1
|
Sultan S, Tawfik SS, Selim KB, Nasr MNA. Design, Synthesis and Molecular Docking of New Thieno[2,3‑d]Pyrimidin-4-One Derivatives as Dual EGFR and FGFR Inhibitors. Drug Dev Res 2025; 86:e70061. [PMID: 39912365 DOI: 10.1002/ddr.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/07/2025]
Abstract
Novel thienopyrimidinone hybrids 5-25 were developed and synthesized as potential inhibitors of human EGFR and FGFR. The in vitro antiproliferative action of all compounds, towards the human breast tumor cells MDA-MB-231 and MCF-7, was evaluated with doxorubicin serving as a reference (IC50 = 6.72 µM). Compound 23 demonstrated the highest anti-breast cancer efficacy against both cellular lines having IC50 ranging from 2.95 to 3.80 µM. The enzyme inhibition of human EGFR and FGFR by the most active candidates 18, 21and 23-25 was further evaluated. Compounds 21 and 25 were the best EGFR inhibitors having IC50 values of 0.077 and 0.059 µM, respectively, in comparison to Erlotinib (IC50 = 0.04 µM). In comparison with Staurosporine (IC50 = 0.024 µM), compounds 24 and 25 were the most active FGFR inhibitors having IC50 values of 0.055 and 0.029 µM, respectively. The study of molecular docking was carried out among the most active EGFR inhibitors 21 and 25 and the most active FGFR inhibitors 24 and 25 to examine the relation between the binding pattern of these compounds with EGFR and FGFR catalytic active sites and their biological activity, whereas the computational results were aligned with the biological results. Finally, compound 25, which was found to be the best dual inhibitor against EGFR and FGFR, was tested for inducing apoptosis and affecting cellular arrest within G2/M phase as well as it was screened to measure its safety towards normal breast cells MCF10a with IC50 value of 47.16 µM in contrast to the reference Staurosporine (IC50 = 18.86 µM). Accordingly, compound 25 could be considered as a potential breast cancer therapy.
Collapse
Affiliation(s)
- Sara Sultan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Samar S Tawfik
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Khalid B Selim
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Magda N A Nasr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Critcher M, Pang JM, Huang ML. Mapping the FGF2 Interactome Identifies a Functional Proteoglycan Coreceptor. ACS Chem Biol 2025; 20:105-116. [PMID: 39704408 PMCID: PMC11858877 DOI: 10.1021/acschembio.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Fibroblast growth factor 2 (FGF2) is a multipotent growth factor and signaling protein that exhibits broad functions across multiple cell types. These functions are often initiated by binding to growth factor receptors and fine-tuned by glycosaminoglycan (GAG)-modified proteins called proteoglycans. The various outputs of FGF2 signaling and functions arise from a dynamic and cell type-specific set of binding partners. However, the interactome of FGF2 has yet to be comprehensively determined. Moreover, the identity of the proteoglycan proteins carrying GAG chains is often overlooked and remains unknown in most cell contexts. Here, we perform peroxidase-catalyzed live cell proximity labeling using an engineered APEX2-FGF2 fusion protein to map the interactome of FGF2. Across two cell lines with established and distinct FGF2-driven functions, we greatly expand upon the known FGF2 interactome, identifying >600 new putative FGF2 interactors. Notably, our results demonstrate a key role for the GAG binding capacity of FGF2 in modulating its interactome.
Collapse
Affiliation(s)
- Meg Critcher
- Department of Chemistry, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Rd, La Jolla California 92037, United States
| | - Jia Meng Pang
- Department of Chemistry, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Rd, La Jolla California 92037, United States
| | - Mia L Huang
- Department of Chemistry, Scripps Research, 10550 N Torrey Pines Rd, La Jolla, California 92037, United States
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, 10550 N Torrey Pines Rd, La Jolla California 92037, United States
| |
Collapse
|
3
|
Chen S, Hu T, Zhao J, Zhu Q, Wang J, Huang Z, Xiang C, Zhao R, Zhu C, Lu S, Han Y. Novel molecular subtypes of METex14 non-small cell lung cancer with distinct biological and clinical significance. NPJ Precis Oncol 2024; 8:159. [PMID: 39060379 PMCID: PMC11282101 DOI: 10.1038/s41698-024-00642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Not all MET exon 14 skipping (METex14) NSCLC patients benefited from MET inhibitors. We hypothesized an inter-tumoral heterogeneity in METex14 NSCLC. Investigations at genomic and transcriptomic level were conducted in METex14 NSCLC samples from stage I-III and recurrent/metastatic patients as discovery and validation cohort. Four molecular subtypes were discovered. MET-Driven subtype, with the worst prognosis, displayed MET overexpression, enrichment of MET-related pathways, and higher infiltration of fibroblast and regulatory T cells. Immune-Activated subtype having the most idea long-term survival, had higher tertiary lymphoid structures, spatial co-option of PD-L1+ cancer cells, and GZMK+ CD8+ T cell. FGFR- and Bypass-Activated subtypes displayed FGFR2 overexpression and enrichments of multiple oncogenic pathways respectively. In the validation cohort, patients with MET-Driven subtype had better response to MET inhibitors than those with MET overexpression. Thus, molecular subtypes of METex14 NSCLC with distinct biological and clinical significance may indicate more precise therapeutic strategies for METex14 NSCLC patients.
Collapse
Affiliation(s)
- Shengnan Chen
- Department of Pathology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Tao Hu
- Department of Medicine, Amoy Diagnostics Co., Ltd., Xiamen, China
| | - Jikai Zhao
- Department of Pathology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qian Zhu
- Department of Pathology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jin Wang
- Department of Medicine, Amoy Diagnostics Co., Ltd., Xiamen, China
| | - Zhan Huang
- Department of Medicine, Amoy Diagnostics Co., Ltd., Xiamen, China
| | - Chan Xiang
- Department of Pathology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ruiying Zhao
- Department of Pathology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Changbin Zhu
- Department of Medicine, Amoy Diagnostics Co., Ltd., Xiamen, China.
| | - Shun Lu
- Department of Oncology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Yuchen Han
- Department of Pathology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
4
|
Kuang K, Chen X, Wang M, Han W, Qiu X, Jin T, Xu R, Yuan B, Qian M, Li C, Xiang R, Li F, Zhang S, Yang Z, Du J, Li D, Zhang C, Wang Q, Jia T. Design and Discovery of New Collagen V-Derived FGF2-Blocking Natural Peptides Inhibiting Lung Squamous Cell Carcinoma In Vitro and In Vivo. J Med Chem 2024. [PMID: 39045829 DOI: 10.1021/acs.jmedchem.4c00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Aberrant FGF2/FGFR signaling is implicated in lung squamous cell carcinoma (LSCC), posing treatment challenges due to the lack of targeted therapeutic options. Designing drugs that block FGF2 signaling presents a promising strategy different from traditional kinase inhibitors. We previously reported a ColVα1-derived fragment, HEPV (127AA), that inhibits FGF2-induced angiogenesis. However, its large size may limit therapeutic application. This study combines rational peptide design, molecular dynamics simulations, knowledge-based prediction, and GUV and FRET assays to identify smaller peptides with FGF2-blocking properties. We synthesized two novel peptides, HBS-P1 (45AA) and HBS-P2 (66AA), that retained the heparin-binding site. Both peptides demonstrated anti-LSCC and antiangiogenesis properties in cell viability and microvessel network induction assays. In two LSCC subcutaneous models, HBS-P1, with its affinity for FGF2 and enhanced penetration ability, demonstrated substantial therapeutic potential without apparent toxicities. Our study provides the first evidence supporting the development of collagen V-derived natural peptides as FGF2-blocking agents for LSCC treatment.
Collapse
Affiliation(s)
- Keli Kuang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiang Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Maolin Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Weijing Han
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Xue Qiu
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory forMarine Drugs and Bioproducts, Qingdao National Laboratory for Marine Scienceand Technology, Ocean University of China, Qingdao 266237, China
| | - Taoli Jin
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Rong Xu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Meiqi Qian
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory forMarine Drugs and Bioproducts, Qingdao National Laboratory for Marine Scienceand Technology, Ocean University of China, Qingdao 266237, China
| | - Chunyan Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Run Xiang
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Fei Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shuwen Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zi Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Junrong Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Dapeng Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chun Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qiantao Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Fustaino V, Papoff G, Ruberti F, Ruberti G. Co-Expression Network Analysis Unveiled lncRNA-mRNA Links Correlated to Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitor Resistance and/or Intermediate Epithelial-to-Mesenchymal Transition Phenotypes in a Human Non-Small Cell Lung Cancer Cellular Model System. Int J Mol Sci 2024; 25:3863. [PMID: 38612674 PMCID: PMC11011530 DOI: 10.3390/ijms25073863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
We investigated mRNA-lncRNA co-expression patterns in a cellular model system of non-small cell lung cancer (NSCLC) sensitive and resistant to the epithelial growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) erlotinib/gefitinib. The aim of this study was to unveil insights into the complex mechanisms of NSCLC targeted therapy resistance and epithelial-to-mesenchymal transition (EMT). Genome-wide RNA expression was quantified for weighted gene co-expression network analysis (WGCNA) to correlate the expression levels of mRNAs and lncRNAs. Functional enrichment analysis and identification of lncRNAs were conducted on modules associated with the EGFR-TKI response and/or intermediate EMT phenotypes. We constructed lncRNA-mRNA co-expression networks and identified key modules and their enriched biological functions. Processes enriched in the selected modules included RHO (A, B, C) GTPase and regulatory signaling pathways, apoptosis, inflammatory and interleukin signaling pathways, cell adhesion, cell migration, cell and extracellular matrix organization, metabolism, and lipid metabolism. Interestingly, several lncRNAs, already shown to be dysregulated in cancer, are connected to a small number of mRNAs, and several lncRNAs are interlinked with each other in the co-expression network.
Collapse
Affiliation(s)
- Valentina Fustaino
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Campus Adriano Buzzati Traverso, Via E. Ramarini 32, 00015 Monterotondo (Roma), Italy; (G.P.); (F.R.)
| | | | | | | |
Collapse
|
6
|
Affandi T, Haas A, Ohm AM, Wright GM, Black JC, Reyland ME. PKCδ Regulates Chromatin Remodeling and DNA Repair through SIRT6. Mol Cancer Res 2024; 22:181-196. [PMID: 37889141 PMCID: PMC10872792 DOI: 10.1158/1541-7786.mcr-23-0493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/07/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023]
Abstract
Irradiation (IR) is a highly effective cancer therapy; however, IR damage to tumor-adjacent healthy tissues can result in significant comorbidities and potentially limit the course of therapy. We have previously shown that protein kinase C delta (PKCδ) is required for IR-induced apoptosis and that inhibition of PKCδ activity provides radioprotection in vivo. Here we show that PKCδ regulates histone modification, chromatin accessibility, and double-stranded break (DSB) repair through a mechanism that requires Sirtuin 6 (SIRT6). Overexpression of PKCδ promotes genomic instability and increases DNA damage and apoptosis. Conversely, depletion of PKCδ increases DNA repair via nonhomologous end joining (NHEJ) and homologous recombination (HR) as evidenced by increased formation of DNA damage foci, increased expression of DNA repair proteins, and increased repair of NHEJ and HR fluorescent reporter constructs. Nuclease sensitivity indicates that PKCδ depletion is associated with more open chromatin, while overexpression of PKCδ reduces chromatin accessibility. Epiproteome analysis reveals increased chromatin associated H3K36me2 in PKCδ-depleted cells which is accompanied by chromatin disassociation of KDM2A. We identify SIRT6 as a downstream mediator of PKCδ. PKCδ-depleted cells have increased SIRT6 expression, and depletion of SIRT6 reverses changes in chromatin accessibility, histone modification and DSB repair in PKCδ-depleted cells. Furthermore, depletion of SIRT6 reverses radioprotection in PKCδ-depleted cells. Our studies describe a novel pathway whereby PKCδ orchestrates SIRT6-dependent changes in chromatin accessibility to regulate DNA repair, and define a mechanism for regulation of radiation-induced apoptosis by PKCδ. IMPLICATIONS PKCδ controls sensitivity to irradiation by regulating DNA repair.
Collapse
Affiliation(s)
- Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ami Haas
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angela M. Ohm
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Gregory M. Wright
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joshua C. Black
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mary E. Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
7
|
Zheng L, Liu H, Chen L, You X, Lv F, Fan H, Hui Q, Liu B, Wang X. Expression and Purification of FGFR1-Fc Fusion Protein and Its Effects on Human Lung Squamous Carcinoma. Appl Biochem Biotechnol 2024; 196:573-587. [PMID: 37160564 DOI: 10.1007/s12010-023-04542-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/11/2023]
Abstract
Molecular-targeted therapies for lung squamous cell carcinoma (LSCC) are limited mainly because targetable oncogenic aberrations are absent in LSCC. Recent genomic analyses have revealed that the fibroblast growth factor (FGF) signaling pathway plays a fundamental role in LSCC progression via cancer cell proliferation and angiogenesis. In the present study, we designed, expressed, and purified a fibroblast growth factor receptor fragment (FGFR1-Fc) fusion protein using NS/0 cells. In FGF2-FGFR1 overexpressed NCI-H1703 cells, the FGFR1-Fc fusion protein effectively inhibited proliferation and invasion and arrested the cell cycle at the G0-G1 phase. In NCI-H1703 cells treated with the FGFR1-Fc fusion protein, the phosphorylation levels of FGFR1, FRS2, ERK, and AKT were significantly reduced. Using an siRNA assay, we demonstrated that FGF2-FGFR1 is the major anti-tumor target of FGFR1-Fc fusion the FGFR1-Fc fusion protein, which also significantly inhibited proliferation and invasion by NCI-H1703 cells via the FGF2-FGFR1 signaling pathway. In addition, the FGFR1-Fc fusion protein significantly inhibited angiogenesis in an embryonic chorioallantoic membrane model. The FGFR1-Fc fusion protein may be an effective therapeutic candidate for LSCC.
Collapse
Affiliation(s)
- Lulu Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Zhejiang, 310000, Hangzhou, China
| | - Huan Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lingfeng Chen
- School of Pharmaceutical Sciences, Hangzhou Medical College, Zhejiang, 310012, Hangzhou, China
| | - Xinyi You
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Fangyi Lv
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Haibing Fan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qi Hui
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Baohua Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- Department of Neurological Rehabilitation, The Second Asffiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| | - Xiaojie Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
8
|
Boichuk S, Dunaev P, Skripova V, Galembikova A, Bikinieva F, Shagimardanova E, Gazizova G, Deviatiiarov R, Valeeva E, Mikheeva E, Vasilyeva M, Kopnin P, Strelnikov V, Kiyamova R. Unraveling the Mechanisms of Sensitivity to Anti-FGF Therapies in Imatinib-Resistant Gastrointestinal Stromal Tumors (GIST) Lacking Secondary KIT Mutations. Cancers (Basel) 2023; 15:5354. [PMID: 38001614 PMCID: PMC10670741 DOI: 10.3390/cancers15225354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
We showed previously that inhibition of KIT signaling in GISTs activates FGFR-signaling pathway rendering cancer cells resistant to receptor tyrosine kinase inhibitor (RTKi) imatinib mesylate (IM) (Gleevec) despite of absence of secondary KIT mutations and thereby illustrating a rationale for the combined (e.g., KIT- and FGFR-targeted) therapies. We show here that long-term culture of IM-resistant GISTs (GIST-R1) with IM substantially down-regulates KIT expression and induces activation of the FGFR-signaling cascade, evidenced by increased expression of total and phosphorylated forms of FGFR1 and 2, FGF-2, and FRS-2, the well-known adaptor protein of the FGF-signaling cascade. This resulted in activation of both AKT- and MAPK-signaling pathways shown on mRNA and protein levels, and rendered cancer cells highly sensitive to pan-FGFR-inhibitors (BGJ 398, AZD 4547, and TAS-120). Indeed, we observed a significant decrease of IC50 values for BGJ 398 in the GIST subclone (GIST-R2) derived from GIST-R1 cells continuously treated with IM for up to 12 months. An increased sensitivity of GIST-R2 cells to FGFR inhibition was also revealed on the xenograft models, illustrating a substantial (>70%) decrease in tumor size in BGJ 398-treated animals when treated with this pan-FGFR inhibitor. Similarly, an increased intra-tumoral apoptosis as detected by immunohistochemical (IHC)-staining for cleaved caspase-3 on day 5 of the treatment was found. As expected, both BGJ 398 and IM used alone lacked the pro-apoptotic and growth-inhibitory activities on GIST-R1 xenografts, thereby revealing their resistance to these TKis when used alone. Important, the knockdown of FGFR2, and, in much less content, FGF-2, abrogated BGJ 398's activity against GIST-R2 cells both in vitro and in vivo, thereby illustrating the FGF-2/FGFR2-signaling axis in IM-resistant GISTs as a primary molecular target for this RTKi. Collectively, our data illustrates that continuous inhibition of KIT signaling in IM-resistant GISTs lacking secondary KIT mutations induced clonal heterogeneity of GISTs and resulted in accumulation of cancer cells with overexpressed FGF-2 and FGFR1/2, thereby leading to activation of FGFR-signaling. This in turn rendered these cells extremely sensitive to the pan-FGFR inhibitors used in combination with IM, or even alone, and suggests a rationale to re-evaluate the effectiveness of FGFR-inhibitors in order to improve the second-line therapeutic strategies for selected subgroups of GIST patients (e.g., IM-resistant GISTs lacking secondary KIT mutations and exhibiting the activation of the FGFR-signaling pathway).
Collapse
Affiliation(s)
- Sergei Boichuk
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia; (P.D.); (A.G.); (F.B.); (E.M.)
- Department of Radiotherapy and Radiology, Russian Medical Academy of Continuous Professional Education, Moscow 127051, Russia
- Central Research Laboratory, Kazan State Medical University, Kazan 420012, Russia;
- Biomarker Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (V.S.); (R.K.)
| | - Pavel Dunaev
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia; (P.D.); (A.G.); (F.B.); (E.M.)
| | - Vera Skripova
- Biomarker Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (V.S.); (R.K.)
| | - Aigul Galembikova
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia; (P.D.); (A.G.); (F.B.); (E.M.)
| | - Firyuza Bikinieva
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia; (P.D.); (A.G.); (F.B.); (E.M.)
| | - Elena Shagimardanova
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (E.S.); (G.G.); (R.D.)
- LIFT—Life Improvement by Future Technologies Institute, Moscow 121205, Russia
- Loginov Moscow Clinical Scientific Center, Moscow 111123, Russia
| | - Guzel Gazizova
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (E.S.); (G.G.); (R.D.)
| | - Ruslan Deviatiiarov
- Regulatory Genomics Research Center, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (E.S.); (G.G.); (R.D.)
- LIFT—Life Improvement by Future Technologies Institute, Moscow 121205, Russia
| | - Elena Valeeva
- Central Research Laboratory, Kazan State Medical University, Kazan 420012, Russia;
| | - Ekaterina Mikheeva
- Department of Pathology, Kazan State Medical University, Kazan 420012, Russia; (P.D.); (A.G.); (F.B.); (E.M.)
| | - Maria Vasilyeva
- Cytogenetics Laboratory, Carcinogenesis Institute, N.N. Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; (M.V.); (P.K.)
| | - Pavel Kopnin
- Cytogenetics Laboratory, Carcinogenesis Institute, N.N. Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; (M.V.); (P.K.)
| | - Vladimir Strelnikov
- Epigenetics Laboratory, Research Centre for Medical Genetics, Moscow 115522, Russia;
| | - Ramziya Kiyamova
- Biomarker Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia; (V.S.); (R.K.)
| |
Collapse
|
9
|
Furugaki K, Fujimura T, Mizuta H, Yoshimoto T, Asakawa T, Yoshimura Y, Yoshiura S. FGFR blockade inhibits targeted therapy-tolerant persister in basal FGFR1- and FGF2-high cancers with driver oncogenes. NPJ Precis Oncol 2023; 7:107. [PMID: 37880373 PMCID: PMC10600219 DOI: 10.1038/s41698-023-00462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 10/06/2023] [Indexed: 10/27/2023] Open
Abstract
Cancer cell resistance arises when tyrosine kinase inhibitor (TKI)-targeted therapies induce a drug-tolerant persister (DTP) state with growth via genetic aberrations, making DTP cells potential therapeutic targets. We screened an anti-cancer compound library and identified fibroblast growth factor receptor 1 (FGFR1) promoting alectinib-induced anaplastic lymphoma kinase (ALK) fusion-positive DTP cell's survival. FGFR1 signaling promoted DTP cell survival generated from basal FGFR1- and fibroblast growth factor 2 (FGF2)-high protein expressing cells, following alectinib treatment, which is blocked by FGFR inhibition. The hazard ratio for progression-free survival of ALK-TKIs increased in patients with ALK fusion-positive non-small cell lung cancer with FGFR1- and FGF2-high mRNA expression at baseline. The combination of FGFR and targeted TKIs enhanced cell growth inhibition and apoptosis induction in basal FGFR1- and FGF2-high protein expressing cells with ALK-rearranged and epidermal growth factor receptor (EGFR)-mutated NSCLC, human epidermal growth factor receptor 2 (HER2)-amplified breast cancer, or v-raf murine sarcoma viral oncogene homolog B1 (BRAF)-mutated melanoma by preventing compensatory extracellular signal-regulated kinase (ERK) reactivation. These results suggest that a targeted TKI-induced DTP state results from an oncogenic switch from activated oncogenic driver signaling to the FGFR1 pathway in basal FGFR1- and FGF2-high expressing cancers and initial dual blockade of FGFR and driver oncogenes based on FGFR1 and FGF2 expression levels at baseline is a potent treatment strategy to prevent acquired drug resistance to targeted TKIs through DTP cells regardless of types of driver oncogenes.
Collapse
Affiliation(s)
- Koh Furugaki
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 216 Totsuka-cho, Totsuka-ku, Kanagawa, 244-8602, Japan
| | - Takaaki Fujimura
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 216 Totsuka-cho, Totsuka-ku, Kanagawa, 244-8602, Japan
| | - Hayato Mizuta
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 216 Totsuka-cho, Totsuka-ku, Kanagawa, 244-8602, Japan
| | - Takuya Yoshimoto
- Biometrics Department, Chugai Pharmaceutical Co., Ltd., 2-1-1 Nihonbashi-muromachi, Chuo-ku, Tokyo, 103-8324, Japan
| | - Takashi Asakawa
- Biometrics Department, Chugai Pharmaceutical Co., Ltd., 2-1-1 Nihonbashi-muromachi, Chuo-ku, Tokyo, 103-8324, Japan
| | - Yasushi Yoshimura
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 216 Totsuka-cho, Totsuka-ku, Kanagawa, 244-8602, Japan
| | - Shigeki Yoshiura
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 216 Totsuka-cho, Totsuka-ku, Kanagawa, 244-8602, Japan.
| |
Collapse
|
10
|
Ohm AM, Affandi T, Reisz JA, Caino MC, D'Alessandro A, Reyland ME. Metabolic reprogramming contributes to radioprotection by protein kinase Cδ. J Biol Chem 2023; 299:105186. [PMID: 37611829 PMCID: PMC10519828 DOI: 10.1016/j.jbc.2023.105186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023] Open
Abstract
Loss of protein kinase Cδ (PKCδ) activity renders cells resistant to DNA damaging agents, including irradiation; however, the mechanism(s) underlying resistance is poorly understood. Here, we have asked if metabolic reprogramming by PKCδ contributes to radioprotection. Analysis of global metabolomics showed that depletion of PKCδ affects metabolic pathways that control energy production and antioxidant, nucleotide, and amino acid biosynthesis. Increased NADPH and nucleotide production in PKCδ-depleted cells is associated with upregulation of the pentose phosphate pathway (PPP) as evidenced by increased activation of G6PD and an increase in the nucleotide precursor, 5-phosphoribosyl-1-pyrophosphate. Stable isotope tracing with U-[13C6] glucose showed reduced utilization of glucose for glycolysis in PKCδ-depleted cells and no increase in U-[13C6] glucose incorporation into purines or pyrimidines. In contrast, isotope tracing with [13C5, 15N2] glutamine showed increased utilization of glutamine for synthesis of nucleotides, glutathione, and tricarboxylic acid intermediates and increased incorporation of labeled glutamine into pyruvate and lactate. Using a glycolytic rate assay, we confirmed that anaerobic glycolysis is increased in PKCδ-depleted cells; this was accompanied by a reduction in oxidative phosphorylation, as assayed using a mitochondrial stress assay. Importantly, pretreatment of cells with specific inhibitors of the PPP or glutaminase prior to irradiation reversed radioprotection in PKCδ-depleted cells, indicating that these cells have acquired codependency on the PPP and glutamine for survival. Our studies demonstrate that metabolic reprogramming to increase utilization of glutamine and nucleotide synthesis contributes to radioprotection in the context of PKCδ inhibition.
Collapse
Affiliation(s)
- Angela M Ohm
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - M Cecilia Caino
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
11
|
Palmiero M, Cantarosso I, di Blasio L, Monica V, Peracino B, Primo L, Puliafito A. Collective directional migration drives the formation of heteroclonal cancer cell clusters. Mol Oncol 2023; 17:1699-1725. [PMID: 36587372 PMCID: PMC10483614 DOI: 10.1002/1878-0261.13369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/11/2022] [Accepted: 12/30/2022] [Indexed: 01/02/2023] Open
Abstract
Metastasisation occurs through the acquisition of invasive and survival capabilities that allow tumour cells to colonise distant sites. While the role of multicellular aggregates in cancer dissemination is acknowledged, the mechanisms that drive the formation of multiclonal cell aggregates are not fully elucidated. Here, we show that cancer cells of different tissue of origins can perform collective directional migration and can actively form heteroclonal aggregates in 3D, through a proliferation-independent mechanism. Coalescence of distant cell clusters is mediated by subcellular actin-rich protrusions and multicellular outgrowths that extend towards neighbouring aggregates. Coherently, perturbation of cytoskeletal dynamics impairs collective migration while myosin II activation is necessary for multicellular movements. We put forward the hypothesis that cluster attraction is mediated by secreted soluble factors. Such a hypothesis is consistent with the abrogation of aggregation by inhibition of PI3K/AKT/mTOR and MEK/ERK, the chemoattracting activity of conditioned culture media and with a wide screening of secreted proteins. Our results present a novel collective migration model and shed light on the mechanisms of formation of heteroclonal aggregates in cancer.
Collapse
Affiliation(s)
- Miriam Palmiero
- Candiolo Cancer Institute, FPO – IRCCSCandioloItaly
- Department of OncologyUniversity of TurinCandioloItaly
| | - Isabel Cantarosso
- Candiolo Cancer Institute, FPO – IRCCSCandioloItaly
- Department of OncologyUniversity of TurinCandioloItaly
| | - Laura di Blasio
- Candiolo Cancer Institute, FPO – IRCCSCandioloItaly
- Department of OncologyUniversity of TurinCandioloItaly
| | - Valentina Monica
- Candiolo Cancer Institute, FPO – IRCCSCandioloItaly
- Department of OncologyUniversity of TurinCandioloItaly
| | - Barbara Peracino
- Department of Clinical and Biological SciencesSan Luigi Hospital, University of TurinOrbassanoItaly
| | - Luca Primo
- Candiolo Cancer Institute, FPO – IRCCSCandioloItaly
- Department of OncologyUniversity of TurinCandioloItaly
| | - Alberto Puliafito
- Candiolo Cancer Institute, FPO – IRCCSCandioloItaly
- Department of OncologyUniversity of TurinCandioloItaly
| |
Collapse
|
12
|
Affandi T, Haas A, Ohm AM, Wright GM, Black JC, Reyland ME. PKCδ regulates chromatin remodeling and DNA repair through SIRT6. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.541991. [PMID: 37292592 PMCID: PMC10245827 DOI: 10.1101/2023.05.24.541991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Protein kinase C delta (PKCδ) is a ubiquitous kinase whose function is defined in part by localization to specific cellular compartments. Nuclear PKCδ is both necessary and sufficient for IR-induced apoptosis, while inhibition of PKCδ activity provides radioprotection in vivo. How nuclear PKCδ regulates DNA-damage induced cell death is poorly understood. Here we show that PKCδ regulates histone modification, chromatin accessibility, and double stranded break (DSB) repair through a mechanism that requires SIRT6. Overexpression of PKCδ promotes genomic instability and increases DNA damage and apoptosis. Conversely, depletion of PKCδ increases DNA repair via non-homologous end joining (NHEJ) and homologous recombination (HR) as evidenced by more rapid formation of NHEJ (DNA-PK) and HR (Rad51) DNA damage foci, increased expression of repair proteins, and increased repair of NHEJ and HR fluorescent reporter constructs. Nuclease sensitivity indicates that PKCδ depletion is associated with more open chromatin, while overexpression of PKCδ reduces chromatin accessibility. Epiproteome analysis revealed that PKCδ depletion increases chromatin associated H3K36me2, and reduces ribosylation of KDM2A and chromatin bound KDM2A. We identify SIRT6 as a downstream mediator of PKCδ. PKCδ-depleted cells have increased expression of SIRT6, and depletion of SIRT6 reverses the changes in chromatin accessibility, histone modification and NHEJ and HR DNA repair seen with PKCδ-depletion. Furthermore, depletion of SIRT6 reverses radioprotection in PKCδ-depleted cells. Our studies describe a novel pathway whereby PKCδ orchestrates SIRT6-dependent changes in chromatin accessibility to increase DNA repair, and define a mechanism for regulation of radiation-induced apoptosis by PKCδ.
Collapse
Affiliation(s)
- Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ami Haas
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angela M. Ohm
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Gregory M. Wright
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joshua C. Black
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mary E. Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
13
|
Brown LM, Ekert PG, Fleuren EDG. Biological and clinical implications of FGFR aberrations in paediatric and young adult cancers. Oncogene 2023:10.1038/s41388-023-02705-7. [PMID: 37130917 DOI: 10.1038/s41388-023-02705-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Rare but recurrent mutations in the fibroblast growth factor receptor (FGFR) pathways, most commonly in one of the four FGFR receptor tyrosine kinase genes, can potentially be targeted with broad-spectrum multi-kinase or FGFR selective inhibitors. The complete spectrum of these mutations in paediatric cancers is emerging as precision medicine programs perform comprehensive sequencing of individual tumours. Identification of patients most likely to benefit from FGFR inhibition currently rests on identifying activating FGFR mutations, gene fusions, or gene amplification events. However, the expanding use of transcriptome sequencing (RNAseq) has identified that many tumours overexpress FGFRs, in the absence of any genomic aberration. The challenge now presented is to determine when this indicates true FGFR oncogenic activity. Under-appreciated mechanisms of FGFR pathway activation, including alternate FGFR transcript expression and concomitant FGFR and FGF ligand expression, may mark those tumours where FGFR overexpression is indicative of a dependence on FGFR signalling. In this review, we provide a comprehensive and mechanistic overview of FGFR pathway aberrations and their functional consequences in paediatric cancer. We explore how FGFR over expression might be associated with true receptor activation. Further, we discuss the therapeutic implications of these aberrations in the paediatric setting and outline current and emerging therapeutic strategies to treat paediatric patients with FGFR-driven cancers.
Collapse
Affiliation(s)
- Lauren M Brown
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Paul G Ekert
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia.
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia.
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, VIC, Australia.
| | - Emmy D G Fleuren
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
14
|
Basu D, Pal R, Sarkar M, Barma S, Halder S, Roy H, Nandi S, Samadder A. To Investigate Growth Factor Receptor Targets and Generate Cancer Targeting Inhibitors. Curr Top Med Chem 2023; 23:2877-2972. [PMID: 38164722 DOI: 10.2174/0115680266261150231110053650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 01/03/2024]
Abstract
Receptor tyrosine kinase (RTK) regulates multiple pathways, including Mitogenactivated protein kinases (MAPKs), PI3/AKT, JAK/STAT pathway, etc. which has a significant role in the progression and metastasis of tumor. As RTK activation regulates numerous essential bodily processes, including cell proliferation and division, RTK dysregulation has been identified in many types of cancers. Targeting RTK is a significant challenge in cancer due to the abnormal upregulation and downregulation of RTK receptors subfamily EGFR, FGFR, PDGFR, VEGFR, and HGFR in the progression of cancer, which is governed by multiple RTK receptor signalling pathways and impacts treatment response and disease progression. In this review, an extensive focus has been carried out on the normal and abnormal signalling pathways of EGFR, FGFR, PDGFR, VEGFR, and HGFR and their association with cancer initiation and progression. These are explored as potential therapeutic cancer targets and therefore, the inhibitors were evaluated alone and merged with additional therapies in clinical trials aimed at combating global cancer.
Collapse
Affiliation(s)
- Debroop Basu
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Riya Pal
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, IndiaIndia
| | - Maitrayee Sarkar
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Soubhik Barma
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sumit Halder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Harekrishna Roy
- Nirmala College of Pharmacy, Vijayawada, Guntur, Andhra Pradesh, India
| | - Sisir Nandi
- Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur, 244713, India
| | - Asmita Samadder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| |
Collapse
|
15
|
Li BW, Xu WB, Dong WR, Zhang YM, Cheng YX, Chen DY, Xiao Y, Chen YY, Shu MA. Identification and function analysis of two fibroblast growth factor receptor (FGFR) from Scylla paramamosain: The evidence of FGFR involved in innate immunity in crustacean. FISH & SHELLFISH IMMUNOLOGY 2022; 131:602-611. [PMID: 36064005 DOI: 10.1016/j.fsi.2022.08.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The fibroblast growth factor receptor (FGFR) belongs to the tyrosine kinase family consisting of four members (FGFR1-4). This study involved identification and characterization of FGFR1 and FGFR3 from mud crab Scylla paramamosain for the first time. The obtained cDNAs of SpFGFR1 and SpFGFR3 were 2,380 bp and 2,982 bp in length with a 1,503 bp and 2,310 bp open reading frame, respectively. The predicted SpFGFR1 protein included three immunoglobulin domains and a transmembrane region, while SpFGFR3 protein possessed a typical TyrKc (Tyrosine kinase, catalytic) domain. Real-time PCR analysis showed that SpFGFR1 and SpFGFR3 were highly expressed in the hepatopancreas. Furthermore, the expression levels of SpFGFR1 and SpFGFR3 in the hepatopancreas were enhanced following challenges with Vibro alginolyticus, Staphylococcus aureus, Poly (I:C) and White spot syndrome virus, which shows the involvement of SpFGFR1 and SpFGFR3 in innate immune response to infections from bacteria and virus. There was significant suppression of six antimicrobial peptide genes (SpALF1-5 and SpCrustin) and three NF-κB members (SpDorsal, SpIKK and SpRelish) when SpFGFR1 and SpFGFR3 was interfered in vivo. Also, treatment of the hemocytes with specific inhibitor of SpFGFR for 24 h consistently down-regulated SpDorsal, SpRelish and AMPs. These results suggested that SpFGFR1 and SpFGFR3 played important roles in regulating the Toll signaling pathway and immune deficiency (IMD) pathway through NF-κB signaling pathway. These findings may provide new insights into the role of FGFRs in the innate immune function of crustaceans.
Collapse
Affiliation(s)
- Bing-Wu Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Bin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei-Ren Dong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan-Mei Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuan-Xin Cheng
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Da-Yong Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi Xiao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu-Yin Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
16
|
Li C, Kuang K, Du J, Eymin B, Jia T. Far beyond anti-angiogenesis: Benefits for anti-basicFGF therapy in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119253. [PMID: 35259425 DOI: 10.1016/j.bbamcr.2022.119253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/28/2022]
Abstract
Basic FGF (bFGF) was discovered as a typical inducer of angiogenesis and has already been studied for 3 decades. Recent evidence indicates that bFGF plays different roles and controls signaling pathways that participate in the hallmarks of cancer, underscoring bFGF an appealing target for anti-cancer therapy. However, the early clinical trials designed to block bFGF signaling showed safety without satisfiable benefits for cancer patients. In this review, we firstly discuss bFGF's canonical signaling pathways and later review newly identified bFGF's functions that contribute to the cancer hallmarks besides its typical role in angiogenesis. After, we summarize the role of bFGF as a therapeutic target in response to different cancer therapies including radiotherapy, chemotherapy, targeted therapy, immunotherapy, and highlight the difficulties we must solve regarding the design of drugs targeting specifically bFGF. We also emphasize the need, especially for natural bFGF traps, to deepen their molecular mechanisms of action considering the specific context of cancer with different FGFR status, as well as the urgence of stratifying patients for both anti-bFGF first line and second line anti-cancer therapy. Finally, a perspective on potential feed-forward oncogenic signaling pathways mediated by bFGF is made. We discuss the importance of developing additional robust biomarkers to select patients who will benefit from bFGF-targeted therapy, as well as the rationale of developing combinatory therapies targeting either bFGF and/or its intracellular (co)effectors. This would ultimately provide novel therapeutic strategies to fight cancer.
Collapse
Affiliation(s)
- ChunYan Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - KeLi Kuang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - JunRong Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Beatrice Eymin
- INSERM U1209, CNRS UMR5309, Institute For Advanced Biosciences, 38700 La Tronche, France; University Grenoble Alpes, 38000 Grenoble, France
| | - Tao Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
17
|
Petrovic D, Bodinier B, Dagnino S, Whitaker M, Karimi M, Campanella G, Haugdahl Nøst T, Polidoro S, Palli D, Krogh V, Tumino R, Sacerdote C, Panico S, Lund E, Dugué PA, Giles GG, Severi G, Southey M, Vineis P, Stringhini S, Bochud M, Sandanger TM, Vermeulen RCH, Guida F, Chadeau-Hyam M. Epigenetic mechanisms of lung carcinogenesis involve differentially methylated CpG sites beyond those associated with smoking. Eur J Epidemiol 2022; 37:629-640. [PMID: 35595947 PMCID: PMC9288379 DOI: 10.1007/s10654-022-00877-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/25/2022] [Indexed: 12/24/2022]
Abstract
Smoking-related epigenetic changes have been linked to lung cancer, but the contribution of epigenetic alterations unrelated to smoking remains unclear. We sought for a sparse set of CpG sites predicting lung cancer and explored the role of smoking in these associations. We analysed CpGs in relation to lung cancer in participants from two nested case-control studies, using (LASSO)-penalised regression. We accounted for the effects of smoking using known smoking-related CpGs, and through conditional-independence network. We identified 29 CpGs (8 smoking-related, 21 smoking-unrelated) associated with lung cancer. Models additionally adjusted for Comprehensive Smoking Index-(CSI) selected 1 smoking-related and 49 smoking-unrelated CpGs. Selected CpGs yielded excellent discriminatory performances, outperforming information provided by CSI only. Of the 8 selected smoking-related CpGs, two captured lung cancer-relevant effects of smoking that were missed by CSI. Further, the 50 CpGs identified in the CSI-adjusted model complementarily explained lung cancer risk. These markers may provide further insight into lung cancer carcinogenesis and help improving early identification of high-risk patients.
Collapse
Affiliation(s)
- Dusan Petrovic
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
- Department of Epidemiology and Health Systems (DESS), University Centre for General Medicine and Public Health (UNISANTE), Lausanne, Switzerland
- Department and Division of Primary Care Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Barbara Bodinier
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Sonia Dagnino
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Matthew Whitaker
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Maryam Karimi
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
- Bureau de Biostatistique et d'Épidémiologie, Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Oncostat U1018, Inserm, Équipe Labellisée Ligue Contre Le Cancer, Université Paris-Saclay, Villejuif, France
| | - Gianluca Campanella
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Therese Haugdahl Nøst
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Domenico Palli
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Florence, Italy
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rosario Tumino
- Hyblean Association for Epidemiological Research, AIRE- ONLUS, Ragusa, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology Città Della Salute e della Scienza University-Hospital, Via Santena 7, 10126, Turin, Italy
| | - Salvatore Panico
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Eiliv Lund
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- The Norwegian Cancer Registry, Oslo, Norway
| | - Pierre-Antoine Dugué
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | - Gianluca Severi
- Centre for Research in Epidemiology and Population Health, Inserm (Institut National de La Sante Et de a Recherche Medicale), Villejuif, France
| | - Melissa Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
| | - Paolo Vineis
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Silvia Stringhini
- Department of Epidemiology and Health Systems (DESS), University Centre for General Medicine and Public Health (UNISANTE), Lausanne, Switzerland
- Department and Division of Primary Care Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Murielle Bochud
- Department of Epidemiology and Health Systems (DESS), University Centre for General Medicine and Public Health (UNISANTE), Lausanne, Switzerland
| | - Torkjel M Sandanger
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Roel C H Vermeulen
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
- Julius Centre for Health Sciences and Primary Care, University Medical Centre, Utrecht, Utrecht, The Netherlands
| | - Florence Guida
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
- Group of Genetic Epidemiology, International Agency for Research on Cancer (IARC) - World Health Organization (WHO), Lyon, France
| | - Marc Chadeau-Hyam
- Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, School of Public Health, Imperial College London, St Mary's Campus, Norfolk Place, London, W2 1PG, UK.
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
18
|
Thakur MA, Khandelwal AR, Gu X, Rho O, Carbajal S, Kandula RA, DiGiovanni J, Nathan CAO. Inhibition of Fibroblast Growth Factor Receptor Attenuates Ultraviolet B-Induced Skin Carcinogenesis. J Invest Dermatol 2022; 142:2873-2884.e7. [PMID: 35551922 DOI: 10.1016/j.jid.2022.03.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/01/2022] [Accepted: 03/14/2022] [Indexed: 12/20/2022]
Abstract
Altered FGFR signaling has been shown to play a role in a number of cancers. However, the role of FGFR signaling in the development and progression of ultraviolet B-induced (UVB) induced cutaneous squamous cell carcinoma (cSCC) remains unclear. In the current study, the effect of UVB radiation on FGFR activation and its downstream signaling in mouse skin epidermis was examined. In addition, the impact of FGFR inhibition on UVB-induced signaling and skin carcinogenesis was also investigated. Exposure of mouse dorsal skin to UVB significantly increased phosphorylation of FGFRs in the epidermis as well as activation of downstream signaling pathways, including AKT/mTOR, STATs and MAPK. Topical application of the pan-FGFR inhibitor AZD4547 to mouse skin prior to exposure to UVB significantly inhibited FGFR phosphorylation as well as mTORC1, STAT3 and MAPK activation (i.e., phosphorylation). Moreover, AZD4547 pretreatment significantly inhibited UVB-induced epidermal hyperplasia and hyperproliferation and reduced infiltration of mast cells and macrophages into the dermis. AZD4547 treatment also significantly inhibited mRNA expression of inflammatory genes in the epidermis. Finally, mice treated topically with AZD4547 prior to UVB exposure showed decreased cSCC incidence and increased survival rate. Collectively, the current data supports the hypothesis that inhibition of FGFR in epidermis may provide a new strategy to prevent and/or treat UVB-induced cSCC.
Collapse
Affiliation(s)
- Megha A Thakur
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX. USA
| | - Alok R Khandelwal
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Xin Gu
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Okkyung Rho
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX. USA
| | - Steve Carbajal
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX. USA
| | - Rima A Kandula
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX. USA; LiveStrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Center for Molecular Carcinogenesis and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX USA
| | - Cherie-Ann O Nathan
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA; Department of Surgery, Overton Brooks Veterans Affairs Hospital, Shreveport, LA, USA.
| |
Collapse
|
19
|
Mahmood HTNA, Tomas Bort E, Walker AJ, Grose RP, Chioni AM. FGF signalling facilitates cervical cancer progression. FEBS J 2021; 289:3440-3456. [PMID: 34951738 DOI: 10.1111/febs.16331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/26/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022]
Abstract
Cervical cancer is one of the most frequently diagnosed cancers in women worldwide. While cervical cancer is caused by human papillomavirus (HPV), not all females infected with HPV develop the disease, suggesting that other factors might facilitate its progression. Growing evidence supports the involvement of the fibroblast growth factor receptor (FGFR) axis in several cancers, including gynecological. However, for cervical cancer, the molecular mechanisms that underpin the disease remain poorly understood, including the role of FGFR signaling. The aim of this study was to investigate FGF(R) signaling in cervical cancer through bioinformatic analysis of cell line and patient data and through detailed expression profiling, manipulation of the FGFR axis, and downstream phenotypic analysis in cell lines (HeLa, SiHa, and CaSki). Expression (protein and mRNA) analysis demonstrated that FGFR1b/c, FGFR2b/c, FGFR4, FGF2, FGF4, and FGF7 were expressed in all three lines. Interestingly, FGFR1 and 2 localized to the nucleus, supporting that nuclear FGFRs could act as transcription factors. Importantly, 2D and 3D cell cultures demonstrated that FGFR activation can facilitate cell functions correlated with invasive disease. Collectively, this study supports an association between FGFR signaling and cervical cancer progression, laying the foundations for the development of therapeutic approaches targeting FGFR in this disease.
Collapse
Affiliation(s)
| | - Elena Tomas Bort
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, UK
| | - Anthony J Walker
- School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston upon Thames, UK
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, UK
| | - Athina-Myrto Chioni
- School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston upon Thames, UK
| |
Collapse
|
20
|
Chioni AM, Grose RP. Biological Significance and Targeting of the FGFR Axis in Cancer. Cancers (Basel) 2021; 13:5681. [PMID: 34830836 PMCID: PMC8616401 DOI: 10.3390/cancers13225681] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
The pleiotropic effects of fibroblast growth factors (FGFs), the widespread expression of all seven signalling FGF receptors (FGFRs) throughout the body, and the dramatic phenotypes shown by many FGF/R knockout mice, highlight the diversity, complexity and functional importance of FGFR signalling. The FGF/R axis is critical during normal tissue development, homeostasis and repair. Therefore, it is not surprising that substantial evidence also pinpoints the involvement of aberrant FGFR signalling in disease, including tumourigenesis. FGFR aberrations in cancer include mutations, gene fusions, and amplifications as well as corrupted autocrine/paracrine loops. Indeed, many clinical trials on cancer are focusing on targeting the FGF/FGFR axis, using selective FGFR inhibitors, nonselective FGFR tyrosine kinase inhibitors, ligand traps, and monoclonal antibodies and some have already been approved for the treatment of cancer patients. The heterogeneous tumour microenvironment and complexity of FGFR signalling may be some of the factors responsible for the resistance or poor response to therapy with FGFR axis-directed therapeutic agents. In the present review we will focus on the structure and function of FGF(R)s, their common irregularities in cancer and the therapeutic value of targeting their function in cancer.
Collapse
Affiliation(s)
- Athina-Myrto Chioni
- School of Life Sciences Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| | - Richard P. Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK;
| |
Collapse
|
21
|
Srisakuldee W, Nickel BE, Fandrich RR, Zhang F, Pasumarthi KBS, Kardami E. A Cardiac Mitochondrial FGFR1 Mediates the Antithetical Effects of FGF2 Isoforms on Permeability Transition. Cells 2021; 10:2735. [PMID: 34685716 PMCID: PMC8534529 DOI: 10.3390/cells10102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Mitochondria, abundant organelles in high energy demand cells such as cardiomyocytes, can determine cell death or survival by regulating the opening of mitochondrial permeability transition pore, mPTP. We addressed the hypothesis that the growth factor FGF2, known to reside in intracellular locations, can directly influence mitochondrial susceptibility to mPTP opening. Rat cardiac subsarcolemmal (SSM) or interfibrillar (IFM) mitochondrial suspensions exposed directly to rat 18 kDa low molecular weight (Lo-) FGF2 isoform displayed increased resistance to calcium overload-induced mPTP, measured spectrophotometrically as "swelling", or as cytochrome c release from mitochondria. Inhibition of mitochondrial protein kinase C epsilon abrogated direct Lo-FGF2 mito-protection. Exposure to the rat 23 kDa high molecular weight (Hi) FGF2 isoform promoted cytochrome c release from SSM and IFM under nonstressed conditions. The effect of Hi-FGF2 was prevented by mPTP inhibitors, pre-exposure to Lo-FGF2, and okadaic acid, a serine/threonine phosphatase inhibitor. Western blotting and immunoelectron microscopy pointed to the presence of immunoreactive FGFR1 in cardiac mitochondria in situ. The direct mito-protective effect of Lo-FGF2, as well as the deleterious effect of Hi-FGF2, were prevented by FGFR1 inhibitors and FGFR1 neutralizing antibodies. We propose that intracellular FGF2 isoforms can modulate mPTP opening by interacting with mito-FGFR1 and relaying isoform-specific intramitochondrial signal transduction.
Collapse
Affiliation(s)
- Wattamon Srisakuldee
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- St. Boniface Research Centre, Institute of Cardiovascular Sciences, Winnipeg, MB R2H 2A6, Canada; (B.E.N.); (R.R.F.)
| | - Barbara E. Nickel
- St. Boniface Research Centre, Institute of Cardiovascular Sciences, Winnipeg, MB R2H 2A6, Canada; (B.E.N.); (R.R.F.)
| | - Robert R. Fandrich
- St. Boniface Research Centre, Institute of Cardiovascular Sciences, Winnipeg, MB R2H 2A6, Canada; (B.E.N.); (R.R.F.)
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Feixong Zhang
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (F.Z.); (K.B.S.P.)
| | - Kishore B. S. Pasumarthi
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (F.Z.); (K.B.S.P.)
| | - Elissavet Kardami
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- St. Boniface Research Centre, Institute of Cardiovascular Sciences, Winnipeg, MB R2H 2A6, Canada; (B.E.N.); (R.R.F.)
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
22
|
Shah JA, Khattak S, Rauf MA, Cai Y, Jin J. Potential Biomarkers of miR-371-373 Gene Cluster in Tumorigenesis. Life (Basel) 2021; 11:life11090984. [PMID: 34575133 PMCID: PMC8465240 DOI: 10.3390/life11090984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
microRNAs (miRNAs) are small non-coding RNA transcripts (20–24 nucleotides) that bind to their complementary sequences in the 3′-untranslated regions (3′-UTR) of targeted genes to negatively or positively regulate their expression. miRNAs affect the expression of genes in cells, thereby contributing to several important biological processes, including tumorigenesis. Identifying the miRNA cluster as a human embryonic stem cell (hESC)-specific miRNAs initially led to the identification of miR-371, miR-372, miR-373, and miR-373*, which can ultimately be translated into mature miRNAs. Recent evidence suggests that miR-371–373 genes are abnormally expressed in various cancers and act either as oncogenes or tumor suppressors, indicating they may be suitable as molecular biomarkers for cancer diagnosis and prevention. In this article, we summarize recent studies linking miR-371–373 functions to tumorigenesis and speculate on the potential applications of miR-371–373 as biomarkers for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Junaid Ali Shah
- School of Life Sciences, Jilin University, Changchun 130012, China; (J.A.S.); (Y.C.)
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China;
| | - Mohd Ahmar Rauf
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; or
| | - Yong Cai
- School of Life Sciences, Jilin University, Changchun 130012, China; (J.A.S.); (Y.C.)
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jingji Jin
- School of Life Sciences, Jilin University, Changchun 130012, China; (J.A.S.); (Y.C.)
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Correspondence:
| |
Collapse
|
23
|
FGF21 facilitates autophagy in prostate cancer cells by inhibiting the PI3K-Akt-mTOR signaling pathway. Cell Death Dis 2021; 12:303. [PMID: 33753729 PMCID: PMC7985321 DOI: 10.1038/s41419-021-03588-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022]
Abstract
Fibroblast growth factor 21 (FGF21) plays an important role in regulating glucose and lipid metabolism, but its role in cancer is less well-studied. We aimed to investigate the action of FGF21 in the development of prostate cancer (PCa). Herein, we found that FGF21 expression was markedly downregulated in PCa tissues and cell lines. FGF21 inhibited the proliferation and clone formation of LNCaP cells (a PCa cell line) and promoted apoptosis. FGF21 also inhibited PCa cell migration and invasiveness. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that FGF21 was related to autophagy and the phosphatidylinositol 3-kinase–Akt kinase–mammalian target of rapamycin (PI3K–Akt–mTOR) pathway. Mechanistically, FGF21 promoted autophagy in LNCaP cells by inhibiting the PI3K–Akt–mTOR–70S6K pathway. In addition, FGF21 inhibited PCa tumorigenesis in vivo in nude mice. Altogether, our findings show that FGF21 inhibits PCa cell proliferation and promoted apoptosis in PCa cells through facilitated autophagy. Therefore, FGF21 might be a potential novel target in PCa therapy.
Collapse
|
24
|
Yue S, Li Y, Chen X, Wang J, Li M, Chen Y, Wu D. FGFR-TKI resistance in cancer: current status and perspectives. J Hematol Oncol 2021; 14:23. [PMID: 33568192 PMCID: PMC7876795 DOI: 10.1186/s13045-021-01040-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factor receptors (FGFRs) play key roles in promoting the proliferation, differentiation, and migration of cancer cell. Inactivation of FGFRs by tyrosine kinase inhibitors (TKI) has achieved great success in tumor-targeted therapy. However, resistance to FGFR-TKI has become a concern. Here, we review the mechanisms of FGFR-TKI resistance in cancer, including gatekeeper mutations, alternative signaling pathway activation, lysosome-mediated TKI sequestration, and gene fusion. In addition, we summarize strategies to overcome resistance, including developing covalent inhibitors, developing dual-target inhibitors, adopting combination therapy, and targeting lysosomes, which will facilitate the transition to precision medicine and individualized treatment.
Collapse
Affiliation(s)
- Sitong Yue
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yukun Li
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, University of South China, Hengyang, 421001, China
| | - Xiaojuan Chen
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Juan Wang
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, University of South China, Hengyang, 421001, China
| | - Meixiang Li
- Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, University of South China, Hengyang, 421001, China
| | - Yongheng Chen
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Daichao Wu
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Clinical Anatomy and Reproductive Medicine Application Institute, Department of Histology and Embryology, Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, University of South China, Hengyang, 421001, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China. .,W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA.
| |
Collapse
|
25
|
Alternative splicing modulates cancer aggressiveness: role in EMT/metastasis and chemoresistance. Mol Biol Rep 2021; 48:897-914. [PMID: 33400075 DOI: 10.1007/s11033-020-06094-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022]
Abstract
Enhanced metastasis and disease recurrence accounts for the high mortality rates associated with cancer. The process of Epithelial-Mesenchymal Transition (EMT) contributes towards the augmentation of cancer invasiveness along with the gain of stem-like and the subsequent drug-resistant behavior. Apart from the well-established transcriptional regulation, EMT is also controlled post-transcriptionally by virtue of alternative splicing (AS). Numerous genes including Fibroblast Growth Factor receptor (FGFR) as well as CD44 are differentially spliced during this trans-differentiation process which, in turn, governs cancer progression. These splicing alterations are controlled by various splicing factors including ESRP, RBFOX2 as well as hnRNPs. Here, we have depicted the mechanisms governing the splice isoform switching of FGFR and CD44. Moreover, the role of the splice variants generated by AS of these gene transcripts in modulating the metastatic potential and stem-like/chemoresistant behavior of cancer cells has also been highlighted. Additionally, the involvement of splicing factors in regulating EMT/invasiveness along with drug-resistance as well as the metabolic properties of the cells has been emphasized. Tumorigenesis is accompanied by a remodeling of the cellular splicing profile generating diverse protein isoforms which, in turn, control the cancer-associated hallmarks. Therefore, we have also briefly discussed about a wide variety of genes which are differentially spliced in the tumor cells and promote cancer progression. We have also outlined different strategies for targeting the tumor-associated splicing events which have shown promising results and therefore this approach might be useful in developing therapies to reduce cancer aggressiveness in a more specific manner.
Collapse
|
26
|
Inhibition of the FGF/FGFR System Induces Apoptosis in Lung Cancer Cells via c-Myc Downregulation and Oxidative Stress. Int J Mol Sci 2020; 21:ijms21249376. [PMID: 33317057 PMCID: PMC7763353 DOI: 10.3390/ijms21249376] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 11/27/2022] Open
Abstract
Lung cancer represents an extremely diffused neoplastic disorder with different histological/molecular features. Among the different lung tumors, non-small-cell lung cancer (NSCLC) is the most represented histotype, characterized by various molecular markers, including the expression/overexpression of the fibroblast growth factor receptor-1 (FGFR1). Thus, FGF/FGFR blockade by tyrosine kinase inhibitors (TKi) or FGF-ligand inhibitors may represent a promising therapeutic approach in lung cancers. In this study we demonstrate the potential therapeutic benefit of targeting the FGF/FGFR system in FGF-dependent lung tumor cells using FGF trapping (NSC12) or TKi (erdafitinib) approaches. The results show that inhibition of FGF/FGFR by NSC12 or erdafitinib induces apoptosis in FGF-dependent human squamous cell carcinoma NCI-H1581 and NCI-H520 cells. Induction of oxidative stress is the main mechanism responsible for the therapeutic/pro-apoptotic effect exerted by both NSC12 and erdafitinib, with apoptosis being abolished by antioxidant treatments. Finally, reduction of c-Myc protein levels appears to strictly determine the onset of oxidative stress and the therapeutic response to FGF/FGFR inhibition, indicating c-Myc as a key downstream effector of FGF/FGFR signaling in FGF-dependent lung cancers.
Collapse
|
27
|
Lu H, Yin M, Wang L, Cheng J, Cheng W, An H, Zhang T. FGF13 interaction with SHCBP1 activates AKT-GSK3α/β signaling and promotes the proliferation of A549 cells. Cancer Biol Ther 2020; 21:1014-1024. [PMID: 33064958 PMCID: PMC7678946 DOI: 10.1080/15384047.2020.1824512] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 08/16/2020] [Accepted: 08/28/2020] [Indexed: 01/04/2023] Open
Abstract
FGF13, a member of the FGF subfamily, has been found to be highly expressed in cancer cells such as prostate cancer, melanoma, glioma and multiple myeloma. However, the mechanism of FGF13 function during cancer cell proliferation remains to be unexplored, especially Non-small cell lung cancer (NSCLC). In this study, the cell proliferation effect of FGF13 on A549 cells was checked by CCK-8, clone formation, Ki67 immunofluorescence staining and Flow Cytometry assay. Localization of FGF13 within A549 cells was performed with confocal laser scanning microscope. The protein variations and interaction were measured by western blotting and co-immunoprecipitation analysis. It showed that FGF13 was mainly distributed in the cytoplasm and exhibited a high expression level in A549 cells. High expression of FGF13 activated AKT-GSK3 signaling pathway, and inhibited the activity of p21 and p27. Thus, FGF13 enhanced the process of transition from G1 to S phase and promoted A549 cells proliferation. Furthermore, the interaction between FGF13 and SHCBP1 was confirmed. Meanwhile, FGF13 and SHCBP1 had a cooperative effect to accelerate the cell cycle progression, especially the ability to promote cell proliferation is significantly enhanced via protein interaction. Hence, we conclude that FGF13 played a positive regulation role during A549 cells proliferation. FGF13 interacted with SHCBP1 to facilitate cell cycle progression, providing new insights into deep understanding of non-small cell lung cancer mechanisms of proliferation and regulation function of FGF13.
Collapse
Affiliation(s)
- Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Meichen Yin
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Ling Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Jia Cheng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Wei Cheng
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Jiaotong University Health Center, Xi’an, Shaanxi, China
| | - Huanping An
- Department of Pharmacy and Medical Technology, Hanzhong Vocational and Technical College, Hanzhong, Shaanxi, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| |
Collapse
|
28
|
Inhibition of FGF2-Mediated Signaling in GIST-Promising Approach for Overcoming Resistance to Imatinib. Cancers (Basel) 2020; 12:cancers12061674. [PMID: 32599808 PMCID: PMC7352302 DOI: 10.3390/cancers12061674] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Inhibition of KIT-signaling is a major molecular target for gastrointestinal stromal tumor (GIST) therapy, and imatinib mesylate (IM) is known as the most effective first-line treatment option for patients with advanced, unresectable, and/or metastatic GISTs. We show here for the first time that the inhibition of KIT-signaling in GISTs induces profound changes in the cellular secretome, leading to the release of multiple chemokines, including FGF-2. IM increased migration, invasion, and colony formation of IM-resistant GISTs in an FGF2-dependent manner, whereas the use of blocking anti-FGF2 antibodies or BGJ398, a selective FGFR inhibitor, abolished these effects, thus suggesting that the activation of FGF2-mediated signaling could serve as a compensatory mechanism of KIT-signaling inhibited in GISTs. Conversely, FGF-2 rescued the growth of IM-naive GISTs treated by IM and protected them from IM-induced apoptosis, consistent with the possible involvement of FGF-2 in tumor response to IM-based therapy. Indeed, increased FGF-2 levels in serum and tumor specimens were found in IM-treated mice bearing IM-resistant GIST xenografts, whereas BGJ398 used in combination with IM effectively inhibited their growth. Similarly, increased FGF-2 expression in tumor specimens from IM-treated patients revealed the activation of FGF2-signaling in GISTs in vivo. Collectively, the continuation of IM-based therapy for IM-resistant GISTs might facilitate disease progression by promoting the malignant behavior of tumors in an FGF2-dependent manner. This provides a rationale to evaluate the effectiveness of the inhibitors of FGF-signaling for IM-resistant GISTs.
Collapse
|
29
|
Elakad O, Lois AM, Schmitz K, Yao S, Hugo S, Lukat L, Hinterthaner M, Danner BC, von Hammerstein-Equord A, Reuter-Jessen K, Schildhaus HU, Ströbel P, Bohnenberger H. Fibroblast growth factor receptor 1 gene amplification and protein expression in human lung cancer. Cancer Med 2020; 9:3574-3583. [PMID: 32207251 PMCID: PMC7288860 DOI: 10.1002/cam4.2994] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Targeting fibroblast growth factor receptor 1 (FGFR1) is a potential treatment for squamous cell lung cancer (SQCLC). So far, treatment decision in clinical studies is based on gene amplification. However, only a minority of patients have shown durable response. Furthermore, former studies have revealed contrasting results regarding the impact of FGFR1 amplification and expression on patient's prognosis. AIMS Here, we analyzed prevalence and correlation of FGFR1 gene amplification and protein expression in human lung cancer and their impact on overall survival. MATERIALS & METHODS: FGFR1 gene amplification and protein expression were analyzed by fluorescence in situ hybridization and immunohistochemistry (IHC) in 208 SQCLC and 45 small cell lung cancers (SCLC). Furthermore, FGFR1 protein expression was analyzed in 121 pulmonary adenocarcinomas (ACs). Amplification and expression were correlated to each other, clinicopathological characteristics, and overall survival. RESULTS FGFR1 was amplified in 23% of SQCLC and 8% of SCLC. Amplification was correlated to males (P = .027) but not to overall survival. Specificity of immunostaining was verified by cellular CRISPR/Cas9 FGFR1 knockout. FGFR1 was strongly expressed in 9% of SQCLC, 35% of AC, and 4% of SCLC. Expression was correlated to females (P = .0187) and to the absence of lymph node metastasis in SQCLC (P = .018) with no significant correlation to overall survival. Interestingly, no significant correlation between amplification and expression was detected. DISCUSSION FGFR1 gene amplification does not seem to correlate to protein expression. CONCLUSION We believe that patient selection for FGFR1 inhibitors in clinical studies should be reconsidered. Neither FGFR1 amplification nor expression influences patient's prognosis.
Collapse
MESH Headings
- Adenocarcinoma of Lung/drug therapy
- Adenocarcinoma of Lung/genetics
- Adenocarcinoma of Lung/metabolism
- Adenocarcinoma of Lung/pathology
- Adult
- Aged
- Aged, 80 and over
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Female
- Gene Amplification
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Middle Aged
- Neoplasm Staging
- Prognosis
- Protein Kinase Inhibitors/therapeutic use
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Small Cell Lung Carcinoma/drug therapy
- Small Cell Lung Carcinoma/genetics
- Small Cell Lung Carcinoma/metabolism
- Small Cell Lung Carcinoma/pathology
Collapse
Affiliation(s)
- Omar Elakad
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Anna-Maria Lois
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Katja Schmitz
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Sha Yao
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Sara Hugo
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Laura Lukat
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Marc Hinterthaner
- Department of Thoracic and Cardiovascular Surgery, University Medical Center, Göttingen, Germany
| | - Bernhard C Danner
- Department of Thoracic and Cardiovascular Surgery, University Medical Center, Göttingen, Germany
| | | | | | | | - Philipp Ströbel
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | | |
Collapse
|
30
|
Jin X, Guan Y, Zhang Z, Wang H. Microarray data analysis on gene and miRNA expression to identify biomarkers in non-small cell lung cancer. BMC Cancer 2020; 20:329. [PMID: 32299382 PMCID: PMC7164187 DOI: 10.1186/s12885-020-06829-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/05/2020] [Indexed: 01/22/2023] Open
Abstract
Background The aim of this study was to gain further investigation of non-small cell lung cancer (NSCLC) tumorigenesis and identify biomarkers for clinical management of patients through comprehensive bioinformatics analysis. Methods miRNA and mRNA microarray datasets were downloaded from GEO (Gene Expression Omnibus) database under the accession number GSE102286 and GSE101929, respectively. Genes and miRNAs with differential expression were identified in NSCLC samples compared with controls, respectively. The interaction between differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs) was predicted, followed by functional enrichment analysis, and construction of miRNA-gene regulatory network, protein-protein interaction (PPI) network, and competing endogenous RNA (ceRNA) network. Through comprehensive bioinformatics analysis, we anticipate to find novel therapeutic targets and biomarkers for NSCLC. Results A total of 123 DEmiRs (5 up- and 118 down-regulated miRNAs) and 924 DEGs (309 up- and 615 down-regulated genes) were identified. These genes and miRNAs were significantly involved in different pathways including adherens junction, relaxin signaling pathway, and axon guidance. Furthermore, hsa-miR-9-5p, has-miR-196a-5p and hsa-miR-31-5p, as well as hsa-miR-1, hsa-miR-218-5p and hsa-miR-135a-5p were shown to have higher degree in the miRNA-gene regulatory network and ceRNA network, respectively. Furthermore, BIRC5 and FGF2, as well as RTKN2 and SLIT3 were hubs in the PPI network and ceRNA network, respectively. Conclusion Several pathways (adherens junction, relaxin signaling pathway, and axon guidance) miRNAs (hsa-miR-9-5p, has-miR-196a-5p, hsa-miR-31-5p, hsa-miR-1, hsa-miR-218-5p and hsa-miR-135a-5p) and genes (BIRC5, FGF2, RTKN2 and SLIT3) may play important roles in the pathogenesis of NSCLC.
Collapse
Affiliation(s)
- Xiang Jin
- Department of Respiration, The First Hospital of Jilin University, No. 1 Xinminda Street, Changchun, 130021, China
| | - Yinghui Guan
- Department of Respiration, The First Hospital of Jilin University, No. 1 Xinminda Street, Changchun, 130021, China.
| | - Zhen Zhang
- PICU, The First Hospital of Jilin University, Changchun, 130021, China
| | - Hongyue Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|
31
|
Bao Q, Xu Y, Ding M, Chen P. Identification of differentially expressed miRNAs in differentiating benign from malignant pleural effusion. Hereditas 2020; 157:6. [PMID: 32102688 PMCID: PMC7045593 DOI: 10.1186/s41065-020-00119-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/18/2020] [Indexed: 11/27/2022] Open
Abstract
Background Tuberculosis pleural effusion (TPE) and malignant pleural effusion (MPE) are very common clinical complications. Considering the totally different prognosis and clinical treatment of TPE and MPE, the accurate and non-invasive diagnosis are very critical for patients with pleural effusion to initiate efficient management and treatment. However, effective clinical biomarkers were rarely explored to distinguish benign from MPE. The purpose of this study is to identify potential miRNAs which can probably be used to differentiate malignant pleural effusion from TPE. Results A total of 23 significantly differentially expressed miRNAs were identified in MPE, with 18 up-expressed and 5 down-expressed. And the target genes of the miRNAs mainly involved in the biology process of nervous system, cancer, immune system and metabolic process etc. Three high confident target genes, AGO4, FGF9 and LEF1 can be regulated by miR-195-5p, miR-182-5p and miR-34a-5p respectively. And these genes participate in the canonical pathway of regulation of the Epithelial-Mesenchymal and the biological functions of apoptosis, growth of tumor and cell proliferation of tumor cell lines. Further, RT-PCR validation results based on 64 collected individuals showed that the expression levels of the three miRNAs were 2–5 times higher in MPE samples, which were consistent with the microarray results. In addition, ROC curve analysis demonstrated that the combination of the three miRNAs can achieve higher AUC of 0.93 (p-value< 0.0001) to differentiate MPE from TPE. Conclusions The identified miR-195-5p, miR-182-5p and miR-34a-5p can become potential diagnostic biomarkers for MPE with further evidences.
Collapse
Affiliation(s)
- Quanlei Bao
- Respiratory Medicine Department, Affiliated hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, People's Republic of China.
| | - Yaping Xu
- Respiratory Medicine Department, Affiliated hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, People's Republic of China
| | - Ming Ding
- Respiratory Medicine Department, Affiliated hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, People's Republic of China
| | - Ping Chen
- Respiratory Medicine Department, Affiliated hospital of Jiangsu University, Zhenjiang, Jiangsu, 212000, People's Republic of China
| |
Collapse
|
32
|
Zhou Y, Wu C, Lu G, Hu Z, Chen Q, Du X. FGF/FGFR signaling pathway involved resistance in various cancer types. J Cancer 2020; 11:2000-2007. [PMID: 32127928 PMCID: PMC7052940 DOI: 10.7150/jca.40531] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/04/2020] [Indexed: 12/16/2022] Open
Abstract
Resistance becomes major clinical issue in cancer treatment, which strongly limits patients to benefit from oncotherapy. Growing evidences have been indicative of the critical role of fibroblast growth factor (FGF)/receptor (FGFR) signaling played in resistance to oncotherapy. In this review we discussed the underlying mechanisms of FGF/FGFR signaling mediated resistance to chemotherapy, radiotherapy and target therapy in various cancers. Meanwhile, we summarized the reported mechanism of FGF/FGFR inhibitors resistance in cancers.
Collapse
Affiliation(s)
- Yangyang Zhou
- Department of Rheumatology and Immunology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chengyu Wu
- Department of Rheumatology and Immunology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Guangrong Lu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical, Wenzhou, Zhejiang 325000, China)
| | - Zijing Hu
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qiuxiang Chen
- Department of Ultrasonic Imaging, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaojing Du
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
33
|
Xie Z, Wu K, Wang Y, Pan Y, Chen B, Cheng D, Pan S, Guo T, Du X, Fang L, Wang X, Ye F. Discovery of 4,6-pyrimidinediamine derivatives as novel dual EGFR/FGFR inhibitors aimed EGFR/FGFR1-positive NSCLC. Eur J Med Chem 2019; 187:111943. [PMID: 31846829 DOI: 10.1016/j.ejmech.2019.111943] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 11/29/2022]
Abstract
FGF2-FGFR1 autocrine pathway activation reduces the sensitivity of non-small cell lung cancer (NSCLC) cells to EGFR inhibitors like Gefitinib. Therefore, dual-specific drugs targeting EGFR and FGFR with high selectivity and activity are required. Through structure analysis of excellent EGFR inhibitors and FGFR inhibitors, we designed and synthesized 33 4,6-pyrimidinediamine derivatives as dual EGFR and FGFR inhibitors and selected BZF 2 as a potential EGFR and FGFR inhibitor after initial cell screening. Then, through kinase testing and western blot analysis, BZF 2 was defined as a dual EGFR and FGFR inhibitor with high selectivity 1and activity. Biological evaluation of NSCLC cell lines with the FGF2-FGFR1 autocrine loop indicated that BZF 2 significantly inhibited cell proliferation (IC50 values for H226 and HCC827 GR were 2.11 μM, and 0.93 μM, respectively), cell migration, and induced cell apoptosis and cell cycle arrest. Anti-tumor activity test in vivo showed that BZF 2 obviously shrank tumor size. Therefore, BZF 2 is a highly selective and potent dual EGFR/FGFR compound with promising therapeutic effects against EGFR/FGFR1-positive NSCLC.
Collapse
Affiliation(s)
- Zixin Xie
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Kaiqi Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yuexuan Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yaqian Pan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Bo Chen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Donghua Cheng
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Suwei Pan
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Taoning Guo
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xuze Du
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Longcheng Fang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xuebao Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Faqing Ye
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
34
|
Marseglia G, Lodola A, Mor M, Castelli R. Fibroblast growth factor receptor inhibitors: patent review (2015-2019). Expert Opin Ther Pat 2019; 29:965-977. [PMID: 31679402 DOI: 10.1080/13543776.2019.1688300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: fibroblast growth factor receptors (FGFRs) are a family of tyrosine-kinase receptors whose signaling cascade regulates cellular proliferation, differentiation, and survival. Deregulation of the FGFR pathway is recognized as a driving factor in tumor development. On this basis, FGFR is an attractive target for anti-cancer small-molecule therapeutic agents.Areas covered: This review summarizes patent and literature publications spanning from 2015 to 2019 pertaining to small-molecule FGFR kinase inhibitors.Expert opinion: The first generation of non-covalent FGFR inhibitors is characterized by a broad spectrum of activity and a relatively high toxicity profile. The second generation of FGFR inhibitors shows higher selectivity and a more favorable toxicity profile, but the clinical use appears restricted only to small subsets of cancers strongly dependent on FGFR signaling. Nevertheless, erdafitinib has been approved for the treatment of metastatic urothelial carcinoma, becoming the first marketed selective FGFR inhibitor. The insurgence of mutant kinases, resistant to available therapies, has led to the development of irreversible FGFR inhibitors. The adoption of safer and more selective covalent inhibitors might supersede reversible inhibitors in specific therapeutic areas. Alternative strategies, such as FGF trapping by protein or small-molecule therapeutics, deserve attention and further investigations to unravel their potential.
Collapse
Affiliation(s)
| | - Alessio Lodola
- Food and Drug Department, University of Parma, Parma, Italy
| | - Marco Mor
- Food and Drug Department, University of Parma, Parma, Italy
| | | |
Collapse
|
35
|
Wang K, Lai C, Li T, Wang C, Wang W, Ni B, Bai C, Zhang S, Han L, Gu H, Zhao Z, Duan Y, Yang X, Xing L, Zhao L, Zhou S, Xia M, Jiang C, Wang X, Yang P. Basic fibroblast growth factor protects against influenza A virus-induced acute lung injury by recruiting neutrophils. J Mol Cell Biol 2019; 10:573-585. [PMID: 29121325 DOI: 10.1093/jmcb/mjx047] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 11/02/2017] [Indexed: 12/18/2022] Open
Abstract
Influenza virus (IAV) infection is a major cause of severe respiratory illness that affects almost every country in the world. IAV infections result in respiratory illness and even acute lung injury and death, but the underlying mechanisms responsible for IAV pathogenesis have not yet been fully elucidated. In this study, the basic fibroblast growth factor 2 (FGF2) level was markedly increased in H1N1 virus-infected humans and mice. FGF2, which is predominately derived from epithelial cells, recruits and activates neutrophils via the FGFR2-PI3K-AKT-NFκB signaling pathway. FGF2 depletion or knockout exacerbated influenza-associated disease by impairing neutrophil recruitment and activation. More importantly, administration of the recombinant FGF2 protein significantly alleviated the severity of IAV-induced lung injury and promoted the survival of IAV-infected mice. Based on the results from experiments in which neutrophils were depleted and adoptively transferred, FGF2 protected mice against IAV infection by recruiting neutrophils. Thus, FGF2 plays a critical role in preventing IAV-induced lung injury, and FGF2 is a promising potential therapeutic target during IAV infection.
Collapse
Affiliation(s)
- Keyu Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Chengcai Lai
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tieling Li
- Chinese PLA General Hospital, Beijing, China
| | - Cheng Wang
- Chinese PLA General Hospital, Beijing, China
| | - Wei Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Bing Ni
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Changqing Bai
- Beijing 307 Hospital of PLA Affiliated with the Chinese Academy of Medical Sciences, Beijing, China
| | | | - Lina Han
- Chinese PLA General Hospital, Beijing, China
| | - Hongjing Gu
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhongpeng Zhao
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yueqiang Duan
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaolan Yang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Li Xing
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lingna Zhao
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shanshan Zhou
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Min Xia
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Chengyu Jiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiliang Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Penghui Yang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,Beijing 302 Hospital of PLA, Beijing, China
| |
Collapse
|
36
|
Association between Circulating Fibroblast Growth Factor 21 and Aggressiveness in Thyroid Cancer. Cancers (Basel) 2019; 11:cancers11081154. [PMID: 31408968 PMCID: PMC6721537 DOI: 10.3390/cancers11081154] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/13/2019] [Accepted: 08/08/2019] [Indexed: 12/24/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) plays important roles in regulating glucose, lipid, and energy metabolism; however, its effects in tumors remain poorly understood. To understand the role of FGF21 in regulating tumor aggressiveness in thyroid cancer, serum levels of FGF21 were measured in healthy subjects and patients with papillary thyroid cancer (PTC), and expression levels of FGF21, FGF receptors (FGFRs), and β-klotho (KLB) were investigated in human thyroid tissues. The cell viability, migrating cells, and invading cells were measured in PTC cells after treatment with recombinant FGF21. Higher serum levels of FGF21 were found in patients with thyroid cancer than in control participants, and were significantly associated with body mass index (BMI), fasting glucose levels, triglyceride levels, tumor stage, lymphovascular invasion, and recurrence. Serum FGF21 levels were positively correlated with the BMI in patients with PTC, and significantly associated with recurrence. Recombinant FGF21 led to tumor aggressiveness via activation of the FGFR signaling axis and epithelial-to-mesenchymal transition (EMT) signaling in PTC cells, and AZD4547, an FGFR tyrosine kinase inhibitor, attenuated the effects of FGF21. Hence, FGF21 may be a new biomarker for predicting tumor progression, and targeting FGFR may be a novel therapy for the treatment of obese patients with PTC.
Collapse
|
37
|
Khandelwal AR, Kent B, Hillary S, Alam MM, Ma X, Gu X, DiGiovanni J, Nathan CAO. Fibroblast growth factor receptor promotes progression of cutaneous squamous cell carcinoma. Mol Carcinog 2019; 58:1715-1725. [PMID: 31254372 DOI: 10.1002/mc.23012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/14/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a keratinocyte-derived invasive and metastatic tumor of the skin. It is the second-most commonly diagnosed form of skin cancer striking 200 000 Americans annually. Further, in organ transplant patients, there is a 65- to 100-fold increased incidence of cSCC compared to the general population. Excision of cSCC of the head and neck results in significant facial disfigurement. Therefore, increased understanding of the mechanisms involved in the pathogeneses of cSCC could identify means to prevent, inhibit, and reverse this process. In our previous studies, inhibition of fibroblast growth factor receptor (FGFR) significantly decreased ultraviolet B-induced epidermal hyperplasia and hyperproliferation in SKH-1 mice, suggesting an important role for FGFR signaling in skin cancer development. However, the role of FGFR signaling in the progression of cSCC is not yet elucidated. Analysis of the expression of FGFR in cSCC cells and normal epidermal keratinocytes revealed protein overexpression and increased FGFR2 activation in cSCC cells compared to normal keratinocytes. Further, tumor cell-specific overexpression of FGFR2 was detected in human cSCCs, whereas the expression of FGFR2 was low in premalignant lesions and normal skin. Pretreatment with the pan-FGFR inhibitor; AZD4547 significantly decreased cSCC cell-cycle traverse, proliferation, migration, and motility. Interestingly, AZD4547 also significantly downregulated mammalian target of rapamycin complex 1 and AKT activation in cSCC cells, suggesting an important role of these signaling pathways in FGFR-mediated effects. To further bolster the in vitro studies, NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice with SCC12A tumor xenografts treated with AZD4547 (15 mg/kg/bw, twice weekly oral gavage) exhibited significantly decreased tumor volume compared to the vehicle-only treatment group. The current studies provide mechanistic evidence for the role of FGFR and selectively FGFR2 in the early progression of cSCC and identifies FGFR as a putative therapeutic target in the treatment of skin cancer.
Collapse
Affiliation(s)
- Alok R Khandelwal
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana.,Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Burton Kent
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Savage Hillary
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Md Maksudul Alam
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Xiaohua Ma
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Xin Gu
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Cherie-Ann O Nathan
- Department of Otolaryngology, Head and Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana.,Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana.,Department of Surgery, Overton Brooks Veterans Affairs Hospital, Shreveport, Louisiana
| |
Collapse
|
38
|
Zito Marino F, Bianco R, Accardo M, Ronchi A, Cozzolino I, Morgillo F, Rossi G, Franco R. Molecular heterogeneity in lung cancer: from mechanisms of origin to clinical implications. Int J Med Sci 2019; 16:981-989. [PMID: 31341411 PMCID: PMC6643125 DOI: 10.7150/ijms.34739] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/05/2019] [Indexed: 12/13/2022] Open
Abstract
Molecular heterogeneity is a frequent event in cancer responsible of several critical issues in diagnosis and treatment of oncologic patients. Lung tumours are characterized by high degree of molecular heterogeneity associated to different mechanisms of origin including genetic, epigenetic and non-genetic source. In this review, we provide an overview of recognized mechanisms underlying molecular heterogeneity in lung cancer, including epigenetic mechanisms, mutant allele specific imbalance, genomic instability, chromosomal aberrations, tumor mutational burden, somatic mutations. We focus on the role of spatial and temporal molecular heterogeneity involved in therapeutic implications in lung cancer patients.
Collapse
Affiliation(s)
| | - Roberto Bianco
- Department of Clinical Medicine and Surgery, Oncology Division, University of Naples Federico II, Naples, Italy
| | - Marina Accardo
- Pathology Unit, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Andrea Ronchi
- Pathology Unit, University of Campania “L. Vanvitelli”, Naples, Italy
| | | | - Floriana Morgillo
- Medical Oncology, Department of Precision Medicine, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Giulio Rossi
- Pathology Unit, Hospital S. Maria delle Croci, Azienda Romagna, Ravenna, Italy
| | - Renato Franco
- Pathology Unit, University of Campania “L. Vanvitelli”, Naples, Italy
| |
Collapse
|
39
|
A model of NSCLC microenvironment predicts optimal receptor targets. QUANTITATIVE BIOLOGY 2019. [DOI: 10.1007/s40484-019-0171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Jiang W, Ji M. Receptor tyrosine kinases in PI3K signaling: The therapeutic targets in cancer. Semin Cancer Biol 2019; 59:3-22. [PMID: 30943434 DOI: 10.1016/j.semcancer.2019.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 03/09/2019] [Accepted: 03/28/2019] [Indexed: 12/17/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) pathway, one of the most commonly activated signaling pathways in human cancers, plays a crucial role in the regulation of cell proliferation, differentiation, and survival. This pathway is usually activated by receptor tyrosine kinases (RTKs), whose constitutive and aberrant activation is via gain-of-function mutations, chromosomal rearrangement, gene amplification and autocrine. Blockage of PI3K pathway by targeted therapy on RTKs with tyrosine kinases inhibitors (TKIs) and monoclonal antibodies (mAbs) has achieved great progress in past decades; however, there still remain big challenges during their clinical application. In this review, we provide an overview about the most frequently encountered alterations in RTKs and focus on current therapeutic agents developed to counteract their aberrant functions, accompanied with discussions of two major challenges to the RTKs-targeted therapy in cancer - resistance and toxicity.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Meiju Ji
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China; Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| |
Collapse
|
41
|
Miura K, Oba T, Hamanaka K, Ito KI. FGF2-FGFR1 pathway activation together with thymidylate synthase upregulation is induced in pemetrexed-resistant lung cancer cells. Oncotarget 2019; 10:1171-1192. [PMID: 30838090 PMCID: PMC6383826 DOI: 10.18632/oncotarget.26622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 01/09/2019] [Indexed: 11/25/2022] Open
Abstract
Pemetrexed (MTA) is a folate antimetabolite used for treating non-small cell lung cancer. To elucidate the mechanisms of pemetrexed resistance in lung cancer, we established pemetrexed-resistant sublines in PC9 (mutant EGFR) and H1993 (wild-type EGFR) lung adenocarcinoma cell lines (PC9-MTA, H1993-MTA). Gene expression profile comparison by microarray analyses revealed enhanced fibroblast growth factor 2 (FGF2) and FGF receptor 1 (FGFR1) expression, confirmed by Western blotting, enzyme-linked immunosorbent assay, and reverse transcription-polymerase chain reaction. ERK phosphorylation was increased in PC9-MTA but decreased in H1993-MTA along with decreased downstream signaling molecule phosphorylation. Cellular morphological change from epithelial to spindle-shape together with increased mesenchymal marker protein expression was observed in H1993-MTA. SiRNA-mediated FGF2 knockdown partially restored pemetrexed sensitivity in both lines, whereas anti-FGFR1 inhibitor PD173074 restored pemetrexed sensitivity in PC9-MTA. FGF2 or FGFR1 inhibition decreased pERK levels in PC9-MTA but increased pEGFR levels together with downstream signaling molecule activation and reversed epithelial-mesenchymal transition marker protein expression in H1993-MTA. Although thymidylate synthase strongly facilitates the development of pemetrexed resistance, our results reveal involvement of the FGF2-FGFR1 pathway in pemetrexed resistance in lung cancer cells and suggest that cellular function alterations induced by FGF2-FGFR1 pathway activation depend on the innate feature of cancer cells.
Collapse
Affiliation(s)
- Kentaro Miura
- Division of Breast, Endocrine and Respiratory Surgery, Department of Surgery (II), Shinshu University School of Medicine, Matsumoto, Japan
| | - Takaaki Oba
- Division of Breast, Endocrine and Respiratory Surgery, Department of Surgery (II), Shinshu University School of Medicine, Matsumoto, Japan
| | - Kazutoshi Hamanaka
- Division of Breast, Endocrine and Respiratory Surgery, Department of Surgery (II), Shinshu University School of Medicine, Matsumoto, Japan
| | - Ken-Ichi Ito
- Division of Breast, Endocrine and Respiratory Surgery, Department of Surgery (II), Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
42
|
Cen M, Yao Y, Cui L, Yang G, Lu G, Fang L, Bao Z, Zhou J. Honokiol induces apoptosis of lung squamous cell carcinoma by targeting FGF2-FGFR1 autocrine loop. Cancer Med 2018; 7:6205-6218. [PMID: 30515999 PMCID: PMC6308115 DOI: 10.1002/cam4.1846] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/24/2018] [Accepted: 09/28/2018] [Indexed: 12/27/2022] Open
Abstract
Lung squamous cell carcinoma (SCC) accounts for a considerable proportion of lung cancer cases, but there is still a lack of effective therapies. FGFR1 amplification is generally considered a promising therapeutic target. Honokiol is a chemical compound that has been proven to be effective against various malignancies and whose analog has been reported to target the mitogen‐activated protein kinase family, members of a downstream signaling pathway of FGFR1. This was an explorative study to determine the mechanism of honokiol in lung SCC. We found that honokiol induced apoptosis and cell cycle arrest in lung SCC cell lines in a time‐ and dose‐dependent manner. Honokiol also restricted cell migration in lung SCC cell lines. Moreover, the expression of FGF2 and the activation of FGFR1 were both downregulated by honokiol. Pharmacological inhibition and siRNA knockdown of FGFR1 induced apoptosis in lung SCC cells. Our in vivo study indicated that honokiol could suppress the growth of xenograft tumors, and this effect was associated with the inhibition of the FGF2‐FGFR1 signaling pathway. In conclusion, honokiol induced cell apoptosis in lung SCC by targeting the FGF2‐FGFR1 autocrine loop.
Collapse
Affiliation(s)
- Mengyuan Cen
- Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yinan Yao
- Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Luyun Cui
- Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Guangdie Yang
- Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Guohua Lu
- Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Liangjie Fang
- Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhang Bao
- Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianying Zhou
- Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
43
|
Zhang J, Zhou Y, Huang T, Wu F, Pan Y, Dong Y, Wang Y, Chan AKY, Liu L, Kwan JSH, Cheung AHK, Wong CC, Lo AKF, Cheng ASL, Yu J, Lo KW, Kang W, To KF. FGF18, a prominent player in FGF signaling, promotes gastric tumorigenesis through autocrine manner and is negatively regulated by miR-590-5p. Oncogene 2018; 38:33-46. [PMID: 30082912 PMCID: PMC6318220 DOI: 10.1038/s41388-018-0430-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/20/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022]
Abstract
Fibroblast growth factors (FGFs) and their receptors are significant components during fundamental cellular processes. FGF18 plays a distinctive role in modulating the activity of both tumor cells and tumor microenvironment. This study aims to comprehensively investigate the expression and functional role of FGF18 in gastric cancer (GC) and elucidate its regulatory mechanisms. The upregulation of FGF18 was detected in seven out of eleven (63.6%) GC cell lines. In primary GC samples, FGF18 was overexpressed in genomically stable and chromosomal instability subtypes of GC and its overexpression was associated with poor survival. Knocking down FGF18 inhibited tumor formation abilities, induced G1 phase cell cycle arrest and enhanced anti-cancer drug sensitivity. Expression microarray profiling revealed that silencing of FGF18 activated ATM pathway but quenched TGF-β pathway. The key factors that altered in the related signaling were validated by western blot and immunofluorescence. Meanwhile, treating GC cells with human recombinant FGF18 or FGF18-conditioned medium accelerated tumor growth through activation of ERK-MAPK signaling. FGF18 was further confirmed to be a direct target of tumor suppressor, miR-590-5p. Their expressions showed a negative correlation in primary GC samples and more importantly, re-overexpression of FGF18 partly abolished the tumor-suppressive effect of miR-590-5p. Our study not only identified that FGF18 serves as a novel prognostic marker and a therapeutic target in GC but also enriched the knowledge of FGF-FGFR signaling during gastric tumorigenesis.
Collapse
Affiliation(s)
- Jinglin Zhang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Yuhang Zhou
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Tingting Huang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Feng Wu
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Yi Pan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Yujuan Dong
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Yan Wang
- Key Laboratory of Cardiovascular Medicine and Clinical Pharmacology of Shanxi Province, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Aden K Y Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Liping Liu
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong Province, People's Republic of China
| | - Johnny S H Kwan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Alvin H K Cheung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Chi Chun Wong
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Angela K F Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Alfred S L Cheng
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Jun Yu
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China. .,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China. .,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China. .,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China. .,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.
| |
Collapse
|
44
|
Haines E, Chen T, Kommajosyula N, Chen Z, Herter-Sprie GS, Cornell L, Wong KK, Shapiro GI. Palbociclib resistance confers dependence on an FGFR-MAP kinase-mTOR-driven pathway in KRAS-mutant non-small cell lung cancer. Oncotarget 2018; 9:31572-31589. [PMID: 30167080 PMCID: PMC6114982 DOI: 10.18632/oncotarget.25803] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 07/08/2018] [Indexed: 12/24/2022] Open
Abstract
CDK4 is emerging as a target in KRAS-mutant non-small cell lung cancer (NSCLC). We demonstrate that KRAS-mutant NSCLC cell lines are initially sensitive to the CDK4/6 inhibitor palbociclib, but readily acquire resistance associated with increased expression of CDK6, D-type cyclins and cyclin E. Resistant cells also demonstrated increased ERK1/2 activity and sensitivity to MEK and ERK inhibitors. Moreover, MEK inhibition reduced the expression and activity of cell cycle proteins mediating palbociclib resistance. In resistant cells, ERK activated mTOR, driven in part by upstream FGFR1 signaling resulting from the extracellular secretion of FGF ligands. A genetically-engineered mouse model of KRAS-mutant NSCLC initially sensitive to palbociclib similarly developed acquired resistance with increased expression of cell cycle mediators, ERK1/2 and FGFR1. In this model, resistance was delayed with combined palbociclib and MEK inhibitor treatment. These findings implicate an FGFR1–MAP kinase–mTOR pathway resulting in increased expression of D-cyclins and CDK6 that confers palbociclib resistance and indicate that CDK4/6 inhibition acts to promote MAP kinase dependence.
Collapse
Affiliation(s)
- Eric Haines
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ting Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Perlmutter Cancer Center, New York University, Langone Medical Center, New York, New York, USA
| | - Naveen Kommajosyula
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zhao Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Grit S Herter-Sprie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,University Hospital of Cologne, Weyertal, Cologne, Germany
| | - Liam Cornell
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kwok-Kin Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Perlmutter Cancer Center, New York University, Langone Medical Center, New York, New York, USA
| | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
45
|
Fukuoka M, Yoshioka K, Hohjoh H. NF-κB activation is an early event of changes in gene regulation for acquiring drug resistance in human adenocarcinoma PC-9 cells. PLoS One 2018; 13:e0201796. [PMID: 30075033 PMCID: PMC6075786 DOI: 10.1371/journal.pone.0201796] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/23/2018] [Indexed: 11/18/2022] Open
Abstract
Gefitinib and erlotinib are epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs). Although EGFR-TKIs are effective as anti-cancer drugs, cancer cells sometimes gain tolerance to the drugs. Previous studies suggested that the fibroblast growth factor receptor (FGFR)-signaling pathway could serve as compensation for the EGFR-signaling pathway inhibited by EGFR-TKIs. Our study further suggested that FGF2, a FGFR ligand, leaked out from naïve cells killed by gefitinib could initiate the FGFR-signaling pathway in surviving cells; i.e., altruistic survival may occur in naïve cells immediately after EGFR-TKI treatment. Altruistic survival may be temporal, and cells need to change their gene regulation toward gaining resistance to EGFR-TKIs. Changes in such gene regulation after EGFR-TKI treatment are poorly understood. In this study, we examined early events of such gene regulation changes in human adenocarcinoma PC-9 cells that are capable of changing their nature from susceptibility to resistance to EFGR-TKIs. Our study indicated that activation of nuclear factor-kappa B (NF-κB) occurred in the cells immediately after EGFR-TKI treatment and also by gene silencing against oncogenic EGFR; and, MG132 treatment for inhibiting NF-κB activation affected cell viability. Taken together, our findings (including the previous study) suggest that altruistic survival and NF-κB activation might be vital for initiating the acquisition of EGFR-TKI resistance.
Collapse
Affiliation(s)
- Masashi Fukuoka
- Department of Molecular Pharmacology, National Institute of Neuroscience, NCNP, Kodaira, Tokyo, Japan
| | - Katsuji Yoshioka
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Hirohiko Hohjoh
- Department of Molecular Pharmacology, National Institute of Neuroscience, NCNP, Kodaira, Tokyo, Japan
- * E-mail:
| |
Collapse
|
46
|
Abstract
Unlike for adenocarcinomas of the lung, no molecular targeted therapies have yet been developed for squamous cell lung cancers, because targetable oncogenic aberrations are scarce in this tumor type. Recent discoveries have established that the fibroblast growth factor (FGF) signaling pathway plays a fundamental role in cancer development by supporting tumor angiogenesis and cancer cell proliferation via different mechanisms. Through comprehensive genomic studies, aberrations in the FGF pathway have been identified in various tumor types, including squamous cell lung cancer, making FGF receptor (FGFR) a potentially druggable target in this malignancy. Several multi-targeted tyrosine kinase inhibitors include FGFR in their target spectrum and a number of these compounds have been approved for clinical use in different cancers. Novel agents selectively targeting FGFRs have been developed and are currently under investigation in clinical trials, showing promising results. This article reviews FGFR aberrations and the clinical data involving selective and multikinase FGFR inhibitors in squamous cell lung cancer.
Collapse
|
47
|
Hamamoto J, Yasuda H, Nonaka Y, Fujiwara M, Nakamura Y, Soejima K, Betsuyaku T. The FGF2 aptamer inhibits the growth of FGF2-FGFR pathway driven lung cancer cells. Biochem Biophys Res Commun 2018; 503:1330-1334. [PMID: 30005872 DOI: 10.1016/j.bbrc.2018.07.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 10/28/2022]
Abstract
Cancers, including lung cancer, are a leading cause of death worldwide. To overcome this deadly disease, multiple modality inhibitors have been developed. These include cytotoxic agents, molecular targeted small molecules, such as tyrosine kinase inhibitors, and neutralizing antibodies. An aptamer is a short single-stranded nucleic acid molecule that is selected in vitro from a large random sequence library based on its high and specific affinity to a target molecule. Aptamers can be applied to therapeutics of various types of diseases, including cancer, due to their strong and specific neutralizing activities. However, the efficacy of aptamer-based therapy for cancer cells is not well characterized. In this study, we aimed to show that the FGF2 aptamer is effective for the treatment of FGF2 dependent lung cancer cells. We previously developed PC9GR lung cancer cells, whose proliferation is dependent on EGFR and FGF2-FGFR pathways in a cell autonomous manner. Using PC9GR cells, we demonstrate that the addition of the FGF2 aptamer induces more significant inhibition of PC9GR cell proliferation than does the addition of EGFR inhibitor alone. Furthermore, the addition of the FGF2 aptamer more significantly inhibits the downstream signals and induces apoptosis to a higher extent than does the addition of EGFR inhibitor alone. Our results show that the FGF2 aptamer inhibits the growth of FGF2-FGFR pathway-dependent lung cancer cells. The findings provide preclinical evidence that aptamers can be useful for cancer treatment.
Collapse
Affiliation(s)
- Junko Hamamoto
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyuki Yasuda
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Yosuke Nonaka
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | - Yoshikazu Nakamura
- Ribomic Inc., Tokyo, Japan; Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kenzo Soejima
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Betsuyaku
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
48
|
Ghedini GC, Ronca R, Presta M, Giacomini A. Future applications of FGF/FGFR inhibitors in cancer. Expert Rev Anticancer Ther 2018; 18:861-872. [PMID: 29936878 DOI: 10.1080/14737140.2018.1491795] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Deregulation of the fibroblast growth factor (FGF)/FGF receptor (FGFR) network occurs frequently in tumors due to gene amplification, activating mutations, and oncogenic fusions. Thus, the development of FGF/FGFR-targeting therapies is the focus of several basic, preclinical, and clinical studies. Areas covered: This review will recapitulate the status of current FGF/FGFR-targeted drugs. Expert commentary: Non-selective FGF/FGFR inhibitors have been approved for cancer treatment but evidence highlights various complications affecting their use in the clinical practice. It appears mandatory to identify FGF/FGFR alterations and appropriate biomarkers that may predict and monitor response to treatment, to establish the contribution of the FGF/FGFR system to the onset of mechanisms of drug resistance, and to develop effective combinations of FGF/FGFR inhibitors with other targeted therapies.
Collapse
Affiliation(s)
- Gaia Cristina Ghedini
- a Department of Molecular and Translational Medicine , University of Brescia , Brescia , Italy
| | - Roberto Ronca
- a Department of Molecular and Translational Medicine , University of Brescia , Brescia , Italy
| | - Marco Presta
- a Department of Molecular and Translational Medicine , University of Brescia , Brescia , Italy
| | - Arianna Giacomini
- a Department of Molecular and Translational Medicine , University of Brescia , Brescia , Italy
| |
Collapse
|
49
|
Ren S, Rivard CJ, Yu H, Genova C, Rozenboom L, Gao D, Hinz TK, Rikke BA, Wynes MW, Caldwell C, Agustoni F, Kenichi Suda, Jiang T, Zhou C, Heasley LE, Hirsch FR. A miRNA Panel Predicts Sensitivity of FGFR Inhibitor in Lung Cancer Cell Lines. Clin Lung Cancer 2018; 19:450-456. [PMID: 30146263 DOI: 10.1016/j.cllc.2018.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/23/2018] [Accepted: 06/17/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE To test whether a microRNA (miRNA) panel may serve as an alternative biomarker of fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitor sensitivity in lung cancer. METHODS Histologically diverse lung cancer cell lines were submitted to assays for ponatinib and AZD4547 sensitivity. miRNAs, FGFR1 messenger RNA, gene copy number, and protein expression were detected by real-time quantitative PCR, fluorescence in-situ hybridization, and immunoblotting in 34 lung cancer cell lines. RESULTS Among 34 cell lines, 14 exhibited ponatinib sensitivity and 20 exhibited AZD4547 sensitivity (drug concentration causing 50% inhibition values < 100 nmol/L). A total of 39 of the 377-miRNA set were initially identified from the 4 paired ponatinib-sensitive or -insensitive cell lines to have at least an 8-fold differential expression and then were detected in all the 34 cell lines. A predictive panel of 3 miRNAs (let-7c, miRNA155, and miRNA218) was developed that had an area under the curve (AUC) of 0.886 with a sensitivity of 71.4% and specificity of 77.3% to predict response to ponatinib. The miRNA panel performed similar to FGFR1 protein expression (AUC = 0.864) and messenger RNA expression (AUC = 0.939), and better than FGFR1 amplification (AUC = 0.696). Furthermore, we validated this panel using data for sensitivity to AZD4547 in the cell line cohort with an AUC of 0.931 and a sensitivity of 73.3% and specificity of 76.2%, respectively. CONCLUSION The developed miRNA panel (let-7c, miRNA155, and miRNA218) may be useful in predicting response to FGFR tyrosine kinase inhibitors, either ponatinib or AZD4547 in lung cancer cell lines, and warrants further validation in the clinical setting.
Collapse
Affiliation(s)
- Shengxiang Ren
- Department of Medicine, Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO; Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Christopher J Rivard
- Department of Medicine, Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Hui Yu
- Department of Medicine, Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - Leslie Rozenboom
- Department of Medicine, Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Dexiang Gao
- Department of Medicine, Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Trista K Hinz
- Department of Medicine, Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Brad A Rikke
- Department of Medicine, Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Murry W Wynes
- Department of Medicine, Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Charles Caldwell
- Department of Medicine, Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Francesco Agustoni
- Department of Medicine, Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kenichi Suda
- Department of Medicine, Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lynn E Heasley
- Department of Medicine, Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Fred R Hirsch
- Department of Medicine, Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO.
| |
Collapse
|
50
|
Stein-O’Brien G, Kagohara LT, Li S, Thakar M, Ranaweera R, Ozawa H, Cheng H, Considine M, Schmitz S, Favorov AV, Danilova LV, Califano JA, Izumchenko E, Gaykalova DA, Chung CH, Fertig EJ. Integrated time course omics analysis distinguishes immediate therapeutic response from acquired resistance. Genome Med 2018; 10:37. [PMID: 29792227 PMCID: PMC5966898 DOI: 10.1186/s13073-018-0545-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/01/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Targeted therapies specifically act by blocking the activity of proteins that are encoded by genes critical for tumorigenesis. However, most cancers acquire resistance and long-term disease remission is rarely observed. Understanding the time course of molecular changes responsible for the development of acquired resistance could enable optimization of patients' treatment options. Clinically, acquired therapeutic resistance can only be studied at a single time point in resistant tumors. METHODS To determine the dynamics of these molecular changes, we obtained high throughput omics data (RNA-sequencing and DNA methylation) weekly during the development of cetuximab resistance in a head and neck cancer in vitro model. The CoGAPS unsupervised algorithm was used to determine the dynamics of the molecular changes associated with resistance during the time course of resistance development. RESULTS CoGAPS was used to quantify the evolving transcriptional and epigenetic changes. Applying a PatternMarker statistic to the results from CoGAPS enabled novel heatmap-based visualization of the dynamics in these time course omics data. We demonstrate that transcriptional changes result from immediate therapeutic response or resistance, whereas epigenetic alterations only occur with resistance. Integrated analysis demonstrates delayed onset of changes in DNA methylation relative to transcription, suggesting that resistance is stabilized epigenetically. CONCLUSIONS Genes with epigenetic alterations associated with resistance that have concordant expression changes are hypothesized to stabilize the resistant phenotype. These genes include FGFR1, which was associated with EGFR inhibitors resistance previously. Thus, integrated omics analysis distinguishes the timing of molecular drivers of resistance. This understanding of the time course progression of molecular changes in acquired resistance is important for the development of alternative treatment strategies that would introduce appropriate selection of new drugs to treat cancer before the resistant phenotype develops.
Collapse
Affiliation(s)
- Genevieve Stein-O’Brien
- Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
| | - Luciane T. Kagohara
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
| | - Sijia Li
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
| | - Manjusha Thakar
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
| | - Ruchira Ranaweera
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL USA
| | - Hiroyuki Ozawa
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Haixia Cheng
- Department of Surgery - Otolaryngology–Head and Neck Surgery, University of Utah, |Salt Lake City, UT USA
| | - Michael Considine
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
| | - Sandra Schmitz
- Head and Neck Surgery Unit, St Luc University Hospital, Brussels, Belgium
| | - Alexander V. Favorov
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
- Laboratory of Systems Biology and Computational Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ludmila V. Danilova
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
- Laboratory of Systems Biology and Computational Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Joseph A. Califano
- Department of Surgery, UC San Diego Moores Cancer Center, La Jolla, CA USA
| | - Evgeny Izumchenko
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD USA
| | - Daria A. Gaykalova
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD USA
| | - Christine H. Chung
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL USA
| | - Elana J. Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|