1
|
Jørgensen AS, Daugvilaite V, De Filippo K, Berg C, Mavri M, Benned-Jensen T, Juzenaite G, Hjortø G, Rankin S, Våbenø J, Rosenkilde MM. Biased action of the CXCR4-targeting drug plerixafor is essential for its superior hematopoietic stem cell mobilization. Commun Biol 2021; 4:569. [PMID: 33980979 PMCID: PMC8115334 DOI: 10.1038/s42003-021-02070-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/31/2021] [Indexed: 01/14/2023] Open
Abstract
Following the FDA-approval of the hematopoietic stem cell (HSC) mobilizer plerixafor, orally available and potent CXCR4 antagonists were pursued. One such proposition was AMD11070, which was orally active and had superior antagonism in vitro; however, it did not appear as effective for HSC mobilization in vivo. Here we show that while AMD11070 acts as a full antagonist, plerixafor acts biased by stimulating β-arrestin recruitment while fully antagonizing G protein. Consequently, while AMD11070 prevents the constitutive receptor internalization, plerixafor allows it and thereby decreases receptor expression. These findings are confirmed by the successful transfer of both ligands' binding sites and action to the related CXCR3 receptor. In vivo, plerixafor exhibits superior HSC mobilization associated with a dramatic reversal of the CXCL12 gradient across the bone marrow endothelium, which is not seen for AMD11070. We propose that the biased action of plerixafor is central for its superior therapeutic effect in HSC mobilization.
Collapse
Affiliation(s)
- Astrid S Jørgensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Viktorija Daugvilaite
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Katia De Filippo
- Department of Medicine, National Heart and Lung Institute (NHLI), Imperial College, London, United Kingdom
| | - Christian Berg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Unit for Infectious Diseases, Department of Medicine, Herlev-Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Masa Mavri
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tau Benned-Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Lundbeck A/S, Copenhagen, Denmark
| | - Goda Juzenaite
- Department of Medicine, National Heart and Lung Institute (NHLI), Imperial College, London, United Kingdom
| | - Gertrud Hjortø
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Sara Rankin
- Department of Medicine, National Heart and Lung Institute (NHLI), Imperial College, London, United Kingdom
| | - Jon Våbenø
- Helgeland Hospital Trust, Sandnessjøen, Norway.
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Larsen O, Lückmann M, van der Velden WJC, Oliva-Santiago M, Brvar M, Ulven T, Frimurer TM, Karlshøj S, Rosenkilde MM. Selective Allosteric Modulation of N-Terminally Cleaved, but Not Full Length CCL3 in CCR1. ACS Pharmacol Transl Sci 2019; 2:429-441. [PMID: 32259075 DOI: 10.1021/acsptsci.9b00059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Indexed: 11/29/2022]
Abstract
Chemokines undergo post-translational modification such as N-terminal truncations. Here, we describe how N-terminal truncation of full length CCL3(1-70) affects its activity at CCR1. Truncated CCL3(5-70) has 10-fold higher potency and enhanced efficacy in β-arrestin recruitment, but less than 2-fold increased potencies in G protein signaling determined by calcium release, cAMP and IP3 formation. Small positive ago-allosteric ligands modulate the two CCL3 variants differently as the metal ion chelator bipyridine in complex with zinc (ZnBip) enhances the binding of truncated, but not full length CCL3, while a size-increase of the chelator to a chloro-substituted terpyridine (ZnClTerp), eliminates its allosteric, but not agonistic action. By employing a series of receptor mutants and in silico modeling we describe residues of importance for chemokine and small molecule binding. Notably, the chemokine receptor-conserved Glu2877.39 interacts with the N-terminal amine of truncated CCL3(5-70) and with Zn2+ of ZnBip, thereby bridging their binding sites and enabling the positive allosteric effect. Our study emphasizes that small allosteric molecules may act differently toward chemokine variants and thus selectively modulate interactions of specific chemokine subsets with their cognate receptors.
Collapse
Affiliation(s)
- Olav Larsen
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Michael Lückmann
- Section for Metabolic Receptology, Novo Nordisk Foundation, Center for Basic Metabolic Research, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Wijnand J C van der Velden
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Marta Oliva-Santiago
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Matjaz Brvar
- Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Trond Ulven
- Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2200 Copenhagen, Denmark
| | - Thomas M Frimurer
- Section for Metabolic Receptology, Novo Nordisk Foundation, Center for Basic Metabolic Research, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Stefanie Karlshøj
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| |
Collapse
|
3
|
Fares S, Spiess K, Olesen ETB, Zuo J, Jackson S, Kledal TN, Wills MR, Rosenkilde MM. Distinct Roles of Extracellular Domains in the Epstein-Barr Virus-Encoded BILF1 Receptor for Signaling and Major Histocompatibility Complex Class I Downregulation. mBio 2019; 10:e01707-18. [PMID: 30647152 PMCID: PMC6336419 DOI: 10.1128/mbio.01707-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/28/2018] [Indexed: 02/02/2023] Open
Abstract
The Epstein-Barr virus (EBV) BILF1 gene encodes a constitutively active G protein-coupled receptor (GPCR) that downregulates major histocompatibility complex (MHC) class I and induces signaling-dependent tumorigenesis. Different BILF1 homologs display highly conserved extracellular loops (ECLs) including the conserved cysteine residues involved in disulfide bridges present in class A GPCRs (GPCR bridge between transmembrane helix 3 [TM-3] and ECL-2) and in chemokine receptors (CKR bridge between the N terminus and ECL-3). In order to investigate the roles of the conserved residues in the receptor functions, 25 mutations were created in the extracellular domains. Luciferase reporter assays and flow cytometry were used to investigate the G protein signaling and MHC class I downregulation in HEK293 cells. We find that the cysteine residues involved in the GPCR bridge are important for both signaling and MHC class I downregulation, whereas the cysteine residues in the N terminus and ECL-3 are dispensable for signaling but important for MHC class I downregulation. Multiple conserved residues in the extracellular regions are important for the receptor-induced MHC class I downregulation, but not for signaling, indicating distinct structural requirements for these two functions. In an engineered receptor containing a binding site for Zn+2 ions in a complex with an aromatic chelator (phenanthroline or bipyridine), a ligand-driven inhibition of both the receptor signaling and MHC class I downregulation was observed. Taken together, this suggests that distinct regions in EBV-BILF1 can be pharmacologically targeted to inhibit the signaling-mediated tumorigenesis and interfere with the MHC class I downregulation.IMPORTANCE G protein-coupled receptors constitute the largest family of membrane proteins. As targets of >30% of the FDA-approved drugs, they are valuable for drug discovery. The receptor is composed of seven membrane-spanning helices and intracellular and extracellular domains. BILF1 is a receptor encoded by Epstein-Barr virus (EBV), which evades the host immune system by various strategies. BILF1 facilitates the virus immune evasion by downregulating MHC class I and is capable of inducing signaling-mediated tumorigenesis. BILF1 homologs from primate viruses show highly conserved extracellular domains. Here, we show that conserved residues in the extracellular domains of EBV-BILF1 are important for downregulating MHC class I and that the receptor signaling and immune evasion can be inhibited by drug-like small molecules. This suggests that BILF1 could be a target to inhibit the signaling-mediated tumorigenesis and interfere with the MHC class I downregulation, thereby facilitating virus recognition by the immune system.
Collapse
Affiliation(s)
- Suzan Fares
- Laboratory for Molecular and Translational Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katja Spiess
- Laboratory for Molecular and Translational Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emma T B Olesen
- Laboratory for Molecular and Translational Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jianmin Zuo
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sarah Jackson
- Division of Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Thomas N Kledal
- National Veterinary Institute, Technical University of Denmark, Lyngby, Denmark
| | - Mark R Wills
- Division of Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Mette M Rosenkilde
- Laboratory for Molecular and Translational Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Kuhre RE, Wewer Albrechtsen NJ, Larsen O, Jepsen SL, Balk-Møller E, Andersen DB, Deacon CF, Schoonjans K, Reimann F, Gribble FM, Albrechtsen R, Hartmann B, Rosenkilde MM, Holst JJ. Bile acids are important direct and indirect regulators of the secretion of appetite- and metabolism-regulating hormones from the gut and pancreas. Mol Metab 2018; 11:84-95. [PMID: 29656109 PMCID: PMC6001409 DOI: 10.1016/j.molmet.2018.03.007] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/03/2018] [Accepted: 03/13/2018] [Indexed: 02/06/2023] Open
Abstract
Objective Bile acids (BAs) facilitate fat absorption and may play a role in glucose and metabolism regulation, stimulating the secretion of gut hormones. The relative importance and mechanisms involved in BA-stimulated secretion of appetite and metabolism regulating hormones from the gut and pancreas is not well described and was the purpose of this study. Methods The effects of bile acids on the secretion of gut and pancreatic hormones was studied in rats and compared to the most well described nutritional secretagogue: glucose. The molecular mechanisms that underlie the secretion was studied by isolated perfused rat and mouse small intestine and pancreas preparations and supported by immunohistochemistry, expression analysis, and pharmacological studies. Results Bile acids robustly stimulate secretion of not only the incretin hormones, glucose-dependent insulinotropic peptide (GIP), and glucagon-like peptide-1 (GLP-1), but also glucagon and insulin in vivo, to levels comparable to those resulting from glucose stimulation. The mechanisms of GLP-1, neurotensin, and peptide YY (PYY) secretion was secondary to intestinal absorption and depended on activation of basolateral membrane Takeda G-protein receptor 5 (TGR5) receptors on the L-cells in the following order of potency: Lithocholic acid (LCA) >Deoxycholicacid (DCA)>Chenodeoxycholicacid (CDCA)> Cholic acid (CA). Thus BAs did not stimulate secretion of GLP-1 and PYY from perfused small intestine in TGR5 KO mice but stimulated robust responses in wild type littermates. TGR5 is not expressed on α-cells or β-cells, and BAs had no direct effects on glucagon or insulin secretion from the perfused pancreas. Conclusion BAs should be considered not only as fat emulsifiers but also as important regulators of appetite- and metabolism-regulating hormones by activation of basolateral intestinal TGR5. Bile acids stimulate the secretion of metabolism-regulating hormones from the gut. Bile acids stimulate secretion of gut hormones to a similar extent as glucose. Activation of basolateral TGR5 receptors mediates the responses. Bile acids stimulate glucagon and insulin secretion, but only indirectly. Bile acids should be regarded as important regulators of blood glucose and metabolism.
Collapse
Affiliation(s)
- Rune E Kuhre
- Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark; NNF Center for Basic Metabolic Research, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark; NNF Center for Basic Metabolic Research, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Olav Larsen
- Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Sara L Jepsen
- Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark; NNF Center for Basic Metabolic Research, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Emilie Balk-Møller
- Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark; NNF Center for Basic Metabolic Research, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Daniel B Andersen
- Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark; NNF Center for Basic Metabolic Research, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Carolyn F Deacon
- Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark; NNF Center for Basic Metabolic Research, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Kristina Schoonjans
- Laboratory of Metabolic Signaling, Ecole Polytechnique Fédérale de Lausanne, Station 15, CH-1015, Lausanne, Switzerland
| | - Frank Reimann
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, CB2 0QQ, United Kingdom
| | - Fiona M Gribble
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, CB2 0QQ, United Kingdom
| | - Reidar Albrechtsen
- Department of Biomedical Sciences, and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark; NNF Center for Basic Metabolic Research, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark; NNF Center for Basic Metabolic Research, University of Copenhagen, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
5
|
Jørgensen AS, Rosenkilde MM, Hjortø GM. Biased signaling of G protein-coupled receptors - From a chemokine receptor CCR7 perspective. Gen Comp Endocrinol 2018; 258:4-14. [PMID: 28694053 DOI: 10.1016/j.ygcen.2017.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022]
Abstract
Chemokines (chemotactic cytokines) and their associated G protein-coupled receptors (GPCRs) work in a concerted manner to govern immune cell positioning in time and space. Promiscuity of both ligands and receptors, but also biased signaling within the chemokine system, adds to the complexity of how the cell-based immune system is controlled. Bias comes in three forms; ligand-, receptor- and tissue-bias. Biased signaling is increasingly being recognized as playing an important role in contributing to the fine-tuned coordination of immune cell chemotaxis. In the current review we discuss the recent findings related to ligand- and tissue-biased signaling of CCR7 and summarize what is known about bias at other chemokine receptors. CCR7 is expressed by a subset of T-cells and by mature dendritic cells (DCs). Together with its two endogenous ligands CCL19 and CCL21, of which the carboxy terminal tail of CCL21 displays an extraordinarily strong glycosaminoglycan (GAG) binding, CCR7 plays a central role in coordinating the meeting between mature antigen presenting DCs and naïve T-cells which normally takes place in the lymph nodes (LNs). This process is a prerequisite for the initiation of an antigen-specific T-cell mediated immune response. Thus CCR7 and its ligands are key players in initiating cell-based immune responses. CCL19 and CCL21 display differential interaction- and docking-modes for CCR7 leading to stabilization of different CCR7 conformations and hereby preferential activation of distinct intracellular signaling pathways (i.e. ligand bias). In general CCL19 seems to generate a strong temporal signal, whereas CCL21 generates a weaker, but more persistent signal. Tissue differential expression of these two ligands, and the generation of a third ligand "tailless-CCL21", through DC specific protease activity (tissue bias), orchestrates DC and T-cell LN homing and priming, with each ligand serving overlapping, but also distinct roles.
Collapse
Affiliation(s)
- Astrid Sissel Jørgensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Gertrud M Hjortø
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
6
|
Dhivya S, Suresh Kumar C, Bommuraj V, Janarthanam R, Chandran M, Usha T, Middha SK. A study of comparative modelling, simulation and molecular dynamics of CXCR3 receptor with lipid bilayer. J Biomol Struct Dyn 2017; 36:2361-2372. [DOI: 10.1080/07391102.2017.1354783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Shanmugarajan Dhivya
- Department of Biochemistry and Biotechnology, DBT-BIF Facility, Biotechnology Finishing School, Research Centre, Maharani Lakshmi Ammanni College for Women, Bengaluru, India
| | - Chinaga Suresh Kumar
- Department of Chemistry, Barrix Agro Sciences Pvt. Ltd., 68A, 6th Main, 3rd Phase, Peenya, Bengaluru, India
| | - Vijayakumar Bommuraj
- Department of Biotechnology, Asthagiri Herbal Research Foundation, 162A, Perungudi, Chennai, India
| | - Rethavathi Janarthanam
- Department of Biotechnology, Asthagiri Herbal Research Foundation, 162A, Perungudi, Chennai, India
| | - Meena Chandran
- Department of Biotechnology, Asthagiri Herbal Research Foundation, 162A, Perungudi, Chennai, India
| | - Talambedu Usha
- Department of Biochemistry and Biotechnology, DBT-BIF Facility, Biotechnology Finishing School, Research Centre, Maharani Lakshmi Ammanni College for Women, Bengaluru, India
| | - Sushil Kumar Middha
- Department of Biochemistry and Biotechnology, DBT-BIF Facility, Biotechnology Finishing School, Research Centre, Maharani Lakshmi Ammanni College for Women, Bengaluru, India
| |
Collapse
|
7
|
Arimont M, Sun SL, Leurs R, Smit M, de Esch IJP, de Graaf C. Structural Analysis of Chemokine Receptor-Ligand Interactions. J Med Chem 2017; 60:4735-4779. [PMID: 28165741 PMCID: PMC5483895 DOI: 10.1021/acs.jmedchem.6b01309] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
This
review focuses on the construction and application of structural chemokine
receptor models for the elucidation of molecular determinants of chemokine
receptor modulation and the structure-based discovery and design of
chemokine receptor ligands. A comparative analysis of ligand binding
pockets in chemokine receptors is presented, including a detailed
description of the CXCR4, CCR2, CCR5, CCR9, and US28 X-ray structures,
and their implication for modeling molecular interactions of chemokine
receptors with small-molecule ligands, peptide ligands, and large
antibodies and chemokines. These studies demonstrate how the integration
of new structural information on chemokine receptors with extensive
structure–activity relationship and site-directed mutagenesis
data facilitates the prediction of the structure of chemokine receptor–ligand
complexes that have not been crystallized. Finally, a review of structure-based
ligand discovery and design studies based on chemokine receptor crystal
structures and homology models illustrates the possibilities and challenges
to find novel ligands for chemokine receptors.
Collapse
Affiliation(s)
- Marta Arimont
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Shan-Liang Sun
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Martine Smit
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Iwan J P de Esch
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Chris de Graaf
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam , De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
8
|
Krishna BA, Spiess K, Poole EL, Lau B, Voigt S, Kledal TN, Rosenkilde MM, Sinclair JH. Targeting the latent cytomegalovirus reservoir with an antiviral fusion toxin protein. Nat Commun 2017; 8:14321. [PMID: 28148951 PMCID: PMC5296658 DOI: 10.1038/ncomms14321] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/16/2016] [Indexed: 12/26/2022] Open
Abstract
Reactivation of human cytomegalovirus (HCMV) in transplant recipients can cause life-threatening disease. Consequently, for transplant recipients, killing latently infected cells could have far-reaching clinical benefits. In vivo, myeloid cells and their progenitors are an important site of HCMV latency, and one viral gene expressed by latently infected myeloid cells is US28. This viral gene encodes a cell surface G protein-coupled receptor (GPCR) that binds chemokines, triggering its endocytosis. We show that the expression of US28 on the surface of latently infected cells allows monocytes and their progenitor CD34+ cells to be targeted and killed by F49A-FTP, a highly specific fusion toxin protein that binds this viral GPCR. As expected, this specific targeting of latently infected cells by F49A-FTP also robustly reduces virus reactivation in vitro. Consequently, such specific fusion toxin proteins could form the basis of a therapeutic strategy for eliminating latently infected cells before haematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- B A Krishna
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB20QQ, UK
| | - K Spiess
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - E L Poole
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB20QQ, UK
| | - B Lau
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB20QQ, UK
| | - S Voigt
- Department of Infectious Diseases, Robert Koch Institute, Nordufer 20, Berlin 13353, Germany.,Department of Pediatric Oncology/Hematology/SCT, Charité-Universitätsmedizin, Berlin 13353, Germany
| | - T N Kledal
- Section for Virology, The National Veterinary Institute, Technical University of Denmark, Frederiksberg DK-1870, Denmark
| | - M M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - J H Sinclair
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB20QQ, UK
| |
Collapse
|
9
|
Karlshøj S, Amarandi RM, Larsen O, Daugvilaite V, Steen A, Brvar M, Pui A, Frimurer TM, Ulven T, Rosenkilde MM. Molecular Mechanism of Action for Allosteric Modulators and Agonists in CC-chemokine Receptor 5 (CCR5). J Biol Chem 2016; 291:26860-26874. [PMID: 27834679 DOI: 10.1074/jbc.m116.740183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 11/09/2016] [Indexed: 12/22/2022] Open
Abstract
The small molecule metal ion chelators bipyridine and terpyridine complexed with Zn2+ (ZnBip and ZnTerp) act as CCR5 agonists and strong positive allosteric modulators of CCL3 binding to CCR5, weak modulators of CCL4 binding, and competitors for CCL5 binding. Here we describe their binding site using computational modeling, binding, and functional studies on WT and mutated CCR5. The metal ion Zn2+ is anchored to the chemokine receptor-conserved Glu-283VII:06/7.39 Both chelators interact with aromatic residues in the transmembrane receptor domain. The additional pyridine ring of ZnTerp binds deeply in the major binding pocket and, in contrast to ZnBip, interacts directly with the Trp-248VI:13/6.48 microswitch, contributing to its 8-fold higher potency. The impact of Trp-248 was further confirmed by ZnClTerp, a chloro-substituted version of ZnTerp that showed no inherent agonism but maintained positive allosteric modulation of CCL3 binding. Despite a similar overall binding mode of all three metal ion chelator complexes, the pyridine ring of ZnClTerp blocks the conformational switch of Trp-248 required for receptor activation, thereby explaining its lack of activity. Importantly, ZnClTerp becomes agonist to the same extent as ZnTerp upon Ala mutation of Ile-116III:16/3.40, a residue that constrains the Trp-248 microswitch in its inactive conformation. Binding studies with 125I-CCL3 revealed an allosteric interface between the chemokine and the small molecule binding site, including residues Tyr-37I:07/1.39, Trp-86II:20/2.60, and Phe-109III:09/3.33 The small molecules and CCL3 approach this interface from opposite directions, with some residues being mutually exploited. This study provides new insight into the molecular mechanism of CCR5 activation and paves the way for future allosteric drugs for chemokine receptors.
Collapse
Affiliation(s)
- Stefanie Karlshøj
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Roxana Maria Amarandi
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark.,the Faculty of Chemistry, Alexandru Ioan Cuza University of Iaşi, Bd. Carol I No. 11, RO-700506 Iaşi, Romania
| | - Olav Larsen
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Viktorija Daugvilaite
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Anne Steen
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Matjaž Brvar
- the Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Aurel Pui
- the Faculty of Chemistry, Alexandru Ioan Cuza University of Iaşi, Bd. Carol I No. 11, RO-700506 Iaşi, Romania
| | - Thomas Michael Frimurer
- the Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark, and
| | - Trond Ulven
- the Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Mette Marie Rosenkilde
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark,
| |
Collapse
|
10
|
Barington L, Rummel PC, Lückmann M, Pihl H, Larsen O, Daugvilaite V, Johnsen AH, Frimurer TM, Karlshøj S, Rosenkilde MM. Role of Conserved Disulfide Bridges and Aromatic Residues in Extracellular Loop 2 of Chemokine Receptor CCR8 for Chemokine and Small Molecule Binding. J Biol Chem 2016; 291:16208-20. [PMID: 27226537 DOI: 10.1074/jbc.m115.706747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Indexed: 11/06/2022] Open
Abstract
Chemokine receptors play important roles in the immune system and are linked to several human diseases. The initial contact of chemokines with their receptors depends on highly specified extracellular receptor features. Here we investigate the importance of conserved extracellular disulfide bridges and aromatic residues in extracellular loop 2 (ECL-2) for ligand binding and activation in the chemokine receptor CCR8. We used inositol 1,4,5-trisphosphate accumulation and radioligand binding experiments to determine the impact of receptor mutagenesis on both chemokine and small molecule agonist and antagonist binding and action in CCR8. We find that the seven-transmembrane (TM) receptor conserved disulfide bridge (7TM bridge) linking transmembrane helix III (TMIII) and ECL-2 is crucial for chemokine and small molecule action, whereas the chemokine receptor conserved disulfide bridge between the N terminus and TMVII is needed only for chemokines. Furthermore, we find that two distinct aromatic residues in ECL-2, Tyr(184) (Cys + 1) and Tyr(187) (Cys + 4), are crucial for binding of the CC chemokines CCL1 (agonist) and MC148 (antagonist), respectively, but not for small molecule binding. Finally, using in silico modeling, we predict an aromatic cluster of interaction partners for Tyr(187) in TMIV (Phe(171)) and TMV (Trp(194)). We show in vitro that these residues are crucial for the binding and action of MC148, thus supporting their participation in an aromatic cluster with Tyr(187) This aromatic cluster appears to be present in a large number of CC chemokine receptors and thereby could play a more general role to be exploited in future drug development targeting these receptors.
Collapse
Affiliation(s)
| | - Pia C Rummel
- From the Department of Neuroscience and Pharmacology
| | - Michael Lückmann
- From the Department of Neuroscience and Pharmacology, the Novo Nordisk Foundation Center for Basic Metabolic Research, and
| | - Heidi Pihl
- From the Department of Neuroscience and Pharmacology
| | - Olav Larsen
- From the Department of Neuroscience and Pharmacology
| | | | - Anders H Johnsen
- the Department of Clinical Biochemistry, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | - Thomas M Frimurer
- the Novo Nordisk Foundation Center for Basic Metabolic Research, and the Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark and
| | | | | |
Collapse
|
11
|
Milanos L, Brox R, Frank T, Poklukar G, Palmisano R, Waibel R, Einsiedel J, Dürr M, Ivanović-Burmazović I, Larsen O, Hjortø GM, Rosenkilde MM, Tschammer N. Discovery and Characterization of Biased Allosteric Agonists of the Chemokine Receptor CXCR3. J Med Chem 2016; 59:2222-43. [DOI: 10.1021/acs.jmedchem.5b01965] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lampros Milanos
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Regine Brox
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Theresa Frank
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Gašper Poklukar
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Ralf Palmisano
- Optical
Imaging Center Erlangen, Friedrich Alexander University, Hartmannstraße
14, 91052 Erlangen, Germany
| | - Reiner Waibel
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Jürgen Einsiedel
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Maximilian Dürr
- Department
of Chemistry and Pharmacy, Bioorganic Chemistry, Friedrich Alexander University, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Ivana Ivanović-Burmazović
- Department
of Chemistry and Pharmacy, Bioorganic Chemistry, Friedrich Alexander University, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Olav Larsen
- Department
of Neuroscience and Pharmacology, Laboratory for Molecular Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Gertrud Malene Hjortø
- Department
of Neuroscience and Pharmacology, Laboratory for Molecular Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Mette Marie Rosenkilde
- Department
of Neuroscience and Pharmacology, Laboratory for Molecular Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Nuska Tschammer
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| |
Collapse
|
12
|
Amarandi RM, Hjortø GM, Rosenkilde MM, Karlshøj S. Probing Biased Signaling in Chemokine Receptors. Methods Enzymol 2015; 570:155-86. [PMID: 26921946 DOI: 10.1016/bs.mie.2015.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The chemokine system mediates leukocyte migration during homeostatic and inflammatory processes. Traditionally, it is described as redundant and promiscuous, with a single chemokine ligand binding to different receptors and a single receptor having several ligands. Signaling of chemokine receptors occurs via two major routes, G protein- and β-arrestin-dependent, which can be preferentially modulated depending on the ligands or receptors involved, as well as the cell types or tissues in which the signaling event occurs. The preferential activation of a certain signaling pathway to the detriment of others has been termed signaling bias and can accordingly be grouped into ligand bias, receptor bias, and tissue bias. Bias has so far been broadly overlooked in the process of drug development. The low number of currently approved drugs targeting the chemokine system, as well as the broad range of failed clinical trials, reflects the need for a better understanding of the chemokine system. Thus, understanding the character, direction, and consequence of biased signaling in the chemokine system may aid the development of new therapeutics. This review describes experiments to assess G protein-dependent and -independent signaling in order to quantify chemokine system bias.
Collapse
Affiliation(s)
- Roxana-Maria Amarandi
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark; Faculty of Chemistry, Alexandru Ioan Cuza University of Iaşi, Iaşi, Romania
| | - Gertrud Malene Hjortø
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Mette Marie Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Stefanie Karlshøj
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
13
|
Schmidt D, Bernat V, Brox R, Tschammer N, Kolb P. Identifying modulators of CXC receptors 3 and 4 with tailored selectivity using multi-target docking. ACS Chem Biol 2015; 10:715-24. [PMID: 25398025 DOI: 10.1021/cb500577j] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The G protein-coupled receptors of the C-X-C subfamily form a group among the chemokine receptors whose endogenous ligands are peptides with a common Cys-X-Cys motif. The CXC chemokine receptors 3 and 4 (CXCR3, CXCR4), which are investigated in this study, are linked to severe diseases such as cancer, multiple sclerosis, and HIV infections. Of particular interest, this receptor pair potentially forms a target for a polypharmacological drug treatment. Considering known ligands from public databases, such dual binders have not been identified yet. We therefore applied large-scale docking to the structure of CXCR4 and a homology model of CXCR3 with the goal to predict such dual binders, as well as compounds selective for either one of the receptors. Using signaling and biochemical assays, we showed that more than 50% of these predictions were correct in each category, yielding ligands with excellent binding efficiencies. These results highlight that docking is a suitable tool for the identification of ligands with tailored binding profiles to GPCRs, even when using homology models. More importantly, we present novel CXCR3-CXCR4 dual modulators that might pave the road to understanding the mechanisms of polypharmacological inhibition of these receptors.
Collapse
Affiliation(s)
| | | | - Regine Brox
- Friedrich-Alexander-University, Erlangen, Germany
| | | | - Peter Kolb
- Philipps-University, Marburg, Germany
- LOEWE Center for Synthetic Microbiology (Synmikro), Marburg, Germany
| |
Collapse
|
14
|
N-terminal region of human chemokine receptor CXCR3: Structural analysis of CXCR3(1–48) by experimental and computational studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1868-80. [DOI: 10.1016/j.bbapap.2014.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 11/20/2022]
|
15
|
Roumen L, Scholten DJ, de Kruijf P, de Esch IJP, Leurs R, de Graaf C. C(X)CR in silico: Computer-aided prediction of chemokine receptor-ligand interactions. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 9:e281-91. [PMID: 24990665 DOI: 10.1016/j.ddtec.2012.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This review will focus on the construction, refinement, and validation of chemokine receptor models for the purpose of structure-based virtual screening and ligand design. The review will present a comparative analysis of ligand binding pockets in chemokine receptors, including a review of the recently released CXCR4 X-ray structures, and their implication on chemokine receptor (homology) modeling. The recommended protein-ligand modeling procedure as well as the use of experimental anchors to steer the modeling procedure is discussed and an overview of several successful structure-based ligand discovery and design studies is provided. This review shows that receptor models, despite structural inaccuracies, can be efficiently used to find novel ligands for chemokine receptors.:
Collapse
Affiliation(s)
- L Roumen
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry, Department of Pharmacochemistry, Faculty of Exact Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - D J Scholten
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry, Department of Pharmacochemistry, Faculty of Exact Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - P de Kruijf
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry, Department of Pharmacochemistry, Faculty of Exact Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - I J P de Esch
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry, Department of Pharmacochemistry, Faculty of Exact Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - R Leurs
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry, Department of Pharmacochemistry, Faculty of Exact Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - C de Graaf
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry, Department of Pharmacochemistry, Faculty of Exact Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Steen A, Larsen O, Thiele S, Rosenkilde MM. Biased and g protein-independent signaling of chemokine receptors. Front Immunol 2014; 5:277. [PMID: 25002861 PMCID: PMC4066200 DOI: 10.3389/fimmu.2014.00277] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 05/28/2014] [Indexed: 01/14/2023] Open
Abstract
Biased signaling or functional selectivity occurs when a 7TM-receptor preferentially activates one of several available pathways. It can be divided into three distinct forms: ligand bias, receptor bias, and tissue or cell bias, where it is mediated by different ligands (on the same receptor), different receptors (with the same ligand), or different tissues or cells (for the same ligand–receptor pair). Most often biased signaling is differentiated into G protein-dependent and β-arrestin-dependent signaling. Yet, it may also cover signaling differences within these groups. Moreover, it may not be absolute, i.e., full versus no activation. Here we discuss biased signaling in the chemokine system, including the structural basis for biased signaling in chemokine receptors, as well as in class A 7TM receptors in general. This includes overall helical movements and the contributions of micro-switches based on recently published 7TM crystals and molecular dynamics studies. All three forms of biased signaling are abundant in the chemokine system. This challenges our understanding of “classic” redundancy inevitably ascribed to this system, where multiple chemokines bind to the same receptor and where a single chemokine may bind to several receptors – in both cases with the same functional outcome. The ubiquitous biased signaling confers a hitherto unknown specificity to the chemokine system with a complex interaction pattern that is better described as promiscuous with context-defined roles and different functional outcomes in a ligand-, receptor-, or cell/tissue-defined manner. As the low number of successful drug development plans implies, there are great difficulties in targeting chemokine receptors; in particular with regard to receptor antagonists as anti-inflammatory drugs. Un-defined and putative non-selective targeting of the complete cellular signaling system could be the underlying cause of lack of success. Therefore, biased ligands could be the solution.
Collapse
Affiliation(s)
- Anne Steen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Olav Larsen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Stefanie Thiele
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
17
|
Exploring the CXCR3 Chemokine Receptor with Small-Molecule Antagonists and Agonists. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_75] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Scholten DJ, Roumen L, Wijtmans M, Verkade-Vreeker MCA, Custers H, Lai M, de Hooge D, Canals M, de Esch IJP, Smit MJ, de Graaf C, Leurs R. Identification of overlapping but differential binding sites for the high-affinity CXCR3 antagonists NBI-74330 and VUF11211. Mol Pharmacol 2014; 85:116-26. [PMID: 24174496 DOI: 10.1124/mol.113.088633] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
CXC chemokine receptor CXCR3 and/or its main three ligands CXCL9, CXCL10, and CXCL11 are highly upregulated in a variety of diseases. As such, considerable efforts have been made to develop small-molecule receptor CXCR3 antagonists, yielding distinct chemical classes of antagonists blocking binding and/or function of CXCR3 chemokines. Although it is suggested that these compounds bind in an allosteric fashion, thus far no evidence has been provided regarding the molecular details of their interaction with CXCR3. Using site-directed mutagenesis complemented with in silico homology modeling, we report the binding modes of two high-affinity CXCR3 antagonists of distinct chemotypes: VUF11211 [(S)-5-chloro-6-(4-(1-(4-chlorobenzyl)piperidin-4-yl)-3-ethylpiperazin-1-yl)-N-ethylnicotinamide] (piperazinyl-piperidine) with a rigid elongated structure containing two basic groups and NBI-74330 [(R)-N-(1-(3-(4-ethoxyphenyl)-4-oxo-3,4-dihydropyrido[2,3-d]pyrimidin-2-yl)ethyl)-2-(4-fluoro-3-(trifluoromethyl)phenyl)-N-(pyridin-3-ylmethyl)acetamide] (8-azaquinazolinone) without any basic group. Here we show that NBI-74330 is anchored in the transmembrane minor pocket lined by helices 2 (W2.60, D2.63), 3 (F3.32), and 7 (S7.39, Y7.43), whereas VUF11211 extends from the minor pocket into the major pocket of the transmembrane domains, located between residues in helices 1 (Y1.39), 2 (W2.60), 3 (F3.32), 4 (D4.60), 6 (Y6.51), and 7 (S7.39, Y7.43). Mutation of these residues did not affect CXCL11 binding significantly, confirming the allosteric nature of the interaction of these small molecules with CXCR3. Moreover, the model derived from our in silico-guided studies fits well with the already published structure-activity relationship data on these ligands. Altogether, in this study, we show overlapping, yet different binding sites for two high-affinity CXCR3 antagonists, which offer new opportunities for the structure-based design of allosteric modulators for CXCR3.
Collapse
Affiliation(s)
- Danny J Scholten
- Division of Medicinal Chemistry, Faculty of Science, Amsterdam Institute for Molecules, Medicines, and Systems, VU University Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, Horuk R, Sparre-Ulrich AH, Locati M, Luster AD, Mantovani A, Matsushima K, Murphy PM, Nibbs R, Nomiyama H, Power CA, Proudfoot AEI, Rosenkilde MM, Rot A, Sozzani S, Thelen M, Yoshie O, Zlotnik A. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 2013; 66:1-79. [PMID: 24218476 PMCID: PMC3880466 DOI: 10.1124/pr.113.007724] [Citation(s) in RCA: 691] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145-176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human Genome Nomenclature Committee.
Collapse
Affiliation(s)
- Francoise Bachelerie
- Chair, Subcommittee on Chemokine Receptors, Nomenclature Committee-International Union of Pharmacology, Bldg. 10, Room 11N113, NIH, Bethesda, MD 20892.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chalikiopoulos A, Thiele S, Malmgaard-Clausen M, Rydberg P, Isberg V, Ulven T, Frimurer TM, Rosenkilde MM, Gloriam DE. Structure-activity relationships and identification of optmized CC-chemokine receptor CCR1, 5, and 8 metal-ion chelators. J Chem Inf Model 2013; 53:2863-73. [PMID: 24083637 DOI: 10.1021/ci4003848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemokine receptors are involved in trafficking of leukocytes and represent targets for autoimmune conditions, inflammatory diseases, viral infections, and cancer. We recently published CCR1, CCR8, and CCR5 agonists and positive modulators based on a three metal-ion chelator series: 2,2'-bipyridine, 1,10-phenanthroline, and 2,2';6',2″-terpyridine. Here, we have performed an in-depth structure-activity relationship study and tested eight new optimized analogs. Using density functional theory calculations we demonstrate that the chelator zinc affinities depend on how electron-donating and -withdrawing substituents modulate the partial charges of chelating nitrogens. The zinc affinity was found to constitute the major factor for receptor potency, although the activity of some chelators deviate suggesting favorable or unfavorable interactions. Hydrophobic and halogen substituents are generally better accommodated in the receptors than polar groups. The new analog brominated terpyridine (29) resulted in the highest chelator potencies observed so far CCR1 (EC50: 0.49 μM) and CCR8 (EC50: 0.28 μM). Furthermore, we identified the first selective CCR5 agonist chelator, meta dithiomethylated bipyridine (23). The structure-activity relationships contribute to small-molecule drug development, and the novel chelators constitute valuable tools for studies of structural mechanisms for chemokine receptor activation.
Collapse
Affiliation(s)
- Alexander Chalikiopoulos
- Department of Drug Design and Pharmacology, ‡Department of Neuroscience and Pharmacology and ⊥The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , DK-1165 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Benned-Jensen T, Norn C, Laurent S, Madsen CM, Larsen HM, Arfelt KN, Wolf RM, Frimurer T, Sailer AW, Rosenkilde MM. Molecular characterization of oxysterol binding to the Epstein-Barr virus-induced gene 2 (GPR183). J Biol Chem 2012; 287:35470-35483. [PMID: 22875855 PMCID: PMC3471686 DOI: 10.1074/jbc.m112.387894] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Indexed: 11/06/2022] Open
Abstract
Oxysterols are oxygenated cholesterol derivates that are emerging as a physiologically important group of molecules. Although they regulate a range of cellular processes, only few oxysterol-binding effector proteins have been identified, and the knowledge of their binding mode is limited. Recently, the family of G protein-coupled seven transmembrane-spanning receptors (7TM receptors) was added to this group. Specifically, the Epstein-Barr virus-induced gene 2 (EBI2 or GPR183) was shown to be activated by several oxysterols, most potently by 7α,25-dihydroxycholesterol (7α,25-OHC). Nothing is known about the binding mode, however. Using mutational analysis, we identify here four key residues for 7α,25-OHC binding: Arg-87 in TM-II (position II:20/2.60), Tyr-112 and Tyr-116 (positions III:09/3.33 and III:13/3.37) in TM-III, and Tyr-260 in TM-VI (position VI:16/6.51). Substituting these residues with Ala and/or Phe results in a severe decrease in agonist binding and receptor activation. Docking simulations suggest that Tyr-116 interacts with the 3β-OH group in the agonist, Tyr-260 with the 7α-OH group, and Arg-87, either directly or indirectly, with the 25-OH group, although nearby residues likely also contribute. In addition, Tyr-112 is involved in 7α,25-OHC binding but via hydrophobic interactions. Finally, we show that II:20/2.60 constitutes an important residue for ligand binding in receptors carrying a positively charged residue at this position. This group is dominated by lipid- and nucleotide-activated receptors, here exemplified by the CysLTs, P2Y12, and P2Y14. In conclusion, we present the first molecular characterization of oxysterol binding to a 7TM receptor and identify position II:20/2.60 as a generally important residue for ligand binding in certain 7TM receptors.
Collapse
Affiliation(s)
- Tau Benned-Jensen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Christoffer Norn
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Stephane Laurent
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Christian M Madsen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Hjalte M Larsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Kristine N Arfelt
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Romain M Wolf
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Thomas Frimurer
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Andreas W Sailer
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
22
|
Gong Y, Fu W, Chen K. Dopamine D1receptor and serotonin 5-HT1Areceptor agonist effects of the natural product (–)-stepholidine: molecular modelling and dynamics simulations. MOLECULAR SIMULATION 2012. [DOI: 10.1080/08927022.2012.679619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Thiele S, Malmgaard-Clausen M, Engel-Andreasen J, Steen A, Rummel PC, Nielsen MC, Gloriam DE, Frimurer TM, Ulven T, Rosenkilde MM. Modulation in Selectivity and Allosteric Properties of Small-Molecule Ligands for CC-Chemokine Receptors. J Med Chem 2012; 55:8164-77. [DOI: 10.1021/jm301121j] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Stefanie Thiele
- Department of Neuroscience and
Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3, Dk-2200 Copenhagen,
Denmark
| | - Mikkel Malmgaard-Clausen
- Department of Neuroscience and
Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3, Dk-2200 Copenhagen,
Denmark
| | - Jens Engel-Andreasen
- Department of Physics,
Chemistry,
and Pharmacy, University of Southern Denmark, Campusvej 55, Dk-5230 Odense, Denmark
| | - Anne Steen
- Department of Neuroscience and
Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3, Dk-2200 Copenhagen,
Denmark
| | - Pia C. Rummel
- Department of Neuroscience and
Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3, Dk-2200 Copenhagen,
Denmark
| | - Mads C. Nielsen
- Department of Physics,
Chemistry,
and Pharmacy, University of Southern Denmark, Campusvej 55, Dk-5230 Odense, Denmark
| | - David E. Gloriam
- Department of Drug Design and
Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Dk-2100
Copenhagen, Denmark
| | - Thomas M. Frimurer
- The
Novo Nordisk Foundation
Center for Basic Metabolic Research, Faculty of Health and Medical
Sciences, University of Copenhagen, Blegdamsvej
3, Dk-2200 Copenhagen, Denmark
| | - Trond Ulven
- Department of Physics,
Chemistry,
and Pharmacy, University of Southern Denmark, Campusvej 55, Dk-5230 Odense, Denmark
| | - Mette M. Rosenkilde
- Department of Neuroscience and
Pharmacology, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3, Dk-2200 Copenhagen,
Denmark
| |
Collapse
|
24
|
Scholten DJ, Canals M, Maussang D, Roumen L, Smit MJ, Wijtmans M, de Graaf C, Vischer HF, Leurs R. Pharmacological modulation of chemokine receptor function. Br J Pharmacol 2012; 165:1617-1643. [PMID: 21699506 DOI: 10.1111/j.1476-5381.2011.01551.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
G protein-coupled chemokine receptors and their peptidergic ligands are interesting therapeutic targets due to their involvement in various immune-related diseases, including rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, chronic obstructive pulmonary disease, HIV-1 infection and cancer. To tackle these diseases, a lot of effort has been focused on discovery and development of small-molecule chemokine receptor antagonists. This has been rewarded by the market approval of two novel chemokine receptor inhibitors, AMD3100 (CXCR4) and Maraviroc (CCR5) for stem cell mobilization and treatment of HIV-1 infection respectively. The recent GPCR crystal structures together with mutagenesis and pharmacological studies have aided in understanding how small-molecule ligands interact with chemokine receptors. Many of these ligands display behaviour deviating from simple competition and do not interact with the chemokine binding site, providing evidence for an allosteric mode of action. This review aims to give an overview of the evidence supporting modulation of this intriguing receptor family by a range of ligands, including small molecules, peptides and antibodies. Moreover, the computer-assisted modelling of chemokine receptor-ligand interactions is discussed in view of GPCR crystal structures. Finally, the implications of concepts such as functional selectivity and chemokine receptor dimerization are considered.
Collapse
Affiliation(s)
- D J Scholten
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - M Canals
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - D Maussang
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - L Roumen
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - M J Smit
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - M Wijtmans
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - C de Graaf
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - H F Vischer
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| | - R Leurs
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
25
|
Casrouge A, Bisiaux A, Stephen L, Schmolz M, Mapes J, Pfister C, Pol S, Mallet V, Albert ML. Discrimination of agonist and antagonist forms of CXCL10 in biological samples. Clin Exp Immunol 2012; 167:137-48. [PMID: 22132893 DOI: 10.1111/j.1365-2249.2011.04488.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The ready access to commercially available multiplex assays and the importance of inflammation in disease pathogenesis has resulted in an abundance of studies aimed at identifying surrogate biomarkers for different clinically important questions. Establishing a link between a biomarker and disease pathogenesis, however, is quite complex, and in some instances this complexity is compounded by post-translational modifications and the use of immunoassays that do not always discriminate between the different forms of the same protein. Herein, we provide a detailed description of an assay system that has been established to discriminate the agonist form of CXCL10 from the NH(2) -terminal truncated form of the molecule generated by dipeptidylpeptidase IV (DPP4) cleavage. We demonstrate the utility of this assay system for monitoring agonist and antagonist forms of CXCL10 in culture supernatant, patient plasma and urine samples. Given the important role of CXCL10 in chronic inflammatory diseases and its suggested role as a predictive marker in managing patients with chronic hepatitis C, asthma, atopic dermatitis, transplantation, tuberculosis, kidney injury, cancer and other diseases, we believe that our method will be of general interest to the research and medical community.
Collapse
Affiliation(s)
- A Casrouge
- Laboratory of Dendritic Cell Biology, Department of Immunology, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Recently the first community-wide assessments of the prediction of the structures of complexes between proteins and small molecule ligands have been reported in the so called GPCR Dock 2008 and 2010 assessments. In the current review we discuss the different steps along the protein-ligand modeling workflow by critically analyzing the modeling strategies we used to predict the structures of protein-ligand complexes we submitted to the recent GPCR Dock 2010 challenge. These representative test cases, focusing on the pharmaceutically relevant G Protein-Coupled Receptors, are used to demonstrate the strengths and challenges of the different modeling methods. Our analysis indicates that the proper performance of the sequence alignment, introduction of structural adjustments guided by experimental data, and the usage of experimental data to identify protein-ligand interactions are critical steps in the protein-ligand modeling protocol.
Collapse
|
27
|
Rosenkilde MM, Benned-Jensen T, Frimurer TM, Schwartz TW. The minor binding pocket: a major player in 7TM receptor activation. Trends Pharmacol Sci 2010; 31:567-74. [PMID: 20870300 DOI: 10.1016/j.tips.2010.08.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/21/2010] [Accepted: 08/27/2010] [Indexed: 01/09/2023]
Abstract
From the deep part of the main ligand-binding crevice, a minor, often shallower pocket extends between the extracellular ends of transmembrane domains (TM)-I, II, III and VII of 7TM receptors. This minor binding pocket is defined by a highly conserved kink in TM-II that is induced by a proline residue located in one of two adjacent positions. Here we argue that this minor binding pocket is important for receptor activation. Functional coupling of the receptors seems to be mediated through the hydrogen bond network located between the intracellular segments of these TMs, with the allosteric interface between TM-II and TM-VII being of particular significance. Importantly, the minor binding pocket, especially the proline-kink in TM-II, is involved in G protein versus arrestin pathway-biased signaling, for example in the angiotensin AT1 system. Consequently, this pocket could be specifically targeted in the development of functionally biased drugs.
Collapse
Affiliation(s)
- Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Institute for Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
28
|
Nygaard R, Valentin-Hansen L, Mokrosinski J, Frimurer TM, Schwartz TW. Conserved water-mediated hydrogen bond network between TM-I, -II, -VI, and -VII in 7TM receptor activation. J Biol Chem 2010; 285:19625-36. [PMID: 20395291 DOI: 10.1074/jbc.m110.106021] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Five highly conserved polar residues connected by a number of structural water molecules together with two rotamer micro-switches, TrpVI:13 and TyrVII:20, constitute an extended hydrogen bond network between the intracellular segments of TM-I, -II, -VI, and -VII of 7TM receptors. Molecular dynamics simulations showed that, although the fewer water molecules in rhodopsin were relatively movable, the hydrogen bond network of the beta2-adrenergic receptor was fully loaded with water molecules that were surprisingly immobilized between the two rotamer switches, both apparently being in their closed conformation. Manipulations of the rotamer state of TyrVII:20 and TrpVI:13 demonstrated that these residues served as gates for the water molecules at the intracellular and extracellular ends of the hydrogen bond network, respectively. TrpVI:13 at the bottom of the main ligand-binding pocket was shown to apparently function as a catching trap for water molecules. Mutational analysis of the beta2-adrenergic receptor demonstrated that the highly conserved polar residues of the hydrogen bond network were all important for receptor signaling but served different functions, some dampening constitutive activity (AsnI:18, AspII:10, and AsnVII:13), whereas others (AsnVII:12 and AsnVII:16) located one helical turn apart and sharing a water molecule were shown to be essential for agonist-induced signaling. It is concluded that the conserved water hydrogen bond network of 7TM receptors constitutes an extended allosteric interface between the transmembrane segments being of crucial importance for receptor signaling and that part of the function of the rotamer micro-switches, TyrVII:20 and TrpVI:13, is to gate or trap the water molecules.
Collapse
Affiliation(s)
- Rie Nygaard
- Laboratory for Molecular Pharmacology, Institute of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
29
|
Holst B, Nygaard R, Valentin-Hansen L, Bach A, Engelstoft MS, Petersen PS, Frimurer TM, Schwartz TW. A conserved aromatic lock for the tryptophan rotameric switch in TM-VI of seven-transmembrane receptors. J Biol Chem 2009; 285:3973-3985. [PMID: 19920139 DOI: 10.1074/jbc.m109.064725] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The conserved tryptophan in position 13 of TM-VI (Trp-VI:13 or Trp-6.48) of the CWXP motif located at the bottom of the main ligand-binding pocket in TM-VI is believed to function as a rotameric microswitch in the activation process of seven-transmembrane (7TM) receptors. Molecular dynamics simulations in rhodopsin demonstrated that rotation around the chi1 torsion angle of Trp-VI:13 brings its side chain close to the equally highly conserved Phe-V:13 (Phe-5.47) in TM-V. In the ghrelin receptor, engineering of high affinity metal-ion sites between these positions confirmed their close spatial proximity. Mutational analysis was performed in the ghrelin receptor with multiple substitutions and with Ala substitutions in GPR119, GPR39, and the beta(2)-adrenergic receptor as well as the NK1 receptor. In all of these cases, it was found that mutation of the Trp-VI:13 rotameric switch itself eliminated the constitutive signaling and strongly impaired agonist-induced signaling without affecting agonist affinity and potency. Ala substitution of Phe-V:13, the presumed interaction partner for Trp-VI:13, also in all cases impaired both the constitutive and the agonist-induced receptor signaling, but not to the same degree as observed in the constructs where Trp-VI:13 itself was mutated, but again without affecting agonist potency. In a proposed active receptor conformation generated by molecular simulations, where the extracellular segment of TM-VI is tilted inwards in the main ligand-binding pocket, Trp-VI:13 could rotate into a position where it obtained an ideal aromatic-aromatic interaction with Phe-V:13. It is concluded that Phe-V:13 can serve as an aromatic lock for the proposed active conformation of the Trp-VI:13 rotameric switch, being involved in the global movement of TM-V and TM-VI in 7TM receptor activation.
Collapse
Affiliation(s)
- Birgitte Holst
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK2200 Copenhagen, Denmark and.
| | - Rie Nygaard
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK2200 Copenhagen, Denmark and; 7TM Pharma A/S, Fremtidsvej 3, DK5700 Hørsholm, Denmark
| | - Louise Valentin-Hansen
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK2200 Copenhagen, Denmark and
| | - Anders Bach
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK2200 Copenhagen, Denmark and
| | - Maja S Engelstoft
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK2200 Copenhagen, Denmark and
| | - Pia S Petersen
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK2200 Copenhagen, Denmark and
| | | | - Thue W Schwartz
- From the Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK2200 Copenhagen, Denmark and; 7TM Pharma A/S, Fremtidsvej 3, DK5700 Hørsholm, Denmark.
| |
Collapse
|
30
|
Nygaard R, Frimurer TM, Holst B, Rosenkilde MM, Schwartz TW. Ligand binding and micro-switches in 7TM receptor structures. Trends Pharmacol Sci 2009; 30:249-59. [PMID: 19375807 DOI: 10.1016/j.tips.2009.02.006] [Citation(s) in RCA: 285] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 02/23/2009] [Accepted: 02/24/2009] [Indexed: 01/07/2023]
Abstract
The past couple of years have seen several novel X-ray structures of 7 transmembrane (7TM) receptors in complex with antagonists and even with a peptide fragment of a G protein. These structures demonstrate that the main ligand-binding pocket in 7TM receptors is like a funnel with a partial 'lid' in which extracellular loop 2b, in particular, functions as a gating element. Small-molecule antagonists and inverse agonists bind in very different modes: some very deeply and others more superficially, even reaching out above the transmembranes. Several highly conserved residues seem to function as micro-switches of which ArgIII:26 (Arg3.50) in its active conformation interacts directly with the G protein. These micro-switches together with a hydrogen-bond network between conserved polar residues and structural water molecules are proposed to constitute an extended allosteric interface between the domains (i.e. especially TM-VI), which performs the large, global toggle switch movements connecting ligand binding with intracellular signaling.
Collapse
Affiliation(s)
- Rie Nygaard
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | | | | | | | | |
Collapse
|
31
|
Holst B, Frimurer TM, Mokrosinski J, Halkjaer T, Cullberg KB, Underwood CR, Schwartz TW. Overlapping binding site for the endogenous agonist, small-molecule agonists, and ago-allosteric modulators on the ghrelin receptor. Mol Pharmacol 2009; 75:44-59. [PMID: 18923064 DOI: 10.1124/mol.108.049189] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
A library of robust ghrelin receptor mutants with single substitutions at 22 positions in the main ligand-binding pocket was employed to map binding sites for six different agonists: two peptides (the 28-amino-acid octanoylated endogenous ligand ghrelin and the hexapeptide growth hormone secretagogue GHRP-6) plus four nonpeptide agonists-the original benzolactam L-692,429 [3-amino-3-methyl-N-(2,3,4,5-tetrahydro-2-oxo-1-([2'-(1H-tetrazol-5-yl) (1,1'-biphenyl)-4-yl]methyl)-1H-1-benzazepin-3(R)-yl)-butanamide], the spiroindoline sulfonamide MK-677 [N-[1(R)-1, 2-dihydro-1-ethanesulfonylspiro-3H-indole-3,4'-piperidin)-1'-yl]carbonyl-2-(phenylmethoxy)-ethyl-2-amino-2-methylpropanamide], and two novel oxindole derivatives, SM-130686 [(+)-6-carbamoyl-3-(2-chlorophenyl)-(2-diethylaminoethyl)-4-trifluoromethyloxindole] and SM-157740 [(+/-)-6-carbamoyl-3-(2, 4-dichlorophenyl)-(2-diethylaminoethyl)-4-trifluoromethyloxindole)]. The strongest mutational effect with respect to decrease in potency for stimulation of inositol phosphate turnover was for all six agonists the GluIII:09-to-Gln substitution in the extracellular segment of TM-III. Likewise, all six agonists were affected by substitutions of PheVI:16, ArgVI:20, and PheVI:23 on the opposing face of transmembrane domain (TM) VI. Each of the agonists was also affected selectively by specific mutations. The mutational map of the ability of L-692,429 and GHRP-6 to act as allosteric modulators by increasing ghrelin's maximal efficacy overlapped with the common mutational map for agonism but it was not identical with the map for the agonist property of these small-molecule ligands. In molecular models, built over the inactive conformation of rhodopsin, low energy conformations of the nonpeptide agonists could be docked to satisfy many of their mutational hits. It is concluded that although each of the ligands in addition exploits other parts of the receptor, a large, common binding site for both small-molecule agonists--including ago-allosteric modulators--and the endogenous agonist is found on the opposing faces of TM-III and -VI of the ghrelin receptor.
Collapse
Affiliation(s)
- Birgitte Holst
- Laboratory for Molecular Pharmacology, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Benned-Jensen T, Rosenkilde MM. Structural motifs of importance for the constitutive activity of the orphan 7TM receptor EBI2: analysis of receptor activation in the absence of an agonist. Mol Pharmacol 2008; 74:1008-21. [PMID: 18628402 DOI: 10.1124/mol.108.049676] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Epstein-Barr induced receptor 2 (EBI2) is a lymphocyte-expressed orphan seven transmembrane-spanning (7TM) receptor that signals constitutively through Galphai, as shown, for instance by guanosine 5'-O-(3-thio)triphosphate incorporation. Two regions of importance for the constitutive activity were identified by a systematic mutational analysis of 29 residues in EBI2. The cAMP response element-binding protein transcription factor was used as a measure of receptor activity and was correlated to the receptor surface expression. PheVI:13 (Phe257), and the neighboring CysVI:12 (Cys256), in the conserved CW/FxP motif in TM 6, acted as negative regulators as Ala substitutions at these positions increased the constitutive activity 5.7- and 2.3-fold, respectively, compared with EBI2 wild type (wt). In contrast, ArgII:20 (Arg87) in TM-2 acted as a positive regulator, as substitution to Ala, but not to Lys, decreased the constitutive activity more than 7-fold compared with wt EBI2. IleIII:03 (Ile106) is located only 4 A from ArgII:20, and a favorable electrostatic interaction with ArgII:20 was created by introduction of Glu in III:03, given that the activity increased to 4.4-fold of that wt EBI2. It is noteworthy that swapping these charges by introduction of Glu in II:20 and Arg in III:03 resulted in a 2.7-fold increase compared with wt EBI2, thereby rescuing the two signaling-deficient single mutations, which exhibited a 3.8- to 4.5-fold decrease in constitutive activity. The uncovering of these molecular mechanisms for EBI2 activation is important from a drug development point of view, in that it may facilitate the rational design and development of small-molecule inverse agonists against EBI2 of putative importance as antiviral- or immune modulatory therapy.
Collapse
Affiliation(s)
- Tau Benned-Jensen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, The Panum Institute, Copenhagen University, Blegdamsvej 2, 2200 Copenhagen, Denmark
| | | |
Collapse
|
34
|
Jensen PC, Thiele S, Ulven T, Schwartz TW, Rosenkilde MM. Positive Versus Negative Modulation of Different Endogenous Chemokines for CC-chemokine Receptor 1 by Small Molecule Agonists through Allosteric Versus Orthosteric Binding. J Biol Chem 2008; 283:23121-8. [DOI: 10.1074/jbc.m803458200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
35
|
Conformational changes in G-protein-coupled receptors-the quest for functionally selective conformations is open. Br J Pharmacol 2007; 153 Suppl 1:S358-66. [PMID: 18059316 DOI: 10.1038/sj.bjp.0707615] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The G-protein-coupled receptors (GPCRs) represent one the largest families of drug targets. Upon agonist binding a receptor undergoes conformational rearrangements that lead to a novel protein conformation which in turn can interact with effector proteins. During the last decade significant progress has been made to prove that different conformational changes occur. Today it is mostly accepted that individual ligands can induce different receptor conformations. However, the nature or molecular identity of the different conformations is still ill-known. Knowledge of the potential functionally selective conformations will help to develop drugs that select specific conformations of a given GPCR which couple to specific signalling pathways and may, ultimately, lead to reduced side effects. In this review we will summarize recent progress in biophysical approaches that have led to the current understanding of conformational changes that occur during GPCR activation.
Collapse
|
36
|
Zylberg J, Ecke D, Fischer B, Reiser G. Structure and ligand-binding site characteristics of the human P2Y11 nucleotide receptor deduced from computational modelling and mutational analysis. Biochem J 2007; 405:277-86. [PMID: 17338680 PMCID: PMC1904521 DOI: 10.1042/bj20061728] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 02/13/2007] [Accepted: 03/06/2007] [Indexed: 11/17/2022]
Abstract
The P2Y11-R (P2Y11 receptor) is a less explored drug target. We computed an hP2Y11-R (human P2Y11) homology model with two templates, bovine-rhodopsin (2.6 A resolution; 1 A=0.1 nm) and a hP2Y1-ATP complex model. The hP2Y11-R model was refined using molecular dynamics calculations and validated by virtual screening methods, with an enrichment factor of 5. Furthermore, mutational analyses of Arg106, Glu186, Arg268, Arg307 and Ala313 confirmed the adequacy of our hP2Y11-R model and the computed ligand recognition mode. The E186A and R268A mutants reduced the potency of ATP by one and three orders of magnitude respectively. The R106A and R307A mutants were functionally inactive. We propose that residues Arg106, Arg268, Arg307 and Glu186 are involved in ionic interactions with the phosphate moiety of ATP. Arg307 is possibly also H-bonded to N6 of ATP via the backbone carbonyl. Activity of ATP at the F109I mutant revealed that the proposed p-stacking of Phe109 with the adenine ring is a minor interaction. The mutation A313N, which is part of a hydrophobic pocket in the vicinity of the ATP C-2 position, partially explains the high activity of 2-MeS-ATP at P2Y1-R as compared with the negligible activity at the P2Y11-R. Inactivity of ATP at the Y261A mutant implies that Tyr261 acts as a molecular switch, as in other G-protein-coupled receptors. Moreover, analysis of cAMP responses seen with the mutants showed that the efficacy of coupling of the P2Y11-R with Gs is more variable than coupling with Gq. Our model also indicates that Ser206 forms an H-bond with Pgamma (the gamma-phosphate of the triphosphate chain of ATP) and Met310 interacts with the adenine moiety.
Collapse
Key Words
- ligand binding
- molecular dynamics
- mutagenesis
- nucleotide receptor
- p2y receptor
- virtual screening
- atp[s], adenosine 5′-[γ-thio]triphosphate
- b-rhodopsin, bovine-rhodopsin
- [ca2+]i, intracellular ca2+ concentration
- ef, enrichment factor
- eia, enzyme-linked immunoassay
- el, extracellular loop
- fura 2/am, fura 2 acetoxymethyl ester
- gfp, green fluorescent protein
- gpcr, g-protein-coupled receptor
- p2y-r, p2y receptor
- hp2y-r, human p2y-r
- p2y11-r, p2y11 receptor
- hp2y11-r, human p2y11 receptor
- md, molecular dynamics
- tm, transmembrane
Collapse
Affiliation(s)
- Jacques Zylberg
- *Gonda-Goldschmied Medical Research Center, Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Denise Ecke
- †Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Bilha Fischer
- *Gonda-Goldschmied Medical Research Center, Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Georg Reiser
- †Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| |
Collapse
|
37
|
Jensen PC, Nygaard R, Thiele S, Elder A, Zhu G, Kolbeck R, Ghosh S, Schwartz TW, Rosenkilde MM. Molecular Interaction of a Potent Nonpeptide Agonist with the Chemokine Receptor CCR8. Mol Pharmacol 2007. [DOI: 10.1124/mol.107.035543] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|