1
|
Harris KL, Harris KJ, Banks LD, Adunyah SE, Ramesh A. Acceleration of benzo(a)pyrene-induced colon carcinogenesis by Western diet in a rat model of colon cancer. Curr Res Toxicol 2024; 6:100162. [PMID: 38496007 PMCID: PMC10943645 DOI: 10.1016/j.crtox.2024.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related mortalities in the USA and around 52,550 people were expected to die from this disease by December 2023. The objective of this study was to investigate the effect of diet type on benzo(a)pyrene [B(a)P]-induced colon cancer in an adult male rat model, the Polyposis In the Rat Colon (PIRC) kindred type. Groups of PIRC rats (n = 10) were fed with AIN-76A regular diet (RD) or Western diet (WD) and received 25, 50 and 100 µg B(a)P/kg body wt. via oral gavage for 60 days. Rats fed diets alone, but no B(a)P, served as controls. After exposure, rats were euthanized; colon and liver samples were analyzed for activation of drug metabolizing enzymes (DMEs) CYP1A1, CYP1B1, SULT and GST. Plasma and tissue samples were analyzed by reverse phase-HPLC for B(a)P metabolites. In addition to these studies, DNA isolated from colon and liver tissues was analyzed for B(a)P-induced DNA adducts by the 32P-postlabeling method using a thin-layer chromatography system. Western diet consumption resulted in a marked increase in DME expression and B(a)P metabolite concentrations in rats that were administered 100 µg/kg B(a)P + WD (p < 0.05) compared to other treatment groups. Our findings demonstrate that WD accelerates the development of colon tumors induced by B(a)P through enhanced biotransformation, and the products of this process (metabolites) were found to bind with DNA and form B(a)P-DNA adducts, which may have given rise to colon polyps characterized by gain in tumor number, sizes, and dysplasia.
Collapse
Affiliation(s)
- Kelly L Harris
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208, United States
| | - Kenneth J Harris
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208, United States
| | - Leah D Banks
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208, United States
| | - Samuel E Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208, United States
| | - Aramandla Ramesh
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208, United States
| |
Collapse
|
2
|
Nebert DW. Gene-Environment Interactions: My Unique Journey. Annu Rev Pharmacol Toxicol 2024; 64:1-26. [PMID: 37788491 DOI: 10.1146/annurev-pharmtox-022323-082311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
I am deeply honored to be invited to write this scientific autobiography. As a physician-scientist, pediatrician, molecular biologist, and geneticist, I have authored/coauthored more than 600 publications in the fields of clinical medicine, biochemistry, biophysics, pharmacology, drug metabolism, toxicology, molecular biology, cancer, standardized gene nomenclature, developmental toxicology and teratogenesis, mouse genetics, human genetics, and evolutionary genomics. Looking back, I think my career can be divided into four distinct research areas, which I summarize mostly chronologically in this article: (a) discovery and characterization of the AHR/CYP1 axis, (b) pharmacogenomics and genetic prediction of response to drugs and other environmental toxicants, (c) standardized drug-metabolizing gene nomenclature based on evolutionary divergence, and (d) discovery and characterization of the SLC39A8 gene encoding the ZIP8 metal cation influx transporter. Collectively, all four topics embrace gene-environment interactions, hence the title of my autobiography.
Collapse
Affiliation(s)
- Daniel W Nebert
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Department of Pediatrics and Molecular Developmental Biology, Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA;
| |
Collapse
|
3
|
Li S, Yuan J, Che S, Zhang L, Ruan Z, Sun X. Decabromodiphenyl ether induces ROS-mediated intestinal toxicity through the Keap1-Nrf2 pathway. J Biochem Mol Toxicol 2022; 36:e22995. [PMID: 35266255 DOI: 10.1002/jbt.22995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/30/2021] [Accepted: 01/28/2022] [Indexed: 12/22/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely used brominated flame retardants as commercial products. PBDEs have been demonstrated to induce hepatic, reproductive, neural, and thyroid toxicity effects. This study aimed to clarify the potential intestinal toxicity effects of decabrominated diphenyl ether (PBDE-209) in vivo and in vitro. First, we investigated the change of PBDE-209 on oxidative stress in the intestine of mice. Subsequently, the potential toxicity mechanism of PBDE-209 in vitro was investigated. Caco-2 cells were treated with different concentrations of PBDE-209 (1, 5, and 25 μmol/L) for 24 and 48 h. We determined the cell viability, reactive oxygen species (ROS) level, multiple cellular parameters, and relative mRNA expressions. The results showed that PBDE-209 significantly injured the colon of mice, increased the intestinal levels of malondialdehyde (MDA), and changed the antioxidant enzyme activities. PBDE-209 inhibited the proliferation and induced cytotoxicity of Caco-2 cells. The change in ROS production and mitochondrial membrane potential (MMP) revealed that PBDE-209 caused oxidative stress in Caco-2 cells. The real-time PCR assays revealed that PBDE-209 inhibited the mRNA expression level of antioxidative defense factor, nuclear factor erythroid 2-related factor 2 (Nrf2). Furthermore, the FAS and Cytochrome P450 1A1 (CYP1A1) mRNA expression levels were increased in Caco-2 cells. These results suggested that PBDE-209 exerts intestinal toxicity effects in vivo and in vitro and inhibits the antioxidative defense gene expression in Caco-2 cells. This study provides an opportunity to advance the understanding of toxicity by the persistent environmental pollutant PBDE-209 to the intestine.
Collapse
Affiliation(s)
- Shiqi Li
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China
| | - Jinwen Yuan
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China
| | - Siyan Che
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China
| | - Li Zhang
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China
| | - Xiaoming Sun
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Liu A, Li X, Hao Z, Cao J, Li H, Sun M, Zhang Z, Liang R, Zhang H. Alterations of DNA methylation and mRNA levels of CYP1A1, GSTP1, and GSTM1 in human bronchial epithelial cells induced by benzo[a]pyrene. Toxicol Ind Health 2022; 38:127-138. [PMID: 35193440 DOI: 10.1177/07482337211069233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Benzo[a]pyrene (B[a]P) is a known human carcinogen and plays a major function in the initiation of lung cancer at its first proximity. However, the underlying molecular mechanisms are less well understood. In this study, we investigated the impact of B[a]P treatment on the DNA methylation and mRNA levels of CYP1A1, GSTP1, and GSTM1 in human bronchial epithelial cells (16HBEs), and provide scientific evidence for the mechanism study on the carcinogenesis of B[a]P. We treated 16HBEs with DMSO or concentrations of B[a]P at 1, 2, and 5 mmol/L for 24 h, observed the morphological changes, determined the cell viability, DNA methylation, and mRNA levels of CYP1A1, GSTP1, and GSTM1. Compared to the DMSO controls, B[a]P treatment had significantly increased the neoplastic cell number and cell viability in 16HBEs at all three doses (1, 2, and 5 mmol/L), and had significantly reduced the CYP1A1 and GSTP1 DNA promoter methylation levels. Following B[a]P treatment, the GSTM1 promoter methylation level in 16HBEs was profoundly reduced at low dose group compared to the DMSO controls, yet it was significantly increased at both middle and high dose groups. The mRNA levels of CYP1A1, GSTP1, and GSTM1 were significantly decreased in 16HBEs following B[a]P treatment at all three doses. The findings demonstrate that B[a]P promoted cell proliferation in 16HBEs, which was possibly related to the altered DNA methylations and the inhibited mRNA levels in CYP1A1, GSTP1, and GSTM1.
Collapse
Affiliation(s)
- Aixiang Liu
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China.,Department of Health Information Management, 74648Shanxi Medical University Fenyang College, Fenyang, Shanxi, China
| | - Xin Li
- Center of Disease Control and Prevention, 442190Taiyuan Iron and Steel Co Ltd, Taiyuan, Shanxi, China
| | - Zhongsuo Hao
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jingjing Cao
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huan Li
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Min Sun
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruifeng Liang
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hongmei Zhang
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
5
|
Attenuation of Polycyclic Aromatic Hydrocarbon (PAH)-Mediated Pulmonary DNA Adducts and Cytochrome P450 (CYP)1B1 by Dietary Antioxidants, Omega-3 Fatty Acids, in Mice. Antioxidants (Basel) 2022; 11:antiox11010119. [PMID: 35052622 PMCID: PMC8773186 DOI: 10.3390/antiox11010119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Numerous human and animal studies have reported positive correlation between carcinogen-DNA adduct levels and cancer occurrence. Therefore, attenuation of DNA adduct levels would be expected to suppress tumorigenesis. In this investigation, we report that the antioxidants omega 3-fatty acids, which are constituents of fish oil (FO), significantly decreased DNA adduct formation by polycyclic aromatic hydrocarbons (PAHs). B6C3F1 male mice were fed an FO or corn oil (CO) diet, or A/J male mice were pre-fed with omega-3 fatty acids eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA). While the B6C3F1 mice were administered two doses of a mixture of seven carcinogenic PAHs including benzo(a)pyrene (BP), the A/J mice were treated i.p. with pure benzo[a]pyrene (BP). Animals were euthanized after 1, 3, or 7 d after PAH treatment. DNA adduct levels were measured by the 32P-postlabeling assay. Our results showed that DNA adduct levels in the lungs of mice 7 d after treatment were significantly decreased in the FO or EPA/DHA groups compared with the CO group. Interestingly, both qPCR and Western blot analyses revealed that FO, DHA and EPA/DHA significantly decreased the expression of cytochrome P450 (CYP) 1B1. CYP1B1 plays a critical role in the metabolic activation of BP to DNA-reactive metabolites. qPCR also showed that the expression of some metabolic and DNA repair genes was induced by BP and inhibited by FO or omega-3 fatty acids in liver, but not lung. Our results suggest that a combination of mechanism entailing CYP1B1 inhibition and the modulation of DNA repair genes contribute to the attenuation of PAH-mediated carcinogenesis by omega 3 fatty acids.
Collapse
|
6
|
Daytime Restricted Feeding Modifies the Temporal Expression of CYP1A1 and Attenuated Damage Induced by Benzo[a]pyrene in Rat Liver When Administered before CYP1A1 Acrophase. TOXICS 2021; 9:toxics9060130. [PMID: 34199736 PMCID: PMC8228946 DOI: 10.3390/toxics9060130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that heterodimerizes with the AhR nuclear translocator (ARNT) to modulate CYP1A1 expression, a gene involved in the biotransformation of benzo[a]pyrene (BaP). The AhR pathway shows daily variations under the control of the circadian timing system. Daytime restricted feeding (DRF) entrains the expression of genes involved in the processing of nutrients and xenobiotics to food availability. Therefore, we evaluate if temporal AhR, ARNT, and CYP1A1 hepatic expression in rats are due to light/dark cycles or fasting/feeding cycles promoted by DRF. Our results show that AhR oscillates throughout the 24 h period in DRF and ad libitum feeding rats (ALF), showing maximum expression at the same time points. DRF modified the peak of ARNT expression at ZT5; meanwhile, ALF animals showed a peak of maximum expression at ZT17. An increased expression of CYP1A1 was linked to the meal time in both groups of animals. Although a high CYP1A1 expression has been previously associated with BaP genotoxicity, our results show that, compared with the ALF group, DRF attenuated the BaP-CYP1A1 induction potency, the liver DNA-BaP adducts, the liver concentration of unmetabolized BaP, and the blood aspartate aminotransferase and alanine aminotransferase activities when BaP is administered prior to the acrophase of CYP1A1 expression. These results demonstrate that DRF modifies the ARNT and CYP1A1 expression and protects from BaP toxicity.
Collapse
|
7
|
Xu H, Mu X, Ding Y, Tan Q, Liu X, He J, Gao R, Li N, Geng Y, Wang Y, Chen X. Melatonin alleviates benzo(a)pyrene-induced ovarian corpus luteum dysfunction by suppressing excessive oxidative stress and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111561. [PMID: 33254415 DOI: 10.1016/j.ecoenv.2020.111561] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/14/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
Benzo(a)pyrene (B(a)P) is a widespread persistent organic pollutant (POP) and a well-known endocrine disruptor. Exposure to BaP is known to disrupt the steroid balance and impair embryo implantation, but the mechanism under it remains unclear. The corpus luteum (CL), the primary source of progesterone during early pregnancy, plays a pivotal role in embryo implantation and pregnancy maintenance. The inappropriate luteal function may result in implantation failure and spontaneous abortions. Therefore, this study was conducted to assess the effects and potential mechanisms of B(a)P on the CL function. Our results showed that pregnant mice received B(a)P displayed impaired embryo implantation and dysfunction of ovarian CL. The estrogen and progesterone levels decreased by B(a)P. In vitro, exposure to BPDE, which is the metabolite of B(a)P, affected the luteinization of granular cell KK-1. Additionally, melatonin and its receptors, which are important for ovarian function and anti-oxidative damage, were affected by B(a)P or BPDE. B(a)P or BPDE-treated alone impaired antioxidant capacity of ovarian granulosa cells, caused an increasing of ROS and cell apoptosis, and disrupted the PI3K/AKT/GSK3β signaling pathway in vivo and in vitro. Co-treatment with melatonin alleviated B(a)P or BPDE-induced CL dysfunction by ameliorating oxidative stress, counteracting phosphorylation of PI3K/AKT/GSK3β signaling pathway, decreasing the apoptosis of the ovarian cells. Moreover, activation of the melatonin receptor by ramelteon in KK-1 cells exhibits an analogous protective effect as melatonin. In conclusion, our findings not only firstly clarify the potential mechanisms of BaP-induced CL dysfunction, but also extend the understanding about the ovarian protection of melatonin and its receptors against B(a)P exposure.
Collapse
Affiliation(s)
- Hanting Xu
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| | - Xinyi Mu
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| | - Qiman Tan
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| | - Nanyan Li
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| | - Yanqing Geng
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| |
Collapse
|
8
|
Goedtke L, Sprenger H, Hofmann U, Schmidt FF, Hammer HS, Zanger UM, Poetz O, Seidel A, Braeuning A, Hessel-Pras S. Polycyclic Aromatic Hydrocarbons Activate the Aryl Hydrocarbon Receptor and the Constitutive Androstane Receptor to Regulate Xenobiotic Metabolism in Human Liver Cells. Int J Mol Sci 2020; 22:ijms22010372. [PMID: 33396476 PMCID: PMC7796163 DOI: 10.3390/ijms22010372] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 12/19/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants produced by incomplete combustion of organic matter. They induce their own metabolism by upregulating xenobiotic-metabolizing enzymes such as cytochrome P450 monooxygenase 1A1 (CYP1A1) by activating the aryl hydrocarbon receptor (AHR). However, previous studies showed that individual PAHs may also interact with the constitutive androstane receptor (CAR). Here, we studied ten PAHs, different in carcinogenicity classification, for their potential to activate AHR- and CAR-dependent luciferase reporter genes in human liver cells. The majority of investigated PAHs activated AHR, while non-carcinogenic PAHs tended to activate CAR. We further characterized gene expression, protein abundancies and activities of the AHR targets CYP1A1 and 1A2, and the CAR target CYP2B6 in human HepaRG hepatoma cells. Enzyme induction patterns strongly resembled the profiles obtained at the receptor level, with AHR-activating PAHs inducing CYP1A1/1A2 and CAR-activating PAHs inducing CYP2B6. In summary, this study provides evidence that beside well-known activation of AHR, some PAHs also activate CAR, followed by subsequent expression of respective target genes. Furthermore, we found that an increased PAH ring number is associated with AHR activation as well as the induction of DNA double-strand breaks, whereas smaller PAHs activated CAR but showed no DNA-damaging potential.
Collapse
Affiliation(s)
- Lisa Goedtke
- Department Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (L.G.); (H.S.); (A.B.)
| | - Heike Sprenger
- Department Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (L.G.); (H.S.); (A.B.)
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstr. 112, 70376 Stuttgart, and University of Tübingen, 72074 Tübingen, Germany; (U.H.); (U.M.Z.)
| | - Felix F. Schmidt
- SIGNATOPE GmbH, Markwiesenstraße 55, 72770 Reutlingen, Germany; (F.F.S.); (H.S.H.); (O.P.)
| | - Helen S. Hammer
- SIGNATOPE GmbH, Markwiesenstraße 55, 72770 Reutlingen, Germany; (F.F.S.); (H.S.H.); (O.P.)
| | - Ulrich M. Zanger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstr. 112, 70376 Stuttgart, and University of Tübingen, 72074 Tübingen, Germany; (U.H.); (U.M.Z.)
| | - Oliver Poetz
- SIGNATOPE GmbH, Markwiesenstraße 55, 72770 Reutlingen, Germany; (F.F.S.); (H.S.H.); (O.P.)
| | - Albrecht Seidel
- Biochemical Institute for Environmental Carcinogens, Prof. Dr. Gernot Grimmer Foundation, Lurup 4, 22927 Grosshansdorf, Germany;
| | - Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (L.G.); (H.S.); (A.B.)
| | - Stefanie Hessel-Pras
- Department Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; (L.G.); (H.S.); (A.B.)
- Correspondence: ; Tel.: +49-30-18412-25203
| |
Collapse
|
9
|
Kiel C, Strunz T, Grassmann F, Weber BHF. Pleiotropic Locus 15q24.1 Reveals a Gender-Specific Association with Neovascular but Not Atrophic Age-Related Macular Degeneration (AMD). Cells 2020; 9:E2257. [PMID: 33050031 PMCID: PMC7650707 DOI: 10.3390/cells9102257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/18/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified an abundance of genetic loci associated with complex traits and diseases. In contrast, in-depth characterization of an individual genetic signal is rarely available. Here, we focus on the genetic variant rs2168518 in 15q24.1 previously associated with age-related macular degeneration (AMD), but only with suggestive evidence. In a two-step procedure, we initially conducted a series of association analyses to further delineate the association of rs2168518 with AMD but also with other complex phenotypes by using large independent datasets from the International AMD Genomics Consortium (IAMDGC) and the UK Biobank. We then performed a functional annotation with reference to gene expression regulation based on data from the Genotype-Tissue Expression (GTEx) project and RegulomeDB. Association analysis revealed a gender-specific association with male AMD patients and an association predominantly with choroidal neovascularization. Further, the AMD association colocalizes with an association signal of several blood pressure-related phenotypes and with the gene expression regulation of CYP1A1, a member of the cytochrome P450 superfamily of monooxygenases. Functional annotation revealed altered transcription factor (TF) binding sites for gender-specific TFs, including SOX9 and SRY. In conclusion, the pleiotropic 15q24.1 association signal suggests a shared mechanism between blood pressure regulation and choroidal neovascularization with a potential involvement of CYP1A1.
Collapse
Affiliation(s)
- Christina Kiel
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; (C.K.); (T.S.); (F.G.)
| | - Tobias Strunz
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; (C.K.); (T.S.); (F.G.)
| | | | - Felix Grassmann
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; (C.K.); (T.S.); (F.G.)
- Institute of Medical Sciences, University of Aberdeen, King’s College, Aberdeen AB24 3FX, UK
| | - Bernhard H. F. Weber
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; (C.K.); (T.S.); (F.G.)
- Institute of Clinical Human Genetics, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
10
|
Harris JB, Hartman JH, Luz AL, Wilson JY, Dinyari A, Meyer JN. Zebrafish CYP1A expression in transgenic Caenorhabditis elegans protects from exposures to benzo[a]pyrene and a complex polycyclic aromatic hydrocarbon mixture. Toxicology 2020; 440:152473. [PMID: 32360973 PMCID: PMC7313633 DOI: 10.1016/j.tox.2020.152473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/19/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental toxicants primarily produced during incomplete combustion; some are carcinogens. PAHs can be safely metabolized or, paradoxically, bioactivated via specific cytochrome P450 (CYP) enzymes to more reactive metabolites, some of which can damage DNA and proteins. Among the CYP isoforms implicated in PAH metabolism, CYP1A enzymes have been reported to both sensitize and protect from PAH toxicity. To clarify the role of CYP1A in PAH toxicity, we generated transgenic Caenorhabditis elegans that express CYP1A at a basal (but not inducible) level. Because this species does not normally express any CYP1 family enzyme, this approach permitted a test of the role of basally expressed CYP1A in PAH toxicity. We exposed C. elegans at different life stages to either the PAH benzo[a]pyrene (BaP) alone, or a real-world mixture dominated by PAHs extracted from the sediment of a highly contaminated site on the Elizabeth River (VA, USA). This site, the former Atlantic Wood Industries, was declared a Superfund site due to coal tar creosote contamination that caused very high levels (in the [mg/mL] range) of high molecular weight PAHs within the sediments. We demonstrate that CYP1A protects against BaP-induced growth delay, reproductive toxicity, and reduction of steady state ATP levels. Lack of sensitivity of a DNA repair (Nucleotide Excision Repair)-deficient strain suggested that CYP1A did not produce significant levels of DNA-reactive metabolites from BaP. The protective effects of CYP1A in Elizabeth River sediment extract (ERSE)-exposed nematodes were less pronounced than those seen in BaP-exposed nematodes; CYP1A expression protected against ERSE-induced reduction of steady-state ATP levels, but not other outcomes of exposure to sediment extracts. Overall, we find that in C. elegans, a basal level of CYP1A activity is protective against the examined PAH exposures.
Collapse
Affiliation(s)
- Jamie B Harris
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC, 27708, USA
| | - Jessica H Hartman
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC, 27708, USA
| | - Anthony L Luz
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC, 27708, USA
| | - Joanna Y Wilson
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Audrey Dinyari
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC, 27708, USA
| | - Joel N Meyer
- Nicholas School of the Environment, Box 90328, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
11
|
Bock KW. Aryl hydrocarbon receptor (AHR) functions: Balancing opposing processes including inflammatory reactions. Biochem Pharmacol 2020; 178:114093. [PMID: 32535108 DOI: 10.1016/j.bcp.2020.114093] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
Aryl hydrocarbon receptor (AHR) research has shifted from exploring dioxin toxicity to elucidation of physiologic AHR functions. Control of AHR functions is challenged by the fact that AHR is often involved in balancing opposing processes. Two AHR functions are discussed. (i) Microbial defense: intestinal microbiota commensals secrete AHR ligands that are important for maintaining epithelial integrity and generation of anti-inflammatory IL-22 by multiple immune cells. On the other hand, in case of microbial defense, AHR-regulated neutrophils and Th17 cells are involved in generation of bactericidal reactive oxygen species and pro-inflammatory stimuli. However, during the process of infection resolution, 'disease tolerance' is achieved. (ii) Energy, NAD+ and lipid metabolism: In obese individuals AHR is involved in either generation or inhibition of fatty liver and associated hepatitis. Inhibition of hepatitis is mainly achieved by regulating NAD+-controlled SIRT1, 3 and 6 activity. Interestingly, these enzymes are synergistically modulated by CD38, an NAD-consuming NAD-glycohydrolase. It is proposed that inflammatory responses may be beneficially modulated by AHR agonistic and CD38 inhibiting phytochemicals. Caveats in presence of carcinogenicity have to be taken into account. AHR research is an exciting field but therapeutic options remain challenging.
Collapse
Affiliation(s)
- Karl Walter Bock
- Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstrasse 56, D-72074 Tübingen, Germany.
| |
Collapse
|
12
|
Kim KS, Kim NY, Son JY, Park JH, Lee SH, Kim HR, Kim B, Kim YG, Jeong HG, Lee BM, Kim HS. Curcumin Ameliorates Benzo[a]pyrene-Induced DNA Damages in Stomach Tissues of Sprague-Dawley Rats. Int J Mol Sci 2019; 20:5533. [PMID: 31698770 PMCID: PMC6888507 DOI: 10.3390/ijms20225533] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 11/17/2022] Open
Abstract
Benzo[a]pyrene (BaP) is a well-known carcinogen formed during the cooking process. Although BaP exposure has been implicated as one of the risk factors for lung cancer in animals and humans, there are only limited data on BaP-induced gastrointestinal cancer. Therefore, this study investigated the protective effects of curcumin on BaP-induced DNA damage in rat stomach tissues. BaP (20 mg/kg/day) and curcumin (50, 100, or 200 mg/kg) were administered daily to Sprague-Dawley rats by oral gavage over 30 days. Curcumin was pre-administered before BaP exposure. All rats were euthanized, and liver, kidney, and stomach tissues were removed at 24 h after the last treatment. We observed that aspartate aminotransferase (AST), alanine aminotransferase (ALT), and glucose levels were significantly reduced in rats treated with high dose co-administration of curcumin (200 mg/kg) compared to BaP alone. The expression levels of cytochrome P450 (CYP) 1A1 and CYP1B1 were significantly increased in the liver of rats treated with BaP. However, co-administration of curcumin (200 mg/kg) with BaP markedly reduced CYP1A1 expression in a dose-dependent manner. Furthermore, plasma levels of BaP-diolepoxide (BPDE) and BaP metabolites were significantly reduced by co-administration of curcumin (200 mg/kg). Additionally, co-administration of curcumin (200 mg/kg) with BaP significantly reduced the formation of BPDE-I-DNA and 8-hydroxydeoxy guanosine (8-OHdG) adducts in the liver, kidney, and stomach tissues. The inhibition of these adduct formations were more prominent in the stomach tissues than in the liver. Overall, our observations suggest that curcumin might inhibit BaP-induced gastrointestinal tumorigenesis and shows promise as a chemopreventive agent.
Collapse
Affiliation(s)
- Kyeong Seok Kim
- School of Pharmacy, Sungkyunkwan University, Gyeonggi-do, 2066, Seobu-ro, Suwon 16419, Korea; (K.S.K.); (J.Y.S.); (J.H.P.); (S.H.L.); (H.R.K.); (B.K.); (B.M.L.)
| | - Na Yoon Kim
- College of Pharmacy, Dankook University, Chungnam, 119, Cheonan 31116, Korea (Y.G.K.)
| | - Ji Yeon Son
- School of Pharmacy, Sungkyunkwan University, Gyeonggi-do, 2066, Seobu-ro, Suwon 16419, Korea; (K.S.K.); (J.Y.S.); (J.H.P.); (S.H.L.); (H.R.K.); (B.K.); (B.M.L.)
| | - Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, Gyeonggi-do, 2066, Seobu-ro, Suwon 16419, Korea; (K.S.K.); (J.Y.S.); (J.H.P.); (S.H.L.); (H.R.K.); (B.K.); (B.M.L.)
| | - Su Hyun Lee
- School of Pharmacy, Sungkyunkwan University, Gyeonggi-do, 2066, Seobu-ro, Suwon 16419, Korea; (K.S.K.); (J.Y.S.); (J.H.P.); (S.H.L.); (H.R.K.); (B.K.); (B.M.L.)
| | - Hae Ri Kim
- School of Pharmacy, Sungkyunkwan University, Gyeonggi-do, 2066, Seobu-ro, Suwon 16419, Korea; (K.S.K.); (J.Y.S.); (J.H.P.); (S.H.L.); (H.R.K.); (B.K.); (B.M.L.)
| | - Boomin Kim
- School of Pharmacy, Sungkyunkwan University, Gyeonggi-do, 2066, Seobu-ro, Suwon 16419, Korea; (K.S.K.); (J.Y.S.); (J.H.P.); (S.H.L.); (H.R.K.); (B.K.); (B.M.L.)
| | - Yoon Gyoon Kim
- College of Pharmacy, Dankook University, Chungnam, 119, Cheonan 31116, Korea (Y.G.K.)
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea;
| | - Byung Mu Lee
- School of Pharmacy, Sungkyunkwan University, Gyeonggi-do, 2066, Seobu-ro, Suwon 16419, Korea; (K.S.K.); (J.Y.S.); (J.H.P.); (S.H.L.); (H.R.K.); (B.K.); (B.M.L.)
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Gyeonggi-do, 2066, Seobu-ro, Suwon 16419, Korea; (K.S.K.); (J.Y.S.); (J.H.P.); (S.H.L.); (H.R.K.); (B.K.); (B.M.L.)
| |
Collapse
|
13
|
Tylichová Z, Neča J, Topinka J, Milcová A, Hofmanová J, Kozubík A, Machala M, Vondráček J. n-3 Polyunsaturated fatty acids alter benzo[a]pyrene metabolism and genotoxicity in human colon epithelial cell models. Food Chem Toxicol 2018; 124:374-384. [PMID: 30572064 DOI: 10.1016/j.fct.2018.12.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/30/2018] [Accepted: 12/14/2018] [Indexed: 12/23/2022]
Abstract
Dietary carcinogens, such as benzo[a]pyrene (BaP), are suspected to contribute to colorectal cancer development. n-3 Polyunsaturated fatty acids (PUFAs) decrease colorectal cancer risk in individuals consuming diets rich in PUFAs. Here, we investigated the impact of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid on metabolism and genotoxicity of BaP in human cell models derived from the colon: HT-29 and HCT-116 cell lines. Both PUFAs reduced levels of excreted BaP metabolites, in particular BaP-tetrols and hydroxylated BaP metabolites, as well as formation of DNA adducts in HT-29 and HCT-116 cells. However, EPA appeared to be a more potent inhibitor of formation of some intracellular BaP metabolites, including BaP-7,8-dihydrodiol. EPA also reduced phosphorylation of histone H2AX (Ser139) in HT-29 cells, which indicated that it may reduce further forms of DNA damage, including DNA double strand breaks. Both PUFAs inhibited induction of CYP1 activity in colon cells determined as 7-ethoxyresorufin-O-deethylase (EROD); this was at least partly linked with inhibition of induction of CYP1A1, 1A2 and 1B1 mRNAs. The downregulation and/or inhibition of CYP1 enzymes by PUFAs could thus alter metabolism and reduce genotoxicity of BaP in human colon cells, which might contribute to known chemopreventive effects of PUFAs in colon epithelium.
Collapse
Affiliation(s)
- Zuzana Tylichová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiří Neča
- Veterinary Research Institute, Brno, Czech Republic
| | - Jan Topinka
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Milcová
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiřina Hofmanová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
14
|
Reed L, Mrizova I, Barta F, Indra R, Moserova M, Kopka K, Schmeiser HH, Wolf CR, Henderson CJ, Stiborova M, Phillips DH, Arlt VM. Cytochrome b 5 impacts on cytochrome P450-mediated metabolism of benzo[a]pyrene and its DNA adduct formation: studies in hepatic cytochrome b 5 /P450 reductase null (HBRN) mice. Arch Toxicol 2018; 92:1625-1638. [PMID: 29368147 PMCID: PMC5882632 DOI: 10.1007/s00204-018-2162-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/17/2018] [Indexed: 12/17/2022]
Abstract
Benzo[a]pyrene (BaP) is an environmental pollutant that, based on evidence largely from in vitro studies, exerts its genotoxic effects after metabolic activation by cytochrome P450s. In the present study, Hepatic Reductase Null (HRN) and Hepatic Cytochrome b 5 /P450 Reductase Null (HBRN) mice have been used to study the role of P450s in the metabolic activation of BaP in vivo. In HRN mice, cytochrome P450 oxidoreductase (POR), the electron donor to P450, is deleted specifically in hepatocytes. In HBRN mice the microsomal haemoprotein cytochrome b 5 , which can also act as an electron donor from cytochrome b 5 reductase to P450s, is also deleted in the liver. Wild-type (WT), HRN and HBRN mice were treated by i.p. injection with 125 mg/kg body weight BaP for 24 h. Hepatic microsomal fractions were isolated from BaP-treated and untreated mice. In vitro incubations carried out with BaP-pretreated microsomal fractions, BaP and DNA resulted in significantly higher BaP-DNA adduct formation with WT microsomal fractions compared to those from HRN or HBRN mice. Adduct formation (i.e. 10-(deoxyguanosin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-BaP [dG-N2-BPDE]) correlated with observed CYP1A activity and metabolite formation (i.e. BaP-7,8-dihydrodiol) when NADPH or NADH was used as enzymatic cofactors. BaP-DNA adduct levels (i.e. dG-N2-BPDE) in vivo were significantly higher (~ sevenfold) in liver of HRN mice than WT mice while no significant difference in adduct formation was observed in liver between HBRN and WT mice. Our results demonstrate that POR and cytochrome b 5 both modulate P450-mediated activation of BaP in vitro. However, hepatic P450 enzymes in vivo appear to be more important for BaP detoxification than its activation.
Collapse
Affiliation(s)
- Lindsay Reed
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Iveta Mrizova
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40, Prague 2, Czech Republic
| | - Frantisek Barta
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40, Prague 2, Czech Republic
| | - Radek Indra
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40, Prague 2, Czech Republic
| | - Michaela Moserova
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40, Prague 2, Czech Republic
| | - Klaus Kopka
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Heinz H Schmeiser
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - C Roland Wolf
- Division of Cancer Research, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| | - Colin J Henderson
- Division of Cancer Research, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40, Prague 2, Czech Republic
| | - David H Phillips
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
15
|
Hummel JM, Madeen EP, Siddens LK, Uesugi SL, McQuistan T, Anderson KA, Turteltaub KW, Ognibene TJ, Bench G, Krueger SK, Harris S, Smith J, Tilton SC, Baird WM, Williams DE. Pharmacokinetics of [ 14C]-Benzo[a]pyrene (BaP) in humans: Impact of Co-Administration of smoked salmon and BaP dietary restriction. Food Chem Toxicol 2018. [PMID: 29518434 DOI: 10.1016/j.fct.2018.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH), is a known human carcinogen. In non-smoking adults greater than 95% of BaP exposure is through diet. The carcinogenicity of BaP is utilized by the U.S. EPA to assess relative potency of complex PAH mixtures. PAH relative potency factors (RPFs, BaP = 1) are determined from high dose animal data. We employed accelerator mass spectrometry (AMS) to determine pharmacokinetics of [14C]-BaP in humans following dosing with 46 ng (an order of magnitude lower than human dietary daily exposure and million-fold lower than animal cancer models). To assess the impact of co-administration of food with a complex PAH mixture, humans were dosed with 46 ng of [14C]-BaP with or without smoked salmon. Subjects were asked to avoid high BaP-containing diets and a 3-day dietary questionnaire given to assess dietary exposure prior to dosing and three days post-dosing with [14C]-BaP. Co-administration of smoked salmon, containing a complex mixture of PAHs with an RPF of 460 ng BaPeq, reduced and delayed absorption. Administration of canned commercial salmon, containing very low amounts of PAHs, showed the impacts on pharmacokinetics were not due to high amounts of PAHs but rather a food matrix effect.
Collapse
Affiliation(s)
- Jessica M Hummel
- Department of Nutrition and Dietetics, Oregon State University, Corvallis, OR, USA; Superfund Research Program, Oregon State University, Corvallis, OR, USA
| | - Erin P Madeen
- Superfund Research Program, Oregon State University, Corvallis, OR, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Lisbeth K Siddens
- Superfund Research Program, Oregon State University, Corvallis, OR, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Sandra L Uesugi
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Tammie McQuistan
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Kim A Anderson
- Superfund Research Program, Oregon State University, Corvallis, OR, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Kenneth W Turteltaub
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Ted J Ognibene
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Graham Bench
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Sharon K Krueger
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Stuart Harris
- Confederated Tribes of the Umatilla Indian Reservation, Nixyáawii Governance Center, Pendelton, OR, USA
| | - Jordan Smith
- Superfund Research Program, Oregon State University, Corvallis, OR, USA; Chemical Biology and Exposure Science, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Susan C Tilton
- Superfund Research Program, Oregon State University, Corvallis, OR, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - William M Baird
- Superfund Research Program, Oregon State University, Corvallis, OR, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - David E Williams
- Superfund Research Program, Oregon State University, Corvallis, OR, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
16
|
Mescher M, Haarmann-Stemmann T. Modulation of CYP1A1 metabolism: From adverse health effects to chemoprevention and therapeutic options. Pharmacol Ther 2018; 187:71-87. [PMID: 29458109 DOI: 10.1016/j.pharmthera.2018.02.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human cytochrome P450 (CYP) 1A1 gene encodes a monooxygenase that metabolizes multiple exogenous and endogenous substrates. CYP1A1 has become infamous for its oxidative metabolism of benzo[a]pyrene and related polycyclic aromatic hydrocarbons, converting these chemicals into very potent human carcinogens. CYP1A1 expression is mainly controlled by the aryl hydrocarbon receptor (AHR), a transcription factor whose activation is induced by binding of persistent organic pollutants, including polycyclic aromatic hydrocarbons and dioxins. Accordingly, induction of CYP1A1 expression and activity serves as a biomarker of AHR activation and associated xenobiotic metabolism as well as toxicity in diverse animal species and humans. Determination of CYP1A1 activity is integrated into modern toxicological concepts and testing guidelines, emphasizing the tremendous importance of this enzyme for risk assessment and regulation of chemicals. Further, CYP1A1 serves as a molecular target for chemoprevention of chemical carcinogenesis, although present literature is controversial on whether its inhibition or induction exerts beneficial effects. Regarding therapeutic applications, first anti-cancer prodrugs are available, which require a metabolic activation by CYP1A1, and thus enable a specific elimination of CYP1A1-positive tumors. However, the application range of these drugs may be limited due to the frequently observed downregulation of CYP1A1 in various human cancers, probably leading to a reduced metabolism of endogenous AHR ligands and a sustained activation of AHR and associated tumor-promoting responses. We here summarize the current knowledge on CYP1A1 as a key player in the metabolism of exogenous and endogenous substrates and as a promising target molecule for prevention and treatment of human malignancies.
Collapse
Affiliation(s)
- Melina Mescher
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | | |
Collapse
|
17
|
Uno S, Nebert DW, Makishima M. Cytochrome P450 1A1 (CYP1A1) protects against nonalcoholic fatty liver disease caused by Western diet containing benzo[a]pyrene in mice. Food Chem Toxicol 2018; 113:73-82. [PMID: 29366871 DOI: 10.1016/j.fct.2018.01.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/12/2018] [Accepted: 01/19/2018] [Indexed: 12/21/2022]
Abstract
The Western diet contributes to nonalcoholic fatty liver disease (NAFLD) pathogenesis. Benzo[a]pyrene (BaP), a prototypical environmental pollutant produced by combustion processes, is present in charcoal-grilled meat. Cytochrome P450 1A1 (CYP1A1) metabolizes BaP, resulting in either detoxication or metabolic activation in a context-dependent manner. To elucidate a role of CYP1A1-BaP in NAFLD pathogenesis, we compared the effects of a Western diet, with or without oral BaP treatment, on the development of NAFLD in Cyp1a1(-/-) mice versus wild-type mice. A Western diet plus BaP induced lipid-droplet accumulation in liver of Cyp1a1(-/-) mice, but not wild-type mice. The hepatic steatosis observed in Cyp1a1(-/-) mice was associated with increased cholesterol, triglyceride and bile acid levels. Cyp1a1(-/-) mice fed Western diet plus BaP had changes in expression of genes involved in bile acid and lipid metabolism, and showed no increase in Cyp1a2 expression but did exhibit enhanced Cyp1b1 mRNA expression, as well as hepatic inflammation. Enhanced BaP metabolic activation, oxidative stress and inflammation may exacerbate metabolic dysfunction in liver of Cyp1a1(-/-) mice. Thus, Western diet plus BaP induces NAFLD and hepatic inflammation in Cyp1a1(-/-) mice in comparison to wild-type mice, indicating a protective role of CYP1A1 against NAFLD pathogenesis.
Collapse
Affiliation(s)
- Shigeyuki Uno
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Daniel W Nebert
- Department of Environmental Health, Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267, USA
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| |
Collapse
|
18
|
Harris KL, Pulliam SR, Okoro E, Guo Z, Washington MK, Adunyah SE, Amos-Landgraf JM, Ramesh A. Western diet enhances benzo(a)pyrene-induced colon tumorigenesis in a polyposis in rat coli (PIRC) rat model of colon cancer. Oncotarget 2018; 7:28947-60. [PMID: 26959117 PMCID: PMC5045369 DOI: 10.18632/oncotarget.7901] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/15/2016] [Indexed: 12/13/2022] Open
Abstract
Consumption of Western diet (WD), contaminated with environmental toxicants, has been implicated as one of the risk factors for sporadic colon cancer. Our earlier studies using a mouse model revealed that compared to unsaturated dietary fat, the saturated dietary fat exacerbated the development of colon tumors caused by B(a)P. The objective of this study was to study how WD potentiates B(a)P-induced colon carcinogenesis in the adult male rats that carry a mutation in the Apc locus - the polyposis in the rat colon (PIRC) rats. Groups of PIRC rats were fed with AIN-76A standard diet (RD) or Western diet (WD) and received 25, 50, or 100 μg B(a)P/kg body weight (wt) via oral gavage for 60 days. Subsequent to exposure, rats were euthanized; colons were retrieved and preserved in 10% formalin for counting the polyp numbers, measuring the polyp size, and histological analyses. Blood samples were collected and concentrations of cholesterol, triglycerides, glucose, insulin and leptin were measured. Rats that received WD + B(a)P showed increased levels of cholesterol, triglycerides, and leptin in comparison to RD + B(a)P groups or controls. The colon tumor numbers showed a B(a)P dose-response relationship. Adenomas with high grade dysplasia were prominent in B(a)P + WD rats compared to B(a)P + RD rats and controls (p < 0.05). The larger rat model system used in this study allows for studying more advanced tumor phenotypes over a longer duration and delineating the role of diet - toxicant interactions in sporadic colon tumor development.
Collapse
Affiliation(s)
- Kelly L Harris
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Stephanie R Pulliam
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Emmanuel Okoro
- Department of Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Zhongmao Guo
- Department of Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Mary K Washington
- Department of Pathology, Vanderbilt University, Nashville, TN 37232, USA
| | - Samuel E Adunyah
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - James M Amos-Landgraf
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Aramandla Ramesh
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
19
|
Modulation of benzo[a]pyrene-DNA adduct formation by CYP1 inducer and inhibitor. Genes Environ 2017; 39:14. [PMID: 28405246 PMCID: PMC5385587 DOI: 10.1186/s41021-017-0076-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/15/2017] [Indexed: 02/05/2023] Open
Abstract
Benzo[a]pyrene (BaP) is a well-studied pro-carcinogen that is metabolically activated by cytochrome P450 enzymes. Cytochrome P4501A1 (CYP1A1) has been considered to play a central role in the activation step, which is essential for the formation of DNA adducts. This enzyme is strongly induced by many different chemical agents, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which binds to the aryl hydrocarbon receptor (AhR). Therefore, AhR activators are suspected to have the potential to aggravate the toxicity of BaP through the induction of CYP1A1. Besides, CYP1A1 inhibitors, including its substrates, are estimated to have preventive effects against BaP toxicity. However, strangely, increased hepatic BaP–DNA adduct levels have been reported in Cyp1a1 knockout mice. Moreover, numerous reports describe that concomitant treatment of AhR activators reduced BaP–DNA adduct formation. In an experiment using several human cell lines, TCDD had diverse modulatory effects on BaP–DNA adducts, both enhancing and inhibiting their formation. In this review, we focus on the factors that could influence the BaP–DNA adduct formation. To interpret these complicated outcomes, we propose a hypothesis that CYP1A1 is a key enzyme for both generation and reduction of (±)-anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), the major carcinogenic intermediate of BaP. Conversely, CYP1B1 is thought to contribute only to the metabolic activation of BaP related to carcinogenesis.
Collapse
|
20
|
Bock KW. Human and rodent aryl hydrocarbon receptor (AHR): from mediator of dioxin toxicity to physiologic AHR functions and therapeutic options. Biol Chem 2017; 398:455-464. [DOI: 10.1515/hsz-2016-0303] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/27/2016] [Indexed: 11/15/2022]
Abstract
Abstract
Metabolism of aryl hydrocarbons and toxicity of dioxins led to the discovery of the aryl hydrocarbon receptor (AHR). Tremendous advances have been made on multiplicity of AHR signaling and identification of endogenous ligands including the tryptophan metabolites FICZ and kynurenine. However, human AHR functions are still poorly understood due to marked species differences as well as cell-type- and cell context-dependent AHR functions. Observations in dioxin-poisoned individuals may provide hints to physiologic AHR functions in humans. Based on these observations three human AHR functions are discussed: (1) Chemical defence and homeostasis of endobiotics. The AHR variant Val381 in modern humans leads to reduced AHR affinity to aryl hydrocarbons in comparison with Neanderthals and primates expressing the Ala381 variant while affinity to indoles remains unimpaired. (2) Homeostasis of stem/progenitor cells. Dioxins dysregulate homeostasis in sebocyte stem cells. (3) Modulation of immunity. In addition to microbial defence, AHR may be involved in a ‘disease tolerance defence pathway’. Further characterization of physiologic AHR functions may lead to therapeutic options.
Collapse
|
21
|
Xue Z, Li D, Yu W, Zhang Q, Hou X, He Y, Kou X. Mechanisms and therapeutic prospects of polyphenols as modulators of the aryl hydrocarbon receptor. Food Funct 2017; 8:1414-1437. [DOI: 10.1039/c6fo01810f] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polyphenolic AhR modulators displayed concentration-, XRE-, gene-, species- and cell-specific agonistic/antagonistic activity.
Collapse
Affiliation(s)
- Zhaohui Xue
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Dan Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Wancong Yu
- Medical Plant Laboratory
- Tianjin Research Center of Agricultural Biotechnology
- Tianjin 3000381
- China
| | - Qian Zhang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xiaonan Hou
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yulong He
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
22
|
Long AS, Watson M, Arlt VM, White PA. Oral exposure to commercially available coal tar-based pavement sealcoat induces murine genetic damage and mutations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:535-45. [PMID: 27473530 PMCID: PMC4979669 DOI: 10.1002/em.22032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 05/12/2023]
Abstract
Coal tar (CT) is a thick black liquid produced as a by-product of coal carbonization to produce coke or manufactured gas. It is comprised a complex mixture of polycyclic aromatic compounds, including a wide range of polycyclic aromatic hydrocarbons (PAHs), many of which are genotoxic and carcinogenic. CT is used in some pavement sealants (also known as sealcoat), which are applied to pavement in order to seal and beautify the surface. Human exposure is known to occur not only during application, but also as a result of the weathering process, as elevated levels of PAHs have been found in settled house dust in residences adjacent to CT-sealed surfaces. In this study we examined the genotoxicity of an extract of a commercially available CT-based sealcoat in the transgenic Muta™Mouse model. Mice were orally exposed to 3 doses of sealcoat extract daily for 28 days. We evaluated genotoxicity by examining: (1) stable DNA adducts and (2) lacZ mutations in bone marrow, liver, lung, small intestine, and glandular stomach, as well as (3) micronucleated red blood cells. Significant increases were seen for each endpoint and in all tissues. The potency of the response differed across tissues, with the highest frequency of adducts occurring in liver and lung, and the highest frequency of mutations occurring in small intestine. The results of this study are the first demonstration of mammalian genotoxicity following exposure to CT-containing pavement sealcoat. This work provides in vivo evidence to support the contention that there may be adverse health effects in mammals, and potentially in humans, from exposure to coal tar. Environ. Mol. Mutagen. 57:535-545, 2016. © 2016 Her Majesty the Queen in Right of Canada.
Collapse
Affiliation(s)
- Alexandra S. Long
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
- Mechanistic Studies DivisionEnvironmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, HECSB, Health CanadaOttawaOntarioCanada
| | - Margaret Watson
- Mechanistic Studies DivisionEnvironmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, HECSB, Health CanadaOttawaOntarioCanada
| | - Volker M. Arlt
- Analytical and Environmental Sciences DivisionMRC‐PHE Centre for Environment and Health, King's College LondonLondonUnited Kingdom
| | - Paul A. White
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
- Mechanistic Studies DivisionEnvironmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, HECSB, Health CanadaOttawaOntarioCanada
| |
Collapse
|
23
|
Brandstätter O, Schanz O, Vorac J, König J, Mori T, Maruyama T, Korkowski M, Haarmann-Stemmann T, von Smolinski D, Schultze JL, Abel J, Esser C, Takeyama H, Weighardt H, Förster I. Balancing intestinal and systemic inflammation through cell type-specific expression of the aryl hydrocarbon receptor repressor. Sci Rep 2016; 6:26091. [PMID: 27184933 PMCID: PMC4869119 DOI: 10.1038/srep26091] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/25/2016] [Indexed: 12/28/2022] Open
Abstract
As a sensor of polyaromatic chemicals the aryl hydrocarbon receptor (AhR) exerts an important role in immune regulation besides its requirement for xenobiotic metabolism. Transcriptional activation of AhR target genes is counterregulated by the AhR repressor (AhRR) but the exact function of the AhRR in vivo is currently unknown. We here show that the AhRR is predominantly expressed in immune cells of the skin and intestine, different from other AhR target genes. Whereas AhRR antagonizes the anti-inflammatory function of the AhR in the context of systemic endotoxin shock, AhR and AhRR act in concert to dampen intestinal inflammation. Specifically, AhRR contributes to the maintenance of colonic intraepithelial lymphocytes and prevents excessive IL-1β production and Th17/Tc17 differentiation. In contrast, the AhRR enhances IFN-γ-production by effector T cells in the inflamed gut. Our findings highlight the physiologic importance of cell-type specific balancing of AhR/AhRR expression in response to microbial, nutritional and other environmental stimuli.
Collapse
Affiliation(s)
- Olga Brandstätter
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany.,IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Auf´m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Oliver Schanz
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Julia Vorac
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany.,IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Auf´m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Jessica König
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Tetsushi Mori
- Center for Advanced Biomedical Sciences (TWIns), Waseda University, 2-2, Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
| | - Toru Maruyama
- Center for Advanced Biomedical Sciences (TWIns), Waseda University, 2-2, Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
| | - Markus Korkowski
- IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Auf´m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Thomas Haarmann-Stemmann
- IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Auf´m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Dorthe von Smolinski
- Institut für Tierpathologie der FU Berlin, Robert von Ostertag Strasse 15, 14163 Berlin
| | - Joachim L Schultze
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Josef Abel
- IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Auf´m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Charlotte Esser
- IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Auf´m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Haruko Takeyama
- Center for Advanced Biomedical Sciences (TWIns), Waseda University, 2-2, Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan
| | - Heike Weighardt
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany.,IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Auf´m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Irmgard Förster
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany.,IUF-Leibniz Research Institute for Environmental Medicine gGmbH, Auf´m Hennekamp 50, 40225 Düsseldorf, Germany
| |
Collapse
|
24
|
Long AS, Lemieux CL, Arlt VM, White PA. Tissue-specific in vivo genetic toxicity of nine polycyclic aromatic hydrocarbons assessed using the Muta™Mouse transgenic rodent assay. Toxicol Appl Pharmacol 2016; 290:31-42. [PMID: 26603514 PMCID: PMC4712826 DOI: 10.1016/j.taap.2015.11.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/09/2015] [Accepted: 11/17/2015] [Indexed: 11/20/2022]
Abstract
Test batteries to screen chemicals for mutagenic hazard include several endpoints regarded as effective for detecting genotoxic carcinogens. Traditional in vivo methods primarily examine clastogenic endpoints in haematopoietic tissues. Although this approach is effective for identifying systemically distributed clastogens, some mutagens may not induce clastogenic effects; moreover, genotoxic effects may be restricted to the site of contact and/or related tissues. An OECD test guideline for transgenic rodent (TGR) gene mutation assays was released in 2011, and the TGR assays permit assessment of mutagenicity in any tissue. This study assessed the responses of two genotoxicity endpoints following sub-chronic oral exposures of male Muta™Mouse to 9 carcinogenic polycyclic aromatic hydrocarbons (PAHs). Clastogenicity was assessed via induction of micronuclei in peripheral blood, and mutagenicity via induction of lacZ transgene mutations in bone marrow, glandular stomach, small intestine, liver, and lung. Additionally, the presence of bulky PAH-DNA adducts was examined. Five of the 9 PAHs elicited positive results across all endpoints in at least one tissue, and no PAHs were negative or equivocal across all endpoints. All PAHs were positive for lacZ mutations in at least one tissue (sensitivity=100%), and for 8 PAHs, one or more initial sites of chemical contact (i.e., glandular stomach, liver, small intestine) yielded a greater response than bone marrow. Five PAHs were positive in the micronucleus assay (sensitivity=56%). Furthermore, all PAHs produced DNA adducts in at least one tissue. The results demonstrate the utility of the TGR assay for mutagenicity assessment, especially for compounds that may not be systemically distributed.
Collapse
Affiliation(s)
- Alexandra S Long
- Faculty of Graduate and Postdoctoral Studies, Department of Biology, University of Ottawa, Ottawa, ON, Canada; Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - Christine L Lemieux
- Air Health Science Division, Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London, UK
| | - Paul A White
- Faculty of Graduate and Postdoctoral Studies, Department of Biology, University of Ottawa, Ottawa, ON, Canada; Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
25
|
Moffat I, Chepelev N, Labib S, Bourdon-Lacombe J, Kuo B, Buick JK, Lemieux F, Williams A, Halappanavar S, Malik A, Luijten M, Aubrecht J, Hyduke DR, Fornace AJ, Swartz CD, Recio L, Yauk CL. Comparison of toxicogenomics and traditional approaches to inform mode of action and points of departure in human health risk assessment of benzo[a]pyrene in drinking water. Crit Rev Toxicol 2015; 45:1-43. [PMID: 25605026 DOI: 10.3109/10408444.2014.973934] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Toxicogenomics is proposed to be a useful tool in human health risk assessment. However, a systematic comparison of traditional risk assessment approaches with those applying toxicogenomics has never been done. We conducted a case study to evaluate the utility of toxicogenomics in the risk assessment of benzo[a]pyrene (BaP), a well-studied carcinogen, for drinking water exposures. Our study was intended to compare methodologies, not to evaluate drinking water safety. We compared traditional (RA1), genomics-informed (RA2) and genomics-only (RA3) approaches. RA2 and RA3 applied toxicogenomics data from human cell cultures and mice exposed to BaP to determine if these data could provide insight into BaP's mode of action (MOA) and derive tissue-specific points of departure (POD). Our global gene expression analysis supported that BaP is genotoxic in mice and allowed the development of a detailed MOA. Toxicogenomics analysis in human lymphoblastoid TK6 cells demonstrated a high degree of consistency in perturbed pathways with animal tissues. Quantitatively, the PODs for traditional and transcriptional approaches were similar (liver 1.2 vs. 1.0 mg/kg-bw/day; lungs 0.8 vs. 3.7 mg/kg-bw/day; forestomach 0.5 vs. 7.4 mg/kg-bw/day). RA3, which applied toxicogenomics in the absence of apical toxicology data, demonstrates that this approach provides useful information in data-poor situations. Overall, our study supports the use of toxicogenomics as a relatively fast and cost-effective tool for hazard identification, preliminary evaluation of potential carcinogens, and carcinogenic potency, in addition to identifying current limitations and practical questions for future work.
Collapse
Affiliation(s)
- Ivy Moffat
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada.,Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Nikolai Chepelev
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Sarah Labib
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Julie Bourdon-Lacombe
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada.,Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Byron Kuo
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Julie K Buick
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - France Lemieux
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Amal Malik
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Mirjam Luijten
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Daniel R Hyduke
- Biological Engineering Department, Utah State University, Logan, UT, USA
| | - Albert J Fornace
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | - Carol D Swartz
- Integrated Laboratory Systems Inc., Research Triangle Park, NC, USA
| | - Leslie Recio
- Integrated Laboratory Systems Inc., Research Triangle Park, NC, USA
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
26
|
Goyal N, Liu J, Lovings L, Dupart P, Taylor S, Bellow S, Mensah L, McClain E, Dotson B, Sridhar J, Zhang X, Zhao M, Foroozesh M. Ethynylflavones, highly potent, and selective inhibitors of cytochrome P450 1A1. Chem Res Toxicol 2014; 27:1431-9. [PMID: 25033111 PMCID: PMC4137986 DOI: 10.1021/tx5001865] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
The flavone backbone is a well-known
pharmacophore present in a
number of substrates and inhibitors of various P450 enzymes. In order
to find highly potent and novel P450 family I enzyme inhibitors, an
acetylene group was incorporated into six different positions of flavone.
The introduction of an acetylene group at certain locations of the
flavone backbone lead to time-dependent inhibitors of P450 1A1. 3′-Ethynylflavone,
4′-ethynylflavone, 6-ethynylflavone, and 7-ethynylflavone (KI values of 0.035–0.056 μM) show
strong time-dependent inhibition of P450 1A1, while 5-ethynylflavone
(KI value of 0.51 μM) is a moderate
time-dependent inhibitor of this enzyme. Meanwhile, 4′-ethynylflavone
and 6-ethynylflavone are highly selective inhibitors toward this enzyme.
Especially, 6-ethynylflavone possesses a Ki value of 0.035 μM for P450 1A1 177- and 15-fold lower than
those for P450s 1A2 and 1B1, respectively. The docking postures observed
in the computational simulations show that the orientation of the
acetylene group determines its capability to react with P450s 1A1
and 1A2. Meanwhile, conformational analysis indicates that the shape
of an inhibitor determines its inhibitory selectivity toward these
enzymes.
Collapse
Affiliation(s)
- Navneet Goyal
- Department of Chemistry, Xavier University of Louisiana , New Orleans, Louisiana 70125, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bock KW. Homeostatic control of xeno- and endobiotics in the drug-metabolizing enzyme system. Biochem Pharmacol 2014; 90:1-6. [DOI: 10.1016/j.bcp.2014.04.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/14/2014] [Accepted: 04/14/2014] [Indexed: 10/25/2022]
|
28
|
Dhaini HR, Kobeissi L. Toxicogenetic profile and cancer risk in Lebanese. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2014; 17:95-125. [PMID: 24627976 DOI: 10.1080/10937404.2013.878679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
An increasing number of genetic polymorphisms in drug-metabolizing enzymes (DME) were identified among different ethnic groups. Some of these polymorphisms are associated with an increased cancer risk, while others remain equivocal. However, there is sufficient evidence that these associations become significant in populations overexposed to environmental carcinogens. Hence, genetic differences in expression activity of both Phase I and Phase II enzymes may affect cancer risk in exposed populations. In Lebanon, there has been a marked rise in reported cancer incidence since the 1990s. There are also indicators of exposure to unusually high levels of environmental pollutants and carcinogens in the country. This review considers this high cancer incidence by exploring a potential gene-environment model based on available DME polymorphism prevalence, and their impact on bladder, colorectal, prostate, breast, and lung cancer in the Lebanese population. The examined DME include glutathione S-transferases (GST), N-acetyltransferases (NAT), and cytochromes P-450 (CYP). Data suggest that these DME influence bladder cancer risk in the Lebanese population. Evidence indicates that identification of a gene-environment interaction model may help in defining future research priorities and preventive cancer control strategies in this country, particularly for breast and lung cancer.
Collapse
Affiliation(s)
- Hassan R Dhaini
- a Faculty of Health Sciences , University of Balamand , Beirut , Lebanon
| | | |
Collapse
|
29
|
Diggs DL, Myers JN, Banks LD, Niaz MS, Hood DB, Roberts LJ, Ramesh A. Influence of dietary fat type on benzo(a)pyrene [B(a)P] biotransformation in a B(a)P-induced mouse model of colon cancer. J Nutr Biochem 2013; 24:2051-63. [PMID: 24231098 PMCID: PMC3904801 DOI: 10.1016/j.jnutbio.2013.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/06/2013] [Accepted: 07/17/2013] [Indexed: 02/06/2023]
Abstract
In the US alone, around 60,000 lives/year are lost due to colon cancer. Diet and environment have been implicated in the development of sporadic colon tumors. The objective of this study was to determine how dietary fat potentiates the development of colon tumors through altered B(a)P biotransformation, using the Adenomatous polyposis coli with Multiple intestinal neoplasia mouse model. Benzo(a)pyrene was administered to mice through tricaprylin, and unsaturated (USF; peanut oil) and saturated (SF; coconut oil) fats at doses of 50 and 100 μg/kg via oral gavage over a 60-day period. Blood, colon, and liver were collected at the end of exposure period. The expression of B(a)P biotransformation enzymes [cytochrome P450 (CYP)1A1, CYP1B1 and glutathione-S-transferase] in liver and colon were assayed at the level of protein, mRNA and activities. Plasma and tissue samples were analyzed by reverse phase high-performance liquid chromatography for B(a)P metabolites. Additionally, DNA isolated from colon and liver tissues was analyzed for B(a)P-induced DNA adducts by the (32)P-postlabeling method using a thin-layer chromatography system. Benzo(a)pyrene exposure through dietary fat altered its metabolic fate in a dose-dependent manner, with 100 μg/kg dose group registering an elevated expression of B(a)P biotransformation enzymes, and greater concentration of B(a)P metabolites, compared to the 50 μg/kg dose group (P<.05). This effect was more pronounced for SF group compared to USF group (P<.05). These findings establish that SF causes sustained induction of B(a)P biotransformation enzymes and extensive metabolism of this toxicant. As a consequence, B(a)P metabolites were generated to a greater extent in colon and liver, whose concentrations also registered a dose-dependent increase. These metabolites were found to bind with DNA and form B(a)P-DNA adducts, which may have contributed to colon tumors in a subchronic exposure regimen.
Collapse
Affiliation(s)
- Deacqunita L. Diggs
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208
| | - Jeremy N. Myers
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208
| | - Leah D. Banks
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208
| | - Mohammad S. Niaz
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208
| | - Darryl B. Hood
- Department of Neuroscience and Pharmacology, Meharry Medical College,Nashville, TN 37208
| | - L. Jackson Roberts
- Departments of Pharmacology and Medicine, Pathology, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Aramandla Ramesh
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208
| |
Collapse
|
30
|
Nebert DW, Shi Z, Gálvez-Peralta M, Uno S, Dragin N. Oral benzo[a]pyrene: understanding pharmacokinetics, detoxication, and consequences--Cyp1 knockout mouse lines as a paradigm. Mol Pharmacol 2013; 84:304-13. [PMID: 23761301 PMCID: PMC3876811 DOI: 10.1124/mol.113.086637] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 04/12/2013] [Indexed: 12/31/2022] Open
Abstract
Benzo[a]pyrene (BaP) is a prototypical polycyclic aromatic hydrocarbon (PAH); this ubiquitous environmental carcinogenic agent is found in tobacco smoke, charcoal-grilled foods, and PAH-contaminated surfaces of roofs, playgrounds, and highways. Cytochrome P450 1 wild-type, Cyp1a2(-/-), Cyp1b1(-/-), or Cyp1a2/1b1(-/-) knockouts, and mice with Cyp1a1 expression deleted in hepatocytes can ingest large oral BaP doses (125 mg/kg/d) without apparent toxicity. Cyp1a1(-/-) and Cyp1a1/1a2(-/-) knockouts and mice with Cyp1a1 expression deleted in gastrointestinal (GI) tract epithelial cells develop immunotoxicity and die within 32 days, indicating that GI tract inducible CYP1A1 is absolutely required for detoxication of oral BaP. Cyp1a1/1b1(-/-) and Cyp1a1/1a2/1b1(-/-) mice are rescued from immunosuppression and early death due to absent metabolic activation of BaP by CYP1B1 in immune cells. Ten-fold lower oral BaP doses result in adenocarcinoma of the proximal small intestine (PSI) in Cyp1a1(-/-) mice; Cyp1a1/1b1(-/-) double-knockout mice show no PSI cancer but develop squamous cell carcinoma of the preputial gland duct (PGD). BaP-metabolizing CYP1B1 in the PSI and CYP3A59 in the PGD are the most likely candidates to participate in tumor initiation in the epithelial cells of these two tissues; oncogenes and tumor-suppressor genes upregulated and downregulated during tumorigenesis are completely different between these tissues. This "oral BaP Cyp1" mouse paradigm represents a powerful teaching tool, showing that gene-environment interactions depend on route-of-administration: the same oral, but not intraperitoneal, BaP exposure leads to dramatic differences in target-organ toxicity and tumor type as a function of dose and Cyp1 genotype.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Aryl Hydrocarbon Hydroxylases/genetics
- Aryl Hydrocarbon Hydroxylases/metabolism
- Benzo(a)pyrene/administration & dosage
- Benzo(a)pyrene/pharmacokinetics
- Benzo(a)pyrene/toxicity
- Carcinogens, Environmental/administration & dosage
- Carcinogens, Environmental/pharmacokinetics
- Carcinogens, Environmental/toxicity
- Cytochrome P-450 CYP1A1/genetics
- Cytochrome P-450 CYP1A1/metabolism
- Cytochrome P-450 CYP1A2/genetics
- Cytochrome P-450 CYP1A2/metabolism
- Cytochrome P-450 CYP1B1
- Dose-Response Relationship, Drug
- Gene-Environment Interaction
- Intestinal Neoplasms/chemically induced
- Intestinal Neoplasms/enzymology
- Intestinal Neoplasms/pathology
- Metabolic Detoxication, Phase II
- Mice
- Mice, Knockout
- Neoplasms, Experimental/chemically induced
- Neoplasms, Experimental/enzymology
- Neoplasms, Experimental/pathology
- Organ Specificity
- Scent Glands/enzymology
- Scent Glands/pathology
- Species Specificity
Collapse
Affiliation(s)
- Daniel W Nebert
- Department of Environmental Health, and the Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267-0056, USA.
| | | | | | | | | |
Collapse
|
31
|
Solaimani P, Damoiseaux R, Hankinson O. Genome-wide RNAi high-throughput screen identifies proteins necessary for the AHR-dependent induction of CYP1A1 by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci 2013; 136:107-19. [PMID: 23997114 DOI: 10.1093/toxsci/kft191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) has a plethora of physiological roles, and upon dysregulation, carcinogenesis can occur. One target gene of AHR encodes the xenobiotic and drug-metabolizing enzyme CYP1A1, which is inducible by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) via the AHR. An siRNA library targeted against over 5600 gene candidates in the druggable genome was used to transfect mouse Hepa-1 cells, which were then treated with TCDD, and subsequently assayed for CYP1A1-dependent ethoxyresorufin-o-deethylase (EROD) activity. Following redundant siRNA activity (RSA) statistical analysis, we identified 93 hits that reduced EROD activity with a p value ≤ .005 and substantiated 39 of these as positive hits in a secondary screening using endoribonuclease-prepared siRNAs (esiRNAs). Twelve of the corresponding gene products were subsequently confirmed to be necessary for the induction of CYP1A1 messenger RNA by TCDD. None of the candidates were deficient in aryl hydrocarbon nuclear translocator expression. However 6 gene products including UBE2i, RAB40C, CRYGD, DCTN4, RBM5, and RAD50 are required for the expression of AHR as well as for induction of CYP1A1. We also found 2 gene products, ARMC8 and TCF20, to be required for the induction of CYP1A1, but our data are ambiguous as to whether they are required for the expression of AHR. In contrast, SIN3A, PDC, TMEM5, and CD9 are not required for AHR expression but are required for the induction of CYP1A1, implicating a direct role in Cyp1a1 transcription. Our methods, although applied to Cyp1a1, could be modified for identifying proteins that regulate other inducible genes.
Collapse
Affiliation(s)
- Parrisa Solaimani
- * Molecular Toxicology Interdepartmental Program, Department of Pathology and Laboratory Medicine, and the Jonsson Comprehensive Cancer Center and
| | | | | |
Collapse
|
32
|
Zaccaria KJ, McClure PR. Using Immunotoxicity Information to Improve Cancer Risk Assessment for Polycyclic Aromatic Hydrocarbon Mixtures. Int J Toxicol 2013; 32:236-50. [DOI: 10.1177/1091581813492829] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Estimating cancer risk from environmental mixtures containing polycyclic aromatic hydrocarbons (PAHs) is challenging. Ideally, each mixture would undergo toxicity testing to derive a cancer slope factor (CSF) for use in site-specific cancer risk assessments. However, this whole mixture approach is extremely costly in terms of finances, time, and animal usage. Alternatively, if an untested mixture is “sufficiently similar” to a well-characterized mixture with a CSF, the “surrogate” CSF can be used in risk assessments. We propose that similarity between 2 mixtures could be established using an in vitro battery of genotoxic and nongenotoxic tests. An observed association between carcinogenicity and immunosuppression of PAHs suggests that the addition of immune suppression assays may improve this battery. First, using published studies of benzo[a]pyrene (BaP) and other PAHs, we demonstrated a correlation between the derived immune suppression relative potency factors (RPFs) for 9 PAHs and their respective cancer RPFs, confirming observations published previously. Second, we constructed an integrated knowledge map for immune suppression by BaP based on the available mechanistic information. The map illustrates the mechanistic complexities involved in BaP immunosuppression, suggesting that multiple in vitro tests of immune suppression involving different processes, cell types, and tissues will have greater predictive value for immune suppression in vivo than a single test. Based on these observations, research strategies are recommended to validate a battery of in vitro immune suppression tests that, along with tests for genotoxic and other nongenotoxic modes of cancer action, could be used to establish “sufficient similarity” of 2 mixtures for site-specific cancer risk assessments.
Collapse
Affiliation(s)
| | - Peter R. McClure
- SRC, Inc, Defense and Environmental Solutions, North Syracuse, NY, USA
| |
Collapse
|
33
|
Dong H, Shertzer HG, Genter MB, Gonzalez FJ, Vasiliou V, Jefcoate C, Nebert DW. Mitochondrial targeting of mouse NQO1 and CYP1B1 proteins. Biochem Biophys Res Commun 2013; 435:727-32. [PMID: 23692925 DOI: 10.1016/j.bbrc.2013.05.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 05/12/2013] [Indexed: 10/26/2022]
Abstract
Four dioxin-inducible enzymes--NAD(P)H: quinone oxidoreductase-1 (NQO1) and three cytochromes P450 (CYP1A1, CYP1A2 & CYP1B1)--are implicated in both detoxication and metabolic activation of various endobiotics and xenobiotics. NQO1 is generally regarded as a cytosolic enzyme; whereas CYP1 proteins are located primarily in endoplasmic reticulum (ER), CYP1A1 and CYP1A2 proteins are also targeted to mitochondria. This lab has generated Cyp1a1(mc/mc) and Cyp1a1(mtt/mtt) knock-in mouse lines in which CYP1A1 protein is targeted exclusively to ER (microsomes) and mitochondria, respectively. Comparing dioxin-treated Cyp1(+/+) wild-type, Cyp1a1(mc/mc), Cyp1a1(mtt/mtt), and Cyp1a1(-/-), Cyp1b1(-/-) and Nqo1(-/-) knockout mice, in the present study we show that [a] NQO1 protein locates to cytosol, ER and mitochondria, [b] CYP1B1 protein (similar to CYP1A1 and CYP1A2 proteins) traffics to mitochondria as well as ER, and [c] NQO1 and CYP1B1 targeting to mitochondrial or ER membranes is independent of CYP1A1 presence in that membrane.
Collapse
Affiliation(s)
- Hongbin Dong
- Department of Environmental Health and Center for Environmental Genetics, University Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Goodale BC, Tilton SC, Corvi MM, Wilson GR, Janszen DB, Anderson KA, Waters KM, Tanguay RL. Structurally distinct polycyclic aromatic hydrocarbons induce differential transcriptional responses in developing zebrafish. Toxicol Appl Pharmacol 2013; 272:656-70. [PMID: 23656968 DOI: 10.1016/j.taap.2013.04.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/25/2013] [Accepted: 04/27/2013] [Indexed: 11/28/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment as components of fossil fuels and by-products of combustion. These multi-ring chemicals differentially activate the aryl hydrocarbon receptor (AHR) in a structurally dependent manner, and induce toxicity via both AHR-dependent and -independent mechanisms. PAH exposure is known to induce developmental malformations in zebrafish embryos, and recent studies have shown cardiac toxicity induced by compounds with low AHR affinity. Unraveling the potentially diverse molecular mechanisms of PAH toxicity is essential for understanding the hazard posed by complex PAH mixtures present in the environment. We analyzed transcriptional responses to PAH exposure in zebrafish embryos exposed to benz(a)anthracene (BAA), dibenzothiophene (DBT) and pyrene (PYR) at concentrations that induced developmental malformations by 120 h post-fertilization (hpf). Whole genome microarray analysis of mRNA expression at 24 and 48 hpf identified genes that were differentially regulated over time and in response to the three PAH structures. PAH body burdens were analyzed at both time points using GC-MS, and demonstrated differences in PAH uptake into the embryos. This was important for discerning dose-related differences from those that represented unique molecular mechanisms. While BAA misregulated the least number of transcripts, it caused strong induction of cyp1a and other genes known to be downstream of the AHR, which were not induced by the other two PAHs. Analysis of functional roles of misregulated genes and their predicted regulatory transcription factors also distinguished the BAA response from regulatory networks disrupted by DBT and PYR exposure. These results indicate that systems approaches can be used to classify the toxicity of PAHs based on the networks perturbed following exposure, and may provide a path for unraveling the toxicity of complex PAH mixtures.
Collapse
Affiliation(s)
- Britton C Goodale
- Department of Environmental and Molecular Toxicology, The Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Differential modulation of dibenzo[def,p]chrysene transplacental carcinogenesis: maternal diets rich in indole-3-carbinol versus sulforaphane. Toxicol Appl Pharmacol 2013; 270:60-9. [PMID: 23566957 DOI: 10.1016/j.taap.2013.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/15/2013] [Accepted: 02/18/2013] [Indexed: 11/24/2022]
Abstract
Cruciferous vegetable components have been documented to exhibit anticancer properties. Targets of action span multiple mechanisms deregulated during cancer progression, ranging from altered carcinogen metabolism to the restoration of epigenetic machinery. Furthermore, the developing fetus is highly susceptible to changes in nutritional status and to environmental toxicants. Thus, we have exploited a mouse model of transplacental carcinogenesis to assess the impact of maternal dietary supplementation on cancer risk in offspring. In this study, transplacental and lactational exposure to a maternal dose of 15mg/Kg B.W. of dibenzo[def,p]chrysene (DBC) resulted in significant morbidity of offspring due to an aggressive T-cell lymphoblastic lymphoma. As in previous studies, indole-3-carbinol (I3C, feed to the dam at 100, 500 or 1000ppm), derived from cruciferous vegetables, dose-dependently reduced lung tumor multiplicity and also increased offspring survival. Brussels sprout and broccoli sprout powders, selected for their relative abundance of I3C and the bioactive component sulforaphane (SFN), respectively, surprisingly enhanced DBC-induced morbidity and tumorigenesis when incorporated into the maternal diet at 10% wt/wt. Purified SFN, incorporated in the maternal diet at 400ppm, also decreased the latency of DBC-dependent morbidity. Interestingly, I3C abrogated the effect of SFN when the two purified compounds were administered in equimolar combination (500ppm I3C and 600ppm SFN). SFN metabolites measured in the plasma of neonates positively correlated with exposure levels via the maternal diet but not with offspring mortality. These findings provide justification for further study of the safety and bioactivity of cruciferous vegetable phytochemicals at supplemental concentrations during the perinatal period.
Collapse
|
36
|
Lauer FT, Walker MK, Burchiel SW. Dibenzo[def,p]chrysene (DBC) suppresses antibody formation in spleen cells following oral exposures of mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:16-24. [PMID: 23151208 PMCID: PMC3594787 DOI: 10.1080/15287394.2012.722521] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Dibenzo[def,p]chrysene (DBC) is a potent environmental carcinogen in rodents, fish, and human cells examined in culture. There are numerous similarities between the patterns of cytochrome P-450 (P450) activation of DBC and its covalent binding to DNA and proteins with another polycyclic aromatic hydrocarbon (PAH), 7,12-dimethylbenz[a]anthracene (DMBA). Our lab has previously shown that DMBA produces immunosuppression in rodents and human cell systems. Therefore, the purpose of these studies was to examine the immunotoxicity of DBC in a rodent model that was found to be sensitive to the immunosuppressive effects of DMBA. Data showed that DBC had similar potency to DMBA in producing suppression of a T-dependent antibody response (TDAR) and altered spleen cell subsets in a similar manner as DMBA when DMBA was given by gavage for 5 d in corn oil to mice at doses of 1-100 mg/kg total cumulative doses. T-cell-independent antigen (TNP-Ficoll) responses were quantitatively less sensitive to DBC suppression. It was also found that as with DMBA, DBC produced a persistent immunosuppression, which lasted for at least 4 wk following dosing with a novel pill method for self-administration of DBC. In conclusion, DBC appears to possess many of the same characteristics of DMBA in terms of its immunotoxicity.
Collapse
Affiliation(s)
- Fredine T Lauer
- College of Pharmacy, Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | |
Collapse
|
37
|
Gálvez-Peralta M, Shi Z, Chen J, Miller ML, Nebert DW. Oral benzo[a]pyrene in Cyp1a1/1b1(-/-) double-knockout mice: Microarray analysis during squamous cell carcinoma formation in preputial gland duct. Int J Cancer 2012; 132:2065-75. [PMID: 23047765 DOI: 10.1002/ijc.27897] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/04/2012] [Indexed: 01/15/2023]
Abstract
Benzo[a]pyrene (BaP) is a prototypical polycyclic aromatic hydrocarbon (PAH) found in combustion processes. Cytochrome P450 1A1 and 1B1 enzymes (CYP1A1, CYP1B1) and other enzymes can activate PAHs to reactive oxygenated intermediates involved in mutagenesis and tumor initiation; also, CYP1 enzymes can detoxify PAHs. Cyp1(+/+) wild-type (WT) and Cyp1b1(-/-) knockout mice receiving oral BaP (12.5 mg/kg/day) remain healthy for >12 months. In contrast, we found that global knockout of the Cyp1a1 gene (1a1KO) results in proximal small intestine (PSI) adenocarcinoma within 8-12 weeks on this BaP regimen; striking compensatory increases in PSI CYP1B1 likely participate in initiation of adenocarcinoma in 1a1KO mice. Cyp1a1/1b1(-/-) double-knockout (DKO) mice on this BaP regimen show no PSI adenocarcinoma, but instead preputial gland duct (PGD) squamous cell carcinoma (SCC) occurs by 12 weeks. Herein, we compare microarray expression of PGD genes in WT, 1a1KO and DKO mice at 0, 4, 8, 12 and 16 weeks of oral BaP; about four dozen genes up- or down-regulated during most critical time-points were further verified by qRT-PCR. In DKO mice, CYP3A59 was unequivocally identified as the BaP-inducible and BaP-metabolizing best candidate responsible for initiation of BaP-induced SCC. Striking increases or decreases were found in 26 cancer-related genes plus eight Serpin genes in DKO, but not in 1a1KO or WT, mice on this BaP regimen; of the 26, 8 were RAS-related oncogenes. The mechanism by which cancer-related genes are responsible for SCC tumor progression in the PGD remains to be elucidated.
Collapse
Affiliation(s)
- Marina Gálvez-Peralta
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA
| | | | | | | | | |
Collapse
|
38
|
Pang G, Xie J, Chen Q, Hu Z. How functional foods play critical roles in human health. FOOD SCIENCE AND HUMAN WELLNESS 2012. [DOI: 10.1016/j.fshw.2012.10.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Bock KW. Human UDP-glucuronosyltransferases: feedback loops between substrates and ligands of their transcription factors. Biochem Pharmacol 2012; 84:1000-6. [PMID: 22820246 DOI: 10.1016/j.bcp.2012.07.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 11/26/2022]
Abstract
Expression profiles of human adult and fetal hepatic and intestinal UDP-glucuronosyltransferases (UGTs), information about their endo- and xenobiotic substrates, and their transcriptional regulation suggests regulatory circuits between some UGT substrates and ligands of their transcription factors. For examples: (i) bilirubin is solely conjugated by UGT1A1 and activates its transcription factors Ah receptor, PXR and CAR. (ii) Hepatotoxic lithocholic acid (LCA) is oxidized to hyodeoxycholic acid, the latter conjugated by UGT2B4 and UGT2B7. LCA is also an agonist of FXR and PPARα, which are controlling these UGTs. (iii) Similar feedback loops possibly exist between some eicosanoids, PPARα and UGTs. (iv) Regulatory circuits may also have evolved between dietary polyphenols, which are efficient substrates of UGTs and activators of the Ah receptor. Although many newly developed drugs are conjugated by promiscuous UGTs, the discussed regulatory circuits may provide hints to evolutionary important UGT substrates.
Collapse
Affiliation(s)
- Karl Walter Bock
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Tübingen, Wilhelmstrasse 56, D-72074 Tübingen, Germany.
| |
Collapse
|
40
|
Do KN, Fink LN, Jensen TE, Gautier L, Parlesak A. TLR2 controls intestinal carcinogen detoxication by CYP1A1. PLoS One 2012; 7:e32309. [PMID: 22442665 PMCID: PMC3307708 DOI: 10.1371/journal.pone.0032309] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 01/26/2012] [Indexed: 02/06/2023] Open
Abstract
Intestinal cytochrome P450 subclass 1A1 (CYP1A1) contributes to a metabolic “shield” protecting the host from ingested carcinogens such as polycyclic aromatic hydrocarbons (PAH). The expression of CYP1 (including CYP1A2 and CYP1B1) is considered to depend solely on a heterodimeric transcription factor consisting of the arylhydrocarbon receptor (AHR) and the AHR nuclear translocator (ARNT). So far, no interference has been noted between the regulation of CYP1 and the activation of Toll-like receptor 2 (TLR2), which modulates the inflammatory response to bacterial cell wall components in immune cells and enterocytes. Here we report that intestinal CYP1A1 is silenced in TLR2-deficient mice, even when under exposure to the carcinogenic PAH benzo[a]pyrene (BaP). In contrast, hepatic CYP1A1 was moderately induced in TLR2-deficient mice without restoring their ability to clear BaP from systemic circulation, as present in wild-type animals. After feeding of BaP for 21 days, only TLR2−/− mice, but not their wild type littermates developed polyps in the colon. Gene expressions and protein concentrations of AHR and ARNT in the intestine did not differ between the genotypes. In conclusion, the presence of ligands for TLR2 of bacterial origin seems to be crucial for detoxication of luminal carcinogens by CYP1A1 in the intestine. This unprecedented finding indicates a complex interplay between the immune system of the host and intestinal bacteria with detoxication mechanisms. This highlights the relevance of intestinal microbiota when trying to unravel pathways present in mammals and opens new perspectives for research in human health.
Collapse
Affiliation(s)
- Khoa Nguyen Do
- Center for Biological Sequence Analysis, Technical University of Denmark (DTU), Lyngby, Denmark
- DTU Multiassay Core (DMAC), Technical University of Denmark (DTU), Lyngby, Denmark
| | - Lisbeth Nielsen Fink
- Center for Biological Sequence Analysis, Technical University of Denmark (DTU), Lyngby, Denmark
| | | | - Laurent Gautier
- DTU Multiassay Core (DMAC), Technical University of Denmark (DTU), Lyngby, Denmark
| | - Alexandr Parlesak
- Center for Biological Sequence Analysis, Technical University of Denmark (DTU), Lyngby, Denmark
- Metropolitan University College, Global Nutrition and Health, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
41
|
Sugamori KS, Brenneman D, Sanchez O, Doll MA, Hein DW, Pierce WM, Grant DM. Reduced 4-aminobiphenyl-induced liver tumorigenicity but not DNA damage in arylamine N-acetyltransferase null mice. Cancer Lett 2011; 318:206-13. [PMID: 22193722 DOI: 10.1016/j.canlet.2011.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 12/08/2011] [Accepted: 12/08/2011] [Indexed: 01/23/2023]
Abstract
The aromatic amine 4-aminobiphenyl (ABP) is a liver procarcinogen in mice, requiring enzymatic bioactivation to exert its tumorigenic effect. To assess the role of arylamine N-acetyltransferase (NAT)-dependent acetylation capacity in the risk for ABP-induced liver tumors, we compared 1-year liver tumor incidence following the postnatal exposure of wild-type and NAT-deficient Nat1/2(-/-) mice to ABP. At an ABP exposure of 1200 nmol, male Nat1/2(-/-) mice had a liver tumor incidence of 36% compared to 69% in wild-type males, and at 600 nmol there was a complete absence of tumors compared to 60% in wild-type mice. Only one female wild-type mouse had a tumor using this exposure protocol. However, levels of N-deoxyguanosin-8-yl-ABP-DNA adducts did not correlate with either the strain or sex differences in tumor incidence. These results suggest that female sex and NAT deficiency reduce risk for ABP-induced liver tumors, but by mechanisms unrelated to differences in DNA-damaging events.
Collapse
Affiliation(s)
- Kim S Sugamori
- Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
Ah receptor- and Nrf2-gene battery members: modulators of quinone-mediated oxidative and endoplasmic reticulum stress. Biochem Pharmacol 2011; 83:833-8. [PMID: 22192820 DOI: 10.1016/j.bcp.2011.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/06/2011] [Accepted: 12/06/2011] [Indexed: 12/19/2022]
Abstract
Quinones are ubiquitously present in mammals and their environment. They are involved in physiologic functions such as electron transport but are also toxic compounds. In particular, quinone-quinol redox cycles may lead to oxidative stress, and arylating quinones have been demonstrated to activate endoplasmic reticulum (ER) stress. To detoxify quinones coordinately regulated Ah receptor and Nrf2 gene batteries evolved. Two pathways are emphasized: (i) glutathione S-transferases, and (ii) NAD(P)H:quinone oxidoreductases NQO1 and NQO2 acting together with UDP-glucuronosyltransferases and sulfotransferases. Coupling between these enzymes may prevent oxidative and ER stress in a tissue-dependent manner, as discussed using benzo[a]pyrene detoxification in enterocytes, catecholestrogen metabolism in breast tissue and endometrium, and aminochromes in neurones and astrocytes. Possible consequences of chronic ER stress such as apoptosis and inflammation as well as therapeutic possibilities of modulating Ah receptor and Nrf2 are discussed. In conclusion, tight coupling of Ah receptor- and Nrf2-regulated enzymes may prevent quinone-mediated oxidative and ER stress.
Collapse
|
43
|
Diggs DL, Huderson AC, Harris KL, Myers JN, Banks LD, Rekhadevi PV, Niaz MS, Ramesh A. Polycyclic aromatic hydrocarbons and digestive tract cancers: a perspective. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2011; 29:324-57. [PMID: 22107166 PMCID: PMC3247201 DOI: 10.1080/10590501.2011.629974] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cancers of the colon are most common in the Western world. In majority of these cases, there is no familial history and sporadic gene damage seems to play an important role in the development of tumors in the colon. Studies have shown that environmental factors, especially diet, play an important role in susceptibility to gastrointestinal (GI) tract cancers. Consequently, environmental chemicals that contaminate food or diet during preparation become important in the development of GI cancers. Polycyclic aromatic hydrocarbons (PAHs) are one such family of ubiquitous environmental toxicants. These pollutants enter the human body through consumption of contaminated food, drinking water, inhalation of cigarette smoke, automobile exhausts, and contaminated air from occupational settings. Among these pathways, dietary intake of PAHs constitutes a major source of exposure in humans. Although many reviews and books on PAHs and their ability to cause toxicity and breast or lung cancer have been published, aspects on contribution of diet, smoking and other factors toward development of digestive tract cancers, and strategies to assess risk from exposure to PAHs have received much less attention. This review, therefore, focuses on dietary intake of PAHs in humans, animal models, and cell cultures used for GI cancer studies along with epidemiological findings. Bioavailability and biotransformation processes, which influence the disposition of PAHs in body and the underlying causative mechanisms of GI cancers, are also discussed. The existing data gaps and scope for future studies is also emphasized. This information is expected to stimulate research on mechanisms of sporadic GI cancers caused by exposure to environmental carcinogens.
Collapse
Affiliation(s)
- Deacqunita L. Diggs
- Department of Biochemistry & Cancer Biology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208
| | - Ashley C. Huderson
- Department of Biochemistry & Cancer Biology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208
| | - Kelly L. Harris
- Department of Biochemistry & Cancer Biology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208
| | - Jeremy N. Myers
- Department of Biochemistry & Cancer Biology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208
| | - Leah D. Banks
- Department of Biochemistry & Cancer Biology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208
| | - Perumalla V. Rekhadevi
- Department of Biochemistry & Cancer Biology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208
| | - Mohammad S. Niaz
- Department of Biochemistry & Cancer Biology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208
| | - Aramandla Ramesh
- Department of Biochemistry & Cancer Biology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208
| |
Collapse
|
44
|
Elsherbiny ME, Brocks DR. The ability of polycyclic aromatic hydrocarbons to alter physiological factors underlying drug disposition. Drug Metab Rev 2011; 43:457-75. [DOI: 10.3109/03602532.2011.596204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Ribonnet L, Callebaut A, Nobels I, Scippo ML, Schneider YJ, De Saeger S, Pussemier L, Larondelle Y. Modulation of CYP1A1 activity by a Ginkgo biloba extract in the human intestinal Caco-2 cells. Toxicol Lett 2011; 202:193-202. [DOI: 10.1016/j.toxlet.2011.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/04/2011] [Accepted: 02/07/2011] [Indexed: 01/10/2023]
|
46
|
Curran CP, Vorhees CV, Williams MT, Genter MB, Miller ML, Nebert DW. In utero and lactational exposure to a complex mixture of polychlorinated biphenyls: toxicity in pups dependent on the Cyp1a2 and Ahr genotypes. Toxicol Sci 2010; 119:189-208. [PMID: 20961953 DOI: 10.1093/toxsci/kfq314] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) are persistent toxic pollutants occurring as complex mixtures in the environment. Humans are known genetically to have > 60-fold differences in hepatic cytochrome P450 1A2 (CYP1A2) levels and > 12-fold differences in aryl hydrocarbon receptor (AHR) affinity, both of which could affect PCB pharmacokinetics. Thus, we compared Ahr(b1)_Cyp1a2(+/+) high-affinity AHR wild-type, Ahr(d)_Cyp1a2(+/+) poor affinity AHR wild-type, Ahr(b1)_Cyp1a2(-/-) knockout, and Ahr(d)_Cyp1a2(-/-) knockout mouse lines. We chose a mixture of three coplanar and five noncoplanar PCBs to reproduce that seen in human tissues, breast milk, and the food supply. The mixture was given by gavage to the mother on gestational day 10.5 (GD10.5) and postnatal day 5 (PND5); tissues were collected from pups and mothers at GD11.5, GD18.5, PND6, PND13, and PND28. Ahr(b1)_Cyp1a2(-/-) pups showed lower weight at birth and slower rate of growth postnatally. Absence of CYP1A2 resulted in significant splenic atrophy at PND13 and PND28. Presence of high-affinity AHR enhanced thymic atrophy and liver hypertrophy in the pups. Concentrations of each congener were analyzed at all time points: maximal noncoplanar congener levels in maternal tissues were observed from GD18 until PND6, whereas the highest levels in pups were found between PND6 and PND28. Coplanar PCB concentrations were generally higher in Ahr(d)-containing pup tissues; these findings are consistent with earlier studies demonstrating the crucial importance of AHR-mediated inducible CYP1 in the gastrointestinal tract as a means of detoxication of oral planar polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Christine P Curran
- Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, Ohio 45267-0056, USA
| | | | | | | | | | | |
Collapse
|
47
|
Stagos D, Chen Y, Brocker C, Donald E, Jackson BC, Orlicky DJ, Thompson DC, Vasiliou V. Aldehyde dehydrogenase 1B1: molecular cloning and characterization of a novel mitochondrial acetaldehyde-metabolizing enzyme. Drug Metab Dispos 2010; 38:1679-87. [PMID: 20616185 PMCID: PMC2957164 DOI: 10.1124/dmd.110.034678] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 07/08/2010] [Indexed: 12/12/2022] Open
Abstract
Ethanol-induced damage is largely attributed to its toxic metabolite, acetaldehyde. Clearance of acetaldehyde is achieved by its oxidation, primarily catalyzed by the mitochondrial class II aldehyde dehydrogenase (ALDH2). ALDH1B1 is another mitochondrial aldehyde dehydrogenase (ALDH) that shares 75% peptide sequence homology with ALDH2. Recent population studies in whites suggest a role for ALDH1B1 in ethanol metabolism. However, to date, no formal documentation of the biochemical properties of ALDH1B1 has been forthcoming. In this current study, we cloned and expressed human recombinant ALDH1B1 in Sf9 insect cells. The resultant enzyme was purified by affinity chromatography to homogeneity. The kinetic properties of purified human ALDH1B1 were assessed using a wide range of aldehyde substrates. Human ALDH1B1 had an exclusive preference for NAD(+) as the cofactor and was catalytically active toward short- and medium-chain aliphatic aldehydes, aromatic aldehydes, and the products of lipid peroxidation, 4-hydroxynonenal and malondialdehyde. Most importantly, human ALDH1B1 exhibited an apparent K(m) of 55 μM for acetaldehyde, making it the second low K(m) ALDH for metabolism of this substrate. The dehydrogenase activity of ALDH1B1 was sensitive to disulfiram inhibition, a feature also shared with ALDH2. The tissue distribution of ALDH1B1 in C57BL/6J mice and humans was examined by quantitative polymerase chain reaction, Western blotting, and immunohistochemical analysis. The highest expression occurred in the liver, followed by the intestinal tract, implying a potential physiological role for ALDH1B1 in these tissues. The current study is the first report on the expression, purification, and biochemical characterization of human ALDH1B1 protein.
Collapse
Affiliation(s)
- Dimitrios Stagos
- Department of Pharmaceutical Sciences,University of Colorado-Denver, Aurora, CO, USA
| | | | | | | | | | | | | | | |
Collapse
|