1
|
Wienecke P, Minnaard AJ. Stereoselective Synthesis of ( R)-all- trans-13,14-Dihydroretinol and -Retinoic Acid. J Org Chem 2025; 90:3512-3518. [PMID: 39977339 PMCID: PMC11894646 DOI: 10.1021/acs.joc.4c03173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
Vitamin A (or all-trans-retinol) metabolites are involved in a wide range of cellular processes. However, the investigation of their biological role is hampered due to their very limited availability. Herein we report a stereoselective total synthesis of the vitamin A metabolites (R)-all-trans-13,14-dihydroretinol and -retinoic acid, applying an E-selective HWE olefination and a Ru(II) catalyzed intramolecular 7-endo-dig hydrosilylation as the key steps.
Collapse
Affiliation(s)
- Paul Wienecke
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG, Groningen, The
Netherlands
| | - Adriaan J. Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747
AG, Groningen, The
Netherlands
| |
Collapse
|
2
|
Bohn T, de Lera AR, Landrier JF, Rühl R. Carotenoid metabolites, their tissue and blood concentrations in humans and further bioactivity via retinoid receptor-mediated signalling. Nutr Res Rev 2023; 36:498-511. [PMID: 36380523 DOI: 10.1017/s095442242200021x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Many epidemiological studies have emphasised the relation between carotenoid dietary intake and their circulating concentrations and beneficial health effects, such as lower risk of cardiometabolic diseases and cancer. However, there is dispute as to whether the attributed health benefits are due to native carotenoids or whether they are instead induced by their metabolites. Several categories of metabolites have been reported, most notably involving (a) modifications at the cyclohexenyl ring or the polyene chain, such as epoxides and geometric isomers, (b) excentric cleavage metabolites with alcohol-, aldehyde- or carboxylic acid-functional groups or (c) centric cleaved metabolites with additional hydroxyl, aldehyde or carboxyl functionalities, not counting their potential phase-II glucuronidated / sulphated derivatives. Of special interest are the apo-carotenoids, which originate in the intestine and other tissues from carotenoid cleavage by β-carotene oxygenases 1/2 in a symmetrical / non-symmetrical fashion. These are more water soluble and more electrophilic and, therefore, putative candidates for interactions with transcription factors such as NF-kB and Nrf2, as well as ligands for RAR-RXR nuclear receptor interactions. In this review, we discuss in vivo detected apo-carotenoids, their reported tissue concentrations, and potential associated health effects, focusing exclusively on the human situation and based on quantified / semi-quantified carotenoid metabolites proven to be present in humans.
Collapse
Affiliation(s)
- Torsten Bohn
- Nutrition and Health Research Group, Precision Health Department, Luxembourg Institute of Health, 1 A-B, rue Thomas Edison, L-1445, Strassen, Luxembourg
| | - Angel R de Lera
- Departmento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, 36310 Vigo, Spain
| | | | - Ralph Rühl
- CISCAREX UG, Berlin, Germany
- Paprika Bioanalytics BT, Debrecen, Hungary
| |
Collapse
|
3
|
Liu R, Luo S, Zhang YS, Tsang CK. Plasma metabolomic profiling of patients with transient ischemic attack reveals positive role of neutrophils in ischemic tolerance. EBioMedicine 2023; 97:104845. [PMID: 37890369 PMCID: PMC10630611 DOI: 10.1016/j.ebiom.2023.104845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Transient ischemic attack (TIA) induces ischemic tolerance that can reduce the subsequent ischemic damage and improve prognosis of patients with stroke. However, the underlying mechanisms remain elusive. Recent advances in plasma metabolomics analysis have made it a powerful tool to investigate human pathophysiological phenotypes and mechanisms of diseases. In this study, we aimed to identify the bioactive metabolites from the plasma of patients with TIA for determination of their prophylactic and therapeutic effects on protection against cerebral ischemic stroke, and the mechanism of TIA-induced ischemic tolerance against subsequent stroke. METHODS Metabolomic profiling using liquid chromatography-mass spectrometry was performed to identify the TIA-induced differential bioactive metabolites in the plasma samples of 20 patients at day 1 (time for basal metabolites) and day 7 (time for established chronic ischemic tolerance-associated metabolites) after onset of TIA. Mouse middle cerebral artery occlusion (MCAO)-induced stroke model was used to verify their prophylactic and therapeutic potentials. Transcriptomics changes in circulating neutrophils of patients with TIA were determined by RNA-sequencing. Multivariate statistics and integrative analysis of metabolomics and transcriptomics were performed to elucidate the potential mechanism of TIA-induced ischemic tolerance. FINDINGS Plasma metabolomics analysis identified five differentially upregulated metabolites associated with potentially TIA-induced ischemic tolerance, namely all-trans 13,14 dihydroretinol (atDR), 20-carboxyleukotriene B4, prostaglandin B2, cortisol and 9-KODE. They were associated with the metabolic pathways of retinol, arachidonic acid, and neuroactive ligand-receptor interaction. Prophylactic treatment of MCAO mice with these five metabolites significantly improved neurological functions. Additionally, post-stroke treatment with atDR or 9-KODE significantly reduced the cerebral infarct size and enhanced sensorimotor functions, demonstrating the therapeutic potential of these bioactive metabolites. Mechanistically, we found in patients with TIA that these metabolites were positively correlated with circulating neutrophil counts. Integrative analysis of plasma metabolomics and neutrophil transcriptomics further revealed that TIA-induced metabolites are significantly correlated with specific gene expression in circulating neutrophils which showed prominent enrichment in FoxO signaling pathway and upregulation of the anti-inflammatory cytokine IL-10. Finally, we demonstrated that the protective effect of atDR-pretreatment on MCAO mice was abolished when circulating neutrophils were depleted. INTERPRETATION TIA-induced potential ischemic tolerance is associated with upregulation of plasma bioactive metabolites which can protect against cerebral ischemic damage and improve neurological functions through a positive role of circulating neutrophils. FUNDING National Natural Science Foundation of China (81974210), Science and Technology Planning Project of Guangdong Province, China (2020A0505100045), Natural Science Foundation of Guangdong Province (2019A1515010671), Science and Technology Program of Guangzhou, China (2023A03J0577), and Natural Science Foundation of Jiangxi, China(20224BAB216043).
Collapse
Affiliation(s)
- Rongrong Liu
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Siwei Luo
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China
| | - Yu-Sheng Zhang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Neurology, The First Clinical Medical School of Jinan University, Guangzhou, China.
| | - Chi Kwan Tsang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
4
|
Yadav AS, Isoherranen N, Rubinow KB. Vitamin A homeostasis and cardiometabolic disease in humans: lost in translation? J Mol Endocrinol 2022; 69:R95-R108. [PMID: 35900842 PMCID: PMC9534526 DOI: 10.1530/jme-22-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
Vitamin A (retinol) is an essential, fat-soluble vitamin that plays critical roles in embryonic development, vision, immunity, and reproduction. Severe vitamin A deficiency results in profound embryonic dysgenesis, blindness, and infertility. The roles of bioactive vitamin A metabolites in regulating cell proliferation, cellular differentiation, and immune cell function form the basis of their clinical use in the treatment of dermatologic conditions and hematologic malignancies. Increasingly, vitamin A also has been recognized to play important roles in cardiometabolic health, including the regulation of adipogenesis, energy partitioning, and lipoprotein metabolism. While these roles are strongly supported by animal and in vitro studies, they remain poorly understood in human physiology and disease. This review briefly introduces vitamin A biology and presents the key preclinical data that have generated interest in vitamin A as a mediator of cardiometabolic health. The review also summarizes clinical studies performed to date, highlighting the limitations of many of these studies and the ongoing controversies in the field. Finally, additional perspectives are suggested that may help position vitamin A metabolism within a broader biological context and thereby contribute to enhanced understanding of vitamin A's complex roles in clinical cardiometabolic disease.
Collapse
Affiliation(s)
- Aprajita S Yadav
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Katya B Rubinow
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Fige É, Sarang Z, Sós L, Szondy Z. Retinoids Promote Mouse Bone Marrow-Derived Macrophage Differentiation and Efferocytosis via Upregulating Bone Morphogenetic Protein-2 and Smad3. Cells 2022; 11:cells11182928. [PMID: 36139503 PMCID: PMC9497139 DOI: 10.3390/cells11182928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 12/19/2022] Open
Abstract
Clearance of apoptotic cells by bone marrow-derived macrophages differentiated from monocytes plays a central role in the resolution of inflammation, as the conversion of pro-inflammatory M1 macrophages to M2 macrophages that mediate the resolution process occurs during efferocytosis. Thus, proper efferocytosis is a prerequisite for proper resolution of inflammation, and failure in efferocytosis is associated with the development of chronic inflammatory diseases. Previous studies from our laboratory have shown that (13R)-all-trans-13,14-dihydroretinol (DHR), the product of retinol saturase, acting from day 4 of monocyte differentiation enhances the efferocytosis capacity of the resulted macrophages. Loss of retinol saturase in mice leads to impaired efferocytosis, and to development of autoimmunity. In the present paper, we report that in differentiating monocytes DHR, retinol, and all-trans retinoic acid all act directly on retinoic acid receptors and enhance the clearance of apoptotic cells by upregulating the expression of several efferocytosis-related genes. The effect of retinoids seems to be mediated by bone morphogenetic protein (BMP)-2, and the Smad3 transcription factor. In addition, retinoids also upregulate the expression of the vitamin D receptor and that of vascular endothelial growth factor A, indicating that altogether retinoids promote the generation of a pro-reparative M2 macrophage population during monocyte differentiation.
Collapse
Affiliation(s)
- Éva Fige
- Doctoral School of Dental Sciences, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsolt Sarang
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - László Sós
- Doctoral School of Dental Sciences, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsuzsa Szondy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Section of Dental Biochemistry, Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: ; Tel.: +36-52416432
| |
Collapse
|
6
|
Abstract
Carotenoids constitute an essential dietary component of animals and other non-carotenogenic species which use these pigments in both their modified and unmodified forms. Animals utilize uncleaved carotenoids to mitigate light damage and oxidative stress and to signal fitness and health. Carotenoids also serve as precursors of apocarotenoids including retinol, and its retinoid metabolites, which carry out essential functions in animals by forming the visual chromophore 11-cis-retinaldehyde. Retinoids, such as all-trans-retinoic acid, can also act as ligands of nuclear hormone receptors. The fact that enzymes and biochemical pathways responsible for the metabolism of carotenoids in animals bear resemblance to the ones in plants and other carotenogenic species suggests an evolutionary relationship. We will explore some of the modes of transmission of carotenoid genes from carotenogenic species to metazoans. This apparent relationship has been successfully exploited in the past to identify and characterize new carotenoid and retinoid modifying enzymes. We will review approaches used to identify putative animal carotenoid enzymes, and we will describe methods used to functionally validate and analyze the biochemistry of carotenoid modifying enzymes encoded by animals.
Collapse
Affiliation(s)
- Alexander R Moise
- Northern Ontario School of Medicine, Sudbury, ON, Canada; Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada.
| | - Sepalika Bandara
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
7
|
Regenerating Skeletal Muscle Compensates for the Impaired Macrophage Functions Leading to Normal Muscle Repair in Retinol Saturase Null Mice. Cells 2022; 11:cells11081333. [PMID: 35456012 PMCID: PMC9028072 DOI: 10.3390/cells11081333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Skeletal muscle repair is initiated by local inflammation and involves the engulfment of dead cells (efferocytosis) by infiltrating macrophages at the injury site. Macrophages orchestrate the whole repair program, and efferocytosis is a key event not only for cell clearance but also for triggering the timed polarization of the inflammatory phenotype of macrophages into the healing one. While pro-inflammatory cytokines produced by the inflammatory macrophages induce satellite cell proliferation and differentiation into myoblasts, healing macrophages initiate the resolution of inflammation, angiogenesis, and extracellular matrix formation and drive myoblast fusion and myotube growth. Therefore, improper efferocytosis results in impaired muscle repair. Retinol saturase (RetSat) initiates the formation of various dihydroretinoids, a group of vitamin A derivatives that regulate transcription by activating retinoid receptors. Previous studies from our laboratory have shown that RetSat-null macrophages produce less milk fat globule-epidermal growth factor-factor-8 (MFG-E8), lack neuropeptide Y expression, and are characterized by impaired efferocytosis. Here, we investigated skeletal muscle repair in the tibialis anterior muscle of RetSat-null mice following cardiotoxin injury. Our data presented here demonstrate that, unexpectedly, several cell types participating in skeletal muscle regeneration compensate for the impaired macrophage functions, resulting in normal muscle repair in the RetSat-null mice.
Collapse
|
8
|
O’Connor C, Varshosaz P, Moise AR. Mechanisms of Feedback Regulation of Vitamin A Metabolism. Nutrients 2022; 14:1312. [PMID: 35334970 PMCID: PMC8950952 DOI: 10.3390/nu14061312] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Vitamin A is an essential nutrient required throughout life. Through its various metabolites, vitamin A sustains fetal development, immunity, vision, and the maintenance, regulation, and repair of adult tissues. Abnormal tissue levels of the vitamin A metabolite, retinoic acid, can result in detrimental effects which can include congenital defects, immune deficiencies, proliferative defects, and toxicity. For this reason, intricate feedback mechanisms have evolved to allow tissues to generate appropriate levels of active retinoid metabolites despite variations in the level and format, or in the absorption and conversion efficiency of dietary vitamin A precursors. Here, we review basic mechanisms that govern vitamin A signaling and metabolism, and we focus on retinoic acid-controlled feedback mechanisms that contribute to vitamin A homeostasis. Several approaches to investigate mechanistic details of the vitamin A homeostatic regulation using genomic, gene editing, and chromatin capture technologies are also discussed.
Collapse
Affiliation(s)
- Catherine O’Connor
- MD Program, Northern Ontario School of Medicine, 317-MSE Bldg., 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada;
| | - Parisa Varshosaz
- Biology and Biomolecular Sciences Ph.D. Program, Northern Ontario School of Medicine, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, 317-MSE Bldg., 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
9
|
A single mutation underlying phenotypic convergence for hypoxia adaptation on the Qinghai-Tibetan Plateau. Cell Res 2021; 31:1032-1035. [PMID: 34099886 PMCID: PMC8410794 DOI: 10.1038/s41422-021-00517-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
|
10
|
Abstract
Dietary intake and tissue levels of carotenoids have been associated with a reduced risk of several chronic diseases, including cardiovascular diseases, type 2 diabetes, obesity, brain-related diseases and some types of cancer. However, intervention trials with isolated carotenoid supplements have mostly failed to confirm the postulated health benefits. It has thereby been speculated that dosing, matrix and synergistic effects, as well as underlying health and the individual nutritional status plus genetic background do play a role. It appears that our knowledge on carotenoid-mediated health benefits may still be incomplete, as the underlying mechanisms of action are poorly understood in relation to human relevance. Antioxidant mechanisms - direct or via transcription factors such as NRF2 and NF-κB - and activation of nuclear hormone receptor pathways such as of RAR, RXR or also PPARs, via carotenoid metabolites, are the basic principles which we try to connect with carotenoid-transmitted health benefits as exemplified with described common diseases including obesity/diabetes and cancer. Depending on the targeted diseases, single or multiple mechanisms of actions may play a role. In this review and position paper, we try to highlight our present knowledge on carotenoid metabolism and mechanisms translatable into health benefits related to several chronic diseases.
Collapse
|
11
|
Shannon SR, Yu J, Defnet AE, Bongfeldt D, Moise AR, Kane MA, Trainor PA. Identifying vitamin A signaling by visualizing gene and protein activity, and by quantification of vitamin A metabolites. Methods Enzymol 2020; 637:367-418. [PMID: 32359653 DOI: 10.1016/bs.mie.2020.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vitamin A (retinol) is an essential nutrient for embryonic development and adult homeostasis. Signaling by vitamin A is carried out by its active metabolite, retinoic acid (RA), following a two-step conversion. RA is a small, lipophilic molecule that can diffuse from its site of synthesis to neighboring RA-responsive cells where it binds retinoic acid receptors within RA response elements of target genes. It is critical that both vitamin A and RA are maintained within a tight physiological range to protect against developmental disorders and disease. Therefore, a series of compensatory mechanisms exist to ensure appropriate levels of each. This strict regulation is provided by a number synthesizing and metabolizing enzymes that facilitate the precise spatiotemporal control of vitamin A metabolism, and RA synthesis and signaling. In this chapter we describe protocols that (1) biochemically isolate and quantify vitamin A and its metabolites and (2) visualize the spatiotemporal activity of genes and proteins involved in the signaling pathway.
Collapse
Affiliation(s)
- Stephen R Shannon
- Stowers Institute for Medical Research, Kansas City, MO, United States; University of Kansas Medical Center, Department of Anatomy and Cell Biology, Kansas City, KS, United States
| | - Jianshi Yu
- University of Maryland Baltimore, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, United States
| | - Amy E Defnet
- University of Maryland Baltimore, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, United States
| | - Danika Bongfeldt
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON, Canada; Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| | - Alexander R Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON, Canada; Departments of Chemistry and Biochemistry, and Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada
| | - Maureen A Kane
- University of Maryland Baltimore, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD, United States
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, United States; University of Kansas Medical Center, Department of Anatomy and Cell Biology, Kansas City, KS, United States.
| |
Collapse
|
12
|
Abstract
Vitamin A and derivatives, the natural retinoids, underpin signaling pathways of cellular differentiation, and are key chromophores in vision. These functions depend on transfer across membranes, and carrier proteins to shuttle retinoids to specific cell compartments. Natural retinoids, ultimately derived from plant carotenoids by metabolism to all-trans retinol, are lipophilic and consist of a cyclohexenyl (β-ionone) moiety linked to a polyene chain. This structure constrains the orientation of retinoids within lipid membranes. Cis-trans isomerization at double bonds of the polyene chain and s-cis/s-trans rotational isomerization at single bonds define the functional dichotomy of retinoids (signaling/vision) and specificities of interactions with specific carrier proteins and receptors. Metabolism of all-trans retinol to 11-cis retinal, transfer to photoreceptors, and removal and recycling of all-trans retinal generated by photoreceptor irradiation, is the key process underlying vision. All-trans retinol transferred into cells is metabolized to all-trans retinoic acid and shuttled to the cell nucleus to regulate gene expression controlling organ, tissue and cell differentiation, and cellular homeostasis. Research methods need to address the potential of photoisomerization in vitro to confound research results, and data should be interpreted in the context of membrane-association properties of retinoids and physiological concentrations in vivo. Despite a century of research, there are many fundamental questions of retinoid cellular biochemistry and molecular biology still to be answered. Computational modeling techniques will have an important role for understanding the nuances of vitamin A signaling and function.
Collapse
Affiliation(s)
- Chris P F Redfern
- School of Natural & Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
13
|
|
14
|
Retinol Saturase Knock-Out Mice are Characterized by Impaired Clearance of Apoptotic Cells and Develop Mild Autoimmunity. Biomolecules 2019; 9:biom9110737. [PMID: 31766264 PMCID: PMC6920856 DOI: 10.3390/biom9110737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 02/06/2023] Open
Abstract
Apoptosis and the proper clearance of apoptotic cells play a central role in maintaining tissue homeostasis. Previous work in our laboratory has shown that when a high number of cells enters apoptosis in a tissue, the macrophages that engulf them produce retinoids to enhance their own phagocytic capacity by upregulating several phagocytic genes. Our data indicated that these retinoids might be dihydroretinoids, which are products of the retinol saturase (RetSat) pathway. In the present study, the efferocytosis of RetSat-null mice was investigated. We show that among the retinoid-sensitive phagocytic genes, only transglutaminase 2 responded in macrophages and in differentiating monocytes to dihydroretinol. Administration of dihydroretinol did not affect the expression of the tested genes differently between differentiating wild type and RetSat-null monocytes, despite the fact that the expression of RetSat was induced. However, in the absence of RetSat, the expression of numerous differentiation-related genes was altered. Among these, impaired production of MFG-E8, a protein that bridges apoptotic cells to the αvβ3/β5 integrin receptors of macrophages, resulted in impaired efferocytosis, very likely causing the development of mild autoimmunity in aged female mice. Our data indicate that RetSat affects monocyte/macrophage differentiation independently of its capability to produce dihydroretinol at this stage.
Collapse
|
15
|
Rühl R, Krezel W, de Lera AR. 9-Cis-13,14-dihydroretinoic acid, a new endogenous mammalian ligand of retinoid X receptor and the active ligand of a potential new vitamin A category: vitamin A5. Nutr Rev 2019; 76:929-941. [PMID: 30358857 DOI: 10.1093/nutrit/nuy057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The identity of the endogenous RXR ligand has not been conclusively determined, even though several compounds of natural origin, including retinoids and fatty acids, have been postulated to fulfill this role. Filling this gap, 9-cis-13,14-dihydroretinoic acid (9CDHRA) was identified as an endogenous RXR ligand in mice. This review examines the physiological relevance of various potential endogenous RXR ligands, especially 9CDHRA. The elusive steps in the metabolic synthesis of 9CDHRA, as well as the nutritional/nutrimetabolic origin of 9CDHRA, are also explored, along with the suitability of the ligand to be the representative member of a novel vitamin A class (vitamin A5).
Collapse
Affiliation(s)
- Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Inserm, Centre National Recherche Scientifique (CNRS), Université de Strasbourg, Illkirch, France.,Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultad de Química, Centro De Investigaciones Biomédicasand Instituto de Investigación Biomédica de Vigo, Universidade de Vigo, Campus Lagoas-Marcosende, Vigo, Spain
| |
Collapse
|
16
|
Rivas A, Alvarez R, de Lera AR. Stereocontrolled synthesis and configurational assignment of (R)-all-trans-11,12-dihydro-3-hydroxyretinol. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.150972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Abstract
Retinoid X receptors (RXRs) are promiscuous partners of heterodimeric associations with other members of the Nuclear Receptor (NR) superfamily. RXR ligands ("rexinoids") either transcriptionally activate the "permissive" subclass of heterodimers or synergize with partner ligands in the "nonpermissive" subclass of heterodimers. The rationale for rexinoid design with a wide structural diversity going from the structures of existing complexes with RXR determined by X-Ray, to natural products and other ligands discovered by high-throughput screening (HTS), mere serendipity, and rationally designed based on Molecular Modeling, will be described. Included is the new generation of ligands that modulate the structure of specific receptor surfaces that serve to communicate with other regulators. The panel of the known RXR agonists, partial (ant)agonists, and/or heterodimer-selective rexinoids require the exploration of their therapeutic potential in order to overcome some of the current limitations of rexinoids in therapy.
Collapse
Affiliation(s)
- Claudio Martínez
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, Vigo, Spain
| | - José A Souto
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, Vigo, Spain
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, Vigo, Spain.
| |
Collapse
|
18
|
Zhou JN, Fang H. Transcriptional regulation of corticotropin-releasing hormone gene in stress response. IBRO Rep 2018; 5:137-146. [PMID: 30591954 PMCID: PMC6303479 DOI: 10.1016/j.ibror.2018.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 08/22/2018] [Indexed: 01/29/2023] Open
Abstract
As a central player of the hypothalamic-pituitary-adrenal (HPA) axis, the corticotropin -releasing hormone (CRH) neurons in the hypothalamic paraventricular nucleus (PVN) determine the state of HPA axis and play a key role in stress response. Evidence supports that during stress response the transcription and expression of CRH was finely tuned, which involved cis-element-transcriptional factor (TF) interactions and epigenetic mechanisms. Here we reviewed recent progress in CRH transcription regulation from DNA methylation to classic TFs regulation, in which a number of paired receptors were involved. The imbalance of multiple paired receptors in regulating the activity of CRH neurons indicates a possible molecular network mechanisms underlying depression etiology and directs novel therapeutic strategies of depression in the future.
Collapse
Affiliation(s)
- Jiang-Ning Zhou
- Corresponding author at: School of Life Science, University of Science and Technology of China, Hefei, 230027, Anhui, PR China.
| | | |
Collapse
|
19
|
Retinol saturase modulates lipid metabolism and the production of reactive oxygen species. Arch Biochem Biophys 2017; 633:93-102. [PMID: 28927883 DOI: 10.1016/j.abb.2017.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/06/2017] [Accepted: 09/13/2017] [Indexed: 11/20/2022]
Abstract
Retinol saturase (RetSat) catalyzes the saturation of double bonds of all-trans-retinol leading to the production of dihydroretinoid metabolites. Beside its role in retinoid metabolism, there is evidence that RetSat modulates the cellular response to oxidative stress and plays critical roles in adipogenesis and the accumulation of lipids. Here, we explore the relationship between RetSat, lipid metabolism and oxidative stress using in vitro and in vivo models with altered expression of RetSat. Our results reveal that RetSat is a potent modulator of the cellular response to oxidative stress and the generation of reactive oxygen species (ROS). The levels of reactive aldehydes products of lipid peroxidation, as measured based on thiobarbituric acid reactivity, are increased in RetSat overexpressing cells and, conversely, reduced in cells and tissues with reduced or absent expression of RetSat compared to controls. Despite increased weight gain, neutral lipid accumulation and alterations in hepatic lipid composition, RetSat-/- mice exhibit normal responses to insulin. In conclusion, our findings further expand upon the role of RetSat in oxidative stress and lipid metabolism and could provide insight in the significance of alterations of RetSat expression as observed in metabolic disorders.
Collapse
|
20
|
Retinol saturase coordinates liver metabolism by regulating ChREBP activity. Nat Commun 2017; 8:384. [PMID: 28855500 PMCID: PMC5577314 DOI: 10.1038/s41467-017-00430-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 06/28/2017] [Indexed: 11/09/2022] Open
Abstract
The liver integrates multiple metabolic pathways to warrant systemic energy homeostasis. An excessive lipogenic flux due to chronic dietary stimulation contributes to the development of hepatic steatosis, dyslipidemia and hyperglycemia. Here we show that the oxidoreductase retinol saturase (RetSat) is involved in the development of fatty liver. Hepatic RetSat expression correlates with steatosis and serum triglycerides (TGs) in humans. Liver-specific depletion of RetSat in dietary obese mice lowers hepatic and circulating TGs and normalizes hyperglycemia. Mechanistically, RetSat depletion reduces the activity of carbohydrate response element binding protein (ChREBP), a cellular hexose-phosphate sensor and inducer of lipogenesis. Defects upon RetSat depletion are rescued by ectopic expression of ChREBP but not by its putative enzymatic product 13,14-dihydroretinol, suggesting that RetSat affects hepatic glucose sensing independent of retinol conversion. Thus, RetSat is a critical regulator of liver metabolism functioning upstream of ChREBP. Pharmacological inhibition of liver RetSat may represent a therapeutic approach for steatosis.Fatty liver is one of the major features of metabolic syndrome and its development is associated with deregulation of systemic lipid and glucose homeostasis. Here Heidenreich et al. show that retinol saturase is implicated in hepatic lipid metabolism by regulating the activity of the transcription factor ChREBP.
Collapse
|
21
|
Bohn T, Desmarchelier C, Dragsted LO, Nielsen CS, Stahl W, Rühl R, Keijer J, Borel P. Host-related factors explaining interindividual variability of carotenoid bioavailability and tissue concentrations in humans. Mol Nutr Food Res 2017; 61:1600685. [PMID: 28101967 PMCID: PMC5516247 DOI: 10.1002/mnfr.201600685] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/19/2016] [Accepted: 01/04/2017] [Indexed: 12/14/2022]
Abstract
Carotenoid dietary intake and their endogenous levels have been associated with a decreased risk of several chronic diseases. There are indications that carotenoid bioavailability depends, in addition to the food matrix, on host factors. These include diseases (e.g. colitis), life-style habits (e.g. smoking), gender and age, as well as genetic variations including single nucleotide polymorphisms that govern carotenoid metabolism. These are expected to explain interindividual differences that contribute to carotenoid uptake, distribution, metabolism and excretion, and therefore possibly also their association with disease risk. For instance, digestion enzymes fostering micellization (PNLIP, CES), expression of uptake/efflux transporters (SR-BI, CD36, NPC1L1), cleavage enzymes (BCO1/2), intracellular transporters (FABP2), secretion into chylomicrons (APOB, MTTP), carotenoid metabolism in the blood and liver (LPL, APO C/E, LDLR), and distribution to target tissues such as adipose tissue or macula (GSTP1, StARD3) depend on the activity of these proteins. In addition, human microbiota, e.g. via altering bile-acid concentrations, may play a role in carotenoid bioavailability. In order to comprehend individual, variable responses to these compounds, an improved knowledge on intra-/interindividual factors determining carotenoid bioavailability, including tissue distribution, is required. Here, we highlight the current knowledge on factors that may explain such intra-/interindividual differences.
Collapse
Affiliation(s)
- Torsten Bohn
- Luxembourg Institute of HealthStrassenLuxembourg
| | | | - Lars O. Dragsted
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenFrederiksberg CDenmark
| | - Charlotte S. Nielsen
- Department of Nutrition, Exercise and SportsUniversity of CopenhagenFrederiksberg CDenmark
| | - Wilhelm Stahl
- Institute of Biochemistry and Molecular Biology IHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Ralph Rühl
- Paprika Bioanalytics BTDebrecenHungary
- MTA‐DE Public Health Research Group of the Hungarian Academy of SciencesFaculty of Public HealthUniversity of DebrecenDebrecenHungary
| | - Jaap Keijer
- Human and Animal PhysiologyWageningen UniversityWageningenThe Netherlands
| | - Patrick Borel
- NORT, Aix‐Marseille Université, INRAINSERMMarseilleFrance
| |
Collapse
|
22
|
Menéndez-Gutiérrez MP, Ricote M. The multi-faceted role of retinoid X receptor in bone remodeling. Cell Mol Life Sci 2017; 74:2135-2149. [PMID: 28105491 PMCID: PMC11107715 DOI: 10.1007/s00018-017-2458-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/20/2016] [Accepted: 01/04/2017] [Indexed: 02/07/2023]
Abstract
Retinoid X receptors (RXRs) form a unique subclass within the nuclear receptor (NR) superfamily of ligand-dependent transcription factors. RXRs are obligatory partners for a number of other NRs, placing RXRs in a coordinating role at the crossroads of multiple signaling pathways. In addition, RXRs can function as self-sufficient homodimers. Recent advances have revealed RXRs as novel regulators of osteoclastogenesis and bone remodeling. This review outlines the versatility of RXR action in the control of transcription of bone-forming osteoblasts and bone-resorbing osteoclasts, both through heterodimerization with other NRs and through RXR homodimerization. RXR signaling is currently a major therapeutic target and, therefore, knowledge of how RXR signaling affects bone remodeling creates enormous potential for the translation of basic research findings into successful clinical therapies to increase bone mass and improve bone quality.
Collapse
Affiliation(s)
- María P Menéndez-Gutiérrez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Mercedes Ricote
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
23
|
Vaz B, Alvarez R, de Lera AR. Stereocontrolled synthesis of ( S )-9- cis - and ( S )-11- cis -13,14-dihydroretinoic acid. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
de Lera ÁR, Krezel W, Rühl R. An Endogenous Mammalian Retinoid X Receptor Ligand, At Last! ChemMedChem 2016; 11:1027-37. [PMID: 27151148 DOI: 10.1002/cmdc.201600105] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/15/2016] [Indexed: 12/27/2022]
Abstract
9-cis-Retinoic acid was identified and claimed to be the endogenous ligand of the retinoid X receptors (RXRs) in 1992. Since then, the endogenous presence of this compound has never been rigorously confirmed. Instead, concerns have been raised by other groups that have reported that 9-cis-retinoic acid is undetectable or that its presence occurs at very low levels. Furthermore, these low levels could not satisfactorily explain the physiological activation of RXR. Alternative ligands, among them various lipids, have also been identified, but also did not fulfill criteria for rigorous endogenous relevance, and their consideration as bona fide endogenous mammalian RXR ligand has likewise been questioned. Recently, novel studies claim that the saturated analogue 9-cis-13,14-dihydroretinoic acid functions as an endogenous physiologically relevant mammalian RXR ligand.
Collapse
Affiliation(s)
- Ángel R de Lera
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, Campus As Lagoas-Marcosende, 36310, Vigo, Spain.
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut de la Santé et de la Recherche Médicale, U964, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, 67404, Illkirch, France
| | - Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary.,MTA-DE, Public Health Research Group of the Hungarian Academy of Sciences, Faculty of Public Health, University of Debrecen, Hungary
| |
Collapse
|
25
|
Abstract
Spaceflight affects numerous organ systems in the body, leading to metabolic dysfunction that may have long-term consequences. Microgravity-induced alterations in liver metabolism, particularly with respect to lipids, remain largely unexplored. Here we utilize a novel systems biology approach, combining metabolomics and transcriptomics with advanced Raman microscopy, to investigate altered hepatic lipid metabolism in mice following short duration spaceflight. Mice flown aboard Space Transportation System -135, the last Shuttle mission, lose weight but redistribute lipids, particularly to the liver. Intriguingly, spaceflight mice lose retinol from lipid droplets. Both mRNA and metabolite changes suggest the retinol loss is linked to activation of PPARα-mediated pathways and potentially to hepatic stellate cell activation, both of which may be coincident with increased bile acids and early signs of liver injury. Although the 13-day flight duration is too short for frank fibrosis to develop, the retinol loss plus changes in markers of extracellular matrix remodeling raise the concern that longer duration exposure to the space environment may result in progressive liver damage, increasing the risk for nonalcoholic fatty liver disease.
Collapse
|
26
|
Qi CC, Zhang Z, Fang H, Liu J, Zhou N, Ge JF, Chen FH, Xiang CB, Zhou JN. Antidepressant effects of abscisic acid mediated by the downregulation of corticotrophin-releasing hormone gene expression in rats. Int J Neuropsychopharmacol 2014; 18:pyu006. [PMID: 25552429 PMCID: PMC4360223 DOI: 10.1093/ijnp/pyu006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Corticotrophin-releasing hormone (CRH) is considered to be the central driving force of the hypothalamic-pituitary-adrenal axis, which plays a key role in the stress response and depression. Clinical reports have suggested that excess retinoic acid (RA) is associated with depression. Abscisic acid (ABA) and RA are direct derivatives of carotenoids and share a similar molecular structure. Here, we proposed that ABA also plays a role in the regulation of CRH activity sharing with the RA signaling pathway. METHODS [3H]-ABA radioimmunoassay demonstrated that the hypothalamus of rats shows the highest concentration of ABA compared with the cortex and the hippocampus under basal conditions. RESULTS Under acute stress, ABA concentrations increased in the serum, but decreased in the hypothalamus and were accompanied by increased corticosterone in the serum and c-fos expression in the hypothalamus. Moreover, chronic ABA administration increased sucrose intake and decreased the mRNA expression of CRH and retinoic acid receptor alpha (RARα) in the hypothalamus of rats. Furthermore, ABA improved the symptom of chronic unpredictable mild stress in model rats, as indicated by increased sucrose intake, increased swimming in the forced swim test, and reduced mRNA expression of CRH and RARα in the rat hypothalamus. In vitro, CRH expression decreased after ABA treatment across different neural cells. In BE(2)-C cells, ABA inhibited a series of retinoid receptor expression, including RARα, a receptor that could facilitate CRH expression directly. CONCLUSIONS These results suggest that ABA may play a role in the pathogenesis of depression by downregulating CRH mRNA expression shared with the RA signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jiang-Ning Zhou
- CAS Key Laboratory of Brain Function and Diseases, Schol of Life Science, University of Science and Technology of China, Anhui, China (Drs Qi, Zhang, Fang, Liu, Ge, Chen, and J-N Zhou); Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China (Dr N Zhou); Plant Molecular Biology Laboratory, School of Life Science, University of Science and Technology of China, Anhui, China (Dr Xiang).
| |
Collapse
|
27
|
DiSilvestro D, Petrosino J, Aldoori A, Melgar-Bermudez E, Wells A, Ziouzenkova O. Enzymatic intracrine regulation of white adipose tissue. Horm Mol Biol Clin Investig 2014; 19:39-55. [PMID: 25390015 DOI: 10.1515/hmbci-2014-0019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 05/28/2014] [Indexed: 11/15/2022]
Abstract
Abdominal fat formation has become a permanent risk factor for metabolic syndrome and various cancers in one-third of the world's population of obese and even lean patients. Formation of abdominal fat involves additional mechanisms beyond an imbalance in energy intake and expenditure, which explains systemic obesity. In this review, we briefly summarized autonomous regulatory circuits that locally produce hormones from inactive precursors or nutrients for intra-/auto-/paracrine signaling in white adipose depots. Enzymatic pathways activating steroid and thyroid hormones in adipose depots were compared with enzymatic production of retinoic acid from vitamin A. We discussed the role of intracrine circuits in fat-depot functions and strategies to reduce abdominal adiposity through thermogenic adipocytes with interrupted generation of retinoic acid.
Collapse
|
28
|
Sarang Z, Joós G, Garabuczi É, Rühl R, Gregory CD, Szondy Z. Macrophages engulfing apoptotic cells produce nonclassical retinoids to enhance their phagocytic capacity. THE JOURNAL OF IMMUNOLOGY 2014; 192:5730-8. [PMID: 24850721 DOI: 10.4049/jimmunol.1400284] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous work in our laboratory has shown that transglutaminase 2 (TG2) acting as a coreceptor for integrin β3 is required for proper phagocytosis of apoptotic cells. In the absence of TG2, systemic lupus erythematosus-like autoimmunity develops in mice, similarly to other mice characterized by a deficiency in the clearance of apoptotic cells. In this study, we demonstrate that increasing TG2 expression alone in wild-type macrophages is not sufficient to enhance engulfment. However, during engulfment, the lipid content of the apoptotic cells triggers the lipid-sensing receptor liver X receptor (LXR), which in response upregulates the expression of the phagocytic receptor Mer tyrosine kinase and the phagocytosis-related ABCA1, and that of retinaldehyde dehydrogenases leading to the synthesis of a nonclassical retinoid. Based on our retinoid analysis, this compound might be a dihydro-retinoic acid derivative. The novel retinoid then contributes to the upregulation of further phagocytic receptors including TG2 by ligating retinoic acid receptors. Inhibition of retinoid synthesis prevents the enhanced phagocytic uptake induced by LXR ligation. Our data indicate that stimulation of LXR enhances the engulfment of apoptotic cells via regulating directly and indirectly the expression of a range of phagocytosis-related molecules, and its signaling pathway involves the synthesis of a nonclassical retinoid. We propose that retinoids could be used for enhancing the phagocytic capacity of macrophages in diseases such as systemic lupus erythematosus, where impaired phagocytosis of apoptotic cells plays a role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Zsolt Sarang
- Dental Biochemistry Section, Research Center of Molecular Medicine, University of Debrecen, Debrecen H-4012, Hungary
| | - Gergely Joós
- Dental Biochemistry Section, Research Center of Molecular Medicine, University of Debrecen, Debrecen H-4012, Hungary
| | - Éva Garabuczi
- Dental Biochemistry Section, Research Center of Molecular Medicine, University of Debrecen, Debrecen H-4012, Hungary
| | - Ralph Rühl
- Department of Biochemistry and Molecular Biology, Research Center of Molecular Medicine, University of Debrecen, Debrecen, H-4012 Hungary; and
| | - Christopher D Gregory
- Medical Research Council, Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Zsuzsa Szondy
- Dental Biochemistry Section, Research Center of Molecular Medicine, University of Debrecen, Debrecen H-4012, Hungary;
| |
Collapse
|
29
|
Shiizaki K, Yoshikawa T, Takada E, Hirose S, Ito-Harashima S, Kawanishi M, Yagi T. Development of yeast reporter assay for screening specific ligands of retinoic acid and retinoid X receptor subtypes. J Pharmacol Toxicol Methods 2014; 69:245-52. [PMID: 24530888 DOI: 10.1016/j.vascn.2014.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 01/28/2014] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Retinoic acids are essential for embryonic development, tissue organization, and homeostasis and act via retinoic acid receptors (RARs) that form heterodimers with retinoid X receptors (RXRs). Human RARs and RXRs include the three subtypes α, β, and γ, which have varying distributions and physiological functions among human tissues. Recent reports show that subtype-specific binding of several chemicals to RARs or RXRs may lead to endocrine disruption. To evaluate these ligand-like chemicals, convenient assay systems for each receptor subtype are required. METHODS We developed reporter assay yeasts to screen ligands for RXR subtype receptor homodimers. To screen RAR ligands, yeasts were engineered to express RAR subtypes with defective RXRα, which fails to bind to coactivators because of its shortened c-terminus. RESULTS These assay yeasts were validated using known RXR- and RAR-specific ligands and subtype-specific responses were clearly shown. Subtype-specific ligand activities of the suspected chemical RAR or RXR ligands o-t-butylphenol, triphenyltin chloride, tributyltin chloride, and 4-nonylphenol were determined. DISCUSSION The present assay yeasts may be valuable tools for subtype-specific assessments of unidentified environmental ligand chemicals and receptor-specific pharmaceuticals.
Collapse
Affiliation(s)
- Kazuhiro Shiizaki
- Department of Biology, Graduate School of Science, Osaka Prefecture University, Osaka, Japan
| | - Tomoya Yoshikawa
- Department of Biology, Graduate School of Science, Osaka Prefecture University, Osaka, Japan
| | - Eiji Takada
- Department of Biology, Graduate School of Science, Osaka Prefecture University, Osaka, Japan
| | - Shizuma Hirose
- Department of Biology, Graduate School of Science, Osaka Prefecture University, Osaka, Japan
| | - Sayoko Ito-Harashima
- Department of Biology, Graduate School of Science, Osaka Prefecture University, Osaka, Japan
| | - Masanobu Kawanishi
- Department of Biology, Graduate School of Science, Osaka Prefecture University, Osaka, Japan
| | - Takashi Yagi
- Department of Biology, Graduate School of Science, Osaka Prefecture University, Osaka, Japan; Department of Life Science, Dongguk University, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Abstract
Retinoid X Receptors (RXR) were initially identified as nuclear receptors binding with stereo-selectivity the vitamin A derivative 9-cis retinoic acid, although the relevance of this molecule as endogenous activator of RXRs is still elusive. Importantly, within the nuclear receptor superfamily, RXRs occupy a peculiar place, as they are obligatory partners for a number of other nuclear receptors, thus integrating the corresponding signaling pathways. In this chapter, we describe the structural features allowing RXR to form homo- and heterodimers, and the functional consequences of this unique ability. Furthermore, we discuss the importance of studying RXR activity at a genome-wide level in order to comprehensively address the biological implications of their action that is fundamental to understand to what extent RXRs could be exploited as new therapeutic targets.
Collapse
Affiliation(s)
- Federica Gilardi
- Center for Integrative Genomics, University of Lausanne, Genopode Building, 1015, Lausanne, Switzerland,
| | | |
Collapse
|
31
|
Álvarez R, Vaz B, Gronemeyer H, de Lera ÁR. Functions, therapeutic applications, and synthesis of retinoids and carotenoids. Chem Rev 2013; 114:1-125. [PMID: 24266866 DOI: 10.1021/cr400126u] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rosana Álvarez
- Departamento de Química Orgánica, Centro de Investigación Biomédica (CINBIO), and Instituto de Investigación Biomédica de Vigo (IBIV), Universidade de Vigo , 36310 Vigo, Spain
| | | | | | | |
Collapse
|
32
|
Sarang Z, Garabuczi É, Joós G, Kiss B, Tóth K, Rühl R, Szondy Z. Macrophages engulfing apoptotic thymocytes produce retinoids to promote selection, differentiation, removal and replacement of double positive thymocytes. Immunobiology 2013; 218:1354-60. [PMID: 23932496 DOI: 10.1016/j.imbio.2013.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/04/2013] [Accepted: 06/17/2013] [Indexed: 11/30/2022]
Abstract
The thymus provides the microenvironment in which thymocytes develop into mature T-cells, and interactions with thymic stromal cells are thought to provide the necessary signals for thymocyte maturation. Recognition of self-MHC by T-cells is a basic requirement for mature T-cell functions, and those thymocytes that do not recognize or respond too strongly to the peptide-loaded self-MHC molecules found in the thymus undergo apoptosis. As a result, 95% of the thymocytes produced will die and be subsequently cleared by macrophages. This review describes a complex crosstalk between developing thymocytes and engulfing macrophages which is mediated by retinoids produced by engulfing macrophages. The interaction results in the harmonization of the rate of cell death of dying double positive cells with their clearance and replacement, and in promotion of the differentiation of the selected cells in the thymus.
Collapse
Affiliation(s)
- Zsolt Sarang
- Section of Dental Biochemistry, Department of Biochemistry and Molecular Biology, Research Center of Molecular Medicine, University of Debrecen, Nagyerdei krt. 98, 4012 Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
33
|
Jeyakumar S, Yasmeen R, Reichert B, Ziouzenkova O. Metabolism of Vitamin A in White Adipose Tissue and Obesity. OXIDATIVE STRESS AND DISEASE 2013. [DOI: 10.1201/b14569-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Abstract
Lipophilic micronutrients (LM) constitute a large family of molecules including several vitamins (A, D, E, K) and carotenoids. Their ability to regulate gene expression is becoming increasingly clear and constitutes an important part of nutrigenomics. Interestingly, adipose tissue is not only a main storage site for these molecules within the body, but it is also subjected to the regulatory effects of LM. Indeed, several gene regulations have been described in adipose tissue that could strongly impact its biology with respect to the modulation of adipogenesis, inflammatory status, or energy homeostasis and metabolism, among others. The repercussions in terms of health effects of such regulations in the context of obesity and associated pathologies represent an exciting and emerging field of research. The present review will focus on the regulatory effects of vitamin A, D, E and K as well as carotenoids on adipose tissue biology and physiology, notably in the context of obesity and associated disorders.
Collapse
Affiliation(s)
- Jean-François Landrier
- Institut National de Recherche Agronomique (INRA), UMR 1260, F-13385, Marseille, France; (J.M.); (F.T.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), Nutrition, Obésité et Risque Thrombotique, UMR 1062, F-13385, Marseille, France
- School of Medicine, Aix-Marseille University, F-13385, Marseille, France
- Author to whom correspondence should be addressed; ; Tel.: +33-491-294-117; Fax: +33-491-078-2101
| | - Julie Marcotorchino
- Institut National de Recherche Agronomique (INRA), UMR 1260, F-13385, Marseille, France; (J.M.); (F.T.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), Nutrition, Obésité et Risque Thrombotique, UMR 1062, F-13385, Marseille, France
- School of Medicine, Aix-Marseille University, F-13385, Marseille, France
| | - Franck Tourniaire
- Institut National de Recherche Agronomique (INRA), UMR 1260, F-13385, Marseille, France; (J.M.); (F.T.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), Nutrition, Obésité et Risque Thrombotique, UMR 1062, F-13385, Marseille, France
- School of Medicine, Aix-Marseille University, F-13385, Marseille, France
| |
Collapse
|
35
|
Shin DJ, Joshi P, Hong SH, Mosure K, Shin DG, Osborne TF. Genome-wide analysis of FoxO1 binding in hepatic chromatin: potential involvement of FoxO1 in linking retinoid signaling to hepatic gluconeogenesis. Nucleic Acids Res 2012; 40:11499-509. [PMID: 23066095 PMCID: PMC3526316 DOI: 10.1093/nar/gks932] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The forkhead transcription factor FoxO1 is a critical regulator of hepatic glucose and lipid metabolism, and dysregulation of FoxO1 function has been implicated in diabetes and insulin resistance. We globally identified FoxO1 occupancy in mouse hepatic chromatin on a genome-wide level by chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-seq). To establish the specific functional significance of FoxO1 against other FoxO proteins, ChIP-seq was performed with chromatin from liver-specific FoxO1 knockout and wild-type mice. Here we identified 401 genome-wide FoxO1-binding locations. Motif search reveals a sequence element, 5′ GTAAACA 3′, consistent with a previously known FoxO1-binding site. Gene set enrichment analysis shows that the data from FoxO1 ChIP-seq are highly correlated with the global expression profiling of genes regulated by FoxO1, demonstrating the functional relevance of our FoxO1 ChIP-seq study. Interestingly, gene ontology analysis reveals the functional significance of FoxO1 in retinoid metabolic processes. We show here that FoxO1 directly binds to the genomic sites for the genes in retinoid metabolism. Notably, deletion of FoxO1 caused a significantly reduced induction of Pck1 and Pdk4 in response to retinoids. As Pck1 and Pdk4 are downstream targets of retinoid signaling, these results suggest that FoxO1 plays a potential role in linking retinoid metabolism to hepatic gluconeogenesis.
Collapse
Affiliation(s)
- Dong-Ju Shin
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
INTRODUCTION Retinoid X receptors (subtypes RXRα or NR2B1, RXRβ or NR2B2 and RXRγ or NR2B3, which originate from three distinct genes) are promiscuous partners with heterodimeric associations to other members of the Nuclear Receptor (NR) superfamily. Some of the heterodimers are "permissive" and transcriptionally active in the presence of either an RXR ligand ("rexinoid") or a NR partner ligand, whereas others are "non-permissive" and unresponsive to rexinoids alone. In rodent models, rexinoids and partner agonists (mainly PPARγ, LXR, FXR) produce beneficial effects on insulin sensitization, diabetes and obesity, but secondary effects have also been noted, such as a raise in tryglyceride levels, supression of the thyroid hormone axis and induction of hepatomegaly. AREAS COVERED The authors review recent advances in rexinoid design, including further optimization of known scaffolds, and the discovery of novel RXR modulators by virtual ligand screening or from bioactive natural products. The understanding of rexinoid functions in permissive and non-permissive heterodimers is firmly based on structural knowledge. By strenghtening or disrupting the interaction surface with coregulators rexinoids exert agonist or (partial) antagonist activities. The activity state of the heterodimer can also be fine-tuned by the cellular context and the nature of coregulators. EXPERT OPINION The synthetic chemistry toolbox has provided a panel of agonists, partial (ant)agonists and/or heterodimer-selective rexinoids starting from existing, naturally occurring or serendipitously discovered scaffolds. These compounds have an unexplored therapeutic potential that might overcome some of the current limitations of rexinoids in therapy, such as hypertriglyceridemia.
Collapse
Affiliation(s)
- Belén Vaz
- Departamento de Química Orgánica, Facultad de Química and Centro de Investigaciones Biomédicas (CINBIO), Universidade de Vigo, Vigo, Spain
| | | |
Collapse
|
37
|
Chen Y, Reese DH. The retinol signaling pathway in mouse pluripotent P19 cells. J Cell Biochem 2012; 112:2865-72. [PMID: 21618588 DOI: 10.1002/jcb.23200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
atRA (all-trans-retinoic acid), the active metabolite of retinol (vitamin A), is essential for embryogenesis and maintenance of cellular phenotype in adults. Chemicals that interfere with the metabolism of retinol to atRA, therefore, are a human health concern. During development of a screen for disruptors of this signaling pathway, we investigated whether the mouse pluripotent P19 cell metabolizes retinol to atRA and thus can be used in a cell-based screen for disruptors of the pathway. We found that retinol induced the identical pattern of homeobox gene expression as atRA and its precursor, retinal. Retinol was 160-fold less potent than atRA as an inducer, however. In spite of its lower potency, increased Hoxa1 gene expression was detected 30 min after retinol exposure and increased 40-fold by 2 h. Rdh10 and Aldh1a2/Raldh2, which together convert retinol to atRA in the embryo, were the predominant alcohol and aldehyde dehydrogenases expressed in P19 cells. The cell expressed high mRNA levels of retinol binding proteins, Rbp1 and Rbp4, and the 13,14-dihydroretinol saturase, Retsat. It also expressed all Rar and Rxr isotypes, Crabp1&2, the three Cyp26 genes, and both β-carotene-cleaving genes, Bcmo1 and Bco2. The basal expression levels and retinol responsiveness of 25 pathway-related genes were quantitated by RT-qPCR. A test of the Aldh1a2 inhibitor, citral, showed that the disruption of the pathway was easily detected and quantitated showing that the P19 cell provides an in vitro model system for identifying and exploring the mechanism of action of chemicals that interfere with this critical cellular pathway.
Collapse
Affiliation(s)
- Yanling Chen
- Division of Molecular Biology, U.S. FDA, Laurel, Maryland 20708, USA
| | | |
Collapse
|
38
|
Domínguez M, Álvarez S, Álvarez R, de Lera ÁR. Stereocontrolled synthesis of (S)-9-cis-4-oxo-13,14-dihydroretinoic acid. Tetrahedron 2012. [DOI: 10.1016/j.tet.2011.12.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
39
|
Modulation of RXR function through ligand design. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:57-69. [PMID: 21515403 DOI: 10.1016/j.bbalip.2011.04.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/06/2011] [Accepted: 04/07/2011] [Indexed: 12/22/2022]
Abstract
As the promiscuous partner of heterodimeric associations, retinoid X receptors (RXRs) play a key role within the Nuclear Receptor (NR) superfamily. Some of the heterodimers (PPAR/RXR, LXR/RXR, FXR/RXR) are "permissive" as they become transcriptionally active in the sole presence of either an RXR-selective ligand ("rexinoid") or a NR partner ligand. In contrast, "non-permissive" heterodimers (including RAR/RXR, VDR/RXR and TR/RXR) are unresponsive to rexinoids alone but these agonists superactivate transcription by synergizing with partner agonists. Despite their promiscuity in heterodimer formation and activation of multiple pathways, RXR is a target for drug discovery. Indeed, a rexinoid is used in the clinic for the treatment of cutaneous T-cell lymphoma. In addition to cancer RXR modulators hold therapeutical potential for the treatment of metabolic diseases. The modulation potential of the rexinoid (as agonist or antagonist ligand) is dictated by the precise conformation of the ligand-receptor complexes and the nature and extent of their interaction with co-regulators, which determine the specific physiological responses through transcription modulation of cognate gene networks. Notwithstanding the advances in this field, it is not yet possible to predict the correlation between ligand structure and physiological response. We will focus on this review on the modulation of PPARγ/RXR and LXR/RXR heterodimer activities by rexinoids. The genetic and pharmacological data from animal models of insulin resistance, diabetes and obesity demonstrate that RXR agonists and antagonists have promise as anti-obesity agents. However, the treatment with rexinoids raises triglycerides levels, suppresses the thyroid hormone axis, and induces hepatomegaly, which has complicated the development of these compounds as therapeutic agents for the treatment of type 2 diabetes and insulin resistance. The discovery of PPARγ/RXR and LXR/RXR heterodimer-selective rexinoids, which act differently than PPARγ or LXR agonists, might overcome some of these limitations.
Collapse
|
40
|
Moise AR, Lobo GP, Erokwu B, Wilson DL, Peck D, Alvarez S, Domínguez M, Alvarez R, Flask CA, de Lera AR, von Lintig J, Palczewski K. Increased adiposity in the retinol saturase-knockout mouse. FASEB J 2009; 24:1261-70. [PMID: 19940255 DOI: 10.1096/fj.09-147207] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The enzyme retinol saturase (RetSat) catalyzes the saturation of all-trans-retinol to produce (R)-all-trans-13,14-dihydroretinol. As a peroxisome proliferator-activated receptor (PPAR) gamma target, RetSat was shown to be required for adipocyte differentiation in the 3T3-L1 cell culture model. To understand the mechanism involved in this putative proadipogenic effect of RetSat, we studied the consequences of ablating RetSat expression on retinoid metabolism and adipose tissue differentiation in RetSat-null mice. Here, we report that RetSat-null mice have normal levels of retinol and retinyl palmitate in liver, serum, and adipose tissue, but, in contrast to wild-type mice, are deficient in the production of all-trans-13,14-dihydroretinol from dietary vitamin A. Despite accumulating more fat, RetSat-null mice maintained on either low-fat or high-fat diets gain weight and have similar rates of food intake as age- and gender-matched wild-type control littermates. This increased adiposity of RetSat-null mice is associated with up-regulation of PPARgamma, a key transcriptional regulator of adipogenesis, and also its downstream target, fatty acid-binding protein 4 (FABP4/aP2). On the basis of these results, we propose that dihydroretinoids produced by RetSat control physiological processes that influence PPARgamma activity and regulate lipid accumulation in mice.-Moise, A. R., Lobo, G. P., Erokwu, B., Wilson, D. L., Peck, D., Alvarez, S., Domínguez, M., Alvarez, R., Flask, C. A., de Lera, A. R., von Lintig, J., Palczewski, K. Increased adiposity in the retinol saturase-knockout mouse.
Collapse
Affiliation(s)
- Alexander R Moise
- Department of Pharmacology, University of Kansas, Lawrence, KS, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|