1
|
Prostate cancer and food-based antioxidants in India as plausible therapeutics. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00019-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
2
|
Liu FC, Wang CC, Lu JW, Lee CH, Chen SC, Ho YJ, Peng YJ. Chondroprotective Effects of Genistein against Osteoarthritis Induced Joint Inflammation. Nutrients 2019; 11:nu11051180. [PMID: 31137797 PMCID: PMC6566664 DOI: 10.3390/nu11051180] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022] Open
Abstract
Genistein is an isoflavone extracted from soybean (Glycine max). This compound has anti-inflammatory, anti-oxidative, and anti-cancer effects; however, the mechanism underlying the effects of genistein on IL-1β-stimulated human osteoarthritis (OA) chondrocytes remains unknown. Our objectives in this study were to explore the anti-inflammatory effects of genistein on IL-1β-stimulated human OA chondrocytes and to investigate the potential mechanisms which underlie them. Our results from an in-vitro model of osteoarthritis indicate that genistein inhibits the IL-1β-induced expression of the catabolic factors nitric oxide synthase 2 (NOS2), cyclooxygenase 2 (COX-2), and matrix metalloproteinases (MMPs). Genistein was shown to stimulate Ho-1 expression, which has been associated with Nrf-2 pathway activation in human chondrocytes. In a rat model, genistein was also shown to attenuate the progression of traumatic osteoarthritis. Taken together, these results demonstrate the effectiveness of genistein in mediating the inflammation associated with joint disorders. Our results also indicate that genistein could potentially serve as an alternative therapeutic treatment for OA.
Collapse
Affiliation(s)
- Feng-Cheng Liu
- Rheumatology/Immunology and Allergy, Department of Medicine, Tri-Service General Hospital, Department of Orthopedics, Tri-Service General Hospital, Taipei 114, Taiwan.
| | - Chih-Chien Wang
- Department of Orthopedics, Tri-Service General Hospital, Taipei, Department of Orthopedics, Tri-Service General Hospital, Taipei 114, Taiwan.
| | - Jeng-Wei Lu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Chian-Her Lee
- Department of Orthopedics, College of Medicine, School of Medicine, Taipei Medical University, Taipei Medical University Hospital, Taipei 114, Taiwan.
| | - Shao-Chi Chen
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan.
| | - Yi-Jung Ho
- School of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan.
| | - Yi-Jen Peng
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan.
| |
Collapse
|
3
|
Zhang H, Gordon R, Li W, Yang X, Pattanayak A, Fowler G, Zhang L, Catalona WJ, Ding Y, Xu L, Huang X, Jovanovic B, Kelly DL, Jiang H, Bergan R. Genistein treatment duration effects biomarkers of cell motility in human prostate. PLoS One 2019; 14:e0214078. [PMID: 30917169 PMCID: PMC6436751 DOI: 10.1371/journal.pone.0214078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 03/06/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Long term dietary consumption of genistein by Chinese men is associated with decreased PCa metastasis and mortality. Short term treatment of US men with prostate cancer (PCa) with genistein decreases MMP-2 in prostate tissue. MEK4 regulates MMP-2 expression, drives PCa metastasis, and genistein inhibits MEK4, decreases MMP-2 expression and dietary dosing inhibits human PCa metastasis in mice. This study examines short- versus long-term treatment effects of genistein in humans and in vitro. METHODS AND FINDINGS US men with localized PCa were treated on a phase II trial with genistein (N = 14) versus not (N = 14) for one month prior to radical prostatectomy. Prostate epithelial cells were removed from fresh frozen tissue by laser capture microdissection, and the expression of 12,000 genes profiled. Genistein significantly altered the expression of four genes, three had established links to cancer cell motility and metastasis. Of these three, one was a non-coding transcript, and the other two were BASP1 and HCF2. Genistein increased BASP1 expression in humans, and its engineered over expression and knockdown demonstrated that it suppressed cell invasion in all six human prostate cell lines examined. Genistein decreased HCF2 expression in humans, and it was shown to increase cell invasion in all cell lines examined. The expression of MMP-2, MEK4 and BASP1 was then measured in formalin fixed prostate tissue from N = 38 Chinese men living in China and N = 41 US men living in the US, both cohorts with localized PCa. MMP-2 was 52% higher in Chinese compared to US tissue (P < 0.0001), MEK4 was 48% lower (P < 0.0001), and BASP1 was unaltered. Treatment of PC3 human PCa cells in vitro for up to 8 weeks demonstrated that short term genistein treatment decreased MMP-2, while long term treatment increased it, both changes being significant (P<0.05) compared to untreated control cells. Long term genistein-treated cells retained their responsiveness to genistein's anti-motility effect. CONCLUSIONS Genistein inhibits pathways in human prostate that drive transformation to a lethal high motility phenotype. Long term treatment induces compensatory changes in biomarkers of efficacy. The current strategy of using such biomarkers after short term intervention as go/no-go determinants in early phase chemoprevention trials should be carefully examined.
Collapse
Affiliation(s)
- Hu Zhang
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ryan Gordon
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Wenqi Li
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Ximing Yang
- Department of Pathology, Northwestern University, Chicago, Illinois, United States of America
| | - Abhinandan Pattanayak
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Graham Fowler
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Limin Zhang
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - William J. Catalona
- Department of Urology, Northwestern University, Chicago, Illinois, United States of America
| | - Yongzeng Ding
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Li Xu
- Department of Gastroenterology, Xiang’an Hospital of Xiamen University, FujianXiamen, China
| | - Xiaoke Huang
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Borko Jovanovic
- Department of Preventive Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - David L. Kelly
- Fred & Pamela Buffet Cancer Center, University Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Raymond Bergan
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| |
Collapse
|
4
|
Abstract
Bone morphogenetic proteins (BMPs) are a diverse class of molecules with over 20 growth factor proteins that belong to the transforming growth factor-β (TGF-β) family and are highly associated with bone formation and disease development. Aberrant expression of various BMPs has been reported in several cancer tissues. Biological function studies have elicited the dual role of BMPs in both cancer development and suppression. Furthermore, a variety of BMP antagonists, ligands, and receptors have been shown to reduce or enhance tumorigenesis and metastasis. Knockout mouse models of BMP signaling components have also revealed that the suppression of BMP signaling impairs cancer metastasis. Herein, we highlight the basic clinical background and involvement of BMPs in modulating cancer progression and their dynamic interactions (e.g., with microRNAs) in the tumor microenvironment in addition to their mutations and roles in chemoprevention. We also suggest that BMPs should be considered a powerful putative therapeutic target in tumorigenesis and bone metastasis.
Collapse
Affiliation(s)
- Duc-Hiep Bach
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyen Joo Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
5
|
Plasma genistein and risk of prostate cancer in Chinese population. Int Urol Nephrol 2015; 47:965-70. [PMID: 25971353 PMCID: PMC4445252 DOI: 10.1007/s11255-015-0981-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/09/2015] [Indexed: 12/26/2022]
Abstract
Objectives Genistein is one of the main soy isoflavones in our daily diet. There were studies proving that high-dietary intake of genistein may relate to the low morbidity and mortality of prostate cancer (PCa) in the Asian population. Since there were few studies of plasma genistein level in the Chinese population, we performed this study to preliminarily evaluate the associations among plasma genistein, epidemiologic factors and PCa in a Chinese population. Methods Between 2012 and 2013, 100 men over the age of 40 underwent prostate biopsy for PCa at Huashan Hospital, Shanghai, China. Clinical information, epidemiologic information and blood samples were collected prior to biopsy for each patient. All patients underwent 10-core ultrasound-guided transperineal prostate biopsy, and the pathology results were collected after biopsy. We measured the plasma genistein concentration of the blood samples and analyzed the results along with the clinical and epidemiologic information. Results Among the 100 patients, 46 (46.0 %) were diagnosed with PCa. The median plasma genistein concentration of non-PCa patients (728.6 ng/ml) was significantly higher than that of PCa patients (513.0 ng/ml) (P < 0.05). In the univariate analysis, we found that age and smoking history were related to PCa (P < 0.05). In the multivariate analysis, we found that age, smoking history and plasma genistein were related to PCa (P < 0.05). The age-adjusted odds ratio of PCa risk comparing plasma genistein level above median to that below median was 0.31 (95 % CI 0.13–0.71). Conclusion Our study suggested that high concentration of plasma genistein level may contribute to the low incidence of prostate cancer in Chinese population.
Collapse
|
6
|
Pavese JM, Ogden IM, Voll EA, Huang X, Xu L, Jovanovic B, Bergan RC. Mitogen-activated protein kinase kinase 4 (MAP2K4) promotes human prostate cancer metastasis. PLoS One 2014; 9:e102289. [PMID: 25019290 PMCID: PMC4096757 DOI: 10.1371/journal.pone.0102289] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/17/2014] [Indexed: 11/19/2022] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer death in the US. Death from PCa primarily results from metastasis. Mitogen-activated protein kinase kinase 4 (MAP2K4) is overexpressed in invasive PCa lesions in humans, and can be inhibited by small molecule therapeutics that demonstrate favorable activity in phase II studies. However, MAP2K4's role in regulating metastatic behavior is controversial and unknown. To investigate, we engineered human PCa cell lines which overexpress either wild type or constitutive active MAP2K4. Orthotopic implantation into mice demonstrated MAP2K4 increases formation of distant metastasis. Constitutive active MAP2K4, though not wild type, increases tumor size and circulating tumor cells in the blood and bone marrow. Complementary in vitro studies establish stable MAP2K4 overexpression promotes cell invasion, but does not affect cell growth or migration. MAP2K4 overexpression increases the expression of heat shock protein 27 (HSP27) protein and protease production, with the largest effect upon matrix metalloproteinase 2 (MMP-2), both in vitro and in mouse tumor samples. Further, MAP2K4-mediated increases in cell invasion are dependent upon heat shock protein 27 (HSP27) and MMP-2, but not upon MAP2K4's immediate downstream targets, p38 MAPK or JNK. We demonstrate that MAP2K4 increases human PCa metastasis, and prolonged over expression induces long term changes in cell signaling pathways leading to independence from p38 MAPK and JNK. These findings provide a mechanistic explanation for human studies linking increases in HSP27 and MMP-2 to progression to metastatic disease. MAP2K4 is validated as an important therapeutic target for inhibiting human PCa metastasis.
Collapse
Affiliation(s)
- Janet M. Pavese
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Irene M. Ogden
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Eric A. Voll
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Xiaoke Huang
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Li Xu
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Borko Jovanovic
- Department of Preventative Medicine, Northwestern University, Chicago, Illinois, United States of America
- Robert H. Lurie Cancer Center, Northwestern University, Chicago, Illinois, United States of America
| | - Raymond C. Bergan
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Preventative Medicine, Northwestern University, Chicago, Illinois, United States of America
- Robert H. Lurie Cancer Center, Northwestern University, Chicago, Illinois, United States of America
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
7
|
Pavese JM, Krishna SN, Bergan RC. Genistein inhibits human prostate cancer cell detachment, invasion, and metastasis. Am J Clin Nutr 2014; 100 Suppl 1:431S-6S. [PMID: 24871471 PMCID: PMC4144112 DOI: 10.3945/ajcn.113.071290] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed cancer in men in the United States and the second leading cause of cancer death. Death is not caused by the primary tumor but rather by the formation of distinct metastatic tumors. Therefore, prevention of metastasis is of utmost importance. The natural product genistein, found in high amounts in soy products, has been implicated in preventing PCa formation and metastasis in men who consume high amounts of soy. In vitro studies and in vivo rodent models that used human PCa cells, as well as prospective human clinical trials, provide a mechanistic explanation directly supporting genistein as an antimetastatic agent. Specifically, our group showed that genistein inhibits cell detachment, protease production, cell invasion, and human PCa metastasis at concentrations achieved in humans with dietary intake. Finally, phase I and phase II clinical trials conducted by us and others showed that concentrations of genistein associated with antimetastatic efficacy in preclinical models are achievable in humans, and treatment with genistein inhibits pathways that regulate metastatic transformation in human prostate tissue.
Collapse
Affiliation(s)
- Janet M Pavese
- From the Department of Medicine (JMP, SNK, and RCB), the Robert H Lurie Cancer Center (RCB), and the Center for Molecular Innovation and Drug Discovery (RCB), Northwestern University, Chicago, IL
| | - Sankar N Krishna
- From the Department of Medicine (JMP, SNK, and RCB), the Robert H Lurie Cancer Center (RCB), and the Center for Molecular Innovation and Drug Discovery (RCB), Northwestern University, Chicago, IL
| | - Raymond C Bergan
- From the Department of Medicine (JMP, SNK, and RCB), the Robert H Lurie Cancer Center (RCB), and the Center for Molecular Innovation and Drug Discovery (RCB), Northwestern University, Chicago, IL
| |
Collapse
|
8
|
Breen MJ, Moran DM, Liu W, Huang X, Vary CPH, Bergan RC. Endoglin-mediated suppression of prostate cancer invasion is regulated by activin and bone morphogenetic protein type II receptors. PLoS One 2013; 8:e72407. [PMID: 23967299 PMCID: PMC3742533 DOI: 10.1371/journal.pone.0072407] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 07/15/2013] [Indexed: 12/25/2022] Open
Abstract
Mortality from prostate cancer (PCa) is due to the formation of metastatic disease. Understanding how that process is regulated is therefore critical. We previously demonstrated that endoglin, a type III transforming growth factor β (TGFβ) superfamily receptor, suppresses human PCa cell invasion and metastasis. Endoglin-mediated suppression of invasion was also shown by us to be dependent upon the type I TGFβ receptor, activin receptor-like kinase 2 (ALK2), and the downstream effector, Smad1. In this study we demonstrate for the first time that two type II TGFβ receptors are required for endoglin-mediated suppression of invasion: activin A receptor type IIA (ActRIIA) and bone morphogenetic protein receptor type II (BMPRII). Downstream signaling through these receptors is predominantly mediated by Smad1. ActRIIA stimulates Smad1 activation in a kinase-dependent manner, and this is required for suppression of invasion. In contrast BMPRII regulates Smad1 in a biphasic manner, promoting Smad1 signaling through its kinase domain but suppressing it through its cytoplasmic tail. BMPRII’s Smad1-regulatory effects are dependent upon its expression level. Further, its ability to suppress invasion is independent of either kinase function or tail domain. We demonstrate that ActRIIA and BMPRII physically interact, and that each also interacts with endoglin. The current findings demonstrate that both BMPRII and ActRIIA are necessary for endoglin-mediated suppression of human PCa cell invasion, that they have differential effects on Smad1 signaling, that they make separate contributions to regulation of invasion, and that they functionally and physically interact.
Collapse
Affiliation(s)
- Michael J. Breen
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Diarmuid M. Moran
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Wenzhe Liu
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Xiaoke Huang
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Calvin P. H. Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
| | - Raymond C. Bergan
- Department of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Robert H. Lurie Cancer Center, Northwestern University, Chicago, Illinois, United States of America
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
9
|
Ahmad A, Biersack B, Li Y, Bao B, Kong D, Ali S, Banerjee S, Sarkar FH. Perspectives on the role of isoflavones in prostate cancer. AAPS JOURNAL 2013; 15:991-1000. [PMID: 23824838 DOI: 10.1208/s12248-013-9507-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/19/2013] [Indexed: 12/20/2022]
Abstract
Isoflavones have been investigated in detail for their role in the prevention and therapy of prostate cancer. This is primarily because of the overwhelming data connecting high dietary isoflavone intake with reduced risk of developing prostate cancer. A number of investigations have evaluated the mechanism(s) of anticancer action of isoflavones such as genistein, daidzein, biochanin A, equol, etc., in various prostate cancer models, both in vitro and in vivo. Genistein quickly jumped to the forefront of isoflavone cancer research, but the initial enthusiasm was followed by reports on its contradictory prometastatic and tumor-promoting effects. Use of soy isoflavone mixture has been advocated as an alternative, wherein daidzein can negate harmful effects of genistein. Recent research indicates a novel role of genistein and other isoflavones in the potentiation of radiation therapy, epigenetic regulation of key tumor suppressors and oncogenes, and the modulation of miRNAs, epithelial-to-mesenchymal transition, and cancer stem cells, which has renewed the interest of cancer researchers in this class of anticancer compounds. This comprehensive review article summarizes our current understanding of the role of isoflavones in prostate cancer research.
Collapse
Affiliation(s)
- Aamir Ahmad
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, 740 HWCRC Bldg, 4100 John R. Street, Detroit, Michigan, 48201,, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
The role of nutraceuticals in chemoprevention and chemotherapy and their clinical outcomes. JOURNAL OF ONCOLOGY 2011; 2012:192464. [PMID: 22187555 PMCID: PMC3236518 DOI: 10.1155/2012/192464] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/25/2011] [Indexed: 12/18/2022]
Abstract
The genesis of cancer is often a slow process and the risk of developing cancer increases with age. Altering a diet that includes consumption of beneficial phytochemicals can influence the balance and availability of dietary chemopreventive agents. In chemopreventive approaches, foods containing chemicals that have anticancer properties can be supplemented in diets to prevent precancerous lesions from occurring. This necessitates further understanding of how phytochemicals can potently maintain healthy cells. Fortunately there is a plethora of plant-based phytochemicals although few of them are well studied in terms of their application as cancer chemopreventive and therapeutic agents. In this analysis we will examine phytochemicals that have strong chemopreventive and therapeutic properties in vitro as well as the design and modification of these bioactive compounds for preclinical and clinical applications. The increasing potential of combinational approaches using more than one bioactive dietary compound in chemoprevention or cancer therapy will also be evaluated. Many novel approaches to cancer prevention are on the horizon, several of which are showing great promise in saving lives in a cost-effective manner.
Collapse
|
11
|
Lakshman M, Huang X, Ananthanarayanan V, Jovanovic B, Liu Y, Craft CS, Romero D, Vary CPH, Bergan RC. Endoglin suppresses human prostate cancer metastasis. Clin Exp Metastasis 2011; 28:39-53. [PMID: 20981476 PMCID: PMC3046557 DOI: 10.1007/s10585-010-9356-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 10/06/2010] [Indexed: 01/04/2023]
Abstract
Endoglin is a transmembrane receptor that suppresses human prostate cancer (PCa) cell invasion. Small molecule therapeutics now being tested in humans can activate endoglin signaling. It is not known whether endoglin can regulate metastatic behavior, PCa tumor growth, nor what signaling pathways are linked to these processes. This study sought to investigate the effect of endoglin on these parameters. We used a murine orthotopic model of human PCa metastasis, designed by us to measure effects at early steps in the metastatic cascade, and implanted PCa cells stably engineered to express differing levels of endoglin. We now extend this model to measure cancer cells circulating in the blood. Progressive endoglin loss led to progressive increases in the number of circulating PCa cells as well as to the formation of soft tissue metastases. Endoglin was known to suppress invasion by activating the Smad1 transcription factor. We now show that it selectively activates specific Smad1-responsive genes, including JUNB, STAT1, and SOX4. Increased tumor growth and increased Ki67 expression in tissue was seen only with complete endoglin loss. By showing that endoglin increased TGFβ-mediated suppression of cell growth in vitro and TGFβ-mediated signaling in tumor tissue, loss of this growth-suppressive pathway appears to be implicated at least in part for the increased size of endoglin-deficient tumors. Endoglin is shown for the first time to suppress cell movement out of primary tumor as well as the formation of distant metastasis. It is also shown to co-regulate tumor growth and metastatic behavior in human PCa.
Collapse
Affiliation(s)
- Minalini Lakshman
- Department of Medicine, Northwestern University Medical School, Lurie 6-105, 303 E. Superior Street, Chicago, IL 60611, USA
| | - Xiaoke Huang
- Department of Medicine, Northwestern University Medical School, Lurie 6-105, 303 E. Superior Street, Chicago, IL 60611, USA
| | | | - Borko Jovanovic
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Yueqin Liu
- Department of Medicine, Northwestern University Medical School, Lurie 6-105, 303 E. Superior Street, Chicago, IL 60611, USA
| | - Clarissa S. Craft
- Department of Medicine, Northwestern University Medical School, Lurie 6-105, 303 E. Superior Street, Chicago, IL 60611, USA
| | - Diana Romero
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Calvin P. H. Vary
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Raymond C. Bergan
- Department of Medicine, Northwestern University Medical School, Lurie 6-105, 303 E. Superior Street, Chicago, IL 60611, USA. Robert H. Lurie Cancer Center and the Center for Molecular Innovation and Drug Discovery of Northwestern University, Chicago, IL, USA
| |
Collapse
|
12
|
Abstract
Genistein is a small, biologically active flavonoid that is found in high amounts in soy. This important compound possesses a wide variety of biological activities, but it is best known for its ability to inhibit cancer progression. In particular, genistein has emerged as an important inhibitor of cancer metastasis. Consumption of genistein in the diet has been linked to decreased rates of metastatic cancer in a number of population-based studies. Extensive investigations have been performed to determine the molecular mechanisms underlying genistein's antimetastatic activity, with results indicating that this small molecule has significant inhibitory activity at nearly every step of the metastatic cascade. Reports have demonstrated that, at high concentrations, genistein can inhibit several proteins involved with primary tumor growth and apoptosis, including the cyclin class of cell cycle regulators and the Akt family of proteins. At lower concentrations that are similar to those achieved through dietary consumption, genistein can inhibit the prometastatic processes of cancer cell detachment, migration, and invasion through a variety of mechanisms, including the transforming growth factor (TGF)-beta signaling pathway. Several in vitro findings have been corroborated in both in vivo animal studies and in early-phase human clinical trials, demonstrating that genistein can both inhibit human cancer metastasis and also modulate markers of metastatic potential in humans, respectively. Herein, we discuss the variety of mechanisms by which genistein regulates individual steps of the metastatic cascade and highlight the potential of this natural product as a promising therapeutic inhibitor of metastasis.
Collapse
Affiliation(s)
- Janet M. Pavese
- Department of Medicine, Northwestern University, Lurie 6-105 303 E. Superior, Chicago, IL 60611 USA
- The Robert H. Lurie Cancer Center, Northwestern University, Chicago, IL USA
| | - Rebecca L. Farmer
- Department of Medicine, Northwestern University, Lurie 6-105 303 E. Superior, Chicago, IL 60611 USA
- The Robert H. Lurie Cancer Center, Northwestern University, Chicago, IL USA
- Center for Drug Discovery and Chemical Biology, Northwestern University, Chicago, IL USA
| | - Raymond C. Bergan
- Department of Medicine, Northwestern University, Lurie 6-105 303 E. Superior, Chicago, IL 60611 USA
- The Robert H. Lurie Cancer Center, Northwestern University, Chicago, IL USA
- Center for Drug Discovery and Chemical Biology, Northwestern University, Chicago, IL USA
| |
Collapse
|
13
|
Romero D, Terzic A, Conley BA, Craft CS, Jovanovic B, Bergan RC, Vary CPH. Endoglin phosphorylation by ALK2 contributes to the regulation of prostate cancer cell migration. Carcinogenesis 2009; 31:359-66. [PMID: 19736306 DOI: 10.1093/carcin/bgp217] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Endoglin, a transmembrane glycoprotein that acts as a transforming growth factor-beta (TGF-beta) coreceptor, is downregulated in PC3-M metastatic prostate cancer cells. When restored, endoglin expression in PC3-M cells inhibits cell migration in vitro and attenuates the tumorigenicity of PC3-M cells in SCID mice, though the mechanism of endoglin regulation of migration in prostate cancer cells is not known. The current study indicates that endoglin is phosphorylated on cytosolic domain threonine residues by the TGF-beta type I receptors ALK2 and ALK5 in prostate cancer cells. Importantly, in the presence of constitutively active ALK2, endoglin did not inhibit cell migration, suggesting that endoglin phosphorylation regulated PC3-M cell migration. Therefore, our results suggest that endoglin phosphorylation is a mechanism with relevant functional consequences in prostate cancer cells. These data demonstrate for the first time that TGF-beta receptor-mediated phosphorylation of endoglin is a Smad-independent mechanism involved in the regulation of prostate cancer cell migration.
Collapse
Affiliation(s)
- Diana Romero
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Xu L, Ding Y, Catalona WJ, Yang XJ, Anderson WF, Jovanovic B, Wellman K, Killmer J, Huang X, Scheidt KA, Montgomery RB, Bergan RC. MEK4 function, genistein treatment, and invasion of human prostate cancer cells. J Natl Cancer Inst 2009; 101:1141-55. [PMID: 19638505 DOI: 10.1093/jnci/djp227] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Dietary intake of genistein by patients with prostate cancer has been associated with decreased metastasis and mortality. Genistein blocks activation of p38 mitogen-activated protein kinase and thus inhibits matrix metalloproteinase-2 (MMP-2) expression and cell invasion in cultured cells and inhibits metastasis of human prostate cancer cells in mice. We investigated the target for genistein in prostate cancer cells. METHODS Prostate cell lines PC3-M, PC3, 1532NPTX, 1542NPTX, 1532CPTX, and 1542CPTX were used. All cell lines were transiently transfected with a constitutively active mitogen-activated protein kinase kinase 4 (MEK4) expression vector (to increase MEK4 expression), small interfering RNA against MEK4 (to decrease MEK4 expression), or corresponding control constructs. Cell invasion was assessed by a Boyden chamber assay. Gene expression was assessed by a quantitative reverse transcription-polymerase chain reaction. Protein expression was assessed by Western blot analysis. Modeller and AutoDock programs were used for modeling of the structure of MEK4 protein and ligand docking, respectively. MMP-2 transcript levels were assessed in normal prostate epithelial cells from 24 patients with prostate cancer from a phase II randomized trial comparing genistein treatment with no treatment. Statistical significance required a P value of .050 or less. All statistical tests were two-sided. RESULTS Overexpression of MEK4 increased MMP-2 expression and cell invasion in all six cell lines. Decreased MEK4 expression had the opposite effects. Modeling showed that genistein bound to the active site of MEK4. Genistein inhibited MEK4 kinase activity with a half maximal inhibitory concentration of 0.40 microM (95% confidence interval [CI] = 0.36 to 0.45 muM). The MMP-2 transcript level in normal prostate epithelial cells was statistically significantly higher in the untreated group (100%) than in the genistein-treated group (24%; difference = 76%, 95% CI = 38% to 115%; P = .045). CONCLUSIONS We identified MEK4 as a proinvasion protein in six human prostate cancer cell lines and the target for genistein. We showed, to our knowledge for the first time, that genistein treatment, compared with no treatment, was associated with decreased levels of MMP-2 transcripts in normal prostate cells from prostate cancer-containing tissue.
Collapse
Affiliation(s)
- Li Xu
- Department of Medicine, Robert H. Lurie Cancer Center and Center for Drug Discovery and Chemical Biology of Northwestern University, Chicago, IL60610, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bernabeu C, Lopez-Novoa JM, Quintanilla M. The emerging role of TGF-beta superfamily coreceptors in cancer. Biochim Biophys Acta Mol Basis Dis 2009; 1792:954-73. [PMID: 19607914 DOI: 10.1016/j.bbadis.2009.07.003] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Revised: 07/02/2009] [Accepted: 07/06/2009] [Indexed: 12/23/2022]
Abstract
The transforming growth factor beta (TGF-beta) signaling pathway plays a key role in different physiological processes such as development, cellular proliferation, extracellular matrix synthesis, angiogenesis or immune responses and its deregulation may result in tumor development. The TGF-beta coreceptors endoglin and betaglycan are emerging as modulators of the TGF-beta response with important roles in cancer. Endoglin is highly expressed in the tumor-associated vascular endothelium with prognostic significance in selected neoplasias and with potential to be a prime vascular target for antiangiogenic cancer therapy. On the other hand, the expression of endoglin and betaglycan in tumor cells themselves appears to play an important role in the progression of cancer, influencing cell proliferation, motility, invasiveness and tumorigenicity. In addition, experiments in vitro and in vivo in which endoglin or betaglycan expression is modulated have provided evidence that they act as tumor suppressors. The purpose of this review was to highlight the potential of membrane and soluble forms of the endoglin and betaglycan proteins as molecular targets in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Carmelo Bernabeu
- Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas (CSIC), and CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 28040 Madrid, Spain.
| | | | | |
Collapse
|
16
|
Abstract
Prostate cancer has marked geographic variations between countries. Genetic, epigenetic, and environmental factors co-contribute to the development of the cancer. The association between dietary factors and prostate cancer has been investigated and one explanation for the low incidence of the cancer in Asia might be high consumption of fresh vegetables including soybean and its products. Soybean is a species of legume contain high amount of isoflavones including genistein, daidzein, glycitein, and equol, which have a prophylactic effect on prostate cancer. In this article, epidemiological and laboratory studies on the relationship between soybeans, isoflavones and prostate cancer are reviewed and large scale multiethnic epidemiological studies are recommended.
Collapse
Affiliation(s)
- Le Jian
- School of Public Health, Health Innovation Research Institute, Curtin University of Technology, Kent Street, Bentley 6102, Perth, Australia.
| |
Collapse
|
17
|
BANERJEE SANJEEV, LI YIWEI, WANG ZHIWEI, SARKAR FAZLULH. Multi-targeted therapy of cancer by genistein. Cancer Lett 2008; 269:226-42. [PMID: 18492603 PMCID: PMC2575691 DOI: 10.1016/j.canlet.2008.03.052] [Citation(s) in RCA: 416] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 03/14/2008] [Accepted: 03/28/2008] [Indexed: 12/17/2022]
Abstract
Soy isoflavones have been identified as dietary components having an important role in reducing the incidence of breast and prostate cancers in Asian countries. Genistein, the predominant isoflavone found in soy products, has been shown to inhibit the carcinogenesis in animal models. There is a growing body of experimental evidence showing that the inhibition of human cancer cell growth by genistein is mediated via the modulation of genes that are related to the control of cell cycle and apoptosis. It has been shown that genistein inhibits the activation of NF-kappaB and Akt signaling pathways, both of which are known to maintain a homeostatic balance between cell survival and apoptosis. Moreover, genistein antagonizes estrogen- and androgen-mediated signaling pathways in the processes of carcinogenesis. Furthermore, genistein has been found to have antioxidant properties, and shown to be a potent inhibitor of angiogenesis and metastasis. Taken together, both in vivo and in vitro studies have clearly shown that genistein, one of the major soy isoflavones is a promising agent for cancer chemoprevention and further suggest that it could be an adjunct to cancer therapy by virtue of its effects on reversing radioresistance and chemoresistance. In this review, we attempt to provide evidence for these preventive and therapeutic effects of genistein in a succinct manner highlighting comprehensive state-of-the-art knowledge regarding its multi-targeted biological and molecular effects in cancer cells.
Collapse
Affiliation(s)
- SANJEEV BANERJEE
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201
| | - YIWEI LI
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201
| | - ZHIWEI WANG
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201
| | - FAZLUL H. SARKAR
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201
| |
Collapse
|
18
|
Studies of structure–activity relationship on plant polyphenol-induced suppression of human liver cancer cells. Cancer Chemother Pharmacol 2008; 63:1007-16. [DOI: 10.1007/s00280-008-0802-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2008] [Accepted: 07/10/2008] [Indexed: 10/21/2022]
|
19
|
Lakshman M, Xu L, Ananthanarayanan V, Cooper J, Takimoto CH, Helenowski I, Pelling JC, Bergan RC. Dietary genistein inhibits metastasis of human prostate cancer in mice. Cancer Res 2008; 68:2024-32. [PMID: 18339885 DOI: 10.1158/0008-5472.can-07-1246] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dietary genistein has been linked to lower prostate cancer (PCa) mortality. Metastasis is the ultimate cause of death from PCa. Cell detachment and invasion represent early steps in the metastatic cascade. We had shown that genistein inhibits PCa cell detachment and cell invasion in vitro. Genistein-mediated inhibition of activation of focal adhesion kinase (FAK) and of the p38 mitogen-activated protein kinase (MAPK)-heat shock protein 27 (HSP27) pathway has been shown by us to regulate PCa cell detachment and invasion effects, respectively. To evaluate the antimetastatic potential of genistein, we developed an animal model suited to evaluating antimetastatic drug efficacy. Orthotopically implanted human PC3-M PCa cells formed lung micrometastasis by 4 weeks in >80% of inbred athymic mice. Feeding mice dietary genistein before implantation led to blood concentrations similar to those measured in genistein-consuming men. Genistein decreased metastases by 96%, induced nuclear morphometric changes in PC3-M cells indicative of increased adhesion (i.e., decreased detachment) but did not alter tumor growth. Genistein increased tumor levels of FAK, p38 MAPK, and HSP27 "promotility" proteins. However, the ratio of phosphorylated to total protein trended downward, indicating a failure to increase relative amounts of activated protein. This study describes a murine model of human PCa metastasis well suited for testing antimetastatic drugs. It shows for the first time that dietary concentrations of genistein can inhibit PCa cell metastasis. Increases in promotility proteins support the notion of cellular compensatory responses to antimotility effects induced by therapy. Studies of antimetastatic efficacy in man are warranted and are under way.
Collapse
Affiliation(s)
- Minalini Lakshman
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Medical School and Robert H. Lurie Cancer Center of Northwestern University, Chicago, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Genistein modulate immune responses in collagen-induced rheumatoid arthritis model. Maturitas 2008; 59:405-12. [DOI: 10.1016/j.maturitas.2008.04.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2008] [Revised: 04/06/2008] [Accepted: 04/07/2008] [Indexed: 11/21/2022]
|