps related to intracellular mechanisms of CBD-induced hepatotoxicity are described. The authors propose future directions that combine systems-based models with markers of CBD-induced hepatotoxicity to understand how CBD pharmacokinetics may influence the adverse effect profile and risk of liver injury for those taking CBD. SIGNIFICANCE STATEMENT: This review describes current pharmacokinetic modeling approaches to capture the metabolic clearance and safety profile of cannabidiol (CBD). CBD is an increasingly popular natural product and US Food and Drug Administration-approved antiepileptic drug known to cause clinically significant enzyme-mediated drug interactions and hepatotoxicity at therapeutic doses. CBD metabolism, pharmacokinetics, and putative mechanisms of CBD-induced liver injury are summarized from available preclinical data to inform future modeling efforts for understanding CBD toxicity.
Collapse
Affiliation(s)
- Jessica L Beers
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.L.B., K.D.J.); and Department of Chemistry, York College, City University of New York, Jamaica, New York (Z.Z.)
| | - Zhu Zhou
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.L.B., K.D.J.); and Department of Chemistry, York College, City University of New York, Jamaica, New York (Z.Z.)
| | - Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (J.L.B., K.D.J.); and Department of Chemistry, York College, City University of New York, Jamaica, New York (Z.Z.)
| |
Collapse
|
8
|
Yıldırım S, Ayvaz A, Mermer A, Kocabaş F. Development of novel 1,2,4-triazole containing compounds with anticancer and potent anti-CB1 activity. J Biomol Struct Dyn 2024; 42:3862-3873. [PMID: 37501561 DOI: 10.1080/07391102.2023.2239909] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/14/2023] [Indexed: 07/29/2023]
Abstract
There is still an unmet need for novel and improved anti-cancer compounds. Nitrogen atoms have heterocyclic ring moieties, which have been shown to have powerful anticancer properties in both natural and synthetic derivatives. Due to their dipole character, hydrogen bonding capacity, rigidity and solubility, 1,2,4-triazoles are particularly effective pharmacophores, interacting with biological receptors with high affinity. Thus, novel 1,2,4-triazole-containing molecular derivatives were synthesized using green chemistry methods, microwave irradiation and ultrasonication, and these methods' operational simplicity and maximum greener synthetic efficiency with green chemistry metrics calculations will be attractive for academic and industrial research and tested against three distinct human cancer cell lines including PANC1 (pancreatic cancer), DU145 (prostate cancer), MCF7 (breast cancer) and one fibroblast cell line (HDF). Here, we showed that compounds 5e and 5f were similar to CB1 antagonists in structure, binding affinity and poses. In addition, compounds 5e-g decreased the viability of pancreatic and prostate cancer cells, albeit with cytotoxicity to HDF cells. The IC50 values for PANC1 cells were between 5.9 and 7.3 µM for compounds 5e-g. Cell cycle analysis showed that the effect of compounds 5e-g in cancer cell growth was largely due to cell cycle arrest at S-phase. In sum, novel 1,2,4-triazole-containing compounds with anticancer and potent anti-CB1 activity have been developed.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sümbül Yıldırım
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Aslıhan Ayvaz
- Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Arif Mermer
- Experimental Medicine Application & Research Center, Validebağ Research Park, University of Health Sciences, Istanbul, Turkey
- Department of Biotechnology, University of Health Sciences, Istanbul, Turkey
- UR22722, LABCİS, Faculty of Science and Technology, University of Limoges, Limoges, France
| | - Fatih Kocabaş
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
9
|
Favale G, Donnarumma F, Capone V, Della Torre L, Beato A, Carannante D, Verrilli G, Nawaz A, Grimaldi F, De Simone MC, Del Gaudio N, Megchelenbrink WL, Caraglia M, Benedetti R, Altucci L, Carafa V. Deregulation of New Cell Death Mechanisms in Leukemia. Cancers (Basel) 2024; 16:1657. [PMID: 38730609 PMCID: PMC11083363 DOI: 10.3390/cancers16091657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Hematological malignancies are among the top five most frequent forms of cancer in developed countries worldwide. Although the new therapeutic approaches have improved the quality and the life expectancy of patients, the high rate of recurrence and drug resistance are the main issues for counteracting blood disorders. Chemotherapy-resistant leukemic clones activate molecular processes for biological survival, preventing the activation of regulated cell death pathways, leading to cancer progression. In the past decade, leukemia research has predominantly centered around modulating the well-established processes of apoptosis (type I cell death) and autophagy (type II cell death). However, the development of therapy resistance and the adaptive nature of leukemic clones have rendered targeting these cell death pathways ineffective. The identification of novel cell death mechanisms, as categorized by the Nomenclature Committee on Cell Death (NCCD), has provided researchers with new tools to overcome survival mechanisms and activate alternative molecular pathways. This review aims to synthesize information on these recently discovered RCD mechanisms in the major types of leukemia, providing researchers with a comprehensive overview of cell death and its modulation.
Collapse
Affiliation(s)
- Gregorio Favale
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Federica Donnarumma
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Vincenza Capone
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Laura Della Torre
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Antonio Beato
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Daniela Carannante
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Giulia Verrilli
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Asmat Nawaz
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
- Biogem, Molecular Biology and Genetics Research Institute, 83031 Ariano Irpino, Italy
| | - Francesco Grimaldi
- Dipartimento di Medicina Clinica e Chirurgia, Divisione di Ematologia, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy;
| | | | - Nunzio Del Gaudio
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Wouter Leonard Megchelenbrink
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
| | - Michele Caraglia
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
- Biogem, Molecular Biology and Genetics Research Institute, 83031 Ariano Irpino, Italy
| | - Rosaria Benedetti
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
| | - Lucia Altucci
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
- Biogem, Molecular Biology and Genetics Research Institute, 83031 Ariano Irpino, Italy
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS)-National Research Council (CNR), 80131 Napoli, Italy
- Programma di Epigenetica Medica, A.O.U. “Luigi Vanvitelli”, 80138 Napoli, Italy
| | - Vincenzo Carafa
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.F.); (F.D.); (V.C.); (L.D.T.); (A.B.); (D.C.); (G.V.); (A.N.); (N.D.G.); (W.L.M.); (M.C.); (R.B.); (L.A.)
- Biogem, Molecular Biology and Genetics Research Institute, 83031 Ariano Irpino, Italy
| |
Collapse
|
10
|
Ma L, Liu M, Liu C, Zhang H, Yang S, An J, Qu G, Song S, Cao Q. Research Progress on the Mechanism of the Antitumor Effects of Cannabidiol. Molecules 2024; 29:1943. [PMID: 38731434 PMCID: PMC11085351 DOI: 10.3390/molecules29091943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Cannabidiol (CBD), a non-psychoactive ingredient extracted from the hemp plant, has shown therapeutic effects in a variety of diseases, including anxiety, nervous system disorders, inflammation, and tumors. CBD can exert its antitumor effect by regulating the cell cycle, inducing tumor cell apoptosis and autophagy, and inhibiting tumor cell invasion, migration, and angiogenesis. This article reviews the proposed antitumor mechanisms of CBD, aiming to provide references for the clinical treatment of tumor diseases and the rational use of CBD.
Collapse
Affiliation(s)
- Li Ma
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China; (L.M.); (M.L.); (C.L.); (H.Z.)
| | - Mengke Liu
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China; (L.M.); (M.L.); (C.L.); (H.Z.)
| | - Chuntong Liu
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China; (L.M.); (M.L.); (C.L.); (H.Z.)
| | - Huachang Zhang
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China; (L.M.); (M.L.); (C.L.); (H.Z.)
| | - Shude Yang
- Department of Edible Mushrooms, School of Agriculture, Ludong University, Yantai 264025, China;
| | - Jing An
- Division of Infectious Diseases and Global Health, School of Medicine, University of California San Diego (UCSD), La Jolla, CA 92037, USA;
| | - Guiwu Qu
- Department of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai 264003, China;
| | - Shuling Song
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China; (L.M.); (M.L.); (C.L.); (H.Z.)
| | - Qizhi Cao
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China; (L.M.); (M.L.); (C.L.); (H.Z.)
| |
Collapse
|
11
|
Omer S, Pathak S, Mansour M, Nadar R, Bowen D, Dhanasekaran M, Pondugula SR, Boothe D. Effects of Cannabidiol, ∆9-Tetrahydrocannabinol, and WIN 55-212-22 on the Viability of Canine and Human Non-Hodgkin Lymphoma Cell Lines. Biomolecules 2024; 14:495. [PMID: 38672512 PMCID: PMC11047936 DOI: 10.3390/biom14040495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
In our previous study, we demonstrated the impact of overexpression of CB1 and CB2 cannabinoid receptors and the inhibitory effect of endocannabinoids (2-arachidonoylglycerol (2-AG) and Anandamide (AEA)) on canine (Canis lupus familiaris) and human (Homo sapiens) non-Hodgkin lymphoma (NHL) cell lines' viability compared to cells treated with a vehicle. The purpose of this study was to demonstrate the anti-cancer effects of the phytocannabinoids, cannabidiol (CBD) and ∆9-tetrahydrocannabinol (THC), and the synthetic cannabinoid WIN 55-212-22 (WIN) in canine and human lymphoma cell lines and to compare their inhibitory effect to that of endocannabinoids. We used malignant canine B-cell lymphoma (BCL) (1771 and CLB-L1) and T-cell lymphoma (TCL) (CL-1) cell lines, and human BCL cell line (RAMOS). Our cell viability assay results demonstrated, compared to the controls, a biphasic effect (concentration range from 0.5 μM to 50 μM) with a significant reduction in cancer viability for both phytocannabinoids and the synthetic cannabinoid. However, the decrease in cell viability in the TCL CL-1 line was limited to CBD. The results of the biochemical analysis using the 1771 BCL cell line revealed a significant increase in markers of oxidative stress, inflammation, and apoptosis, and a decrease in markers of mitochondrial function in cells treated with the exogenous cannabinoids compared to the control. Based on the IC50 values, CBD was the most potent phytocannabinoid in reducing lymphoma cell viability in 1771, Ramos, and CL-1. Previously, we demonstrated the endocannabinoid AEA to be more potent than 2-AG. Our study suggests that future studies should use CBD and AEA for further cannabinoid testing as they might reduce tumor burden in malignant NHL of canines and humans.
Collapse
Affiliation(s)
- Saba Omer
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (S.O.); (M.M.); (S.R.P.)
| | - Suhrud Pathak
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA (R.N.); (D.B.); (M.D.)
| | - Mahmoud Mansour
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (S.O.); (M.M.); (S.R.P.)
| | - Rishi Nadar
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA (R.N.); (D.B.); (M.D.)
| | - Dylan Bowen
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA (R.N.); (D.B.); (M.D.)
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA (R.N.); (D.B.); (M.D.)
| | - Satyanarayana R. Pondugula
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (S.O.); (M.M.); (S.R.P.)
| | - Dawn Boothe
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (S.O.); (M.M.); (S.R.P.)
| |
Collapse
|
12
|
Soliman NA, El Dahmy SI, Khamis T, Sameh R, Alashqar SM, Hussein S. The potential protective and therapeutic effects of cannabidiol oil on experimental Leukemia induced by DMBA in male rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2389-2400. [PMID: 37837474 DOI: 10.1007/s00210-023-02737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/20/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND 7,12-Dimethylbenzanthracene (DMBA) is a member of the polycyclic aromatic hydrocarbon family. It is a member of the polycyclic aromatic hydrocarbon family. It is a mutagenic, carcinogenic, and immunosuppressor agent. Cannabidiol (CBD) is a phytocannabinoid. It has anticonvulsant, anti-inflammatory, anti-anxiety, antioxidant, and anti-cancer properties. The purpose of this study was to investigate the possible protective and therapeutic benefits of CBD oil in DMBA-induced leukemia in rats. METHOD Experimental animals were divided into six groups of five rats each. Group 1 (normal control) included healthy rats. Group 2 included normal rats that received olive oil. Group 3 included normal rats that received CBD. Group 4 included the DMBA-induced leukemic group. Group 5 (prophylactic group) included rats that received CBD as a prophylaxis before IV injection with DMBA. Group 6 (treated group) included DMBA-induced leukemic rats that received CBD as treatment. Liver functions (total, direct and indirect bilirubin, alkaline phosphatase (ALP), alanine transaminase (ALT), aspartate aminotransferase (AST), albumin, globulin, and albumin globulin ratio) were measured. Superoxide dismutase (SOD) and catalase (CAT) were also measured. Total RNA extraction followed by-real time qRT-PCR gene expression of LC3-II, Beclin, mTOR, and P62 was performed. Histopathological examination of liver and spleen tissues was performed. RESULTS Administration of CBD in groups 5 and 6 resulted in a significant improvement of the levels of liver functions compared to the leukemic untreated rats. Also, the levels of catalase and SOD significantly increased after treatment with CBD compared to the leukemic group. After treatment with CBD in groups 5 and 6, there were downregulations in the expression of all studied genes compared to leukemic untreated rats. Treatment with CBD was more statistically effective than prophylactic use. CONCLUSION Administration of CBD resulted in a significant improvement in the biochemical, antioxidant status, morphological, and molecular measures in DMBA-induced leukemia in adult male rats. The therapeutic use was more effective than the prophylactic one.
Collapse
Affiliation(s)
- Nabil A Soliman
- Department of Zoology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Samih I El Dahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Reham Sameh
- Department of Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Samia Hussein
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
- Department of Basic Medical Sciences, Ibn Sina University for Medical Sciences, Amman, Jordan.
| |
Collapse
|
13
|
Le TQ, Meesiripan N, Sanggrajang S, Suwanpidokkul N, Prayakprom P, Bodhibukkana C, Khaowroongrueng V, Suriyachan K, Thanasitthichai S, Srisubat A, Surawongsin P, Rungsipipat A, Sakarin S, Rattanapinyopituk K. Anti-proliferative and apoptotic effect of cannabinoids on human pancreatic ductal adenocarcinoma xenograft in BALB/c nude mice model. Sci Rep 2024; 14:6515. [PMID: 38499634 PMCID: PMC10948389 DOI: 10.1038/s41598-024-55307-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
Human pancreatic ductal adenocarcinoma (PDAC) is a highly malignant and lethal tumor of the exocrine pancreas. Cannabinoids extracted from the hemp plant Cannabis sativa have been suggested as a potential therapeutic agent in several human tumors. However, the anti-tumor effect of cannabinoids on human PDAC is not entirely clarified. In this study, the anti-proliferative and apoptotic effect of cannabinoid solution (THC:CBD at 1:6) at a dose of 1, 5, and 10 mg/kg body weight compared to the negative control (sesame oil) and positive control (5-fluorouracil) was investigated in human PDAC xenograft nude mice model. The findings showed that cannabinoids significantly decreased the mitotic cells and mitotic/apoptotic ratio, meanwhile dramatically increased the apoptotic cells. Parallelly, cannabinoids significantly downregulated Ki-67 and PCNA expression levels. Interestingly, cannabinoids upregulated BAX, BAX/BCL-2 ratio, and Caspase-3, meanwhile, downregulated BCL-2 expression level and could not change Caspase-8 expression level. These findings suggest that cannabinoid solution (THC:CBD at 1:6) could inhibit proliferation and induce apoptosis in human PDAC xenograft models. Cannabinoids, including THC:CBD, should be further studied for use as the potent PDCA therapeutic agent in humans.
Collapse
Affiliation(s)
- Trung Quang Le
- Department of Veterinary Pathology, Center of Excellent for Companion Animal Cancer-(CECAC), Chulalongkorn University, Bangkok, 10330, Thailand
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Faculty of Veterinary Medicine, College of Agriculture, Can Tho University, Can Tho, 94000, Vietnam
| | - Nuntana Meesiripan
- Division of Research and Academic Support, National Cancer Institute, Bangkok, 10400, Thailand
| | - Suleeporn Sanggrajang
- Division of Research and Academic Support, National Cancer Institute, Bangkok, 10400, Thailand
| | | | | | | | | | - Kankanit Suriyachan
- Institute of Medical Research and Technology Assessment, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Somchai Thanasitthichai
- Institute of Medical Research and Technology Assessment, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Attasit Srisubat
- Division of Medical Technical and Academic Affairs, Ministry of Public Health, Nonthaburi, 11000, Thailand
| | - Pattamaporn Surawongsin
- Research and Technology Assessment Department, Ophthalmology Department, Lerdsin Hospital, Bangkok, 10500, Thailand
| | - Anudep Rungsipipat
- Department of Veterinary Pathology, Center of Excellent for Companion Animal Cancer-(CECAC), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Siriwan Sakarin
- Division of Research and Academic Support, National Cancer Institute, Bangkok, 10400, Thailand.
| | - Kasem Rattanapinyopituk
- Department of Veterinary Pathology, Center of Excellent for Companion Animal Cancer-(CECAC), Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
14
|
Dixon S, Deb A, Archer T, Kaplan BLF. Potential to use cannabinoids as adjunct therapy for dexamethasone: An in vitro study with canine peripheral blood mononuclear cells. Vet Immunol Immunopathol 2024; 269:110727. [PMID: 38330886 PMCID: PMC10903980 DOI: 10.1016/j.vetimm.2024.110727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Dexamethasone (dex) is a potent glucocorticoid used to treat a variety of diseases. It is widely used in veterinary medicine in many species; for instance, in dogs, it can be used for emergent cases of anaphylaxis or trauma, management of immune-mediated hemolytic anemia or thrombocytopenia, certain cancers, allergic reactions, and topically for skin or eye inflammation. Dex is not without its side effects, especially when administered systemically, which might compromise compliance and effective treatment. Thus, adjunct therapies have been suggested to allow for decreased dex dosing and reduction in side effects while maintaining immunosuppressive efficacy. The goal of this study was to evaluate the potential for cannabinoids to serve as adjunct therapies for dex. Immune function was assessed in canine peripheral blood mononuclear cells (PBMCs) after treatment with dex with and without cannabidiol (CBD) and/or Δ9-tetrahydrocannabinol (THC). Dex suppressed IFN-γ protein secretion in a concentration-dependent manner and this suppression by low concentrations of dex was enhanced in the presence of CBD, THC, or the combination of CBD and THC. Similar effects were found with INFG and TNFA mRNA expression. These findings provide a rationale for using CBD or THC in vivo to reduce dex dosing and side effects.
Collapse
Affiliation(s)
- Sabrina Dixon
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Arpita Deb
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Todd Archer
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Barbara L F Kaplan
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
15
|
Bachari A, Nassar N, Telukutla S, Zomer R, Piva TJ, Mantri N. Evaluating the Mechanism of Cell Death in Melanoma Induced by the Cannabis Extract PHEC-66. Cells 2024; 13:268. [PMID: 38334660 PMCID: PMC10854753 DOI: 10.3390/cells13030268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
Research suggests the potential of using cannabinoid-derived compounds to function as anticancer agents against melanoma cells. Our recent study highlighted the remarkable in vitro anticancer effects of PHEC-66, an extract from Cannabis sativa, on the MM418-C1, MM329, and MM96L melanoma cell lines. However, the complete molecular mechanism behind this action remains to be elucidated. This study aims to unravel how PHEC-66 brings about its antiproliferative impact on these cell lines, utilising diverse techniques such as real-time polymerase chain reaction (qPCR), assays to assess the inhibition of CB1 and CB2 receptors, measurement of reactive oxygen species (ROS), apoptosis assays, and fluorescence-activated cell sorting (FACS) for apoptosis and cell cycle analysis. The outcomes obtained from this study suggest that PHEC-66 triggers apoptosis in these melanoma cell lines by increasing the expression of pro-apoptotic markers (BAX mRNA) while concurrently reducing the expression of anti-apoptotic markers (Bcl-2 mRNA). Additionally, PHEC-66 induces DNA fragmentation, halting cell progression at the G1 cell cycle checkpoint and substantially elevating intracellular ROS levels. These findings imply that PHEC-66 might have potential as an adjuvant therapy in the treatment of malignant melanoma. However, it is essential to conduct further preclinical investigations to delve deeper into its potential and efficacy.
Collapse
Affiliation(s)
- Ava Bachari
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia or (A.B.); (S.T.)
| | - Nazim Nassar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (N.N.); (T.J.P.)
- Faculty of Health, Charles Darwin University, Casuarina, NT 0810, Australia
| | - Srinivasareddy Telukutla
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia or (A.B.); (S.T.)
| | - Roby Zomer
- MGC Pharmaceuticals Limited, West Perth, WA 6005, Australia;
| | - Terrence J. Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (N.N.); (T.J.P.)
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia or (A.B.); (S.T.)
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
16
|
Ibork H, Idrissi SE, Zulu SS, Miller R, Hajji L, Morgan AM, Taghzouti K, Abboussi O. Effect of Cannabidiol in LPS-Induced Toxicity in Astrocytes: Possible Role for Cannabinoid Type-1 Receptors. Neurotox Res 2023; 41:615-626. [PMID: 37782433 DOI: 10.1007/s12640-023-00671-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Cerebral metabolic abnormalities are common in neurodegenerative diseases. Previous studies have shown that mitochondrial damage alters ATP production and increases reactive oxygen species (ROS) release which may contribute to neurodegeneration. In the present study, we investigated the neuroprotective effects of cannabidiol (CBD), a non-psychoactive component derived from marijuana (Cannabis sativa L.), on astrocytic bioenergetic balance in a primary cell culture model of lipopolysaccharide (LPS)-induced neurotoxicity. Astrocytic metabolic profiling using an extracellular flux analyzer demonstrated that CBD decreases mitochondrial proton leak, increased spare respiratory capacity and coupling efficiency in LPS-stimulated astrocytes. Simultaneously, CBD increased astrocytic glycolytic capacity and glycolysis reserve in a cannabinoid receptor type 1 (CB1)-dependent manner. CBD-restored metabolic changes were correlated with a significant decrease in the pro-inflammatory cytokines tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) concentration and reduction of ROS production in LPS-stimulated astrocytes. These results suggest that CBD may inhibit LPS-induced metabolic impairments and inflammation by enhancing astrocytic metabolic glycolysis versus oxidative phosphorylation through its action on CB1 receptors. The present findings suggest CBD as a potential anti-inflammatory treatment in metabolic pathologies and highlight a possible role for the cannabinoidergic system in the modulation of mitochondrial oxidative stress. CBD enhances mitochondrial bioenergetic profile, attenuates proinflammatory cytokines release, and ROS overproduction of astrocytes stimulated by LPS. These effects are not mediated directly by CB1 receptors, while these receptors seem to have a key role in the anti-inflammatory response of the endocannabinoid system on astrocytes, as their specific inhibition by SR141716A led to increased pro-inflammatory cytokines release and ROS production. The graphical abstract is created with BioRender.com.
Collapse
Affiliation(s)
- Hind Ibork
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Rabat, Morocco
| | - Sara El Idrissi
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Rabat, Morocco
| | - Simo Siyanda Zulu
- Department of Human Biology, Faculty of Health Sciences, Nelson Mandela University, Gqeberha, South Africa
| | - Robert Miller
- Division of Neuroscience, School of Medicine, University of Dundee, Dundee, UK
| | - Lhoussain Hajji
- Bioactives, Health and Environmental Laboratory, Epigenetics Research Team, Moulay Ismail University, Meknes, Morocco
| | | | - Khalid Taghzouti
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Rabat, Morocco
| | - Oualid Abboussi
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research Centre, Mohammed V University in Rabat, Rabat, Morocco.
| |
Collapse
|
17
|
Rybarczyk A, Majchrzak-Celińska A, Krajka-Kuźniak V. Targeting Nrf2 Signaling Pathway in Cancer Prevention and Treatment: The Role of Cannabis Compounds. Antioxidants (Basel) 2023; 12:2052. [PMID: 38136172 PMCID: PMC10740807 DOI: 10.3390/antiox12122052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
The development and progression of cancer are associated with the dysregulation of multiple pathways involved in cell proliferation and survival, as well as dysfunction in redox balance, immune response, and inflammation. The master antioxidant pathway, known as the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, regulates the cellular defense against oxidative stress and inflammation, making it a promising cancer prevention and treatment target. Cannabinoids have demonstrated anti-tumor and anti-inflammatory properties, affecting signaling pathways, including Nrf2. Increased oxidative stress following exposure to anti-cancer therapy prompts cancer cells to activate antioxidant mechanisms. This indicates the dual effect of Nrf2 in cancer cells-influencing proliferation and apoptotic processes and protecting against the toxicity of anti-cancer therapy. Therefore, understanding the complex role of cannabinoids in modulating Nrf2 might shed light on its potential implementation as an anti-cancer support. In this review, we aim to highlight the impact of cannabinoids on Nrf2-related factors, with a focus on cancer prevention and treatment. Additionally, we have presented the results of several research studies that combined cannabidiol (CBD) with other compounds targeting Nrf2. Further studies should be directed toward exploring the anti-inflammatory effects of cannabinoids in the context of cancer prevention and therapy.
Collapse
Affiliation(s)
| | | | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland; (A.R.); (A.M.-C.)
| |
Collapse
|
18
|
Li J, Gu T, Hu S, Jin B. Anti-proliferative effect of Cannabidiol in Prostate cancer cell PC3 is mediated by apoptotic cell death, NFκB activation, increased oxidative stress, and lower reduced glutathione status. PLoS One 2023; 18:e0286758. [PMID: 37796968 PMCID: PMC10553363 DOI: 10.1371/journal.pone.0286758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/23/2023] [Indexed: 10/07/2023] Open
Abstract
Prostate cancer is the second most frequent cancer diagnosed in men in the world today. Almost all prostate cancers are adenocarcinomas and develop from gland cells. We used the PC3 prostate cancer cell line, which is well studied and derived from a bone metastasis of a grade IV prostatic adenocarcinoma. Cannabidiol (CBD), a major non-psychoactive constituent of cannabis, is a cannabinoid with anti-tumor properties but its effects on prostate cancer cells are not studied in detail. Here, we found cannabidiol decreased prostate cancer cell (PC3) viability up to 37.25% and induced apoptotic cell death in a time and dose-dependent manner. We found that CBD activated the caspases 3/7 pathways and increased DNA fragmentation. Furthermore, we observed an increase of pro-apoptotic genes Bax, an increased level of reactive oxygen species, lower reduced glutathione level, and altered mitochondrial potential in response to CBD treatment leading to lower cellular ATP. Overall, our results suggest that CBD may be effective against prostate cancer cells.
Collapse
Affiliation(s)
- Jie Li
- Department of Urology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
- Department of Urology, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, China
| | - Tengfei Gu
- Department of Urology, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, China
| | - Shengping Hu
- Department of Urology, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, China
| | - Baiye Jin
- Department of Urology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
- Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou, China
| |
Collapse
|
19
|
Martinez Naya N, Kelly J, Corna G, Golino M, Abbate A, Toldo S. Molecular and Cellular Mechanisms of Action of Cannabidiol. Molecules 2023; 28:5980. [PMID: 37630232 PMCID: PMC10458707 DOI: 10.3390/molecules28165980] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Cannabidiol (CBD) is the primary non-psychoactive chemical from Cannabis Sativa, a plant used for centuries for both recreational and medicinal purposes. CBD lacks the psychotropic effects of Δ9-tetrahydrocannabinol (Δ9-THC) and has shown great therapeutic potential. CBD exerts a wide spectrum of effects at a molecular, cellular, and organ level, affecting inflammation, oxidative damage, cell survival, pain, vasodilation, and excitability, among others, modifying many physiological and pathophysiological processes. There is evidence that CBD may be effective in treating several human disorders, like anxiety, chronic pain, psychiatric pathologies, cardiovascular diseases, and even cancer. Multiple cellular and pre-clinical studies using animal models of disease and several human trials have shown that CBD has an overall safe profile. In this review article, we summarize the pharmacokinetics data, the putative mechanisms of action of CBD, and the physiological effects reported in pre-clinical studies to give a comprehensive list of the findings and major effects attributed to this compound.
Collapse
Affiliation(s)
- Nadia Martinez Naya
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.A.)
| | - Jazmin Kelly
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.A.)
| | - Giuliana Corna
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 22903, USA; (G.C.); (M.G.)
- Interventional Cardiology Department, Hospital Italiano de Buenos Aires, Buenos Aires 1199, Argentina
| | - Michele Golino
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 22903, USA; (G.C.); (M.G.)
- Department of Medicine and Surgery, University of Insubria, 2110 Varese, Italy
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.A.)
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 22903, USA; (G.C.); (M.G.)
| | - Stefano Toldo
- Robert M. Berne Cardiovascular Research Center, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (N.M.N.); (J.K.); (A.A.)
| |
Collapse
|
20
|
Yan C, Li Y, Liu H, Chen D, Wu J. Antitumor mechanism of cannabidiol hidden behind cancer hallmarks. Biochim Biophys Acta Rev Cancer 2023; 1878:188905. [PMID: 37164234 DOI: 10.1016/j.bbcan.2023.188905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
Cannabinoids have been utilized for recreational and therapeutic purposes for over 4,000 years. As the primary ingredient in exogenous cannabinoids, Cannabidiol (CBD) has drawn a lot of interest from researchers due to its negligible psychotropic side effects and potential tumor-suppressing properties. However, the obscure mechanisms that underlie them remain a mystery. Complex biological mechanisms are involved in the progression of cancer, and malignancies have a variety of acquired biological capabilities, including sustained proliferation, death evasion, neovascularization, tissue invasion and metastasis, immune escape, metabolic reprogramming, induction of tumor-associated inflammation, cancerous stemness and genomic instability. Nowadays, the role of CBD hidden in these hallmarks is gradually revealed. Nevertheless, flaws or inconsistencies in the recent studies addressing the anti-cancer effects of CBD still exist. The purpose of this review is to evaluate the potential mechanisms underlying the role of CBD in a range of tumor-acquired biological capabilities. We propose potential drugs that may have a synergistic effect with CBD and provide optional directions for future research.
Collapse
Affiliation(s)
- Chaobiao Yan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China; NHC Key Laboratory of Combined Multi-organ Transplantation, China; Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, Zhejiang Province, China.
| | - Yu Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China; NHC Key Laboratory of Combined Multi-organ Transplantation, China; Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, Zhejiang Province, China.
| | - Hanqing Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China; NHC Key Laboratory of Combined Multi-organ Transplantation, China; Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, Zhejiang Province, China.
| | - Diyu Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China; NHC Key Laboratory of Combined Multi-organ Transplantation, China; Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, Zhejiang Province, China.
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, China; NHC Key Laboratory of Combined Multi-organ Transplantation, China; Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences(2019RU019), China; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou 310003, Zhejiang Province, China.
| |
Collapse
|
21
|
Gingrich J, Choudhuri S, Cournoyer P, Downey J, Muldoon Jacobs K. Review of the oral toxicity of cannabidiol (CBD). Food Chem Toxicol 2023; 176:113799. [PMID: 37088127 DOI: 10.1016/j.fct.2023.113799] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
Information in the published literature indicates that consumption of CBD can result in developmental and reproductive toxicity and hepatotoxicity outcomes in animal models. The trend of CBD-induced male reproductive toxicity has been observed in phylogenetically disparate organisms, from invertebrates to non-human primates. CBD has also been shown to inhibit various cytochrome P450 enzymes and certain efflux transporters, resulting in the potential for drug-drug interactions and cellular accumulation of xenobiotics that are normally transported out of the cell. The mechanisms of CBD-mediated toxicity are not fully understood, but they may involve disruption of critical metabolic pathways and liver enzyme functions, receptor-specific binding activity, disruption of testosterone steroidogenesis, inhibition of reuptake and degradation of endocannabinoids, and the triggering of oxidative stress. The toxicological profile of CBD raises safety concerns, especially for long term consumption by the general population.
Collapse
Affiliation(s)
- Jeremy Gingrich
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA.
| | - Supratim Choudhuri
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Patrick Cournoyer
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Jason Downey
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Kristi Muldoon Jacobs
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| |
Collapse
|
22
|
Park CH, Tanaka T, Akimoto Y, Jeon JP, Yokozawa T. Therapeutic Potential of Two Derivative Prescriptions of Rokumijiogan, Hachimijiogan and Bakumijiogan against Renal Damage in Nephrectomized Rats. MEDICINES (BASEL, SWITZERLAND) 2023; 10:medicines10030024. [PMID: 36976313 PMCID: PMC10057953 DOI: 10.3390/medicines10030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Background: Hachimijiogan (HJG) and Bakumijiogan (BJG), two derivative prescriptions of Rokumijiogan (RJG), were selected to investigate their renoprotective potential in the 5/6 nephrectomized (5/6Nx) rat model. Methods: Rats were treated with HJG and BJG orally at 150 mg/kg body weight/day once daily for 10 weeks after resection of 5/6 of the renal volume, and their renoprotective effects were compared with 5/6Nx vehicle-treated and sham-operated control rats. Results: Improvements in renal lesions, glomerulosclerosis, tubulointerstitial injury, and arteriosclerotic lesions estimated by histologic scoring indices in the HJG-treated group were compared with those in the BJG-treated group. HJG- and BJG-treated groups ameliorated the renal function parameters. Elevated levels of renal oxidative stress-related biomarkers were reduced, while decreased antioxidant defence systems (superoxide dismutase and the glutathione/oxidized glutathione ratio) were increased in the HJG-treated group rather than the BJG-treated group. In contrast, BJG administration significantly reduced expression of the inflammatory response through oxidative stress. The HJG-treated group showed a decrease in inflammatory mediators through the JNK pathway. To gain a deeper understanding of their therapeutic action, the effects of the main components detected in HJG and BJG were evaluated using the LLC-PK1 renal tubular epithelial cell line, which is the renal tissue most vulnerable to oxidative stress. Corni Fructus and Moutan Cortex-originated compositions afforded important protection against oxidative stress induced by peroxynitrite. Conclusions: From our described and discussed analyses, it can be concluded that RJG-containing prescriptions, HJG and BJG are an excellent medicine for chronic kidney disease. In the future, appropriately designed clinical studies in people with chronic kidney disease are necessary to evaluate the renoprotective activities of HJG and BJG.
Collapse
Affiliation(s)
- Chan Hum Park
- Institute of New Frontier Research Team, Hallym Clinical and Translational Science Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Takashi Tanaka
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | | | - Jin Pyeong Jeon
- Department of Neurosurgery, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Takako Yokozawa
- Graduate School of Science and Engineering for Research, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
23
|
Disorders of cancer metabolism: The therapeutic potential of cannabinoids. Biomed Pharmacother 2023; 157:113993. [PMID: 36379120 DOI: 10.1016/j.biopha.2022.113993] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Abnormal energy metabolism, as one of the important hallmarks of cancer, was induced by multiple carcinogenic factors and tumor-specific microenvironments. It comprises aerobic glycolysis, de novo lipid biosynthesis, and glutamine-dependent anaplerosis. Considering that metabolic reprogramming provides various nutrients for tumor survival and development, it has been considered a potential target for cancer therapy. Cannabinoids have been shown to exhibit a variety of anticancer activities by unclear mechanisms. This paper first reviews the recent progress of related signaling pathways (reactive oxygen species (ROS), AMP-activated protein kinase (AMPK), mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K), hypoxia-inducible factor-1alpha (HIF-1α), and p53) mediating the reprogramming of cancer metabolism (including glucose metabolism, lipid metabolism, and amino acid metabolism). Then we comprehensively explore the latest discoveries and possible mechanisms of the anticancer effects of cannabinoids through the regulation of the above-mentioned related signaling pathways, to provide new targets and insights for cancer prevention and treatment.
Collapse
|
24
|
ArulJothi KN, Kumaran K, Senthil S, Nidhu AB, Munaff N, Janitri VB, Kirubakaran R, Singh SK, Gupt G, Dua K, Krishnan A. Implications of reactive oxygen species in lung cancer and exploiting it for therapeutic interventions. Med Oncol 2023; 40:43. [PMID: 36472716 PMCID: PMC9734980 DOI: 10.1007/s12032-022-01900-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
Lung cancer is the second (11.4%) most commonly diagnosed cancer and the first (18%) to cause cancer-related deaths worldwide. The incidence of lung cancer varies significantly among men, women, and high and low-middle-income countries. Air pollution, inhalable agents, and tobacco smoking are a few of the critical factors that determine lung cancer incidence and mortality worldwide. Reactive oxygen species are known factors of lung carcinogenesis resulting from the xenobiotics and their mechanistic paths are under critical investigation. Reactive oxygen species exhibit dual roles in cells, as a tumorigenic and anti-proliferative factor, depending on spatiotemporal context. During the precancerous state, ROS promotes cancer origination through oxidative stress and base-pair substitution mutations in pro-oncogenes and tumor suppressor genes. At later stages of tumor progression, they help the cancer cells in invasion, and metastases by activating the NF-kB and MAPK pathways. However, at advanced stages, when ROS exceeds the threshold, it promotes cell cycle arrest and induces apoptosis in cancer cells. ROS activates extrinsic apoptosis through death receptors and intrinsic apoptosis through mitochondrial pathways. Moreover, ROS upregulates the expression of beclin-1 which is a critical component to initiate autophagy, another form of programmed cell death. ROS is additionally involved in an intermediatory step in necroptosis, which catalyzes and accelerates this form of cell death. Various therapeutic interventions have been attempted to exploit this cytotoxic potential of ROS to treat different cancers. Growing body of evidence suggests that ROS is also associated with chemoresistance and cancer cell immunity. Considering the multiple roles of ROS, this review highlights the exploitation of ROS for various therapeutic interventions. However, there are still gaps in the literature on the dual roles of ROS and the involvement of ROS in cancer cell immunity and therapy resistance.
Collapse
Affiliation(s)
- K. N. ArulJothi
- grid.412742.60000 0004 0635 5080Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chennai, 603203 India
| | - K. Kumaran
- grid.412742.60000 0004 0635 5080Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chennai, 603203 India
| | - Sowmya Senthil
- grid.412742.60000 0004 0635 5080Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chennai, 603203 India
| | - A. B. Nidhu
- grid.412742.60000 0004 0635 5080Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chennai, 603203 India
| | - Nashita Munaff
- grid.412742.60000 0004 0635 5080Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chennai, 603203 India
| | - V. B. Janitri
- grid.262613.20000 0001 2323 3518Rochester Institute of Technology, Rochester, NY USA
| | - Rangasamy Kirubakaran
- grid.444708.b0000 0004 1799 6895Department of Biotechnology, Vinayaka Mission’s Kirupananda Variyar Engineering College, Vinayaka Missions Research Foundation, Salem, Tamil Nadu India
| | - Sachin Kumar Singh
- grid.449005.cSchool of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab India ,grid.117476.20000 0004 1936 7611Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - Gaurav Gupt
- grid.448952.60000 0004 1767 7579School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, 302017 India ,grid.412431.10000 0004 0444 045XDepartment of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India ,grid.449906.60000 0004 4659 5193Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Kamal Dua
- grid.117476.20000 0004 1936 7611Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007 Australia ,grid.117476.20000 0004 1936 7611Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Anand Krishnan
- grid.412219.d0000 0001 2284 638XDepartment of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300 South Africa
| |
Collapse
|
25
|
Real-Time Monitoring of the Cytotoxic and Antimetastatic Properties of Cannabidiol in Human Oral Squamous Cell Carcinoma Cells Using Electric Cell-Substrate Impedance Sensing. Int J Mol Sci 2022; 23:ijms232415842. [PMID: 36555480 PMCID: PMC9785110 DOI: 10.3390/ijms232415842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/19/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Cannabidiol (CBD) is an active natural compound that is extracted from Cannabis sativa. Previous studies show that CBD is a nonpsychotropic compound with significant anticancer effects. This study determines its cytotoxic effect on oral cancer cells and OEC-M1 cells and compares the outcomes with a chemotherapeutic drug, cisplatin. This study has investigated the effect of CBD on the viability, apoptosis, morphology, and migration of OEC-M1 cells. Electric cell-substrate impedance sensing (ECIS) is used to measure the change in cell impedance for cells that are treated with a series concentration of CBD for 24 h. AlamarBlue and annexin V/7-AAD staining assays show that CBD has a cytotoxic effect on cell viability and induces cell apoptosis. ECIS analysis shows that CBD decreases the overall resistance and morphological parameters at 4 kHz in a concentration-dependent manner. There is a significant reduction in the wound-healing recovery rate for cells that are treated with 30 μM CBD. This study demonstrates that ECIS can be used for in vitro screening of new chemotherapy and is more sensitive, functional, and comprehensive than traditional biochemical assays. CBD also increases cytotoxicity on cell survival and the migration of oral cancer cells, so it may be a therapeutic drug for oral cancer.
Collapse
|
26
|
Cannabidiol and Its Combinations with Nonsteroidal Anti-Inflammatory Drugs Induce Apoptosis and Inhibit Activation of NF-κB Signaling in Vulvar Squamous Cell Carcinoma. Molecules 2022; 27:molecules27248779. [PMID: 36557911 PMCID: PMC9781989 DOI: 10.3390/molecules27248779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/26/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Vulvar squamous cell carcinoma (VSCC) is a rare malignancy with a relatively good prognosis. However, the prognosis remains poor for elderly patients and those with a significant depth of tumor invasion; thus, novel treatment modalities are needed. The aim of this study was to analyze the impact of cannabidiol (CBD) and its combination with NSAIDs, diclofenac (DIC) and ibuprofen (IBU) on VSCC cells. In this regard, the MTT test was applied for cytotoxicity analysis. Moreover, the influence of CBD, DIC and IBU, as well as their combinations, on apoptosis and cell cycle distribution were analyzed by flow cytometry. The mechanisms of action of the analyzed compounds, including their impact on NF-κB signaling, p53 and COX-2 expression were evaluated using Western blot. This study shows that CBD and its combinations with NSAIDs are cytotoxic to A431 cells, but they also reduce, in a dose-dependent manner, the viability of immortalized keratinocyte HaCaT cells, and human umbilical vein cell line, EA.hy926. Moreover, the compounds and their combinations induced apoptosis, diminished the NF-κB signaling activation and reduced COX-2 expression. We conclude that CBD and its combination with DIC or IBU are promising candidates for the adjuvant treatment of high-risk VSCC patients. However, their impact on non-cancerous cells requires careful evaluation.
Collapse
|
27
|
Atalay Ekiner S, Gęgotek A, Skrzydlewska E. The molecular activity of cannabidiol in the regulation of Nrf2 system interacting with NF-κB pathway under oxidative stress. Redox Biol 2022; 57:102489. [PMID: 36198205 PMCID: PMC9535304 DOI: 10.1016/j.redox.2022.102489] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/11/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cannabidiol (CBD), the major non-psychoactive phytocannabinoid of Cannabis sativa L., is one of the most studied compounds in pharmacotherapeutic approaches to treat oxidative stress-related diseases such as cardiovascular, metabolic, neurodegenerative, and neoplastic diseases. The literature data to date indicate the possibility of both antioxidant and pro-oxidative effects of CBD. Thus, the mechanism of action of this natural compound in the regulation of nuclear factor 2 associated with erythroid 2 (Nrf2), which plays the role of the main cytoprotective regulator of redox balance and inflammation under oxidative stress conditions, seems to be particularly important. Moreover, Nrf2 is strongly correlated with the cellular neoplastic profile and malignancy, which in turn is critical in determining the cellular response induced by CBD under pathophysiological conditions. This paper summarizes the CBD-mediated pathways of regulation of the Nrf2 system by altering the expression and modification of both proteins directly involved in Nrf2 transcriptional activity and proteins involved in the relationship between Nrf2 and the nuclear factor kappa B (NF-κB) which is another redox-sensitive transcription factor.
Collapse
Affiliation(s)
- Sinemyiz Atalay Ekiner
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland.
| |
Collapse
|
28
|
Green R, Khalil R, Mohapatra SS, Mohapatra S. Role of Cannabidiol for Improvement of the Quality of Life in Cancer Patients: Potential and Challenges. Int J Mol Sci 2022; 23:ijms232112956. [PMID: 36361743 PMCID: PMC9654506 DOI: 10.3390/ijms232112956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/23/2022] Open
Abstract
There is currently a growing interest in the use of cannabidiol (CBD) to alleviate the symptoms caused by cancer, including pain, sleep disruption, and anxiety. CBD is often self-administered as an over-the-counter supplement, and patients have reported benefits from its use. However, despite the progress made, the mechanisms underlying CBD’s anti-cancer activity remain divergent and unclear. Herein, we provide a comprehensive review of molecular mechanisms to determine convergent anti-cancer actions of CBD from pre-clinical and clinical studies. In vitro studies have begun to elucidate the molecular targets of CBD and provide evidence of CBD’s anti-tumor properties in cell and mouse models of cancer. Furthermore, several clinical trials have been completed testing CBD’s efficacy in treating cancer-related pain. However, most use a mixture of CBD and the psychoactive, tetrahydrocannabinol (THC), and/or use variable dosing that is not consistent between individual patients. Despite these limitations, significant reductions in pain and opioid use have been reported in cancer patients using CBD or CBD+THC. Additionally, significant improvements in quality-of-life measures and patients’ overall satisfaction with their treatment have been reported. Thus, there is growing evidence suggesting that CBD might be useful to improve the overall quality of life of cancer patients by both alleviating cancer symptoms and by synergizing with cancer therapies to improve their efficacy. However, many questions remain unanswered regarding the use of CBD in cancer treatment, including the optimal dose, effective combinations with other drugs, and which biomarkers/clinical presentation of symptoms may guide its use.
Collapse
Affiliation(s)
- Ryan Green
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Roukiah Khalil
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Shyam S. Mohapatra
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
- Correspondence: (S.S.M.); (S.M.)
| | - Subhra Mohapatra
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
- Correspondence: (S.S.M.); (S.M.)
| |
Collapse
|
29
|
Cherkasova V, Wang B, Gerasymchuk M, Fiselier A, Kovalchuk O, Kovalchuk I. Use of Cannabis and Cannabinoids for Treatment of Cancer. Cancers (Basel) 2022; 14:5142. [PMID: 36291926 PMCID: PMC9600568 DOI: 10.3390/cancers14205142] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 07/26/2023] Open
Abstract
The endocannabinoid system (ECS) is an ancient homeostasis mechanism operating from embryonic stages to adulthood. It controls the growth and development of many cells and cell lineages. Dysregulation of the components of the ECS may result in uncontrolled proliferation, adhesion, invasion, inhibition of apoptosis and increased vascularization, leading to the development of various malignancies. Cancer is the disease of uncontrolled cell division. In this review, we will discuss whether the changes to the ECS are a cause or a consequence of malignization and whether different tissues react differently to changes in the ECS. We will discuss the potential use of cannabinoids for treatment of cancer, focusing on primary outcome/care-tumor shrinkage and eradication, as well as secondary outcome/palliative care-improvement of life quality, including pain, appetite, sleep, and many more factors. Finally, we will complete this review with the chapter on sex- and gender-specific differences in ECS and response to cannabinoids, and equality of the access to treatments with cannabinoids.
Collapse
Affiliation(s)
- Viktoriia Cherkasova
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Bo Wang
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Marta Gerasymchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Anna Fiselier
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
30
|
Antimicrobial and Cytotoxic Effects of Cannabinoids: An Updated Review with Future Perspectives and Current Challenges. Pharmaceuticals (Basel) 2022; 15:ph15101228. [PMID: 36297340 PMCID: PMC9607911 DOI: 10.3390/ph15101228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
The development of new antibiotics is urgently needed to combat the threat of bacterial resistance. New classes of compounds that have novel properties are urgently needed for the development of effective antimicrobial agents. The extract of Cannabis sativa L. has been used to treat multiple ailments since ancient times. Its bioactivity is largely attributed to the cannabinoids found in its plant. Researchers are currently searching for new anti-infective agents that can treat various infections. Although its phytocannabinoid ingredients have a wide range of medical benefits beyond the treatment of infections, they are primarily associated to psychotropic effects. Different cannabinoids have been demonstrated to be helpful against harmful bacteria, including Gram-positive bacteria. Moreover, combination therapy involving the use of different antibiotics has shown synergism and broad-spectrum activity. The purpose of this review is to gather current data on the actions of Cannabis sativa (C. sativa) extracts and its primary constituents such as terpenes and cannabinoids towards pathogens in order to determine their antimicrobial properties and cytotoxic effects together with current challenges and future perspectives in biomedical application.
Collapse
|
31
|
Tajik T, Baghaei K, Moghadam VE, Farrokhi N, Salami SA. Extracellular vesicles of cannabis with high CBD content induce anticancer signaling in human hepatocellular carcinoma. Biomed Pharmacother 2022; 152:113209. [PMID: 35667235 DOI: 10.1016/j.biopha.2022.113209] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022] Open
Abstract
Plant-derived extracellular vesicles (EVs) have been the topic of interest in recent years due to their proven therapeutic properties. Intact or manipulated plant EVs have shown antioxidant, anti-inflammatory, and anti-cancerous activities as a result of containing bioactive metabolites and other endogenous molecules. Less is known about the EV efficacy with high levels of bioactive secondary metabolites derived from medicinal or non-edible plants. Numerous data suggest the functionality of Cannabis sativa extract and its phytocannabinoids in cancer treatment. Here, two chemotypes of cannabis with different levels of D-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) were selected. EVs were isolated from each chemotype via differential ultracentrifugation. HPLC analysis was illustrative of the absence of THC in EVs derived from both plants. Therefore, two types of EVs were classified according to their CBD content into high- (H.C-EVs) and low-CBD EVs (L.C-EVs). Electron microscopy and DLS showed both cannabis-derived EVs (CDEVs) can be considered as exosome-like nanovesicles. Cytotoxicity assay showed that H.C-EVs strongly decreased the viability of two hepatocellular carcinoma (HCC) cell lines, HepG2 and Huh-7, in a dose and time-dependent manner compared with L.C-EVs. H.C-EVs had no significant effect on HUVECs normal cell growth. The finding showed that the H.C-EVs arrested the G0/G1 phase in the cell cycle and significantly induced cell death by activating mitochondrial-dependent apoptosis signaling pathways in both HCC cell lines. Altogether, the current study highlights that CDEVs can be an ideal natural vehicle for bioactive phytocannabinoids and a promising strategy in cancer management.
Collapse
Affiliation(s)
- Tahereh Tajik
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran; Gastroenterology and Liver Diseases Research center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran.
| | - Vahid Erfani Moghadam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran; Food, Drug, Natural Products Health Research Centre, Golestan University of Medical Science, Gorgan, Iran.
| | - Naser Farrokhi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Seyed Alireza Salami
- Department of Horticultural Science, Faculty of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran; Industrial and Medical Cannabis Research Institute (IMCRI), Tehran 14176-14411, Iran
| |
Collapse
|
32
|
Fu J, Zhang K, Lu L, Li M, Han M, Guo Y, Wang X. Improved Therapeutic Efficacy of CBD with Good Tolerance in the Treatment of Breast Cancer through Nanoencapsulation and in Combination with 20(S)-Protopanaxadiol (PPD). Pharmaceutics 2022; 14:pharmaceutics14081533. [PMID: 35893789 PMCID: PMC9332327 DOI: 10.3390/pharmaceutics14081533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Cannabidiol (CBD), a nonpsychoactive major component derived from Cannabis sativa, widely used in neurodegenerative diseases, has now been proven to have growth inhibitory effects on many tumor cell lines, including breast tumors. Meanwhile CBD can effectively alleviate cancer-associated pain, anxiety, and depression, especially tumor cachexia, thus it is very promising as an anti-tumor drug with unique advantages. 20(S)-Protopanaxadiol (PPD) derived from the best-known tonic Chinese herbal medicine Ginseng was designed to be co-loaded with CBD into liposomes to examine their synergistic tumor-inhibitory effect. The CBD-PPD co-loading liposomes (CP-liposomes) presented a mean particle size of 138.8 nm. Further glycosyl-modified CP-liposomes (GMCP-liposomes) were prepared by the incorporation of n-Dodecyl β-D-maltoside (Mal) into the liposomal bilayer with glucose residue anchored on the surface to act as a ligand targeting the GLUT1 receptor highly expressed on tumor cells. In vivo studies on murine breast tumor (4T1 cells)-bearing BALB/c mice demonstrated good dose dependent anti-tumor efficacy of CP-liposomes. A high tumor inhibition rate (TIR) of 82.2% was achieved with good tolerance. However, glycosylation modification failed to significantly enhance TIR of CP-liposomes. In summary, combined therapy with PPD proved to be a promising strategy for CBD to be developed into a novel antitumor drug, with characteristics of effectiveness, good tolerance, and the potential to overcome tumor cachexia.
Collapse
Affiliation(s)
- Jingxin Fu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (J.F.); (L.L.); (M.L.); (M.H.); (Y.G.)
| | - Kunfeng Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China;
| | - Likang Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (J.F.); (L.L.); (M.L.); (M.H.); (Y.G.)
| | - Manzhen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (J.F.); (L.L.); (M.L.); (M.H.); (Y.G.)
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (J.F.); (L.L.); (M.L.); (M.H.); (Y.G.)
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (J.F.); (L.L.); (M.L.); (M.H.); (Y.G.)
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing 100193, China; (J.F.); (L.L.); (M.L.); (M.H.); (Y.G.)
- Correspondence:
| |
Collapse
|
33
|
Paron F, Barattucci S, Cappelli S, Romano M, Berlingieri C, Stuani C, Laurents D, Mompeán M, Buratti E. Unravelling the toxic effects mediated by the neurodegenerative disease-associated S375G mutation of TDP-43 and its S375E phosphomimetic variant. J Biol Chem 2022; 298:102252. [PMID: 35835219 PMCID: PMC9364110 DOI: 10.1016/j.jbc.2022.102252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 12/05/2022] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is a nucleic acid–binding protein found in the nucleus that accumulates in the cytoplasm under pathological conditions, leading to proteinopathies, such as frontotemporal dementia and ALS. An emerging area of TDP-43 research is represented by the study of its post-translational modifications, the way they are connected to disease-associated mutations, and what this means for pathological processes. Recently, we described a novel mutation in TDP-43 in an early onset ALS case that was affecting a potential phosphorylation site in position 375 (S375G). A preliminary characterization showed that both the S375G mutation and its phosphomimetic variant, S375E, displayed altered nuclear–cytoplasmic distribution and cellular toxicity. To better investigate these effects, here we established cell lines expressing inducible WT, S375G, and S375E TDP-43 variants. Interestingly, we found that these mutants do not seem to affect well-studied aspects of TDP-43, such as RNA splicing or autoregulation, or protein conformation, dynamics, or aggregation, although they do display dysmorphic nuclear shape and cell cycle alterations. In addition, RNA-Seq analysis of these cell lines showed that although the disease-associated S375G mutation and its phosphomimetic S375E variant regulate distinct sets of genes, they have a common target in mitochondrial apoptotic genes. Taken together, our data strongly support the growing evidence that alterations in TDP-43 post-translational modifications can play a potentially important role in disease pathogenesis and provide a further link between TDP-43 pathology and mitochondrial health.
Collapse
Affiliation(s)
- Francesca Paron
- Molecular Pathology, International Centre for Genetic and Engineering Biotechnology (ICGEB), Trieste, Italy
| | - Simone Barattucci
- Molecular Pathology, International Centre for Genetic and Engineering Biotechnology (ICGEB), Trieste, Italy
| | - Sara Cappelli
- Molecular Pathology, International Centre for Genetic and Engineering Biotechnology (ICGEB), Trieste, Italy
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Christian Berlingieri
- Molecular Pathology, International Centre for Genetic and Engineering Biotechnology (ICGEB), Trieste, Italy
| | - Cristiana Stuani
- Molecular Pathology, International Centre for Genetic and Engineering Biotechnology (ICGEB), Trieste, Italy
| | - Douglas Laurents
- "Rocasolano" Institute for Physical Chemistry, Spanish National Research Council, Serrano 119, 28006, Madrid, Spain
| | - Miguel Mompeán
- "Rocasolano" Institute for Physical Chemistry, Spanish National Research Council, Serrano 119, 28006, Madrid, Spain
| | - Emanuele Buratti
- Molecular Pathology, International Centre for Genetic and Engineering Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
34
|
Valenti C, Billi M, Pancrazi GL, Calabria E, Armogida NG, Tortora G, Pagano S, Barnaba P, Marinucci L. Biological Effects of Cannabidiol on Human Cancer Cells: Systematic Review of the Literature. Pharmacol Res 2022; 181:106267. [DOI: 10.1016/j.phrs.2022.106267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022]
|
35
|
Olivas-Aguirre M, Torres-López L, Villatoro-Gómez K, Perez-Tapia SM, Pottosin I, Dobrovinskaya O. Cannabidiol on the Path from the Lab to the Cancer Patient: Opportunities and Challenges. Pharmaceuticals (Basel) 2022; 15:366. [PMID: 35337163 PMCID: PMC8951434 DOI: 10.3390/ph15030366] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 01/18/2023] Open
Abstract
Cannabidiol (CBD), a major non-psychotropic component of cannabis, is receiving growing attention as a potential anticancer agent. CBD suppresses the development of cancer in both in vitro (cancer cell culture) and in vivo (xenografts in immunodeficient mice) models. For critical evaluation of the advances of CBD on its path from laboratory research to practical application, in this review, we wish to call the attention of scientists and clinicians to the following issues: (a) the biological effects of CBD in cancer and healthy cells; (b) the anticancer effects of CBD in animal models and clinical case reports; (c) CBD's interaction with conventional anticancer drugs; (d) CBD's potential in palliative care for cancer patients; (e) CBD's tolerability and reported side effects; (f) CBD delivery for anticancer treatment.
Collapse
Affiliation(s)
- Miguel Olivas-Aguirre
- Laboratory of Immunobiology and Ionic Transport Regulation, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico; (M.O.-A.); (L.T.-L.); (K.V.-G.)
| | - Liliana Torres-López
- Laboratory of Immunobiology and Ionic Transport Regulation, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico; (M.O.-A.); (L.T.-L.); (K.V.-G.)
| | - Kathya Villatoro-Gómez
- Laboratory of Immunobiology and Ionic Transport Regulation, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico; (M.O.-A.); (L.T.-L.); (K.V.-G.)
| | - Sonia Mayra Perez-Tapia
- Unidad de Desarrollo e Investigación en Bioterapeúticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City 11340, Mexico;
| | - Igor Pottosin
- Laboratory of Immunobiology and Ionic Transport Regulation, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico; (M.O.-A.); (L.T.-L.); (K.V.-G.)
| | - Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico; (M.O.-A.); (L.T.-L.); (K.V.-G.)
| |
Collapse
|
36
|
Malach M, Kovalchuk I, Kovalchuk O. Medical Cannabis in Pediatric Oncology: Friend or Foe? Pharmaceuticals (Basel) 2022; 15:359. [PMID: 35337156 PMCID: PMC8954266 DOI: 10.3390/ph15030359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 12/13/2022] Open
Abstract
The antineoplastic effects of cannabis have been known since 1975. Since the identification of the components of the endogenous cannabinoid system (ECS) in the 1990s, research into the potential of cannabinoids as medicine has exploded, including in anti-cancer research. However, nearly all of this research has been on adults. Physicians and governing bodies remain cautious in recommending the use of cannabis in children, since the ECS develops early in life and data about cannabis exposure in utero show negative outcomes. However, there exist many published cases of use of cannabis in children to treat pediatric epilepsy and chemotherapy-induced nausea and vomiting (CINV) that show both the safety and efficacy of cannabis in pediatric populations. Additionally, promising preclinical evidence showing that cannabis has anti-cancer effects on pediatric cancer warrants further investigation of cannabis' use in pediatric cancer patients, as well as other populations of pediatric patients. This review aims to examine the evidence regarding the potential clinical utility of cannabis as an anti-cancer treatment in children by summarizing what is currently known about uses of medical cannabis in children, particularly regarding its anti-cancer potential.
Collapse
Affiliation(s)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K3M4, Canada;
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K3M4, Canada;
| |
Collapse
|
37
|
Hinz B, Ramer R. Cannabinoids as anticancer drugs: current status of preclinical research. Br J Cancer 2022; 127:1-13. [PMID: 35277658 PMCID: PMC9276677 DOI: 10.1038/s41416-022-01727-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/09/2021] [Accepted: 01/28/2022] [Indexed: 12/11/2022] Open
Abstract
AbstractDrugs that target the endocannabinoid system are of interest as pharmacological options to combat cancer and to improve the life quality of cancer patients. From this perspective, cannabinoid compounds have been successfully tested as a systemic therapeutic option in a number of preclinical models over the past decades. As a result of these efforts, a large body of data suggests that the anticancer effects of cannabinoids are exerted at multiple levels of tumour progression via different signal transduction mechanisms. Accordingly, there is considerable evidence for cannabinoid-mediated inhibition of tumour cell proliferation, tumour invasion and metastasis, angiogenesis and chemoresistance, as well as induction of apoptosis and autophagy. Further studies showed that cannabinoids could be potential combination partners for established chemotherapeutic agents or other therapeutic interventions in cancer treatment. Research in recent years has yielded several compounds that exert promising effects on tumour cells and tissues in addition to the psychoactive Δ9-tetrahydrocannabinol, such as the non-psychoactive phytocannabinoid cannabidiol and inhibitors of endocannabinoid degradation. This review provides an up-to-date overview of the potential of cannabinoids as inhibitors of tumour growth and spread as demonstrated in preclinical studies.
Collapse
|
38
|
O’Brien K. Cannabidiol (CBD) in Cancer Management. Cancers (Basel) 2022; 14:cancers14040885. [PMID: 35205633 PMCID: PMC8869992 DOI: 10.3390/cancers14040885] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Cannabidiol (CBD) is one of the main constituents of the plant Cannabis sativa. Surveys suggest that medicinal cannabis is popular amongst people diagnosed with cancer. CBD is one of the key constituents of cannabis, and does not have the potentially intoxicating effects that tetrahydrocannabinol (THC), the other key phytocannabinoid has. Research indicates the CBD may have potential for the treatment of cancer, including the symptoms and signs associated with cancer and its treatment. Preclinical research suggests CBD may address many of the pathways involved in the pathogenesis of cancers. Preclinical and clinical research also suggests some evidence of efficacy, alone or in some cases in conjunction with tetrahydrocannabinol (THC, the other key phytocannabinoid in cannabis), in treating cancer-associated pain, anxiety and depression, sleep problems, nausea and vomiting, and oral mucositis that are associated with cancer and/or its treatment. Studies also suggest that CBD may enhance orthodox treatments with chemotherapeutic agents and radiation therapy and protect against neural and organ damage. CBD shows promise as part of an integrative approach to the management of cancer. Abstract The plant Cannabis sativa has been in use medicinally for several thousand years. It has over 540 metabolites thought to be responsible for its therapeutic effects. Two of the key phytocannabinoids are cannabidiol (CBD) and tetrahydrocannabinol (THC). Unlike THC, CBD does not have potentially intoxicating effects. Preclinical and clinical research indicates that CBD has a wide range of therapeutic effects, and many of them are relevant to the management of cancer. In this article, we explore some of the potential mechanisms of action of CBD in cancer, and evidence of its efficacy in the integrative management of cancer including the side effects associated with its treatment, demonstrating its potential for integration with orthodox cancer care.
Collapse
Affiliation(s)
- Kylie O’Brien
- Adelaide Campus, Torrens University, Adelaide, SA 5000, Australia;
- NICM Health Research Centre, Western Sydney University, Westmead, Sydney, NSW 2145, Australia
- Releaf Group Ltd., St Kilda, VIC 3182, Australia
- International College of Cannabinoid Medicine, iccm.co, London N1 7GU, UK
| |
Collapse
|
39
|
Peng J, Fan M, An C, Ni F, Huang W, Luo J. A narrative review of molecular mechanism and therapeutic effect of Cannabidiol (CBD). Basic Clin Pharmacol Toxicol 2022; 130:439-456. [PMID: 35083862 DOI: 10.1111/bcpt.13710] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/28/2022]
Abstract
Cannabidiol (CBD) is an abundant non-psychoactive phytocannabinoid in Cannabis extracts which has high affinity on a series of receptors, including type 1 cannabinoid receptor (CB1), type 2 cannabinoid receptor (CB2), GPR55, transient receptor potential vanilloid (TRPV), and peroxisome proliferator-activated receptor gamma (PPARγ). By modulating the activities of these receptors, CBD exhibits multiple therapeutic effects, including neuroprotective, antiepileptic, anxiolytic, antipsychotic, anti-inflammatory, analgesic and anti-cancer properties. CBD could also be applied to treat or prevent COVID-19 and its complications. Here, we provide a narrative review of CBD's applications in human diseases: from mechanism of action to clinical trials.
Collapse
Affiliation(s)
- Jiangling Peng
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Mingjie Fan
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Chelsea An
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Feng Ni
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, China
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | | |
Collapse
|
40
|
McAllister SD, Abood ME, Califano J, Guzmán M. Cannabinoid Cancer Biology and Prevention. J Natl Cancer Inst Monogr 2021; 2021:99-106. [PMID: 34850900 DOI: 10.1093/jncimonographs/lgab008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/18/2022] Open
Abstract
Plant-based, synthetic, and endogenous cannabinoids have been shown to control a diverse array of biological processes, including regulation of cell fate across cancers. Their promise as broad-based antitumor agents in preclinical models has led to the initiation of pilot clinical trials. Session 5 of the National Cancer Institute's Cannabis, Cannabinoids and Cancer Research Symposium provides an overview of this research topic. Overall, the presentations highlight cannabinoid signal transduction and specific molecular mechanisms underlying cannabinoid antitumor activity. They also demonstrate the broad-based antitumor activity of the plant-based, synthetic, and endogenous cannabinoid compounds. Importantly, evidence is presented demonstrating when cannabinoids may be contraindicated as a treatment for cancer, as in the case of human papilloma virus-meditated oropharynx cancer or potentially other p38 MAPK pathway-driven cancers. Finally, it is discussed that a key to advancing cannabinoids into the clinic is to conduct well-designed, large-scale clinical trials to determine whether cannabinoids are effective antitumor agents in cancer patients.
Collapse
Affiliation(s)
- Sean D McAllister
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Mary E Abood
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Joseph Califano
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA.,Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Manuel Guzmán
- Department of Biochemistry and Molecular Biology, CIBERNED, IUIN and IRYCIS, Complutense University, Madrid, Spain
| |
Collapse
|
41
|
Cannabidiol Induces Cell Death in Human Lung Cancer Cells and Cancer Stem Cells. Pharmaceuticals (Basel) 2021; 14:ph14111169. [PMID: 34832951 PMCID: PMC8624994 DOI: 10.3390/ph14111169] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/05/2021] [Accepted: 11/13/2021] [Indexed: 12/31/2022] Open
Abstract
Currently, there is no effective therapy against lung cancer due to the development of resistance. Resistance contributes to disease progression, recurrence, and mortality. The presence of so-called cancer stem cells could explain the ineffectiveness of conventional treatment, and the development of successful cancer treatment depends on the targeting also of cancer stem cells. Cannabidiol (CBD) is a cannabinoid with anti-tumor properties. However, the effects on cancer stem cells are not well understood. The effects of CBD were evaluated in spheres enriched in lung cancer stem cells and adherent lung cancer cells. We found that CBD decreased viability and induced cell death in both cell populations. Furthermore, we found that CBD activated the effector caspases 3/7, increased the expression of pro-apoptotic proteins, increased the levels of reactive oxygen species, as well as a leading to a loss of mitochondrial membrane potential in both populations. We also found that CBD decreased self-renewal, a hallmark of cancer stem cells. Overall, our results suggest that CBD is effective against the otherwise treatment-resistant cancer stem cells and joins a growing list of compounds effective against cancer stem cells. The effects and mechanisms of CBD in cancer stem cells should be further explored to find their Achilles heel.
Collapse
|
42
|
Sermet S, Li J, Bach A, Crawford RB, Kaminski NE. Cannabidiol selectively modulates interleukin (IL)-1β and IL-6 production in toll-like receptor activated human peripheral blood monocytes. Toxicology 2021; 464:153016. [PMID: 34740670 DOI: 10.1016/j.tox.2021.153016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022]
Abstract
Cannabidiol (CBD) is a major non-euphoric cannabis-derived compound that has become popular in its over-the-counter use. CBD possesses low affinity for cannabinoid receptors, while the primary molecular target(s) by which it mediates biological activity remain poorly defined. Individuals commonly self-medicate using CBD products with little knowledge of its specific immunopharmacological effects on the human immune system; however, research has established primarily in rodent models that CBD possesses immune modulating properties. The objective of this study was to evaluate whether CBD modulates the innate immune response by human primary monocytes activated through toll-like receptors (TLR) 1-9. Monocytes were activated through each TLR and treated with CBD (0.5-10 μM) for 22 h. Monocyte secretion profiles for 13 immune mediators were quantified including: IL-4, IL-2, IP-10, IL-1β, TNFα, MCP-1, IL-17a, IL-6, IL-10, IFNγ, IL-12p70, IL-8, and TGF-β1. CBD treatment significantly suppressed secretion of proinflammatory cytokine IL-1β by monocytes activated through most TLRs, apart from TLRs 3 and 8. Additionally, CBD treatment induced significant modulation of IL-6 production by monocytes activated through most TLRs, except for TLRs 1 and 3. Most other monocyte-derived factors assayed were refractory to CBD modulation. Overall, CBD selectively altered monocyte-derived IL-1β and IL-6 when activated through most TLRs. This study is of particular importance as it provides a direct and comprehensive assessment of the effects of CBD on TLR-activated primary human monocytes at a time when CBD containing products are being widely used by the public.
Collapse
Affiliation(s)
- Sera Sermet
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States
| | - Jinpeng Li
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States; Center for Research on Ingredient Safety, Michigan State University, East Lansing, MI, 48824, United States
| | - Anthony Bach
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States; Center for Research on Ingredient Safety, Michigan State University, East Lansing, MI, 48824, United States
| | - Robert B Crawford
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States
| | - Norbert E Kaminski
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States; Center for Research on Ingredient Safety, Michigan State University, East Lansing, MI, 48824, United States.
| |
Collapse
|
43
|
Bukke VN, Archana M, Villani R, Serviddio G, Cassano T. Pharmacological and Toxicological Effects of Phytocannabinoids and Recreational Synthetic Cannabinoids: Increasing Risk of Public Health. Pharmaceuticals (Basel) 2021; 14:ph14100965. [PMID: 34681189 PMCID: PMC8541640 DOI: 10.3390/ph14100965] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/01/2023] Open
Abstract
Synthetic Cannabinoids (CBs) are a novel class of psychoactive substances that have rapidly evolved around the world with the addition of diverse structural modifications to existing molecules which produce new structural analogues that can be associated with serious adverse health effects. Synthetic CBs represent the largest class of drugs detected by the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) with a total of 207 substances identified from 2008 to October 2020, and 9 compounds being reported for the first time. Synthetic CBs are sprayed on natural harmless herbs with an aim to mimic the euphoric effect of Cannabis. They are sold under different brand names including Black mamba, spice, K2, Bombay Blue, etc. As these synthetic CBs act as full agonists at the CB receptors, they are much more potent than natural Cannabis and have been increasingly associated with acute to chronic intoxications and death. Due to their potential toxicity and abuse, the US government has listed some synthetic CBs under schedule 1 classification. The present review aims to provide a focused overview of the literature concerning the development of synthetic CBs, their abuse, and potential toxicological effects including renal toxicity, respiratory depression, hyperemesis syndrome, cardiovascular effects, and a range of effects on brain function.
Collapse
|
44
|
Cannabidiol modulation of oxidative stress and signalling. Neuronal Signal 2021; 5:NS20200080. [PMID: 34497718 PMCID: PMC8385185 DOI: 10.1042/ns20200080] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
Cannabidiol (CBD), one of the primary non-euphoric components in the Cannabis sativa L. plant, has undergone clinical development over the last number of years as a therapeutic for patients with Lennox-Gastaut syndrome and Dravet syndromes. This phytocannabinoid demonstrates functional and pharmacological diversity, and research data indicate that CBD is a comparable antioxidant to common antioxidants. This review gathers the latest knowledge regarding the impact of CBD on oxidative signalling, with focus on the proclivity of CBD to regulate antioxidants and control the production of reactive oxygen species. CBD is considered an attractive therapeutic agent for neuroimmune disorders, and a body of literature indicates that CBD can regulate redox function at multiple levels, with a range of downstream effects on cells and tissues. However, pro-oxidant capacity of CBD has also been reported, and hence caution must be applied when considering CBD from a therapeutic standpoint. Such pro- and antioxidant functions of CBD may be cell- and model-dependent and may also be influenced by CBD dose, the duration of CBD treatment and the underlying pathology.
Collapse
|
45
|
Mangal N, Erridge S, Habib N, Sadanandam A, Reebye V, Sodergren MH. Cannabinoids in the landscape of cancer. J Cancer Res Clin Oncol 2021; 147:2507-2534. [PMID: 34259916 PMCID: PMC8310855 DOI: 10.1007/s00432-021-03710-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Cannabinoids are a group of terpenophenolic compounds derived from the Cannabis sativa L. plant. There is a growing body of evidence from cell culture and animal studies in support of cannabinoids possessing anticancer properties. METHOD A database search of peer reviewed articles published in English as full texts between January 1970 and April 2021 in Google Scholar, MEDLINE, PubMed and Web of Science was undertaken. References of relevant literature were searched to identify additional studies to construct a narrative literature review of oncological effects of cannabinoids in pre-clinical and clinical studies in various cancer types. RESULTS Phyto-, endogenous and synthetic cannabinoids demonstrated antitumour effects both in vitro and in vivo. However, these effects are dependent on cancer type, the concentration and preparation of the cannabinoid and the abundance of receptor targets. The mechanism of action of synthetic cannabinoids, (-)-trans-Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) has mainly been described via the traditional cannabinoid receptors; CB1 and CB2, but reports have also indicated evidence of activity through GPR55, TRPM8 and other ion channels including TRPA1, TRPV1 and TRPV2. CONCLUSION Cannabinoids have shown to be efficacious both as a single agent and in combination with antineoplastic drugs. These effects have occurred through various receptors and ligands and modulation of signalling pathways involved in hallmarks of cancer pathology. There is a need for further studies to characterise its mode of action at the molecular level and to delineate efficacious dosage and route of administration in addition to synergistic regimes.
Collapse
Affiliation(s)
- Nagina Mangal
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, W12 0HS, UK
- Systems and Precision Cancer Medicine Team, Division of Molecular Pathology, Institute of Cancer Research, London, SM2 5NG, UK
| | - Simon Erridge
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, W12 0HS, UK
| | - Nagy Habib
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, W12 0HS, UK
| | - Anguraj Sadanandam
- Systems and Precision Cancer Medicine Team, Division of Molecular Pathology, Institute of Cancer Research, London, SM2 5NG, UK
| | - Vikash Reebye
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, W12 0HS, UK
| | - Mikael Hans Sodergren
- Medical Cannabis Research Group, Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, W12 0HS, UK.
| |
Collapse
|
46
|
Olivas-Aguirre M, Torres-López L, Gómez-Sandoval Z, Villatoro-Gómez K, Pottosin I, Dobrovinskaya O. Tamoxifen Sensitizes Acute Lymphoblastic Leukemia Cells to Cannabidiol by Targeting Cyclophilin-D and Altering Mitochondrial Ca 2+ Homeostasis. Int J Mol Sci 2021; 22:8688. [PMID: 34445394 PMCID: PMC8395529 DOI: 10.3390/ijms22168688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 11/16/2022] Open
Abstract
Cytotoxic effects of cannabidiol (CBD) and tamoxifen (TAM) have been observed in several cancer types. We have recently shown that CBD primarily targets mitochondria, inducing a stable mitochondrial permeability transition pore (mPTP) and, consequently, the death of acute lymphoblastic leukemia (T-ALL) cells. Mitochondria have also been documented among cellular targets for the TAM action. In the present study we have demonstrated a synergistic cytotoxic effect of TAM and CBD against T-ALL cells. By measuring the mitochondrial membrane potential (ΔΨm), mitochondrial calcium ([Ca2+]m) and protein-ligand docking analysis we determined that TAM targets cyclophilin D (CypD) to inhibit mPTP formation. This results in a sustained [Ca2+]m overload upon the consequent CBD administration. Thus, TAM acting on CypD sensitizes T-ALL to mitocans such as CBD by altering the mitochondrial Ca2+ homeostasis.
Collapse
Affiliation(s)
- Miguel Olivas-Aguirre
- Laboratory of Immunobiology and Ionic Transport Regulation, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Villa de San Sebastián, Colima 28045, Mexico; (M.O.-A.); (L.T.-L.); (K.V.-G.)
| | - Liliana Torres-López
- Laboratory of Immunobiology and Ionic Transport Regulation, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Villa de San Sebastián, Colima 28045, Mexico; (M.O.-A.); (L.T.-L.); (K.V.-G.)
| | - Zeferino Gómez-Sandoval
- Facultad de Ciencias Químicas, Universidad de Colima, Carretera Colima-Coquimatlán, km. 9, Coquimatlán 28400, Mexico;
| | - Kathya Villatoro-Gómez
- Laboratory of Immunobiology and Ionic Transport Regulation, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Villa de San Sebastián, Colima 28045, Mexico; (M.O.-A.); (L.T.-L.); (K.V.-G.)
| | - Igor Pottosin
- Laboratory of Immunobiology and Ionic Transport Regulation, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Villa de San Sebastián, Colima 28045, Mexico; (M.O.-A.); (L.T.-L.); (K.V.-G.)
| | - Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Villa de San Sebastián, Colima 28045, Mexico; (M.O.-A.); (L.T.-L.); (K.V.-G.)
| |
Collapse
|
47
|
Todorova J, Lazarov LI, Petrova M, Tzintzarov A, Ugrinova I. The antitumor activity of cannabidiol on lung cancer cell lines A549 and H1299: the role of apoptosis. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1915870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Jordana Todorova
- Department of Structure and Function of Chromatin, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Lazar I. Lazarov
- Department of Structure and Function of Chromatin, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria Petrova
- Department of Structure and Function of Chromatin, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Alexander Tzintzarov
- Department of Structure and Function of Chromatin, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Iva Ugrinova
- Department of Structure and Function of Chromatin, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
48
|
Irrera N, Bitto A, Sant’Antonio E, Lauro R, Musolino C, Allegra A. Pros and Cons of the Cannabinoid System in Cancer: Focus on Hematological Malignancies. Molecules 2021; 26:molecules26133866. [PMID: 34202812 PMCID: PMC8270322 DOI: 10.3390/molecules26133866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/09/2021] [Accepted: 06/20/2021] [Indexed: 11/23/2022] Open
Abstract
The endocannabinoid system (ECS) is a composite cell-signaling system that allows endogenous cannabinoid ligands to control cell functions through the interaction with cannabinoid receptors. Modifications of the ECS might contribute to the pathogenesis of different diseases, including cancers. However, the use of these compounds as antitumor agents remains debatable. Pre-clinical experimental studies have shown that cannabinoids (CBs) might be effective for the treatment of hematological malignancies, such as leukemia and lymphoma. Specifically, CBs may activate programmed cell death mechanisms, thus blocking cancer cell growth, and may modulate both autophagy and angiogenesis. Therefore, CBs may have significant anti-tumor effects in hematologic diseases and may synergistically act with chemotherapeutic agents, possibly also reducing chemoresistance. Moreover, targeting ECS might be considered as a novel approach for the management of graft versus host disease, thus reducing some symptoms such as anorexia, cachexia, fatigue, anxiety, depression, and neuropathic pain. The aim of the present review is to collect the state of the art of CBs effects on hematological tumors, thus focusing on the essential topics that might be useful before moving into the clinical practice.
Collapse
Affiliation(s)
- Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (N.I.); (A.B.); (R.L.)
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (N.I.); (A.B.); (R.L.)
| | | | - Rita Lauro
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (N.I.); (A.B.); (R.L.)
| | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood, University of Messina, 98125 Messina, Italy;
| | - Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood, University of Messina, 98125 Messina, Italy;
- Correspondence: ; Tel.: +390902212364
| |
Collapse
|
49
|
The Interplay between the Immune and the Endocannabinoid Systems in Cancer. Cells 2021; 10:cells10061282. [PMID: 34064197 PMCID: PMC8224348 DOI: 10.3390/cells10061282] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
The therapeutic potential of Cannabis sativa has been recognized since ancient times. Phytocannabinoids, endocannabinoids and synthetic cannabinoids activate two major G protein-coupled receptors, subtype 1 and 2 (CB1 and CB2). Cannabinoids (CBs) modulate several aspects of cancer cells, such as apoptosis, autophagy, proliferation, migration, epithelial-to-mesenchymal transition and stemness. Moreover, agonists of CB1 and CB2 receptors inhibit angiogenesis and lymphangiogenesis in vitro and in vivo. Low-grade inflammation is a hallmark of cancer in the tumor microenvironment (TME), which contains a plethora of innate and adaptive immune cells. These cells play a central role in tumor initiation and growth and the formation of metastasis. CB2 and, to a lesser extent, CB1 receptors are expressed on a variety of immune cells present in TME (e.g., T cells, macrophages, mast cells, neutrophils, NK cells, dendritic cells, monocytes, eosinophils). The activation of CB receptors modulates a variety of biological effects on cells of the adaptive and innate immune system. The expression of CB2 and CB1 on different subsets of immune cells in TME and hence in tumor development is incompletely characterized. The recent characterization of the human cannabinoid receptor CB2-Gi signaling complex will likely aid to design potent and specific CB2/CB1 ligands with therapeutic potential in cancer.
Collapse
|
50
|
Schloss J, Lacey J, Sinclair J, Steel A, Sughrue M, Sibbritt D, Teo C. A Phase 2 Randomised Clinical Trial Assessing the Tolerability of Two Different Ratios of Medicinal Cannabis in Patients With High Grade Gliomas. Front Oncol 2021; 11:649555. [PMID: 34094937 PMCID: PMC8176855 DOI: 10.3389/fonc.2021.649555] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background Cannabis for cancer is very topical and, given the use of illicit cannabis preparations used in this vulnerable population, research investigating standardised, quality-assured medicinal cannabis is critical to inform clinicians and assist patient safety. Methods A randomized trial involving adult patients diagnosed with a high-grade glioma, no history of substance abuse, liver or kidney damage or myocardial infarction were eligible for inclusion in a tolerability study on two different ratios of medicinal cannabis. Baseline screening of brain morphology, blood pathology, functional status, and cognition was conducted. A retrospective control group was used for comparison for secondary outcomes. Results Participants (n=88) were on average 53.3 years old. A paired t-test assessed the Functional Assessment of Cancer Therapy for Brain Cancer (FACT-Br) between groups from baseline to week 12 found that the 1:1 ratio favoured both physical (p=0.025) and functional (p=0.014) capacity and improved sleep (p=0.009). Analysis of changes from baseline to week 12 also found 11% of 61 participants had a reduction in disease, 34% were stable, 16% had slight enhancement, and 10% had progressive disease. No serious adverse events occurred. Side effects included dry mouth, tiredness at night, dizziness, drowsiness. Conclusion This study demonstrated that a single nightly dose of THC-containing medicinal cannabis was safe, had no serious adverse effects and was well tolerated in patients. Medicinal cannabis significantly improved sleep, functional wellbeing, and quality of life. Clinical Trial Registration Australian New Zealand Clinical Trials Registry (ANZCTR) http://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=373556&isReview=true, identifier ACTRN12617001287325.
Collapse
Affiliation(s)
- Janet Schloss
- National Centre for Naturopathic Medicine, Southern Cross University, Lismore, NSW, Australia.,Office of Research, Endeavour College of Natural Health, Brisbane, QLD, Australia.,Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, NSW, Australia
| | - Judith Lacey
- National Institute of Complementary Medicine (NICM) Health Research Institute, Western Sydney University, Sydney, NSW, Australia.,Supportive Care, Chris O'Brien Lifehouse Cancer Hospital, Sydney, NSW, Australia.,Clinical School of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Justin Sinclair
- National Institute of Complementary Medicine (NICM) Health Research Institute, Western Sydney University, Sydney, NSW, Australia
| | - Amie Steel
- Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, NSW, Australia
| | - Michael Sughrue
- Prince of Wales Private Hospital, Centre for Minimally Invasive Neurosurgery, Sydney, NSW, Australia
| | - David Sibbritt
- Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, NSW, Australia
| | - Charles Teo
- Prince of Wales Private Hospital, Centre for Minimally Invasive Neurosurgery, Sydney, NSW, Australia
| |
Collapse
|