1
|
Morales-Herrejón G, García-Vázquez JB, Fernández-Pomares C, Bakalara N, Correa-Basurto J, Mendoza-Figueroa HL. Computationally Guided Design, Synthesis, and Evaluation of Novel Non-Hydroxamic Histone Deacetylase Inhibitors, Based on N-Trifluoroacetamide as a Zinc-Binding Group, Against Breast Cancer. Pharmaceuticals (Basel) 2025; 18:351. [PMID: 40143128 PMCID: PMC11944851 DOI: 10.3390/ph18030351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Histone deacetylases (HDACs) are enzymes that deacetylate histone proteins, impacting the transcriptional repression and activation of cancer-associated genes such as P53 and Ras. The overexpression of HDACs in breast cancer (BC) underscores their significance as therapeutic targets for modulating gene expression through epigenetic regulation. Methods: In this study, a novel series of SAHA (suberoylanilide hydroxamic acid) analogs were designed using an in silico ligand-based strategy. These analogs were then synthesized and evaluated for their HDAC-inhibitory capacity as well as their antiproliferative capacity on breast cancer cells. These compounds retained an aliphatic LINKER, mimicking the natural substrate acetyl-lysine, while differing from the hydroxamic fragment present in SAHA. Results: The synthesized compounds exhibited HDAC inhibitory activity, suggesting potential for binding to these pharmacological targets. Compounds 5b, 6a, and 6b were identified as promising candidates in the evaluation on breast cancer cell lines MCF-7 and MDA-MB-231 at 72 h. Specifically, compound 6b, which contains an N-trifluoroacetyl group as a zinc-binding group (ZBG), demonstrated an IC50 of 76.7 µM in the MDA-MB-231 cell line and 45.7 µM in the MCF-7 cell line. In the non-tumorigenic cell line, the compound exhibited an IC50 of 154.6 µM. Conversely, SAHA exhibited an almost negligible safety margin with regard to its cytotoxic activity when compared to breast cancer cells and healthy cells (MCF-10A). This observation underscores the elevated toxicity exhibited by hydroxamic acid-derived molecules. Conclusions: The bioisosteric modification of ZBG by N-trifluoroacetyl in 6a and 6b demonstrated favorable cytotoxic activity, exhibiting a higher safety margin. This study underscores the challenge of identifying novel ZBGs to replace hydroxamic acid in the development of HDAC inhibitors, with the objective of enhancing their physicochemical and toxicological profile for utilization in BC treatment.
Collapse
Affiliation(s)
- Gerardo Morales-Herrejón
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Salvador Díaz Mirón S/N, Casco de Santo Tomás, Ciudad de México 11340, Mexico; (G.M.-H.); (J.B.G.-V.); (C.F.-P.)
| | - Juan Benjamín García-Vázquez
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Salvador Díaz Mirón S/N, Casco de Santo Tomás, Ciudad de México 11340, Mexico; (G.M.-H.); (J.B.G.-V.); (C.F.-P.)
- Investigadoras e Investigadores por México CONAHCyT-Sección de Estudios de Posgrado e Investigación de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón S/N, Casco de Santo Tomás, Ciudad de México 11340, Mexico
| | - Cynthia Fernández-Pomares
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Salvador Díaz Mirón S/N, Casco de Santo Tomás, Ciudad de México 11340, Mexico; (G.M.-H.); (J.B.G.-V.); (C.F.-P.)
| | - Norbert Bakalara
- University Bordeaux, CNRS, Bordeaux INP-ENSTBB, CBMN, UMR 5248, F-33600 Pessac, France;
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Salvador Díaz Mirón S/N, Casco de Santo Tomás, Ciudad de México 11340, Mexico; (G.M.-H.); (J.B.G.-V.); (C.F.-P.)
| | - Humberto L. Mendoza-Figueroa
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina del Instituto Politécnico Nacional (ESM-IPN), Plan de San Luis y Salvador Díaz Mirón S/N, Casco de Santo Tomás, Ciudad de México 11340, Mexico; (G.M.-H.); (J.B.G.-V.); (C.F.-P.)
| |
Collapse
|
2
|
Cao DF, Zhou XY, Guo Q, Xiang MY, Bao MH, He BS, Mao XY. Unveiling the role of histone deacetylases in neurological diseases: focus on epilepsy. Biomark Res 2024; 12:142. [PMID: 39563472 PMCID: PMC11575089 DOI: 10.1186/s40364-024-00687-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024] Open
Abstract
Epilepsy remains a prevalent chronic neurological disease that is featured by aberrant, recurrent and hypersynchronous discharge of neurons and poses a great challenge to healthcare systems. Although several therapeutic interventions are successfully utilized for treating epilepsy, they can merely provide symptom relief but cannot exert disease-modifying effect. Therefore, it is of urgent need to explore other potential mechanism to develop a novel approach to delay the epileptic progression. Since approximately 30 years ago, histone deacetylases (HDACs), the versatile epigenetic regulators responsible for gene transcription via binding histones or non-histone substrates, have grabbed considerable attention in drug discovery. There are also substantial evidences supporting that aberrant expressions and/activities of HDAC isoforms are reported in epilepsy and HDAC inhibitors (HDACi) have been successfully utilized for therapeutic purposes in this condition. However, the specific mechanisms underlying the role of HDACs in epileptic progression have not been fully understood. Herein, we reviewed the basic information of HDACs, summarized the recent findings associated with the roles of diverse HDAC subunits in epilepsy and discussed the potential regulatory mechanisms by which HDACs affected the development of epilepsy. Additionally, we also provided a brief discussion on the potential of HDACs as promising therapeutic targets for epilepsy treatment, serving as a valuable reference for basic study and clinical translation in epilepsy field.
Collapse
Affiliation(s)
- Dan-Feng Cao
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
- The First Clinical College, Changsha Medical University, Changsha, 410219, China
| | - Xin-Yu Zhou
- Department of Neurosurgery, The Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, 222000, China
- Department of Neurology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222000, China
| | - Qian Guo
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
| | - Ming-Yao Xiang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China
| | - Mei-Hua Bao
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, China.
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China.
| | - Bin-Sheng He
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, China.
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China.
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China.
| |
Collapse
|
3
|
Zeng Y, Tao G, Zeng Y, He J, Cao H, Zhang L. Bibliometric and visualization analysis in the field of epigenetics and glioma (2009-2024). Front Oncol 2024; 14:1431636. [PMID: 39534093 PMCID: PMC11555291 DOI: 10.3389/fonc.2024.1431636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Glioma represents the most prevalent primary malignant tumor in the central nervous system, a deeper understanding of the underlying molecular mechanisms driving glioma is imperative for guiding future treatment strategies. Emerging evidence has implicated a close relationship between glioma development and epigenetic regulation. However, there remains a significant lack of comprehensive summaries in this domain. This study aims to analyze epigenetic publications pertaining to gliomas from 2009 to 2024 using bibliometric methods, consolidate the extant research, and delineate future prospects for investigation in this critical area. Methods For the purpose of this study, publications spanning the years 2009 to 2024 were extracted from the esteemed Web of Science Core Collection (WoSCC) database. Utilizing advanced visualization tools such as CiteSpace and VOSviewer, comprehensive data pertaining to various aspects including countries, authors, author co-citations, countries/regions, institutions, journals, cited literature, and keywords were systematically visualized and analyzed. Results A thorough analysis was conducted on a comprehensive dataset consisting of 858 publications, which unveiled a discernible trend of steady annual growth in research output within this specific field. The nations of the United States, China, and Germany emerged as the foremost contributors to this research domain. It is noteworthy that von Deimling A and the Helmholtz Association were distinguished as prominent authors and institutions, respectively, in this corpus of literature. A rigorous keyword search and subsequent co-occurrence analysis were executed, ultimately leading to the identification of seven distinct clusters: "epigenetic regulation", "DNA repair", "DNA methylation", "brain tumors", "diffuse midline glioma (DMG)", "U-87 MG" and "epigenomics". Furthermore, an intricate cluster analysis revealed that the primary foci of research within this field were centered around the exploration of glioma pathogenesis and the development of corresponding treatment strategies. Conclusion This article underscores the prevailing trends and hotspots in glioma epigenetics, offering invaluable insights that can guide future research endeavors. The investigation of epigenetic mechanisms primarily centers on DNA modification, non-coding RNAs (ncRNAs), and histone modification. Furthermore, the pursuit of overcoming temozolomide (TMZ) resistance and the exploration of diverse emerging therapeutic strategies have emerged as pivotal avenues for future research within the field of glioma epigenetics.
Collapse
Affiliation(s)
- Yijun Zeng
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Ge Tao
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Yong Zeng
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Jihong He
- Department of Neurosurgery, The Third Affiliated Hospital of Chengdu Medical College, Chengdu Pidu District People’s Hospital, Chengdu, China
| | - Hui Cao
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| | - Lushun Zhang
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
4
|
Wang L, Bai Y, Cao Z, Guo Z, Lian Y, Liu P, Zeng Y, Lyu W, Chen Q. Histone deacetylases and inhibitors in diabetes mellitus and its complications. Biomed Pharmacother 2024; 177:117010. [PMID: 38941890 DOI: 10.1016/j.biopha.2024.117010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder characterized by hyperglycemia, with its prevalence linked to both genetic predisposition and environmental factors. Epigenetic modifications, particularly through histone deacetylases (HDACs), have been recognized for their significant influence on DM pathogenesis. This review focuses on the classification of HDACs, their role in DM and its complications, and the potential therapeutic applications of HDAC inhibitors. HDACs, which modulate gene expression without altering DNA sequences, are categorized into four classes with distinct functions and tissue specificity. HDAC inhibitors (HDACi) have shown efficacy in various diseases, including DM, by targeting these enzymes. The review highlights how HDACs regulate β-cell function, insulin sensitivity, and hepatic gluconeogenesis in DM, as well as their impact on diabetic cardiomyopathy, nephropathy, and retinopathy. Finally, we suggest that targeted histone modification is expected to become a key method for the treatment of diabetes and its complications. The study of HDACi offers insights into new treatment strategies for DM and its associated complications.
Collapse
Affiliation(s)
- Li Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610072, PR China; Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China
| | - Yuning Bai
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China
| | - Zhengmin Cao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China
| | - Ziwei Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China
| | - Yanjie Lian
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, PR China
| | - Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610072, PR China
| | - Yixian Zeng
- Department of Proctology, Beibei Hospital of Traditional Chinese Medicine, Chongqing 400799, PR China
| | - Wenliang Lyu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China.
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610072, PR China.
| |
Collapse
|
5
|
Fanfarillo F, Ferraguti G, Lucarelli M, Fuso A, Ceccanti M, Terracina S, Micangeli G, Tarani L, Fiore M. The Impact of Alcohol-Induced Epigenetic Modifications in the Treatment of Alcohol use Disorders. Curr Med Chem 2024; 31:5837-5855. [PMID: 37828672 DOI: 10.2174/0109298673256937231004093143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/07/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023]
Abstract
Alcohol use disorders are responsible for 5.9% of all death annually and 5.1% of the global disease burden. It has been suggested that alcohol abuse can modify gene expression through epigenetic processes, namely DNA and histone methylation, histone acetylation, and microRNA expression. The alcohol influence on epigenetic mechanisms leads to molecular adaptation of a wide number of brain circuits, including the hypothalamus-hypophysis-adrenal axis, the prefrontal cortex, the mesolimbic-dopamine pathways and the endogenous opioid pathways. Epigenetic regulation represents an important level of alcohol-induced molecular adaptation in the brain. It has been demonstrated that acute and chronic alcohol exposure can induce opposite modifications in epigenetic mechanisms: acute alcohol exposure increases histone acetylation, decreases histone methylation and inhibits DNA methyltransferase activity, while chronic alcohol exposure induces hypermethylation of DNA. Some studies investigated the chromatin status during the withdrawal period and the craving period and showed that craving was associated with low methylation status, while the withdrawal period was associated with elevated activity of histone deacetylase and decreased histone acetylation. Given the effects exerted by ethanol consumption on epigenetic mechanisms, chromatin structure modifiers, such as histone deacetylase inhibitors and DNA methyltransferase inhibitors, might represent a new potential strategy to treat alcohol use disorder. Further investigations on molecular modifications induced by ethanol might be helpful to develop new therapies for alcoholism and drug addiction targeting epigenetic processes.
Collapse
Affiliation(s)
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell'Alcolismo e le sue Complicanze, Sapienza University of Rome, Rome, Italy
| | - Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Ginevra Micangeli
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| |
Collapse
|
6
|
Kitson SL, Watters W, Moody TS, Chappell T, Mazitschek R. Nitrilase mediated mild hydrolysis of a carbon-14 nitrile for the radiosynthesis of 4-(7-hydroxycarbamoyl-[1- 14 C-heptanoyl]-oxy)-benzoic acid methyl ester, [ 14 C]-SHP-141: a novel class I/II histone deacetylase (HDAC) inhibitor. J Labelled Comp Radiopharm 2023. [PMID: 37186406 DOI: 10.1002/jlcr.4026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
A strategy has been developed for the carbon-14 radiosynthesis of [14 C]-SHP-141, a 4-(7-hydroxycarbamoyl-heptanoyloxy)-benzoic acid methyl ester derivative containing a terminal hydroxamic acid. The synthesis involved four radiochemical transformations. The key step in the radiosynthesis was the conversion of the 7-[14 C]-cyano-heptanoic acid benzyloxyamide [14 C]-4 directly into the carboxylic acid derivative, 7-benzyloxycarbamoyl-[14 C]-heptanoic acid [14 C]-8 using nitrilase-113 biocatalyst. The final step involved deprotection of the benzyloxy group using catalytic hydrogenation to facilitate the release of the hydroxamic acid without cleaving the phenoxy ester. [14 C]-SHP-141 was isolated with a radiochemical purity of 90% and a specific activity of 190 μCi/mg from four radiochemical steps starting from potassium [14 C]-cyanide in a radiochemical yield of 45%.
Collapse
Affiliation(s)
- Sean L Kitson
- Department of Technology, Almac, 20 Seagoe Industrial Estate, Craigavon, United Kingdom
| | - William Watters
- Department of Technology, Almac, 20 Seagoe Industrial Estate, Craigavon, United Kingdom
| | - Thomas S Moody
- Department of Technology, Almac, 20 Seagoe Industrial Estate, Craigavon, United Kingdom
- Arran Chemical Company Limited, Unit 1 Monksland Industrial Estate, Athlone, Co, Roscommon, Ireland
| | - Todd Chappell
- Shape Pharmaceuticals Inc; 55 Cambridge Parkway, Suite 301, Cambridge, MA, USA
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
7
|
Meng Y, Du J, Liu N, Qiang Y, Xiao L, Lan X, Ma L, Yang J, Yu J, Lu G. Epigenetic modulation: Research progress on histone acetylation levels in major depressive disorders. J Drug Target 2023; 31:142-151. [PMID: 36112185 DOI: 10.1080/1061186x.2022.2125978] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Depression is a serious mental illness and a prevalent condition with multiple aetiologies. The impact of the current therapeutic strategies is limited and the pathogenesis of the illness is not well understood. According to previous studies, depression onset is influenced by a variety of environmental and genetic factors, including chronic stress, aberrant changes in gene expression, and hereditary predisposition. Transcriptional regulation in eukaryotes is closely related to chromosome packing and is controlled by histone post-translational modifications. The development of new antidepressants may proceed along a new path with medications that target epigenetics. Histone deacetylase inhibitors (HDACis) are a class of compounds that interfere with the function of histone deacetylases (HDACs). This review explores the relationship between HDACs and depression and focuses on the current knowledge on their regulatory mechanism in depression and the potential therapeutic use of HDACis with antidepressant efficacy in preclinical research. Future research on inhibitors is also proposed and discussed.
Collapse
Affiliation(s)
- Yuan Meng
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, PR China.,Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Juan Du
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, PR China.,Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Ning Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Yuanyuan Qiang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, PR China
| | - Lifei Xiao
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, PR China
| | - Xiaobing Lan
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Lin Ma
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Jiamei Yang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Jianqiang Yu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Guangyuan Lu
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, PR China
| |
Collapse
|
8
|
Pal D, Sahu P, Mishra AK, Hagelgans A, Sukocheva O. Histone Deacetylase Inhibitors as Cognitive Enhancers and Modifiers of Mood and Behavior. Curr Drug Targets 2023; 24:728-750. [PMID: 36475351 DOI: 10.2174/1389450124666221207090108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Epigenetic regulation of gene signalling is one of the fundamental molecular mechanisms for the generation and maintenance of cellular memory. Histone acetylation is a common epigenetic mechanism associated with increased gene transcription in the central nervous system (CNS). Stimulation of gene transcription by histone acetylation is important for the development of CNS-based long-term memory. Histone acetylation is a target for cognitive enhancement via the application of histone deacetylase (HDAC) inhibitors. The promising potential of HDAC inhibitors has been observed in the treatment of several neurodevelopmental and neurodegenerative diseases. OBJECTIVE This study assessed the current state of HDAC inhibition as an approach to cognitive enhancement and treatment of neurodegenerative diseases. Our analysis provides insights into the mechanism of action of HDAC inhibitors, associated epigenetic priming, and describes the therapeutic success and potential complications after unsupervised use of the inhibitors. RESULTS AND CONCLUSION Several chromatin-modifying enzymes play key roles in the regulation of cognitive processes. The importance of HDAC signaling in the brain is highlighted in this review. Recent advancements in the field of cognitive epigenetics are supported by the successful development of various HDAC inhibitors, demonstrating effective treatment of mood-associated disorders. The current review discusses the therapeutic potential of HDAC inhibition and observed complications after mood and cognitive enhancement therapies.
Collapse
Affiliation(s)
- Dilipkumar Pal
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G., 495 009, India
| | - Pooja Sahu
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G., 495 009, India
| | | | - Albert Hagelgans
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Olga Sukocheva
- College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park, 5042, SA, Australia
| |
Collapse
|
9
|
Emerging insights between gut microbiome dysbiosis and Parkinson's disease: Pathogenic and clinical relevance. Ageing Res Rev 2022; 82:101759. [PMID: 36243356 DOI: 10.1016/j.arr.2022.101759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/28/2022] [Accepted: 10/09/2022] [Indexed: 01/31/2023]
Abstract
Parkinson's disease (PD) is a complicated neurodegenerative disease, of which gastrointestinal disturbance appears prior to motor symptoms. Numerous studies have shed light on the roles of gastrointestinal tract and its neural connection to brain in PD pathology. In the past decades, the fields of microbiology and neuroscience have become ever more entwined. The emergence of gut microbiome has been considered as one of the key regulators of gut-brain function. With the advent of multi-omics sequencing techniques, gut microbiome of PD patients has been shown unique characteristics. The resident gut microbiota can exert considerable effects in PD and there are suggestions of a link between gut microbiome dysbiosis and PD progression. In this review, we summarize the latest progresses of gut microbiome dysbiosis in PD pathogenesis, further highlight the clinical relevance of gut microbiota and its metabolites in both the non-motor and motor symptoms of PD. Furthermore, we draw attention to the complex interplay between gut microbiota and PD drugs, with the purpose of improving drug efficacy and prescription accordingly. Further studies at specific strain level and longitudinal prospective clinical trials using optimized methods are still needed for the development of diagnostic markers and novel therapeutic regimens for PD.
Collapse
|
10
|
Rizavi HS, Chase KA, Liu C, Gavin H, Rosen C, Xia C, Guidotti A, Sharma RP. Differential H3K9me2 heterochromatin levels and concordant mRNA expression in postmortem brain tissue of individuals with schizophrenia, bipolar, and controls. Front Psychiatry 2022; 13:1006109. [PMID: 36386965 PMCID: PMC9644155 DOI: 10.3389/fpsyt.2022.1006109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
The existence of repressive and durable chromatin assemblies along gene promoters or networks, especially in the brain, is of theoretical and therapeutic relevance in a subset of individuals diagnosed with schizophrenia who experience a chronic, persistent, and treatment-resistant trajectory. We used chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) to generate an epigenomic map that includes differential sites occupied by di-methylated lysine 9 of histone 3 (H3K9me2), a repressive modification that is yet unexplored in human postmortem brain tissue. We have discovered over 150 significantly differential promoter sites in the postmortem prefrontal cortex tissue of individuals diagnosed with schizophrenia (n = 15) when compared to controls (n = 15). Potentially dysregulated gene categories include postsynaptic proteins, processing enzymes (for proproteins, lipids, and oxidative stress), cadherin family genes, the complement system, and peptide hormones. Ten genes with significantly increased or decreased H3K9me2 promoter occupation were selected through statistical analysis, function, or previous GWAS association, and Quantitative RT-PCR (qRT-PCR) was performed on an extended sample of postmortem brain tissue, adding an additional 17 controls, 7 individuals with schizophrenia, and 19 individuals with bipolar samples (n = 32 control, 22 schizophrenia, 19 bipolar). This approach revealed that mRNA expression levels correlated with chromatin modification levels in eight of 10 selected genes, and mRNA expression in the total sample could be predicted by the occupancy of H3K9me2. Utilization of this method and replication in a larger sample open a pathway to durable and restrictive epigenomic assemblies whose accumulation across the lifespan of individuals diagnosed with schizophrenia may explain treatment resistance, and advance therapeutic options.
Collapse
Affiliation(s)
- Hooriyah S. Rizavi
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Kayla A. Chase
- Department of Biochemistry and Molecular Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Chunyu Liu
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Hannah Gavin
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Cherise Rosen
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Cuihua Xia
- School of Life Sciences, Central South University, Changsha, China
| | - Alessandro Guidotti
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Rajiv P. Sharma
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| |
Collapse
|
11
|
Kundakovic M. BET-ting on histone proteomics in schizophrenia. Trends Neurosci 2022; 45:716-717. [PMID: 35718601 PMCID: PMC9691262 DOI: 10.1016/j.tins.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Abstract
In a recent study, Farrelly, Zheng, and colleagues used a histone proteomics approach and patient-derived neurons to show increase in histone variant H2A.Z acetylation associated with schizophrenia (SCZ). They identified the bromo- and extraterminal (BET) protein BRD4 as an H2A.Z acetylation 'reader', and showed that a BRD4 inhibitor ameliorated the SCZ-associated transcriptional signature, revealing a new candidate target for treatment.
Collapse
Affiliation(s)
- Marija Kundakovic
- Department of Biological Sciences, Fordham University, Bronx, NY, USA.
| |
Collapse
|
12
|
Rescue of histone hypoacetylation and social deficits by ketogenic diet in a Shank3 mouse model of autism. Neuropsychopharmacology 2022; 47:1271-1279. [PMID: 34703011 PMCID: PMC9018860 DOI: 10.1038/s41386-021-01212-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/25/2021] [Accepted: 10/13/2021] [Indexed: 02/02/2023]
Abstract
Human genetic sequencing has implicated epigenetic and synaptic aberrations as the most prominent risk factors for autism. Here we show that autistic patients exhibit the significantly lower histone acetylation and elevated HDAC2 expression in prefrontal cortex (PFC). The diminished histone acetylation is also recaptured in an autism mouse model with the deficiency of the Shank3 gene encoding a synaptic scaffolding protein. Treating young (5-week-old) Shank3-deficient mice with a 4-week ketogenic diet, which can act as an endogenous inhibitor of class I HDACs via the major product β-hydroxybutyrate, elevates the level of histone acetylation in PFC neurons. Behavioral assays indicate that ketogenic diet treatment leads to the prolonged rescue of social preference deficits in Shank3-deficient mice. The HDAC downstream target genes encoding NMDA receptor subunits, GRIN2A and GRIN2B, are significantly reduced in PFC of autistic humans. Ketogenic diet treatment of Shank3-deficient mice elevates the transcription and histone acetylation of Grin2a and Grin2b, and restores the diminished NMDAR synaptic function in PFC neurons. These results suggest that the ketogenic diet provides a promising therapeutic strategy for social deficits in autism via the restoration of histone acetylation and gene expression in the brain.
Collapse
|
13
|
Athira KV, Sadanandan P, Chakravarty S. Repurposing Vorinostat for the Treatment of Disorders Affecting Brain. Neuromolecular Med 2021; 23:449-465. [PMID: 33948878 DOI: 10.1007/s12017-021-08660-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/09/2021] [Indexed: 12/19/2022]
Abstract
Based on the findings in recent years, we summarize the therapeutic potential of vorinostat (VOR), the first approved histone deacetylase (HDAC) inhibitor, in disorders of brain, and strategies to improve drug efficacy and reduce side effects. Scientific evidences provide a strong case for the therapeutic utility of VOR in various disorders affecting brain, including stroke, Alzheimer's disease, frontotemporal dementia, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, spinal muscular atrophy, X-linked adrenoleukodystrophy, epilepsy, Niemann-Pick type C disease, and neuropsychiatric disorders. Further elucidation of the neuroprotective and neurorestorative properties of VOR using proper clinical study designs could provide momentum towards its clinical application. To improve the therapeutic prospect, concerns on systemic toxicity and off-target actions need to be addressed along with the improvement in formulation and delivery aspects, especially with respect to solubility, permeability, and pharmacokinetic properties. Newer approaches in this regard include poly(ethylene glycol)-b-poly(DL-lactic acid) micelles, VOR-pluronic F127 micelles, encapsulation of iron complexes of VOR into PEGylated liposomes, human serum albumin bound VOR nanomedicine, magnetically guided layer-by-layer assembled nanocarriers, as well as convection-enhanced delivery. Even though targeting specific class or isoform of HDAC is projected as advantageous over pan-HDAC inhibitor like VOR, in terms of adverse effects and efficacy, till clinical validation, the idea is debated. As the VOR treatment-related adverse changes are mostly found reversible, further optimization of the therapeutic strategies with respect to dose, dosage regimen, and formulations of VOR could propel its clinical prospects.
Collapse
Affiliation(s)
- K V Athira
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Institute of Medical Sciences Health Sciences Campus, Kochi, 682 041, Kerala, India.
| | - Prashant Sadanandan
- Department of Pharmaceutical Chemistry & Analysis, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Amrita Institute of Medical Sciences Health Sciences Campus, Kochi, 682 041, Kerala, India
| | - Sumana Chakravarty
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, 500007, Telangana, India.
| |
Collapse
|
14
|
Synergistic inhibition of histone modifiers produces therapeutic effects in adult Shank3-deficient mice. Transl Psychiatry 2021; 11:99. [PMID: 33542189 PMCID: PMC7862604 DOI: 10.1038/s41398-021-01233-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/16/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is a lifelong developmental disorder characterized by social deficits and other behavioral abnormalities. Dysregulation of epigenetic processes, such as histone modifications and chromatin remodeling, have been implicated in ASD pathology, and provides a promising therapeutic target for ASD. Haploinsufficiency of the SHANK3 gene is causally linked to ASD, so adult (3-5 months old) Shank3-deficient male mice were used in this drug discovery study. We found that combined administration of the class I histone deacetylase inhibitor Romidepsin and the histone demethylase LSD1 inhibitor GSK-LSD1 persistently ameliorated the autism-like social preference deficits, while each individual drug alone was largely ineffective. Another behavioral abnormality in adult Shank3-deficient male mice, heightened aggression, was also alleviated by administration of the dual drugs. Furthermore, Romidepsin/GSK-LSD1 treatment significantly increased transcriptional levels of NMDA receptor subunits in prefrontal cortex (PFC) of adult Shank3-deficient mice, resulting in elevated synaptic expression of NMDA receptors and the restoration of NMDAR synaptic function in PFC pyramidal neurons. These results have offered a novel pharmacological intervention strategy for ASD beyond early developmental periods.
Collapse
|
15
|
Li YC, Panikker P, Xing B, Yang SS, Alexandropoulos C, McEachern EP, Akumuo R, Zhao E, Gulchina Y, Pletnikov MV, Urs NM, Caron MG, Elefant F, Gao WJ. Deletion of Glycogen Synthase Kinase-3β in D 2 Receptor-Positive Neurons Ameliorates Cognitive Impairment via NMDA Receptor-Dependent Synaptic Plasticity. Biol Psychiatry 2020; 87:745-755. [PMID: 31892408 PMCID: PMC7103512 DOI: 10.1016/j.biopsych.2019.10.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cortical dopaminergic systems are critically involved in prefrontal cortex (PFC) functions, especially in working memory and neurodevelopmental disorders such as schizophrenia. GSK-3β (glycogen synthase kinase-3β) is highly associated with cAMP (cyclic adenosine monophosphate)-independent dopamine D2 receptor (D2R)-mediated signaling to affect dopamine-dependent behaviors. However, the mechanisms underlying the GSK-3β modulation of cognitive function via D2Rs remains unclear. METHODS This study explored how conditional cell-type-specific ablation of GSK-3β in D2R+ neurons (D2R-GSK-3β-/-) in the brain affects synaptic function in the medial PFC (mPFC). Both male and female (postnatal days 60-90) mice, including 140 D2R, 24 D1R, and 38 DISC1 mice, were used. RESULTS This study found that NMDA receptor (NMDAR) function was significantly increased in layer V pyramidal neurons in mPFC of D2R-GSK-3β-/- mice, along with increased dopamine modulation of NMDAR-mediated current. Consistently, NR2A and NR2B protein levels were elevated in mPFC of D2R-GSK-3β-/- mice. This change was accompanied by a significant increase in enrichment of activator histone mark H3K27ac at the promoters of both Grin2a and Grin2b genes. In addition, altered short- and long-term synaptic plasticity, along with an increased spine density in layer V pyramidal neurons, were detected in D2R-GSK-3β-/- mice. Indeed, D2R-GSK-3β-/- mice also exhibited a resistance of working memory impairment induced by injection of NMDAR antagonist MK-801. Notably, either inhibiting GSK-3β or disrupting the D2R-DISC1 complex was able to reverse the mutant DISC1-induced decrease of NMDAR-mediated currents in the mPFC. CONCLUSIONS This study demonstrates that GSK-3β modulates cognition via D2R-DISC1 interaction and epigenetic regulation of NMDAR expression and function.
Collapse
Affiliation(s)
- Yan-Chun Li
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| | - Priyalakshmi Panikker
- Department of Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Bo Xing
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Sha-Sha Yang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Cassandra Alexandropoulos
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Erin P McEachern
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Rita Akumuo
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Elise Zhao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Yelena Gulchina
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Mikhail V Pletnikov
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nikhil M Urs
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida
| | - Marc G Caron
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina; Department of Neurobiology, Duke University Medical Center, Durham, North Carolina; Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Felice Elefant
- Department of Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
16
|
Bertogliat MJ, Morris-Blanco KC, Vemuganti R. Epigenetic mechanisms of neurodegenerative diseases and acute brain injury. Neurochem Int 2020; 133:104642. [PMID: 31838024 PMCID: PMC8074401 DOI: 10.1016/j.neuint.2019.104642] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/25/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022]
Abstract
Epigenetic modifications are emerging as major players in the pathogenesis of neurodegenerative disorders and susceptibility to acute brain injury. DNA and histone modifications act together with non-coding RNAs to form a complex gene expression machinery that adapts the brain to environmental stressors and injury response. These modifications influence cell-level operations like neurogenesis and DNA repair to large, intricate processes such as brain patterning, memory formation, motor function and cognition. Thus, epigenetic imbalance has been shown to influence the progression of many neurological disorders independent of aberrations in the genetic code. This review aims to highlight ways in which epigenetics applies to several commonly researched neurodegenerative diseases and forms of acute brain injury as well as shed light on the benefits of epigenetics-based treatments.
Collapse
Affiliation(s)
- Mario J Bertogliat
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Kahlilia C Morris-Blanco
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton VA Hospital, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton VA Hospital, Madison, WI, USA.
| |
Collapse
|
17
|
Barichello T, Giridharan VV, Bhatti G, Sayana P, Doifode T, Macedo D, Quevedo J. Inflammation as a Mechanism of Bipolar Disorder Neuroprogression. Curr Top Behav Neurosci 2020; 48:215-237. [PMID: 33040314 DOI: 10.1007/7854_2020_173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bipolar disorder (BD) is a severe, debilitating psychiatric condition with onset in adolescence or young adulthood and often follows a relapsing and remitting course throughout life. The concept of neuroprogression in BD refers to the progressive path with an identifiable trajectory that takes place with recurrent mood episodes, which eventually leads to cognitive, functional, and clinical deterioration in the course of BD. Understanding the biological basis of neuroprogression helps to explain the subset of BD patients who experience worsening of their disorder over time. Additionally, the study of the neurobiological mechanisms underpinning neuroprogression will help BD staging based on systems biology. Replicated epidemiological studies have suggested inflammatory mechanisms as primary contributors to the neuroprogression of mood disorders. It is known that dysregulated inflammatory/immune pathways are often associated with BD pathophysiology. Hence, in this chapter, we focus on the evidence for the involvement of inflammation and immune regulated pathways in the neurobiological consequences of BD neuroprogression. Herein we put forth the evidence of immune markers from autoimmune disorders, chronic infections, and gut-brain axis that lead to BD neuroprogression. Further, we highlighted the peripheral and central inflammatory components measured along with BD progression.
Collapse
Affiliation(s)
- Tatiana Barichello
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA. .,Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil. .,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| | - Vijayasree Vayalanellore Giridharan
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Gursimrat Bhatti
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Pavani Sayana
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Tejaswini Doifode
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Danielle Macedo
- Neuropsychopharmacology Laboratory, Drug Research, and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil.,National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirao Preto, Brazil
| | - Joao Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Laboratory of Neurosciences, Graduate Program in Health Sciences, University of Southern Santa Catarina-UNESC, Criciúma, SC, Brazil.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| |
Collapse
|
18
|
Neves I, Dinis-Oliveira RJ, Magalhães T. Epigenomic mediation after adverse childhood experiences: a systematic review and meta-analysis. Forensic Sci Res 2019; 6:103-114. [PMID: 34377567 PMCID: PMC8330736 DOI: 10.1080/20961790.2019.1641954] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epigenetic mechanisms are potential mediators of the physiological response to abuse by altering the genetic predisposition of the cellular response to the environment, leading to changes in the regulation of multiple organ systems. This study was established to review the epigenetic mechanisms associated with childhood abuse as well as the long-term determinants that these epigenetic changes may have on future illness. We retrospectively analysed the effect of exposure to adverse childhood experiences (ACEs, specifically those relating to childhood maltreatment) between the ages of 0 and 16 years on the human epigenome, as well as possible clinical associations. After meeting inclusion and exclusion criteria, 36 articles were included in this systematic review. Eight of these studies did not find a relationship between childhood maltreatment and DNA methylation. Of the remaining 28 studies, nine were genome-wide association studies, whereas the rest were candidate gene studies, mainly studying effects on neuroendocrine, serotoninergic and immunoregulatory systems. Meta-analysis of correlation coefficients from candidate gene studies estimated an association of childhood adversity and DNA methylation variation at r = 0.291 (P < 0.0001), and meta-analysis of two epigenome-wide association studies (EWASs) identified 44 differentially methylated CpG sites. In conclusion, childhood maltreatment may mediate epigenetic mechanisms through DNA methylation, thereby affecting physiological responses and conferring a predisposition to an increased risk for psychopathology and forensic repercussions. Similar evidence for somatic illnesses is not yet available. KEY POINTS Adverse childhood experiences are associated with increased mortality partly explained by acquired epigenetic changes There is a positive correlation between childhood abuse and DNA methylation at specific gene sites The cumulative effect of different types of childhood abuse and neglect may lead to changes in DNA methylation Epigenome changes associated with childhood abuse appear to be involved in the development of psychiatric illness in adulthood Studying epigenetic changes may have important public health and forensic applications in the future
Collapse
Affiliation(s)
- Inês Neves
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal.,IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal.,UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Teresa Magalhães
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal.,IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal
| |
Collapse
|
19
|
Zhang L, Wang D, Han X, Tang F, Gao D. Mechanism of methylation and acetylation of high GDNF transcription in glioma cells: A review. Heliyon 2019; 5:e01951. [PMID: 31294105 PMCID: PMC6595186 DOI: 10.1016/j.heliyon.2019.e01951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 01/07/2023] Open
Abstract
Gliomas are the most common primary malignant tumors in the central nervous system. High expression of glial cell line-derived neurotrophic factor (GDNF) is an important prerequisite for the initiation and development of gliomas. However, the underlying transcription mechanism is poorly understood. Epigenetic alterations are common and important hallmarks of various types of tumors, and lead to abnormal expression of genes. Several recent studies have suggested that epigenetic modifications contribute to increased GDNF transcription. Specifically, aberrant DNA methylation and histone acetylation in the promoter regions of GDNF are related to high GDNF transcription in glioma cells, where transcription factors have extremely important roles. Therefore, elucidating the importance and features of this underlying molecular mechanism will enhance our understanding and provide clues for the accurate diagnosis and efficacious treatment of gliomas. This review summarizes the latest thinking on the potential epigenetic mechanisms of high expression of GDNF in glioma cells focusing primarily on DNA methylation and histone acetylation.
Collapse
Affiliation(s)
- Lin Zhang
- School of Nursing of Xuzhou Medical University, Xuzhou, Jiangsu province, 221004, China.,Department of Anatomy and Neurobiology of Xuzhou Medical University, Xuzhou, Jiangsu province, 221004, China
| | - Dan Wang
- School of Medical Information of Xuzhou Medical University, Xuzhou, Jiangsu province, 221004, China
| | - Xiao Han
- Department of Anatomy and Neurobiology of Xuzhou Medical University, Xuzhou, Jiangsu province, 221004, China
| | - Furong Tang
- Department of Psychiatry of Xuzhou Oriental People's Hospital, Xuzhou, Jiangsu province, 221004, China
| | - Dianshuai Gao
- Department of Anatomy and Neurobiology of Xuzhou Medical University, Xuzhou, Jiangsu province, 221004, China
| |
Collapse
|
20
|
Preventing epigenetic traces of caregiver maltreatment: A role for HDAC inhibition. Int J Dev Neurosci 2019; 78:178-184. [PMID: 31075305 DOI: 10.1016/j.ijdevneu.2019.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 01/07/2023] Open
Abstract
Reorganization of the brain's epigenetic landscape occurs alongside early adversity in both human and non-human animals. Whether this reorganization is simply incidental to or is a causal mechanism of the behavioral abnormalities that result from early adversity is important to understand. Using the scarcity-adversity model of low nesting resources in Long Evans rats, our lab has previously reported specific epigenetic and behavioral trajectories occurring in response to early disruption of the caregiving environment. To further probe that relationship, the current work investigates the ability of the epigenome-modifying drug sodium butyrate to prevent maltreatment-induced methylation changes when administered alongside maltreatment. Following exposure to the scarcity-adversity model, during which drug was administered prior to each caregiving session, methylation of Brain-derived Neurotrophic Factor (Bdnf) IX DNA was examined in the Prefrontal Cortex (PFC) of male and female pups at postnatal day (PN) 8. As our previous work reports, increased methylation at this exon of Bdnf in the PFC is a stable epigenetic change across the lifespan that occurs in response to early maltreatment, thus giving us a suitable starting point to investigate pharmacological prevention of maltreatment-induced epigenetic marks. Here we also examined off-target effects of sodium butyrate by assessing methylation in another region of Bdnf (exon IV) not affected in the infant brain as well as global levels of methylation in the brain region of interest. Results indicate that a 400 mg/kg (but not 300 mg/kg) dose of sodium butyrate is effective in preventing the maltreatment-induced rise in methylation at Bdnf exon IX in the PFC of male (but not female) infant pups. Administration of sodium butyrate did not affect the methylation status of Bdnf IV or overall levels of global methylation in the PFC, suggesting potential specificity of this drug. These data provide us an avenue forward for investigating whether the relationship between adversity-induced epigenetic outcomes in our model can be manipulated to improve behavioral outcomes.
Collapse
|
21
|
Albert PR, Le François B, Vahid-Ansari F. Genetic, epigenetic and posttranscriptional mechanisms for treatment of major depression: the 5-HT1A receptor gene as a paradigm. J Psychiatry Neurosci 2019; 44:164-176. [PMID: 30807072 PMCID: PMC6488484 DOI: 10.1503/jpn.180209] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/10/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023] Open
Abstract
Major depression and anxiety are highly prevalent and involve chronic dysregulation of serotonin, but they remain poorly understood. Here, we review novel transcriptional (genetic, epigenetic) and posttranscriptional (microRNA, alternative splicing) mechanisms implicated in mental illness, focusing on a key serotonin-related regulator, the serotonin 1A (5-HT1A) receptor. Functional single-nucleotide polymorphisms and stress-induced DNA methylation of the 5-HT1A promoter converge to differentially alter pre- and postsynaptic 5-HT1A receptor expression associated with major depression and reduced therapeutic response to serotonergic antidepressants. Major depression is also associated with altered levels of splice factors and microRNA, posttranscriptional mechanisms that regulate RNA stability. The human 5-HT1A 3′-untranslated region is alternatively spliced, removing microRNA sites and increasing 5-HT1A expression, which is reduced in major depression and may be genotype-dependent. Thus, the 5-HT1A receptor gene illustrates the convergence of genetic, epigenetic and posttranscriptional mechanisms in gene expression, neurodevelopment and neuroplasticity, and major depression. Understanding gene regulatory mechanisms could enhance the detection, categorization and personalized treatment of major depression.
Collapse
Affiliation(s)
- Paul R. Albert
- From the Department of Neuroscience, Ottawa Hospital Research Institute, UOttawa Brain and Mind Research Institute, Ottawa, Ont., Canada
| | - Brice Le François
- From the Department of Neuroscience, Ottawa Hospital Research Institute, UOttawa Brain and Mind Research Institute, Ottawa, Ont., Canada
| | - Faranak Vahid-Ansari
- From the Department of Neuroscience, Ottawa Hospital Research Institute, UOttawa Brain and Mind Research Institute, Ottawa, Ont., Canada
| |
Collapse
|
22
|
Renani PG, Taheri F, Rostami D, Farahani N, Abdolkarimi H, Abdollahi E, Taghizadeh E, Gheibi Hayat SM. Involvement of aberrant regulation of epigenetic mechanisms in the pathogenesis of Parkinson's disease and epigenetic-based therapies. J Cell Physiol 2019; 234:19307-19319. [PMID: 30968426 DOI: 10.1002/jcp.28622] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) is known as a progressive neurodegenerative disorder associated with the reduction of dopamine-secreting neurons and the formation of Lewy bodies in the substantia nigra and basal ganglia routes. Aging, as well as environmental and genetic factors, are considered as disease risk factors that can make PD as a complex one. Epigenetics means studying heritable changes in gene expression or function, without altering the underlying DNA sequence. Multiple studies have shown the association of epigenetic variations with onset or progression of various types of diseases. DNA methylation, posttranslational modifications of histones and presence of microRNA (miRNA) are among epigenetic processes involved in regulating pathways related to the development of PD. Unlike genetic mutations, most epigenetic variations may be reversible or preventable. Therefore, the return of aberrant epigenetic events in different cells is a growing therapeutic approach to treatment or prevention. Currently, there are several methods for treating PD patients, the most important of which are drug therapies. However, detection of genes and epigenetic mechanisms involved in the disease can develop appropriate diagnosis and treatment of the disease before the onset of disabilities and resulting complications. The main purpose of this study was to review the most important epigenetic molecular mechanisms, epigenetic variations in PD, and epigenetic-based therapies.
Collapse
Affiliation(s)
- Pedram G Renani
- Genetic Department, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Forogh Taheri
- Genetic Department, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Daryoush Rostami
- Department of School Allied, Zabol University of Medical Sciences, Zabol, Iran
| | - Najmeh Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Abdolkarimi
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Elahe Abdollahi
- Department of Medical Genetics, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Eskandar Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
23
|
Exploring the Drug Repurposing Versatility of Valproic Acid as a Multifunctional Regulator of Innate and Adaptive Immune Cells. J Immunol Res 2019; 2019:9678098. [PMID: 31001564 PMCID: PMC6437734 DOI: 10.1155/2019/9678098] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/30/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022] Open
Abstract
Valproic acid (VPA) is widely recognized for its use in the control of epilepsy and other neurological disorders in the past 50 years. Recent evidence has shown the potential of VPA in the control of certain cancers, owed in part to its role in modulating epigenetic changes through the inhibition of histone deacetylases, affecting the expression of genes involved in the cell cycle, differentiation, and apoptosis. The direct impact of VPA in cells of the immune system has only been explored recently. In this review, we discuss the effects of VPA in the suppression of some activation mechanisms in several immune cells that lead to an anti-inflammatory response. As expected, immune cells are not exempt from the effect of VPA, as it also affects the expression of genes of the cell cycle and apoptosis through epigenetic modifications. In addition to inhibiting histone deacetylases, VPA promotes RNA interference, activates histone methyltransferases, or represses the activation of transcription factors. However, during the infectious process, the effectiveness of VPA is subject to the biological nature of the pathogen and the associated immune response; this is because VPA can promote the control or the progression of the infection. Due to its various effects, VPA is a promising alternative for the control of autoimmune diseases and hypersensitivity and needs to be further explored.
Collapse
|
24
|
So HC, Wong YH. Implications of de novo mutations in guiding drug discovery: A study of four neuropsychiatric disorders. J Psychiatr Res 2019; 110:83-92. [PMID: 30597425 DOI: 10.1016/j.jpsychires.2018.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/14/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022]
Abstract
Recent studies have suggested an important role of de novo mutations (DNMs) in neuropsychiatric disorders. As DNMs are not subject to elimination due to evolutionary pressure, they are likely to have greater disruptions on biological functions. While a number of sequencing studies have been performed on neuropsychiatric disorders, the implications of DNMs for drug discovery remain to be explored. In this study, we employed a gene-set analysis approach to address this issue. Four neuropsychiatric disorders were studied, including schizophrenia (SCZ), autistic spectrum disorders (ASD), intellectual disability (ID) and epilepsy. We first identified gene-sets associated with different drugs, and analyzed whether the gene-set pertaining to each drug overlaps with DNMs more than expected by chance. We also assessed which medication classes are enriched among the prioritized drugs. We discovered that neuropsychiatric drug classes were indeed significantly enriched for DNMs of all four disorders; in particular, antipsychotics and antiepileptics were the most strongly enriched drug classes for SCZ and epilepsy respectively. Interestingly, we revealed enrichment of several unexpected drug classes, such as lipid-lowering agents for SCZ and anti-neoplastic agents. By inspecting individual hits, we also uncovered other interesting drug candidates or mechanisms (e.g. histone deacetylase inhibition and retinoid signaling) that might warrant further investigations. Taken together, this study provided evidence for the usefulness of DNMs in guiding drug discovery or repositioning.
Collapse
Affiliation(s)
- Hon-Cheong So
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; KIZ-CUHK Joint Laboratory of Bioresources, Molecular Research of Common Diseases, Kunming Zoology Institute of Zoology, China.
| | - Yui-Hang Wong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
25
|
Comparison of Different Histone Deacetylase Inhibitors in Attenuating Inflammatory Pain in Rats. Pain Res Manag 2019; 2019:1648919. [PMID: 30809320 PMCID: PMC6369477 DOI: 10.1155/2019/1648919] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/25/2018] [Indexed: 12/17/2022]
Abstract
Histone deacetylase inhibitors (HDACIs), which interfere with the epigenetic process of histone acetylation, have shown analgesic effects in animal models of persistent pain. The HDAC family comprises 18 genes; however, the different effects of distinct classes of HDACIs on pain relief remain unclear. The aim of this study was to determine the efficacy of these HDACIs on attenuating thermal hyperalgesia in persistent inflammatory pain. Persistent inflammatory pain was induced by injecting Complete Freund's Adjuvant (CFA) into the left hind paw of rats. Then, HDACIs targeting class I (entinostat (MS-275)) and class IIa (sodium butyrate, valproic acid (VPA), and 4-phenylbutyric acid (4-PBA)), or class II (suberoylanilide hydoxamic acid (SAHA), trichostatin A (TSA), and dacinostat (LAQ824)) were administered intraperitoneally once daily for 3 or 4 days. We found that the injection of SAHA once a day for 3 days significantly attenuated CFA-induced thermal hyperalgesia from day 4 and lasted 7 days. In comparison with SAHA, suppression of hyperalgesia by 4-PBA peaked on day 2, whereas that by MS-275 occurred on days 5 and 6. Fatigue was a serious side effect seen with MS-275. These findings will be beneficial for optimizing the selection of specific HDACIs in medical fields such as pain medicine and neuropsychiatry.
Collapse
|
26
|
Huang TL, Hsieh MT, Lin CC. Increased brain-derived neurotrophic factor exon IV histone 3 lysine 9 dimethylation in patients with schizophrenia. TAIWANESE JOURNAL OF PSYCHIATRY 2019. [DOI: 10.4103/tpsy.tpsy_18_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
27
|
Histone deacetylase inhibitor MS-275 restores social and synaptic function in a Shank3-deficient mouse model of autism. Neuropsychopharmacology 2018; 43:1779-1788. [PMID: 29760409 PMCID: PMC6006368 DOI: 10.1038/s41386-018-0073-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Autism is a neurodevelopmental disorder characterized by social deficits and repetitive behaviors. Genetic screening has identified synaptic, transcriptional, and chromatin genes disrupted in autistic patients. Haploinsufficiency of Shank3, which encodes a scaffold protein at glutamatergic synapses, is causally linked to autism. Using a Shank3-deficient mouse model that exhibits prominent autism-like phenotypes, we have found that histone acetylation in the prefrontal cortex (PFC) is abnormally low, which can be reversed by MS-275 (also known as Entinostat, SNDX-275), a class I histone deacetylase (HDAC) inhibitor that is selectively potent in PFC. A brief (3-day) treatment with MS-275 (i.p.) led to the sustained (11 days) rescue of autistic social preference deficits in Shank3-deficient mice, without altering locomotion, motor coordination, anxiety, or the increased grooming. MS-275 treatment also rescued the diminished NMDAR surface expression and NMDAR function induced by Shank3 deficiency. Moreover, F-actin at synapses was restored and the transcription of actin regulators was elevated by MS-275 treatment of Shank3-deficient mice, which may contribute to the recovery of actin-based NMDAR synaptic delivery. Taken together, these results suggest that MS-275 treatment could normalize the aberrant epigenetic regulation of genes, leading to the amelioration of synaptic and social deficits associated with autism.
Collapse
|
28
|
Auta J, Gatta E, Davis JM, Pandey SC, Guidotti A. Potential role for histone deacetylation in chronic diazepam-induced downregulation of α1-GABA A receptor subunit expression. Pharmacol Res Perspect 2018; 6:e00416. [PMID: 29951207 PMCID: PMC6019704 DOI: 10.1002/prp2.416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/15/2018] [Indexed: 01/13/2023] Open
Abstract
Corroborating evidence indicate that the downregulation of GABAA receptor subunit expression may underlie tolerance to the anticonvulsant and anxiolytic actions of benzodiazepine (BZ) ligands that act as full allosteric modulators (FAMs) of GABA actions at a variety of GABAA receptor subtypes. We and others have shown that 10-14 days treatment with increasing doses of diazepam (a FAM) resulted in anticonvulsant tolerance and decreased the expression of the α1 GABAA receptor subunit mRNA and protein in frontal cortex. In addition, we have also shown that long-term treatment with imidazenil, a partial allosteric modulator of GABA action at selective GABAA receptor subtypes, fail to change the expression of the α1 subunit mRNA or induce tolerance to its anticonvulsant or anxiolytic action. However, little is known regarding the potential role of epigenetic mechanisms on long-term BZ-induced downregulation of GABAA receptor subunit. Therefore, we examined the role of histone acetylation and DNA methylation mechanisms on long-term diazepam-induced downregulation of the α1 subunit mRNA expression in rat frontal cortex. We found that 10 days treatment with increasing doses of diazepam but not imidazenil decreased the expression of the α1 GABAA receptor subunit mRNA and promoter acetylation in frontal cortex. In addition, we also found that 10 days treatment with diazepam but not imidazenil increased the expression of histone deacetylase (HDAC) 1 and 2 in frontal cortex. Thus, the increased expression of HDAC1 and HDAC2 (class 1 HDACs) and consequently increased histone deacetylation mechanism of this class 1 HDACs, may underlie long-term diazepam-induced decreased expression of the α1 GABAA receptor subunit mRNA in frontal cortex.
Collapse
Affiliation(s)
- James Auta
- Center for Alcohol Research in EpigeneticsDepartment of PsychiatryCollege of MedicineUniversity of IllinoisChicagoIllinois
- The Psychiatric InstituteDepartment of PsychiatryCollege of MedicineUniversity of IllinoisChicagoIllinois
| | - Eleonora Gatta
- Center for Alcohol Research in EpigeneticsDepartment of PsychiatryCollege of MedicineUniversity of IllinoisChicagoIllinois
- The Psychiatric InstituteDepartment of PsychiatryCollege of MedicineUniversity of IllinoisChicagoIllinois
| | - John M. Davis
- The Psychiatric InstituteDepartment of PsychiatryCollege of MedicineUniversity of IllinoisChicagoIllinois
| | - Subhash C. Pandey
- Center for Alcohol Research in EpigeneticsDepartment of PsychiatryCollege of MedicineUniversity of IllinoisChicagoIllinois
- Jesse Brown VA Medical CenterChicagoIllinois
| | - Alessandro Guidotti
- Center for Alcohol Research in EpigeneticsDepartment of PsychiatryCollege of MedicineUniversity of IllinoisChicagoIllinois
- The Psychiatric InstituteDepartment of PsychiatryCollege of MedicineUniversity of IllinoisChicagoIllinois
| |
Collapse
|
29
|
Abnormal modification of histone acetylation involved in depression-like behaviors of rats induced by chronically unpredicted stress. Neuroreport 2018; 28:1054-1060. [PMID: 28877103 DOI: 10.1097/wnr.0000000000000879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Depression is a complex multifactorial mental disorder. Its etiology involves many factors such as social environments, genetics, and psychology. Recent studies have shown that epigenetic modification may be associated with depression. Histone acetylation is one of the main mechanisms of epigenetic modification and plays an important role in genetic expression. In this study, we investigated the role of histone acetylation in the depression-like behaviors of rats undergoing chronically unpredicted stress (CUS) by detecting the mRNA and protein expression of histone deacetylase 5, cAMP-response element-binding protein, and the level of histone acetylated modification of H3K14, H3K23, and H4K16 in the prefrontal cortex and hippocampus of the rats. The results showed that significantly increasing depression-like behaviors were observed with a decreasing histone acetylated modification level, especially on acytelated-H3K14, acytelated-H3K23, and acytelated-H4K16, upregulating histone deacetylase 5 expression and downregulating cAMP-response element-binding protein expression in CUS rats, compared with control rats. The results indicate that the decrease in the histone acetylation modification level may be partly involved in the mechanism of depression-like behaviors of rats induced by CUS.
Collapse
|
30
|
You C, Vandegrift B, Brodie MS. Ethanol actions on the ventral tegmental area: novel potential targets on reward pathway neurons. Psychopharmacology (Berl) 2018; 235:1711-1726. [PMID: 29549390 PMCID: PMC5949141 DOI: 10.1007/s00213-018-4875-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/06/2018] [Indexed: 12/14/2022]
Abstract
The ventral tegmental area (VTA) evaluates salience of environmental stimuli and provides dopaminergic innervation to many brain areas affected by acute and chronic ethanol exposure. While primarily associated with rewarding and reinforcing stimuli, recent evidence indicates a role for the VTA in aversion as well. Ethanol actions in the VTA may trigger neuroadaptation resulting in reduction of the aversive responses to alcohol and a relative increase in the rewarding responses. In searching for effective pharmacotherapies for the treatment of alcohol abuse and alcoholism, recognition of this imbalance may reveal novel strategies. In addition to conventional receptor/ion channel pharmacotherapies, epigenetic factors that control neuroadaptation to chronic ethanol treatment can be targeted as an avenue for development of therapeutic approaches to restore the balance. Furthermore, when exploring therapies to address reward/aversion imbalance in the action of alcohol in the VTA, sex differences have to be taken into account to ensure effective treatment for both men and women. These principles apply to a VTA-centric approach to therapies, but should hold true when thinking about the overall approach in the development of neuroactive drugs to treat alcohol use disorders. Although the functions of the VTA itself are complex, it is a useful model system to evaluate the reward/aversion imbalance that occurs with ethanol exposure and could be used to provide new leads in the efforts to develop novel drugs to treat alcoholism.
Collapse
Affiliation(s)
- Chang You
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E-202, M/C 901, Chicago, IL, 60612, USA
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Bertha Vandegrift
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E-202, M/C 901, Chicago, IL, 60612, USA
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mark S Brodie
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E-202, M/C 901, Chicago, IL, 60612, USA.
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
31
|
Class I histone deacetylase (HDAC) inhibitor CI-994 promotes functional recovery following spinal cord injury. Cell Death Dis 2018; 9:460. [PMID: 29700327 PMCID: PMC5919919 DOI: 10.1038/s41419-018-0543-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 03/12/2018] [Accepted: 03/30/2018] [Indexed: 12/21/2022]
Abstract
Spinal cord injury (SCI) induces severe and long-lasting neurological disability. Accumulating evidence has suggested that histone deacetylase (HDAC) inhibitors exert neuroprotective effects against various insults and deficits in the central nervous system. In the present study, we assessed the effect of the class I HDAC inhibitor CI-994 in a mouse model of SCI. Following SCI, mice were treated with either dimethyl sulfoxide (control vehicle) or 1, 10, or 30 mg/kg CI-994. Level of acetylated histone H3 expression was increased in the motor cortex and spinal cord of 10 mg/kg CCI-994-treated mice after SCI. CI-994 increased histone H3 acetylation in the myeloperoxidase-positive neutrophils and CD68-positive microglia/macrophages in the spinal cord. Although it did not appear to contribute to corticospinal tract axonal reorganization, intraperitoneal injection of CI-994 promoted behavioral recovery following SCI. Furthermore, administration of CI-994 suppressed neutrophil accumulation, inflammatory cytokine expressions, and neuronal loss as early as 3 days following injury. Thus, our findings indicate that HDAC inhibitors may improve functional recovery following SCI, especially during the early stages of the disease.
Collapse
|
32
|
Qin L, Ma K, Wang ZJ, Hu Z, Matas E, Wei J, Yan Z. Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nat Neurosci 2018. [PMID: 29531362 PMCID: PMC5876144 DOI: 10.1038/s41593-018-0110-8] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Haploinsufficiency of the SHANK3 gene is causally linked to autism spectrum disorder (ASD), and ASD-associated genes are also enriched for chromatin remodelers. Here we found that brief treatment with romidepsin, a highly potent class I histone deacetylase (HDAC) inhibitor, alleviated social deficits in Shank3-deficient mice, which persisted for ~3 weeks. HDAC2 transcription was upregulated in these mice, and knockdown of HDAC2 in prefrontal cortex also rescued their social deficits. Nuclear localization of β-catenin, a Shank3-binding protein that regulates cell adhesion and transcription, was increased in Shank3-deficient mice, which induced HDAC2 upregulation and social deficits. At the downstream molecular level, romidepsin treatment elevated the expression and histone acetylation of Grin2a and actin-regulatory genes and restored NMDA-receptor function and actin filaments in Shank3-deficient mice. Taken together, these findings highlight an epigenetic mechanism underlying social deficits linked to Shank3 deficiency, which may suggest potential therapeutic strategies for ASD patients bearing SHANK3 mutations.
Collapse
Affiliation(s)
- Luye Qin
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Kaijie Ma
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Zi-Jun Wang
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Zihua Hu
- Center for Computational Research, New York State Center of Excellence in Bioinformatics & Life Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Emmanuel Matas
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jing Wei
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
33
|
Večeřa J, Bártová E, Krejčí J, Legartová S, Komůrková D, Rudá-Kučerová J, Štark T, Dražanová E, Kašpárek T, Šulcová A, Dekker FJ, Szymanski W, Seiser C, Weitzer G, Mechoulam R, Micale V, Kozubek S. HDAC1 and HDAC3 underlie dynamic H3K9 acetylation during embryonic neurogenesis and in schizophrenia-like animals. J Cell Physiol 2018; 233:530-548. [PMID: 28300292 PMCID: PMC7615847 DOI: 10.1002/jcp.25914] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/14/2017] [Indexed: 12/21/2022]
Abstract
Although histone acetylation is one of the most widely studied epigenetic modifications, there is still a lack of information regarding how the acetylome is regulated during brain development and pathophysiological processes. We demonstrate that the embryonic brain (E15) is characterized by an increase in H3K9 acetylation as well as decreases in the levels of HDAC1 and HDAC3. Moreover, experimental induction of H3K9 hyperacetylation led to the overexpression of NCAM in the embryonic cortex and depletion of Sox2 in the subventricular ependyma, which mimicked the differentiation processes. Inducing differentiation in HDAC1-deficient mouse ESCs resulted in early H3K9 deacetylation, Sox2 downregulation, and enhanced astrogliogenesis, whereas neuro-differentiation was almost suppressed. Neuro-differentiation of (wt) ESCs was characterized by H3K9 hyperacetylation that was associated with HDAC1 and HDAC3 depletion. Conversely, the hippocampi of schizophrenia-like animals showed H3K9 deacetylation that was regulated by an increase in both HDAC1 and HDAC3. The hippocampi of schizophrenia-like brains that were treated with the cannabinoid receptor-1 inverse antagonist AM251 expressed H3K9ac at the level observed in normal brains. Together, the results indicate that co-regulation of H3K9ac by HDAC1 and HDAC3 is important to both embryonic brain development and neuro-differentiation as well as the pathophysiology of a schizophrenia-like phenotype.
Collapse
MESH Headings
- Acetylation
- Animals
- Antipsychotic Agents/pharmacology
- Brain/drug effects
- Brain/embryology
- Brain/enzymology
- Brain/pathology
- Cannabinoid Receptor Antagonists/pharmacology
- Disease Models, Animal
- Epigenesis, Genetic
- Gene Expression Regulation, Developmental
- Gestational Age
- Histone Deacetylase 1/antagonists & inhibitors
- Histone Deacetylase 1/genetics
- Histone Deacetylase 1/metabolism
- Histone Deacetylase Inhibitors/pharmacology
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Histones/metabolism
- Methylazoxymethanol Acetate
- Mice, Inbred C57BL
- Neural Cell Adhesion Molecules/genetics
- Neural Cell Adhesion Molecules/metabolism
- Neurogenesis/drug effects
- Neurons/drug effects
- Neurons/enzymology
- Neurons/pathology
- Protein Processing, Post-Translational
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- SOXB1 Transcription Factors/genetics
- SOXB1 Transcription Factors/metabolism
- Schizophrenia/chemically induced
- Schizophrenia/drug therapy
- Schizophrenia/enzymology
- Schizophrenia/genetics
- Signal Transduction
- Time Factors
Collapse
Affiliation(s)
- Josef Večeřa
- Faculty of Science, Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Eva Bártová
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno, Czech Republic
| | - Jana Krejčí
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno, Czech Republic
| | - Soňa Legartová
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno, Czech Republic
| | - Denisa Komůrková
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i., Brno, Czech Republic
| | - Jana Rudá-Kučerová
- Faculty of Medicine, Department of Pharmacology, Masaryk University, Brno, Czech Republic
| | - Tibor Štark
- Faculty of Medicine, Department of Pharmacology, Masaryk University, Brno, Czech Republic
| | - Eva Dražanová
- Faculty of Medicine, Department of Pharmacology, Masaryk University, Brno, Czech Republic
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Brno, Czech Republic
| | - Tomáš Kašpárek
- Behavioral and Social Neuroscience Group, CEITEC—Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Alexandra Šulcová
- Behavioral and Social Neuroscience Group, CEITEC—Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Frank J. Dekker
- Chemical and Pharmaceutical Biology, University of Groningen, Groningen, The Netherlands
| | - Wiktor Szymanski
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Christian Seiser
- Max F. Perutz Laboratories, Vienna Biocenter (VBC), Vienna, Austria
| | - Georg Weitzer
- Max F. Perutz Laboratories, Vienna Biocenter (VBC), Vienna, Austria
| | - Raphael Mechoulam
- Faculty of Medicine, Institute for Drug Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vincenzo Micale
- Behavioral and Social Neuroscience Group, CEITEC—Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, School of Medicine, University of Catania, Catania, Italy
| | - Stanislav Kozubek
- Faculty of Science, Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
34
|
Bourguet E, Ozdarska K, Moroy G, Jeanblanc J, Naassila M. Class I HDAC Inhibitors: Potential New Epigenetic Therapeutics for Alcohol Use Disorder (AUD). J Med Chem 2017; 61:1745-1766. [PMID: 28771357 DOI: 10.1021/acs.jmedchem.7b00115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alcohol use disorder (AUD) represents a serious public health issue, and discovery of new therapies is a pressing necessity. Alcohol exposure has been widely demonstrated to modulate epigenetic mechanisms, such as histone acetylation/deacetylation balance, in part via histone deacetylase (HDAC) inhibition. Epigenetic factors have been suggested to play a key role in AUD. To date, 18 different mammalian HDAC isoforms have been identified, and these have been divided into four classes. Since recent studies have suggested that both epigenetic mechanisms underlying AUD and the efficacy of HDAC inhibitors (HDACIs) in different animal models of AUD may involve class I HDACs, we herein report the development of class I HDACIs, including information regarding their structure, potency, and selectivity. More effort is required to improve the selectivity, pharmacokinetics, and toxicity profiles of HDACIs to achieve a better understanding of their efficacy in reducing addictive behavior.
Collapse
Affiliation(s)
- Erika Bourguet
- Institut de Chimie Moléculaire de Reims, UMR 7312-CNRS, UFR Pharmacie , Université de Reims Champagne-Ardenne , 51 rue Cognacq-Jay , 51096 Reims Cedex , France.,Structure Fédérative de Recherche-Champagne Ardenne Picardie Santé (SFR-CAP Santé) , 51095 Reims Cedex , France
| | - Katarzyna Ozdarska
- Institut de Chimie Moléculaire de Reims, UMR 7312-CNRS, UFR Pharmacie , Université de Reims Champagne-Ardenne , 51 rue Cognacq-Jay , 51096 Reims Cedex , France.,Department of Bioanalysis and Drugs Analysis , Medical University of Warsaw , S. Banacha 1 , 02-097 Warsaw , Poland
| | - Gautier Moroy
- Sorbonne Paris Cité, Molécules Thérapeutiques In Silico (MTi), INSERM UMR-S 973 , Université Paris Diderot , 35 rue Hélène Brion , 75013 Paris , France
| | - Jérôme Jeanblanc
- INSERM ERi 24, Groupe de Recherche sur l'Alcool et les Pharmacodépendances (GRAP) , Université de Picardie Jules Verne, C.U.R.S. (Centre Universitaire de Recherche en Santé) , Chemin du Thil , 80000 Amiens , France.,Structure Fédérative de Recherche-Champagne Ardenne Picardie Santé (SFR-CAP Santé) , 51095 Reims Cedex , France
| | - Mickaël Naassila
- INSERM ERi 24, Groupe de Recherche sur l'Alcool et les Pharmacodépendances (GRAP) , Université de Picardie Jules Verne, C.U.R.S. (Centre Universitaire de Recherche en Santé) , Chemin du Thil , 80000 Amiens , France.,Structure Fédérative de Recherche-Champagne Ardenne Picardie Santé (SFR-CAP Santé) , 51095 Reims Cedex , France
| |
Collapse
|
35
|
Histone deacetylases (HDACs) as therapeutic target for depressive disorders. Pharmacol Rep 2017; 70:398-408. [PMID: 29456074 DOI: 10.1016/j.pharep.2017.08.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/12/2017] [Accepted: 08/03/2017] [Indexed: 12/25/2022]
Abstract
Major depressive disorder (MDD) represents approximately 40% of the disability caused by mental illnesses globally. The poorly understood pathophysiology and limited efficiency of pharmacological treatment (based primarily on the principles of the monoaminergic hypothesis) make depression a serious medical, public and socio-economical problem. An increasing number of studies suggest that epigenetic modifications (alterations in gene expression that are not due to changes in DNA sequence) in certain brain regions and neural circuits represent a key mechanism through which environmental factors interact with individual's genetic constitution to affect risk of mental disorders. Accordingly, chromatin-based epigenetic regulation seems to be a promising direction for the development of new, more effective antidepressant drugs. Recently, several inhibitors of histone deacetylases (HDAC) have been extensively studied in the context of antidepressant action. So far, none of them has been used to treat depression in humans due to the low selectivity for specific HDAC isoforms, and consequently, a risk of serious adverse events. In this review, we focus on the HDAC inhibitors (HDACi) with the greatest antidepressant efficacy and their activity in the preclinical studies. Moreover, we discuss their potential therapeutic usefulness in depression and the main limitations.
Collapse
|
36
|
Ajonijebu DC, Abboussi O, Russell VA, Mabandla MV, Daniels WMU. Epigenetics: a link between addiction and social environment. Cell Mol Life Sci 2017; 74:2735-2747. [PMID: 28255755 PMCID: PMC11107568 DOI: 10.1007/s00018-017-2493-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 01/14/2023]
Abstract
The detrimental effects of drug abuse are apparently not limited to individuals but may also impact the vulnerability of their progenies to develop addictive behaviours. Epigenetic signatures, early life experience and environmental factors, converge to influence gene expression patterns in addiction phenotypes and consequently may serve as mediators of behavioural trait transmission between generations. The majority of studies investigating the role of epigenetics in addiction do not consider the influence of social interactions. This shortcoming in current experimental approaches necessitates developing social models that reflect the addictive behaviour in a free-living social environment. Furthermore, this review also reports on the advancement of interventions for drug addiction and takes into account the emerging roles of histone deacetylase (HDAC) inhibitors in the etiology of drug addiction and that HDAC may be a potential therapeutic target at nucleosomal level to improve treatment outcomes.
Collapse
Affiliation(s)
- Duyilemi C Ajonijebu
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Oualid Abboussi
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa.
| | - Vivienne A Russell
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Musa V Mabandla
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - William M U Daniels
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
- School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
37
|
General Anesthesia Causes Epigenetic Histone Modulation of c-Fos and Brain-derived Neurotrophic Factor, Target Genes Important for Neuronal Development in the Immature Rat Hippocampus. Anesthesiology 2017; 124:1311-1327. [PMID: 27028464 DOI: 10.1097/aln.0000000000001111] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Early postnatal exposure to general anesthesia (GA) may be detrimental to brain development, resulting in long-term cognitive impairments. Older literature suggests that in utero exposure of rodents to GA causes cognitive impairments in the first-generation as well as in the second-generation offspring never exposed to GA. Thus, the authors hypothesize that transient exposure to GA during critical stages of synaptogenesis causes epigenetic changes in chromatin with deleterious effects on transcription of target genes crucial for proper synapse formation and cognitive development. They focus on the effects of GA on histone acetyltransferase activity of cAMP-responsive element-binding protein and the histone-3 acetylation status in the promoters of the target genes brain-derived neurotrophic factor and cellular Finkel-Biskis-Jinkins murine sarcoma virus osteosarcoma oncogene (c-Fos) known to regulate the development of neuronal morphology and function. METHODS Seven-day-old rat pups were exposed to a sedative dose of midazolam followed by combined nitrous oxide and isoflurane anesthesia for 6 h. Hippocampal neurons and organotypic hippocampal slices were cultured in vitro and exposed to GA for 24 h. RESULTS GA caused epigenetic modulations manifested as histone-3 hypoacetylation (decrease of 25 to 30%, n = 7 to 9) and fragmentation of cAMP-responsive element-binding protein (two-fold increase, n = 6) with 25% decrease in its histone acetyltransferase activity, which resulted in down-regulated transcription of brain-derived neurotrophic factor (0.2- to 0.4-fold, n = 7 to 8) and cellular Finkel-Biskis-Jinkins murine sarcoma virus osteosarcoma oncogene (about 0.2-fold, n = 10 to 12). Reversal of histone hypoacetylation with sodium butyrate blocked GA-induced morphological and functional impairments of neuronal development and synaptic communication. CONCLUSION Long-term impairments of neuronal development and synaptic communication could be caused by GA-induced epigenetic phenomena.
Collapse
|
38
|
Powell TR, Murphy T, Lee SH, Price J, Thuret S, Breen G. Transcriptomic profiling of human hippocampal progenitor cells treated with antidepressants and its application in drug repositioning. J Psychopharmacol 2017; 31:338-345. [PMID: 28208023 PMCID: PMC5349314 DOI: 10.1177/0269881117691467] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Current pharmacological treatments for major depressive disorder (MDD) are ineffective in a significant proportion of patients, and the identification of new antidepressant compounds has been difficult. 'Connectivity mapping' is a method that can be used to identify drugs that elicit similar downstream effects on mRNA levels when compared to current treatments, and thus may point towards possible repositioning opportunities. We investigated genome-wide transcriptomic changes to human hippocampal progenitor cells treated with therapeutically relevant concentrations of a tricyclic antidepressant (nortriptyline) and a selective serotonin reuptake inhibitor (escitalopram). We identified mRNA changes common to both drugs to create an 'antidepressant mRNA signature'. We used this signature to probe the Library of Integrated Network-based Cellular Signatures (LINCS) and to identify other compounds that elicit similar changes to mRNA in neural progenitor cells. Results from LINCS revealed that the tricyclic antidepressant clomipramine elicited mRNA changes most similar to our mRNA signature, and we identified W-7 and vorinostat as functionally relevant drug candidates, which may have repositioning potential. Our results are encouraging and represent the first attempt to use connectivity mapping for drug repositioning in MDD.
Collapse
Affiliation(s)
- Timothy R Powell
- Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- National Institute for Health Research Biomedical Research Centre for Mental Health, Institute of Psychiatry, Psychology and Neuroscience, Maudsley Hospital and King’s College London, London, UK
| | - Tytus Murphy
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Sang H Lee
- Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- National Institute for Health Research Biomedical Research Centre for Mental Health, Institute of Psychiatry, Psychology and Neuroscience, Maudsley Hospital and King’s College London, London, UK
| | - Jack Price
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- National Institute for Health Research Biomedical Research Centre for Mental Health, Institute of Psychiatry, Psychology and Neuroscience, Maudsley Hospital and King’s College London, London, UK
| |
Collapse
|
39
|
Lysine Acetylation and Deacetylation in Brain Development and Neuropathies. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:19-36. [PMID: 28161493 PMCID: PMC5339409 DOI: 10.1016/j.gpb.2016.09.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 09/11/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022]
Abstract
Embryonic development is critical for the final functionality and maintenance of the adult brain. Brain development is tightly regulated by intracellular and extracellular signaling. Lysine acetylation and deacetylation are posttranslational modifications that are able to link extracellular signals to intracellular responses. A wealth of evidence indicates that lysine acetylation and deacetylation are critical for brain development and functionality. Indeed, mutations of the enzymes and cofactors responsible for these processes are often associated with neurodevelopmental and psychiatric disorders. Lysine acetylation and deacetylation are involved in all levels of brain development, starting from neuroprogenitor survival and proliferation, cell fate decisions, neuronal maturation, migration, and synaptogenesis, as well as differentiation and maturation of astrocytes and oligodendrocytes, to the establishment of neuronal circuits. Hence, fluctuations in the balance between lysine acetylation and deacetylation contribute to the final shape and performance of the brain. In this review, we summarize the current basic knowledge on the specific roles of lysine acetyltransferase (KAT) and lysine deacetylase (KDAC) complexes in brain development and the different neurodevelopmental disorders that are associated with dysfunctional lysine (de)acetylation machineries.
Collapse
|
40
|
Fizikova I, Dragasek J. Mitochondrial Dysfunction and New Therapeutic Targets in Bipolar Affective Disorder. Psychiatr Ann 2017. [DOI: 10.3928/00485713-20170103-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Histone deacetylase inhibition is cytotoxic to oligodendrocyte precursor cells in vitro and in vivo. Int J Dev Neurosci 2016; 54:53-61. [PMID: 27587342 DOI: 10.1016/j.ijdevneu.2016.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 11/24/2022] Open
Abstract
Histone deacetylase (HDAC) inhibition mediated by small molecule HDAC inhibitors (HDACi) has demonstrated divergent effects including toxicity towards transformed cell lines, neuroprotection in neurological disease models, and inhibition of oligodendrocyte precursor cell (OPC) differentiation to mature oligodendrocytes (OL). However, it remains unknown if transient HDAC inhibition may promote OPC survival. Using mouse cortical OPC primary cultures, we investigated the effects of the FDA approved pan-HDACi suberoylanilide hydroxamic acid (SAHA) on OPC survival. Initial studies showed differences in the HDAC expression pattern of multiple HDAC isoforms in OPCs relative to their terminally differentiated progeny cells, OLs and astrocytes. Treatment of OPCs with SAHA for up to 72h using a maximum concentration either at or lower than those necessary for cytotoxicity in most transformed cell lines resulted in over 67% reduction in viability relative to vehicle-treated OPCs. This was at least partly due to increased apoptosis as SAHA-treated cells displayed activated caspase 3 and were protected by the general caspase inhibitor Q-VD-OPH. Additionally, SAHA treatment of whole mice at postnatal day 5 induced apoptosis of cortical OPCs. These results suggest that SAHA negatively impacts OPC survival and may be detrimental to the myelinating brain and spinal cord. Such toxicity may be relevant in a clinical context as SAHA is currently involved in numerous clinical trials and is in consideration for use in the treatment of psychiatric and neurodegenerative conditions.
Collapse
|
42
|
Pujol Lopez Y, Kenis G, Stettinger W, Neumeier K, de Jonge S, Steinbusch HWM, Zill P, van den Hove DLA, Myint AM. Effects of prenatal Poly I:C exposure on global histone deacetylase (HDAC) and DNA methyltransferase (DNMT) activity in the mouse brain. Mol Biol Rep 2016; 43:711-7. [PMID: 27216537 PMCID: PMC4906067 DOI: 10.1007/s11033-016-4006-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 05/10/2016] [Indexed: 01/17/2023]
Abstract
The aim of our study was to investigate the brain-specific epigenetic effects on global enzymatic histone deacetylase (HDAC) and DNA methyltransferase (DNMT) activity after prenatal exposure to maternal immune challenge by polyinosinic:polycytidylic acid (Poly I:C) at gestational day (GD) 17 in C57BL/6JRccHsd mouse offspring. Pregnant mice were randomly divided into 2 groups, receiving either 5 mg/kg Poly I:C or phosphate buffered saline (PBS) intravenously at GD 17. Subsequently, the effects on whole brain enzymatic HDAC and DNMT activity and the protein levels of various HDAC isoforms were assessed in the offspring. Overall, a significant sex × treatment interaction effect was observed after prenatal exposure to maternal immune challenge by Poly I:C, indicative of increased global HDAC activity particularly in female offspring from mothers injected with Poly I:C when compared to controls. Results on the levels of specific HDAC isoforms suggested that neither differences in the levels of HDAC1, HDAC2, HDAC3, HDAC4 or HDAC6 could explain the increased global HDAC activity observed in female Poly I:C offspring. In conclusion, we show that Poly I:C administration to pregnant mice alters global brain HDAC, but not DNMT activity in adult offspring, whereas it is still unclear which specific HDAC(s) mediate(s) this effect. These results indicate the necessity for further research on the epigenetic effects of Poly I:C.
Collapse
Affiliation(s)
- Yara Pujol Lopez
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre+, Universiteitssingel 50, Room 1.148, 6229 ER, Maastricht, The Netherlands.
| | - Gunter Kenis
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre+, Universiteitssingel 50, Room 1.148, 6229 ER, Maastricht, The Netherlands
| | | | - Karin Neumeier
- Psychiatric Hospital, Ludwig-Maximilian University, Munich, Germany
| | - Sylvia de Jonge
- Psychiatric Hospital, Ludwig-Maximilian University, Munich, Germany
| | - Harry W M Steinbusch
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre+, Universiteitssingel 50, Room 1.148, 6229 ER, Maastricht, The Netherlands
| | - Peter Zill
- Psychiatric Hospital, Ludwig-Maximilian University, Munich, Germany
| | - Daniel L A van den Hove
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre+, Universiteitssingel 50, Room 1.148, 6229 ER, Maastricht, The Netherlands.,Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Aye M Myint
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre+, Universiteitssingel 50, Room 1.148, 6229 ER, Maastricht, The Netherlands.,Psychiatric Hospital, Ludwig-Maximilian University, Munich, Germany
| |
Collapse
|
43
|
Wang W, Cui SS, Lu R, Zhang H. Is there any therapeutic value for the use of histone deacetylase inhibitors for chronic pain? Brain Res Bull 2016; 125:44-52. [PMID: 27090944 DOI: 10.1016/j.brainresbull.2016.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/16/2016] [Accepted: 04/14/2016] [Indexed: 12/16/2022]
Abstract
Chronic pain is a complex clinical condition that reduces the quality of life for billions of people. In recent years, the role of epigenetic modulation in the control of long-term neuronal plasticity has attracted the attention of pain researchers. The epigenetic mechanisms include covalent modifications of DNA and/or histone proteins. Mounting evidence suggests that the activity of histone deacetylases (HDACs) and levels of histone acetylation are dynamic and that these enzymes modulate pain-related synaptic plasticity. Therefore, HDACs play essential roles in chronic pain development and maintenance. In this mini review, we will discuss the role of HDACs in the pathogenesis of chronic pain and will consider the therapeutic value of HDAC inhibitors in treating chronic pain.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China.
| | - Shan-Shan Cui
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, Wuhan 430071, China.
| | - Rui Lu
- State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China.
| | - Hui Zhang
- State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, the Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
44
|
Lei E, Vacy K, Boon WC. Fatty acids and their therapeutic potential in neurological disorders. Neurochem Int 2016; 95:75-84. [PMID: 26939763 DOI: 10.1016/j.neuint.2016.02.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 11/27/2022]
Abstract
There is little doubt that we are what we eat. Fatty acid supplementation and diets rich in fatty acids are being promoted as ways to a healthier brain. Short chain fatty acids are a product of intestinal microbiota metabolism of dietary fibre; and their derivatives are used as an anti-convulstant. They demonstrated therapeutic potential in neurodegenerative conditions as HDAC inhibitors; and while the mechanism is not well understood, have been shown to lower amyloid β in Alzheimer's Disease in preclinical studies. Medium chain fatty acids consumed as a mixture in dietary oils can induce ketogenesis without the need for a ketogentic diet. Hence, this has the potential to provide an alternative energy source to prevent neuronal cell death due to lack of glucose. Long chain fatty acids are commonly found in the diet as omega fatty acids. They act as an anti-oxidant protecting neuronal cell membranes from oxidative damage and as an anti-inflammatory mediator in the brain. We review which agents, from each fatty acid class, have the most therapeutic potential for neurological disorders (primarily Alzheimer's disease, Parkinson's disease, Autism Spectrum Disorder as well as possible applications to traumatic brain injury), by discussing what is known about their biological mechanisms from preclinical studies.
Collapse
Affiliation(s)
- Enie Lei
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Kristina Vacy
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Wah Chin Boon
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia; Dept of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
45
|
Irwin MH, Moos WH, Faller DV, Steliou K, Pinkert CA. Epigenetic Treatment of Neurodegenerative Disorders: Alzheimer and Parkinson Diseases. Drug Dev Res 2016; 77:109-23. [PMID: 26899010 DOI: 10.1002/ddr.21294] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Preclinical Research In this review, we discuss epigenetic-driven methods for treating neurodegenerative disorders associated with mitochondrial dysfunction, focusing on carnitinoid antioxidant-histone deacetylase inhibitors that show an ability to reinvigorate synaptic plasticity and protect against neuromotor decline in vivo. Aging remains a major risk factor in patients who progress to dementia, a clinical syndrome typified by decreased mental capacity, including impairments in memory, language skills, and executive function. Energy metabolism and mitochondrial dysfunction are viewed as determinants in the aging process that may afford therapeutic targets for a host of disease conditions, the brain being primary in such thinking. Mitochondrial dysfunction is a core feature in the pathophysiology of both Alzheimer and Parkinson diseases and rare mitochondrial diseases. The potential of new therapies in this area extends to glaucoma and other ophthalmic disorders, migraine, Creutzfeldt-Jakob disease, post-traumatic stress disorder, systemic exertion intolerance disease, and chemotherapy-induced cognitive impairment. An emerging and hopefully more promising approach to addressing these hard-to-treat diseases leverages their sensitivity to activation of master regulators of antioxidant and cytoprotective genes, antioxidant response elements, and mitophagy. Drug Dev Res 77 : 109-123, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael H Irwin
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.,SRI Biosciences, A Division of SRI International, Menlo Park, CA, USA
| | - Douglas V Faller
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA.,PhenoMatriX, Inc., Boston, MA, USA
| | - Carl A Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Department of Biological Sciences, College of Arts and Sciences, The University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
46
|
Moos WH, Maneta E, Pinkert CA, Irwin MH, Hoffman ME, Faller DV, Steliou K. Epigenetic Treatment of Neuropsychiatric Disorders: Autism and Schizophrenia. Drug Dev Res 2016; 77:53-72. [PMID: 26899191 DOI: 10.1002/ddr.21295] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neuropsychiatric disorders are a heterogeneous group of conditions that often share underlying mitochondrial dysfunction and biological pathways implicated in their pathogenesis, progression, and treatment. To date, these disorders have proven notoriously resistant to molecular-targeted therapies, and clinical options are relegated to interventional types, which do not address the core symptoms of the disease. In this review, we discuss emerging epigenetic-driven approaches using novel acylcarnitine esters (carnitinoids) that act on master regulators of antioxidant and cytoprotective genes and mitophagic pathways. These carnitinoids are actively transported, mitochondria-localizing, biomimetic coenzyme A surrogates of short-chain fatty acids, which inhibit histone deacetylase and may reinvigorate synaptic plasticity and protect against neuronal damage. We outline these neuroprotective effects in the context of treatment of neuropsychiatric disorders such as autism spectrum disorder and schizophrenia.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.,SRI Biosciences, A Division of SRI International, Menlo Park, CA, USA
| | - Eleni Maneta
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Carl A Pinkert
- Department of Biological Sciences, College of Arts and Sciences, The University of Alabama, Tuscaloosa, AL, USA.,Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Michael H Irwin
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Michelle E Hoffman
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Douglas V Faller
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA.,PhenoMatriX, Inc., Boston, MA, USA
| |
Collapse
|
47
|
Dong SY, Guo YJ, Feng Y, Cui XX, Kuo SH, Liu T, Wu YC. The epigenetic regulation of HIF-1α by SIRT1 in MPP(+) treated SH-SY5Y cells. Biochem Biophys Res Commun 2016; 470:453-459. [PMID: 26768367 DOI: 10.1016/j.bbrc.2016.01.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 01/04/2016] [Indexed: 02/02/2023]
Abstract
Both silent information regulator 1 (SIRT1) and hypoxia inducible factor 1 (HIF-1) have been found to play important roles in the pathophysiology of Parkinson's disease (PD). However, their mechanisms and their relationship still require further study. In the present study, we focused on the change and relationship of SIRT1 and HIF-1α in PD. PD cell models were established by using methyl-4-phenylpyridinium (MPP(+)), which induced inhibition of cell proliferation, cell cycle arrest and apoptosis. We found that the expression of HIF-1α and its target genes VEGFA and LDHA increased and that SIRT1 expression was inhibited in MPP(+) treated cells. With further analysis, we found that the acetylation of H3K14 combined with the HIF-1α promoter was dramatically increased in cells treated with MPP(+), which resulted in the transcriptional activation of HIF-1α. Moreover, the acetylation of H3K14 and the expression of HIF-1α increased when SIRT1 was knocked down, suggesting that SIRT1 was involved in the epigenetic regulation of HIF-1α. At last, phenformin, another mitochondrial complex1 inhibitor, was used to testify that the increased HIF-1a was not due to off target effects of MPP(+). Therefore, our results support a link between PD and SIRT1/HIF-1α signaling, which may serve as a clue for understanding PD.
Collapse
Affiliation(s)
- Su-Yan Dong
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Yan-Jie Guo
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Ya Feng
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Xin-Xin Cui
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, USA
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, PR China.
| | - Yun-Cheng Wu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China.
| |
Collapse
|
48
|
Fuchikami M, Yamamoto S, Morinobu S, Okada S, Yamawaki Y, Yamawaki S. The potential use of histone deacetylase inhibitors in the treatment of depression. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:320-4. [PMID: 25818247 DOI: 10.1016/j.pnpbp.2015.03.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 03/11/2015] [Accepted: 03/17/2015] [Indexed: 12/28/2022]
Abstract
Numerous preclinical studies demonstrate that changes in gene expression in the brain occur in animal models of depression using exposure to stress, such as social defeat and leaned helplessness, and that repeated administration of antidepressants ameliorates these stress-induced changes in gene expression. These findings suggest that alteration in gene transcription in the central nervous system in response to stress plays an important role in the pathophysiology of depression. Recent advances in epigenetics have led to the realization that chromatin remodeling mediated by histone deacetylase (HDAC) is closely involved in the regulation of gene transcription. In this context, we first review several preclinical studies demonstrating the antidepressant-like efficacy of HDAC inhibitors. We then suggest the efficacy of HDAC inhibitors in treatment-resistant depression based on the mechanism of action of HDAC. Finally, we discuss the possibility of using HDAC inhibitors in patients with treatment-resistant depression.
Collapse
Affiliation(s)
- Manabu Fuchikami
- Department of Psychiatry and Neurosciences, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Shigeto Yamamoto
- Department of Psychiatry and Neurosciences, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Shigeru Morinobu
- Department of Neuropsychiatry, Kochi Medical School, Kochi University, Kohasu Oko-cho, Nankoku, Kochi 783-8505, Japan.
| | - Satoshi Okada
- Department of Psychiatry and Neurosciences, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Yosuke Yamawaki
- Department of Cellular and Molecular Pharmacology, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| | - Shigeto Yamawaki
- Department of Psychiatry and Neurosciences, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, Japan
| |
Collapse
|
49
|
Moos WH, Faller DV, Harpp DN, Kanara I, Pernokas J, Powers WR, Steliou K. Microbiota and Neurological Disorders: A Gut Feeling. Biores Open Access 2016; 5:137-45. [PMID: 27274912 PMCID: PMC4892191 DOI: 10.1089/biores.2016.0010] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the past century, noncommunicable diseases have surpassed infectious diseases as the principal cause of sickness and death, worldwide. Trillions of commensal microbes live in and on our body, and constitute the human microbiome. The vast majority of these microorganisms are maternally derived and live in the gut, where they perform functions essential to our health and survival, including: digesting food, activating certain drugs, producing short-chain fatty acids (which help to modulate gene expression by inhibiting the deacetylation of histone proteins), generating anti-inflammatory substances, and playing a fundamental role in the induction, training, and function of our immune system. Among the many roles the microbiome ultimately plays, it mitigates against untoward effects from our exposure to the environment by forming a biotic shield between us and the outside world. The importance of physical activity coupled with a balanced and healthy diet in the maintenance of our well-being has been recognized since antiquity. However, it is only recently that characterization of the host-microbiome intermetabolic and crosstalk pathways has come to the forefront in studying therapeutic design. As reviewed in this report, synthetic biology shows potential in developing microorganisms for correcting pathogenic dysbiosis (gut microbiota-host maladaptation), although this has yet to be proven. However, the development and use of small molecule drugs have a long and successful history in the clinic, with small molecule histone deacetylase inhibitors representing one relevant example already approved to treat cancer and other disorders. Moreover, preclinical research suggests that epigenetic treatment of neurological conditions holds significant promise. With the mouth being an extension of the digestive tract, it presents a readily accessible diagnostic site for the early detection of potential unhealthy pathogens resident in the gut. Taken together, the data outlined herein provide an encouraging roadmap toward important new medicines and companion diagnostic platforms in a wide range of therapeutic indications.
Collapse
Affiliation(s)
- Walter H. Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California
- Address correspondence to: Walter H. Moos, PhD, Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, 600 16th Street, Mail Code 2280, Genentech Hall S512D, Mission Bay Campus, San Francisco, CA 94158, E-mail: , ; or Kosta Steliou, PhD, PhenoMatriX, Inc., 9 Hawthorne Place Suite 4R, Boston, MA 02114, E-mail: ,
| | - Douglas V. Faller
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
| | - David N. Harpp
- Department of Chemistry, McGill University, Montreal, Canada
| | - Iphigenia Kanara
- Weatherhead Center for International Affairs, Harvard University, Cambridge, Massachusetts
- Consulate General of Greece in Boston, Boston, Massachusetts
| | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, Massachusetts
| | - Whitney R. Powers
- Department of Health Sciences, Boston University, Boston, Massachusetts
- Department of Anatomy, Boston University School of Medicine, Boston, Massachusetts
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
- PhenoMatriX, Inc., Boston, Massachusetts
- Address correspondence to: Walter H. Moos, PhD, Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, 600 16th Street, Mail Code 2280, Genentech Hall S512D, Mission Bay Campus, San Francisco, CA 94158, E-mail: , ; or Kosta Steliou, PhD, PhenoMatriX, Inc., 9 Hawthorne Place Suite 4R, Boston, MA 02114, E-mail: ,
| |
Collapse
|
50
|
Fan HC, Chi CS, Cheng SN, Lee HF, Tsai JD, Lin SZ, Harn HJ. Targeting New Candidate Genes by Small Molecules Approaching Neurodegenerative Diseases. Int J Mol Sci 2015; 17:E26. [PMID: 26712747 PMCID: PMC4730273 DOI: 10.3390/ijms17010026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/10/2015] [Accepted: 12/21/2015] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative diseases (NDs) are among the most feared of the disorders that afflict humankind for the lack of specific diagnostic tests and effective treatments. Understanding the molecular, cellular, biochemical changes of NDs may hold therapeutic promise against debilitating central nerve system (CNS) disorders. In the present review, we summarized the clinical presentations and biology backgrounds of NDs, including Parkinson's disease (PD), Huntington's disease (HD), and Alzheimer's disease (AD) and explored the role of molecular mechanisms, including dys-regulation of epigenetic control mechanisms, Ataxia-telangiectasia-mutated protein kinase (ATM), and neuroinflammation in the pathogenesis of NDs. Targeting these mechanisms may hold therapeutic promise against these devastating diseases.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Tung's Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan.
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan.
| | - Ching-Shiang Chi
- Department of Pediatrics, Tung's Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan.
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan.
| | - Shin-Nan Cheng
- Department of Pediatrics, Tung's Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan.
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan.
| | - Hsiu-Fen Lee
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung 407, Taiwan.
| | - Jeng-Dau Tsai
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| | - Shinn-Zong Lin
- Graduate Institute of Immunology, China Medical University, Taichung 404, Taiwan.
- Center for Neuropsychiatry, China Medical University and Hospital, Taichung 404, Taiwan.
- Department of Neurosurgery, China Medical University Beigang Hospital, Yunlin 651, Taiwan.
| | - Horng-Jyh Harn
- Department of Pathology, China Medical University and Hospital, Taichung 404, Taiwan.
| |
Collapse
|