1
|
Flor AC, Wolfgeher DJ, Kron SJ. Noncanonical inhibition of topoisomerase II alpha by oxidative stress metabolites. Redox Biol 2025; 80:103504. [PMID: 39879737 PMCID: PMC11810846 DOI: 10.1016/j.redox.2025.103504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 01/31/2025] Open
Abstract
During its catalytic cycle, the homodimeric ATPase topoisomerase II alpha (TOP2A) cleaves double stranded DNA and remains covalently bound to 5' ends via tyrosine phosphodiester bonds. After passing a second, intact duplex through, TOP2A rejoins the break and releases from the DNA. Thereby, TOP2A can relieve strain accumulated during transcription, replication and chromatin remodeling and disentangle sister chromatids for mitosis. Chemotherapy agents such as etoposide are poisons that trap TOP2A mid-cycle, covalently bound to cleaved DNA, leaving behind DNA double strand breaks and activating DNA damage response. While etoposide has been proposed to stabilize the TOP2A-DNA cleavage complex (TOP2Acc) via interfacial inhibition, we have elucidated a complementary mechanism mediated by the ability of etoposide and other TOP2A poisons to induce oxidative stress. Consequently, lipid peroxidation and accumulation of lipid-derived electrophiles such as 4-hydroxynonenal (HNE) results in covalent modification of TOP2A, both blocking ATPase activity and trapping TOP2Acc. HNE modifies multiple sites on human TOP2A in vitro, including alkylating Cys216 in the ATPase domain in a DNA-dependent fashion. Taken together, our data suggest an underappreciated role for TOP2A as a redox sensor in tumor cells, connecting oxidative stress to DNA damage signaling and thereby creating a target for redox-active drugs.
Collapse
Affiliation(s)
- Amy C Flor
- University of Chicago, Department of Molecular Genetics and Cell Biology, 929 E. 57th Street, Chicago, IL, 60637, USA
| | - Donald J Wolfgeher
- University of Chicago, Department of Molecular Genetics and Cell Biology, 929 E. 57th Street, Chicago, IL, 60637, USA
| | - Stephen J Kron
- University of Chicago, Department of Molecular Genetics and Cell Biology, 929 E. 57th Street, Chicago, IL, 60637, USA.
| |
Collapse
|
2
|
Zhang F, Guo X, Ye L, Yu S. Identifying an AML Prognostic Model Using 10 Marker Genes from Single-Cell Transcriptome and Bulk Transcriptome Analysis. Biochem Genet 2024; 62:4619-4638. [PMID: 38347290 DOI: 10.1007/s10528-024-10678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/02/2024] [Indexed: 11/29/2024]
Abstract
Fanconi anemia (FA) is the predominant hereditary syndrome of bone marrow failure (BMF), distinguished by impairments in DNA repair mechanisms. The deficiency in the FANC pathway, which governs DNA repair and replication rescue, results in aberrant responses to DNA damage in individuals with FA. The objective of this study is to examine the involvement of the FANC core complex in BMF and ascertain nucleolar homeostasis-related genes by conducting transcriptome analysis on primary hematopoietic stem cells obtained from FA patients with FANCA and FANCC variants. In the present study, we analyzed scRNA-seq data obtained from both healthy donors and individuals diagnosed with FA in order to investigate the phenomenon of cell-cell communication. Through the implementation of trajectory analysis, the differentiation pathways of several progenitor cell types, such as HSC cells transitioning into LMPP, N, M, B-prog, and E cells, were elucidated. Moreover, by scrutinizing the inferred interactions, notable disparities in cell-cell communication were observed between FA patients and their healthy counterparts. Our analysis has unveiled heightened interactions involving TNFSF13B, MIF, IL16, and COL4A2 in patients with FA. Furthermore, we have developed a prognostic model for predicting the outcome of acute myeloid leukemia (AML) which has exhibited remarkable predictive precision, with an AUC exceeding 0.83 at the 3- and 5-year intervals following the baseline assessment. In summary, the prognostic model that has been developed provides a valuable instrument for forecasting outcomes of AML by utilizing the genes identified through both single-cell and bulk transcriptome analyses.
Collapse
Affiliation(s)
- Fangyuan Zhang
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
- School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Xiaohua Guo
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100000, China
| | - Lihong Ye
- Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Shicheng Yu
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, China.
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou Science Park, Luogang District, Guangzhou, 510530, China.
| |
Collapse
|
3
|
Carvajal-Moreno J, Hernandez VA, Wang X, Li J, Yalowich JC, Elton TS. Effects of hsa-miR-9-3p and hsa-miR-9-5p on Topoisomerase II β Expression in Human Leukemia K562 Cells with Acquired Resistance to Etoposide. J Pharmacol Exp Ther 2023; 384:265-276. [PMID: 36410793 PMCID: PMC9875313 DOI: 10.1124/jpet.122.001429] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022] Open
Abstract
DNA topoisomerase IIα (TOP2α/170; 170 kDa) and topoisomerase IIβ (TOP2β/180; 180 kDa) are targets for a number of anticancer drugs, whose clinical efficacy is attenuated by chemoresistance. Our laboratory selected for an etoposide-resistant K562 clonal subline designated K/VP.5. These cells exhibited decreased TOP2α/170 and TOP2β/180 expression. We previously demonstrated that a microRNA-9 (miR-9)-mediated posttranscriptional mechanism plays a role in drug resistance via reduced TOP2α/170 protein in K/VP.5 cells. Here, it is hypothesized that a similar miR-9 mechanism is responsible for decreased TOP2β/180 levels in K/VP.5 cells. Both miR-9-3p and miR-9-5p are overexpressed in K/VP.5 compared with K562 cells, demonstrated by microRNA (miRNA) sequencing and quantitative polymerase chain reaction. The 3'-untranslated region (3'-UTR) of TOP2β/180 contains miRNA recognition elements (MRE) for both miRNAs. Cotransfection of K562 cells with a luciferase reporter plasmid harboring TOP2β/180 3'-UTR plus miR-9-3p or miR-9-5p mimics resulted in statistically significant decreased luciferase expression. miR-9-3p and miR-9-5p MRE mutations prevented this decrease, validating direct interaction between these miRNAs and TOP2β/180 mRNA. Transfection of K562 cells with miR-9-3p/5p mimics led to decreased TOP2β protein levels without a change in TOP2β/180 mRNA and resulted in reduced TOP2β-specific XK469-induced DNA damage. Conversely, K/VP.5 cells transfected with miR-9-3p/5p inhibitors led to increased TOP2β/180 protein without a change in TOP2β/180 mRNA and resulted in enhancement of XK469-induced DNA damage. Taken together, these results strongly suggest that TOP2β/180 mRNA is translationally repressed by miR-9-3p/5p, that these miRNAs play a role in acquired resistance to etoposide, and that they are potential targets for circumvention of resistance to TOP2-targeted agents. SIGNIFICANCE STATEMENT: Results presented here indicate that miR-9-3p and miR-9-5p play a role in acquired resistance to etoposide via decreased DNA topoisomerase IIβ 180 kDa protein levels. These findings contribute further information about and potential strategies for circumvention of drug resistance by modulation of microRNA levels. In addition, miR-9-3p and miR-9-5p overexpression in cancer chemoresistance may lead to future validation as biomarkers of responsiveness to DNA topoisomerase II-targeted therapy.
Collapse
Affiliation(s)
- Jessika Carvajal-Moreno
- Division of Pharmaceutics and Pharmacology (J.C.-M., V.A.H., X.W., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.I.), College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Victor A Hernandez
- Division of Pharmaceutics and Pharmacology (J.C.-M., V.A.H., X.W., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.I.), College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Xinyi Wang
- Division of Pharmaceutics and Pharmacology (J.C.-M., V.A.H., X.W., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.I.), College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Junan Li
- Division of Pharmaceutics and Pharmacology (J.C.-M., V.A.H., X.W., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.I.), College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Jack C Yalowich
- Division of Pharmaceutics and Pharmacology (J.C.-M., V.A.H., X.W., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.I.), College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Terry S Elton
- Division of Pharmaceutics and Pharmacology (J.C.-M., V.A.H., X.W., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.I.), College of Pharmacy, The Ohio State University, Columbus, Ohio
| |
Collapse
|
4
|
Hernandez VA, Carvajal-Moreno J, Papa JL, Shkolnikov N, Li J, Ozer HG, Yalowich JC, Elton TS. CRISPR/Cas9 Genome Editing of the Human Topoisomerase II α Intron 19 5' Splice Site Circumvents Etoposide Resistance in Human Leukemia K562 Cells. Mol Pharmacol 2021; 99:226-241. [PMID: 33446509 PMCID: PMC7919865 DOI: 10.1124/molpharm.120.000173] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/28/2020] [Indexed: 01/17/2023] Open
Abstract
An essential function of DNA topoisomerase IIα (TOP2α; 170 kDa, TOP2α/170) is to resolve DNA topologic entanglements during chromosome disjunction by introducing transient DNA double-stranded breaks. TOP2α/170 is an important target for DNA damage-stabilizing anticancer drugs, whose clinical efficacy is compromised by drug resistance often associated with decreased TOP2α/170 expression. We recently demonstrated that an etoposide-resistant K562 clonal subline, K/VP.5, with reduced levels of TOP2α/170, expresses high levels of a novel C-terminal truncated TOP2α isoform (90 kDa, TOP2α/90). TOP2α/90, the translation product of a TOP2α mRNA that retains a processed intron 19 (I19), heterodimerizes with TOP2α/170 and is a resistance determinant through a dominant-negative effect on drug activity. We hypothesized that genome editing to enhance I19 removal would provide a tractable strategy to circumvent acquired TOP2α-mediated drug resistance. To enhance I19 removal in K/VP.5 cells, CRISPR/Cas9 was used to make changes (GAG//GTAA AC →GAG//GTAA GT ) in the TOP2α gene's suboptimal exon 19/intron 19 5' splice site (E19/I19 5' SS). Gene-edited clones were identified by quantitative polymerase chain reaction and verified by sequencing. Characterization of a clone with all TOP2α alleles edited revealed improved I19 removal, decreased TOP2α/90 mRNA/protein, and increased TOP2α/170 mRNA/protein. Sensitivity to etoposide-induced DNA damage (γH2AX, Comet assays) and growth inhibition was restored to levels comparable to those in parental K562 cells. Together, the results indicate that our gene-editing strategy for optimizing the TOP2α E19/I19 5' SS in K/VP.5 cells circumvents resistance to etoposide and other TOP2α-targeted drugs. SIGNIFICANCE STATEMENT: Results presented here indicate that CRISPR/Cas9 gene editing of a suboptimal exon 19/intron 19 5' splice site in the DNA topoisomerase IIα (TOP2α) gene results in circumvention of acquired drug resistance to etoposide and other TOP2α-targeted drugs in a clonal K562 cell line by enhancing removal of intron 19 and thereby decreasing formation of a truncated TOP2α 90 kDa isoform and increasing expression of full-length TOP2α 170 kDa in these resistant cells. Results demonstrate the importance of RNA processing in acquired drug resistance to TOP2α-targeted drugs.
Collapse
MESH Headings
- CRISPR-Cas Systems
- Cell Survival
- DNA Topoisomerases, Type II/genetics
- Down-Regulation
- Drug Resistance, Neoplasm
- Etoposide/pharmacology
- Gene Editing/methods
- Humans
- Introns
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Poly-ADP-Ribose Binding Proteins/genetics
- RNA Splice Sites
Collapse
Affiliation(s)
- Victor A Hernandez
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (V.A.H., J.C.-M., J.L.P., J.L., J.C.Y., T.S.E., N.S.) and Department of Biomedical Informatics, College of Medicine (H.G.O), The Ohio State University, Columbus, Ohio
| | - Jessika Carvajal-Moreno
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (V.A.H., J.C.-M., J.L.P., J.L., J.C.Y., T.S.E., N.S.) and Department of Biomedical Informatics, College of Medicine (H.G.O), The Ohio State University, Columbus, Ohio
| | - Jonathan L Papa
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (V.A.H., J.C.-M., J.L.P., J.L., J.C.Y., T.S.E., N.S.) and Department of Biomedical Informatics, College of Medicine (H.G.O), The Ohio State University, Columbus, Ohio
| | - Nicholas Shkolnikov
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (V.A.H., J.C.-M., J.L.P., J.L., J.C.Y., T.S.E., N.S.) and Department of Biomedical Informatics, College of Medicine (H.G.O), The Ohio State University, Columbus, Ohio
| | - Junan Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (V.A.H., J.C.-M., J.L.P., J.L., J.C.Y., T.S.E., N.S.) and Department of Biomedical Informatics, College of Medicine (H.G.O), The Ohio State University, Columbus, Ohio
| | - Hatice Gulcin Ozer
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (V.A.H., J.C.-M., J.L.P., J.L., J.C.Y., T.S.E., N.S.) and Department of Biomedical Informatics, College of Medicine (H.G.O), The Ohio State University, Columbus, Ohio
| | - Jack C Yalowich
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (V.A.H., J.C.-M., J.L.P., J.L., J.C.Y., T.S.E., N.S.) and Department of Biomedical Informatics, College of Medicine (H.G.O), The Ohio State University, Columbus, Ohio
| | - Terry S Elton
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (V.A.H., J.C.-M., J.L.P., J.L., J.C.Y., T.S.E., N.S.) and Department of Biomedical Informatics, College of Medicine (H.G.O), The Ohio State University, Columbus, Ohio
| |
Collapse
|
5
|
Zhang W, Berthelet J, Michail C, Bui LC, Gou P, Liu R, Duval R, Renault J, Dupret JM, Guidez F, Chomienne C, Rodrigues Lima F. Human CREBBP acetyltransferase is impaired by etoposide quinone, an oxidative and leukemogenic metabolite of the anticancer drug etoposide through modification of redox-sensitive zinc-finger cysteine residues. Free Radic Biol Med 2021; 162:27-37. [PMID: 33278510 DOI: 10.1016/j.freeradbiomed.2020.11.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022]
Abstract
Etoposide is an extensively prescribed anticancer drug that, unfortunately, causes therapy-related leukemia. The mechanisms by which etoposide induces secondary hematopoietic malignancies are poorly documented. However, etoposide-related leukemogenesis is known to depend on oxidative metabolites of etoposide, notably etoposide quinone, that can react with protein cysteine residues such as in topoisomerases II. CREBBP is a major histone acetyltransferase that functions mainly as a transcriptional co-activator. This epigenetic enzyme is considered as a tumor suppressor that plays a major role in hematopoiesis. Genetic alterations affecting CREBBP activity are highly common in hematopoietic malignancies. We report here that CREBBP is impaired by etoposide quinone. Molecular and kinetic analyses show that this inhibition occurs through the rapid and covalent (kinhib = 16.102 M-1. s-1) adduction of etoposide quinone with redox sensitive cysteine residues within the RING and PHD Zn2+-fingers of CREBBP catalytic core leading to subsequent release of Zn2+. In agreement with these findings, experiments conducted in cells and in mice treated with etoposide showed irreversible inhibition of endogenous CREBBP activity and decreased H3K18 and H3K27 acetylation. As shown for topoisomerases II, our work thus suggests that the leukemogenic metabolite etoposide quinone can impair the epigenetic CREBBP acetyltransferase through reaction with redox sensitive cysteine residues.
Collapse
Affiliation(s)
- Wenchao Zhang
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France
| | - Jérémy Berthelet
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France; Université de Paris, CEDC, UMR 7216, CNRS, F-75013, Paris, France
| | | | - Linh-Chi Bui
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France
| | - Panhong Gou
- Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, F-75010, Paris, France
| | - Rongxing Liu
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France
| | - Romain Duval
- Université de Paris, BIGR, UMRS 1134, INSERM, F-75015, Paris, France
| | - Justine Renault
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France
| | | | - Fabien Guidez
- Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, F-75010, Paris, France
| | - Christine Chomienne
- Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, F-75010, Paris, France; Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint Louis, Paris, France
| | | |
Collapse
|
6
|
Murphy MB, Kumar P, Bradley AM, Barton CE, Deweese JE, Mercer SL. Synthesis and evaluation of etoposide and podophyllotoxin analogs against topoisomerase IIα and HCT-116 cells. Bioorg Med Chem 2020; 28:115773. [PMID: 33035756 DOI: 10.1016/j.bmc.2020.115773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/18/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022]
Abstract
Etoposide is a widely-used anticancer agent that targets human type II topoisomerases. Evidence suggests that metabolism of etoposide in myeloid progenitor cells is associated with translocations involved in leukemia development. Previous studies suggest halogenation at the C-2' position of etoposide reduces metabolism. Halogens were introduced into the C-2' position by electrophilic aromatic halogenation onto etoposide (ETOP, 1), podophyllotoxin (PPT, 2), and 4-dimethylepipodophyllotoxin (DMEP, 3), and to bridge the gap of knowledge regarding the activity of these metabolically stable analogs. Five halogenated analogs (6-10) were synthesized. Analogs 8-10 displayed variable ability to inhibit DNA relaxation. Analog 9 was the only analog to show concentration-dependent enhancement of Top2-mediated DNA cleavage. Dose response assay results indicated that 8 and 10 were most effective at decreasing the viability of HCT-116 and A549 cancer cell lines in culture. Flow cytometry with 8 and 10 in HCT-116 cells provide evidence of sub-G1 cell populations indicative of apoptosis. Taken together, these results indicate C-2' halogenation of etoposide and its precursors, although metabolically stable, decreases overall activity relative to etoposide.
Collapse
Affiliation(s)
- Matthew B Murphy
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, One University, Park Drive, Nashville, TN 37204, USA
| | - Priyanka Kumar
- Department of Biology, Belmont University, 1900 Belmont Boulevard, Nashville, TN 37212, USA
| | - Amber M Bradley
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, One University, Park Drive, Nashville, TN 37204, USA
| | - Christopher E Barton
- Department of Biology, Belmont University, 1900 Belmont Boulevard, Nashville, TN 37212, USA
| | - Joseph E Deweese
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, One University, Park Drive, Nashville, TN 37204, USA; Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37235, USA
| | - Susan L Mercer
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, One University, Park Drive, Nashville, TN 37204, USA; Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37235, USA.
| |
Collapse
|
7
|
Kania EE, Carvajal-Moreno J, Hernandez VA, English A, Papa JL, Shkolnikov N, Ozer HG, Yilmaz AS, Yalowich JC, Elton TS. hsa-miR-9-3p and hsa-miR-9-5p as Post-Transcriptional Modulators of DNA Topoisomerase II α in Human Leukemia K562 Cells with Acquired Resistance to Etoposide. Mol Pharmacol 2020; 97:159-170. [PMID: 31836624 PMCID: PMC6978698 DOI: 10.1124/mol.119.118315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022] Open
Abstract
DNA topoisomerase IIα protein (TOP2α) 170 kDa (TOP2α/170) is an important target for anticancer agents whose efficacy is often attenuated by chemoresistance. Our laboratory has characterized acquired resistance to etoposide in human leukemia K562 cells. The clonal resistant subline K/VP.5 contains reduced TOP2α/170 mRNA and protein levels compared with parental K562 cells. The aim of this study was to determine whether microRNA (miRNA)-mediated mechanisms play a role in drug resistance via decreased expression of TOP2α/170. miRNA-sequencing revealed that human miR-9-3p and miR-9-5p were among the top six of those overexpressed in K/VP.5 compared with K562 cells; validation by quantitative polymerase chain reaction demonstrated overexpression of both miRNAs. miRNA recognition elements (MREs) for both miRNAs are present in the 3'-untranslated region (UTR) of TOP2α/170. Transfecting K562 cells with a reporter plasmid harboring the TOP2α/170 3'-UTR together with either miR-9-3p or miR-9-5p mimics resulted in a statistically significant decrease in luciferase expression. Mutating the miR-9-3p or miR-9-5p MREs prevented this decrease, demonstrating direct interaction between these miRNAs and TOP2α/170 mRNA. Transfection of K562 cells with miR-9-3p or miR-9-5p mimics led to decreased TOP2α/170 protein levels without a change in TOP2α/170 mRNA and resulted in attenuated etoposide-induced DNA damage (gain-of-miRNA-inhibitory function). Conversely, transfection of miR-9-3p or miR-9-5p inhibitors in K/VP.5 cells (overexpressed miR-9 and low TOP2α/170) led to increased TOP2α/170 protein expression without a change in TOP2α/170 mRNA levels and resulted in enhancement of etoposide-induced DNA damage (loss-of-miRNA-inhibitory function). Taken together, these results strongly suggest that these miRNAs play a role in and are potential targets for circumvention of acquired resistance to etoposide. SIGNIFICANCE STATEMENT: Results presented here indicate that miR-9-3p and miR-9-5p decrease DNA topoisomerase IIα protein 170 kDa expression levels in acquired resistance to etoposide. These findings contribute new information about and potential strategies for circumvention of drug resistance by modulation of microRNA levels. Furthermore, increased expression of miR-9-3p and miR-9-5p in chemoresistant cancer cells may support their validation as biomarkers of responsiveness to DNA topoisomerase II-targeted therapy.
Collapse
Affiliation(s)
- Evan E Kania
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Jessika Carvajal-Moreno
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Victor A Hernandez
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Anthony English
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Jonathan L Papa
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Nicholas Shkolnikov
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Hatice Gulcin Ozer
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Ayse Selen Yilmaz
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Jack C Yalowich
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| | - Terry S Elton
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (E.E.K., J.C.-M., V.A.H., A.E., J.L.P., N.S., J.C.Y., T.S.E.) and Department of Biomedical Informatics, College of Medicine (H.G.O., A.S.Y.), The Ohio State University, Columbus, Ohio
| |
Collapse
|
8
|
Nian Q, Berthelet J, Zhang W, Bui LC, Liu R, Xu X, Duval R, Ganesan S, Leger T, Chomienne C, Busi F, Guidez F, Dupret JM, Rodrigues Lima F. T-Cell Protein Tyrosine Phosphatase Is Irreversibly Inhibited by Etoposide-Quinone, a Reactive Metabolite of the Chemotherapy Drug Etoposide. Mol Pharmacol 2019; 96:297-306. [PMID: 31221825 DOI: 10.1124/mol.119.116319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/07/2019] [Indexed: 02/14/2025] Open
Abstract
Etoposide is a widely prescribed anticancer drug that is, however, associated with an increased risk of secondary leukemia. Although the molecular basis underlying the development of these leukemias remains poorly understood, increasing evidence implicates the interaction of etoposide metabolites [i.e., etoposide quinone (EQ)] with topoisomerase II enzymes. However, effects of etoposide quinone on other cellular targets could also be at play. We investigated whether T-cell protein tyrosine phosphatase (TCPTP), a protein tyrosine phosphatase that plays a key role in normal and malignant hematopoiesis through regulation of Janus kinase/signal transducer and activator of transcription signaling, could be a target of EQ. We report here that EQ is an irreversible inhibitor of TCPTP phosphatase (IC50 = ∼7 μM, second-order rate inhibition constant of ∼810 M-1⋅min-1). No inhibition was observed with the parent drug. The inhibition by EQ was found to be due to the formation of a covalent adduct at the catalytic cysteine residue in the active site of TCPTP. Exposure of human hematopoietic cells (HL60 and Jurkat) to EQ led to inhibition of endogenous TCPTP and concomitant increase in STAT1 tyrosine phosphorylation. Our results suggest that in addition to alteration of topoisomerase II functions, EQ could also contribute to etoposide-dependent leukemogenesis through impairment of key hematopoietic signaling enzymes, such as TCPTP.
Collapse
Affiliation(s)
- Qing Nian
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France (Q.N., J.B., W.Z., L.-C.B., R.L., F.B., J.-M.D., F.R.L.); Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China (X.X.); Université de Paris, BIGR, UMRS 1134, INSERM, Paris, France (R.D.); Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, Paris, France (S.G., C.C., F.G.); Université de Paris, IJM, UMR 7592, CNRS, Paris, France (T.L.); and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris, Hôpital Saint Louis, Paris, France (C.C.)
| | - Jérémy Berthelet
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France (Q.N., J.B., W.Z., L.-C.B., R.L., F.B., J.-M.D., F.R.L.); Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China (X.X.); Université de Paris, BIGR, UMRS 1134, INSERM, Paris, France (R.D.); Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, Paris, France (S.G., C.C., F.G.); Université de Paris, IJM, UMR 7592, CNRS, Paris, France (T.L.); and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris, Hôpital Saint Louis, Paris, France (C.C.)
| | - Wenchao Zhang
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France (Q.N., J.B., W.Z., L.-C.B., R.L., F.B., J.-M.D., F.R.L.); Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China (X.X.); Université de Paris, BIGR, UMRS 1134, INSERM, Paris, France (R.D.); Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, Paris, France (S.G., C.C., F.G.); Université de Paris, IJM, UMR 7592, CNRS, Paris, France (T.L.); and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris, Hôpital Saint Louis, Paris, France (C.C.)
| | - Linh-Chi Bui
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France (Q.N., J.B., W.Z., L.-C.B., R.L., F.B., J.-M.D., F.R.L.); Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China (X.X.); Université de Paris, BIGR, UMRS 1134, INSERM, Paris, France (R.D.); Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, Paris, France (S.G., C.C., F.G.); Université de Paris, IJM, UMR 7592, CNRS, Paris, France (T.L.); and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris, Hôpital Saint Louis, Paris, France (C.C.)
| | - Rongxing Liu
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France (Q.N., J.B., W.Z., L.-C.B., R.L., F.B., J.-M.D., F.R.L.); Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China (X.X.); Université de Paris, BIGR, UMRS 1134, INSERM, Paris, France (R.D.); Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, Paris, France (S.G., C.C., F.G.); Université de Paris, IJM, UMR 7592, CNRS, Paris, France (T.L.); and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris, Hôpital Saint Louis, Paris, France (C.C.)
| | - Ximing Xu
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France (Q.N., J.B., W.Z., L.-C.B., R.L., F.B., J.-M.D., F.R.L.); Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China (X.X.); Université de Paris, BIGR, UMRS 1134, INSERM, Paris, France (R.D.); Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, Paris, France (S.G., C.C., F.G.); Université de Paris, IJM, UMR 7592, CNRS, Paris, France (T.L.); and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris, Hôpital Saint Louis, Paris, France (C.C.)
| | - Romain Duval
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France (Q.N., J.B., W.Z., L.-C.B., R.L., F.B., J.-M.D., F.R.L.); Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China (X.X.); Université de Paris, BIGR, UMRS 1134, INSERM, Paris, France (R.D.); Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, Paris, France (S.G., C.C., F.G.); Université de Paris, IJM, UMR 7592, CNRS, Paris, France (T.L.); and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris, Hôpital Saint Louis, Paris, France (C.C.)
| | - Saravanan Ganesan
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France (Q.N., J.B., W.Z., L.-C.B., R.L., F.B., J.-M.D., F.R.L.); Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China (X.X.); Université de Paris, BIGR, UMRS 1134, INSERM, Paris, France (R.D.); Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, Paris, France (S.G., C.C., F.G.); Université de Paris, IJM, UMR 7592, CNRS, Paris, France (T.L.); and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris, Hôpital Saint Louis, Paris, France (C.C.)
| | - Thibaut Leger
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France (Q.N., J.B., W.Z., L.-C.B., R.L., F.B., J.-M.D., F.R.L.); Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China (X.X.); Université de Paris, BIGR, UMRS 1134, INSERM, Paris, France (R.D.); Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, Paris, France (S.G., C.C., F.G.); Université de Paris, IJM, UMR 7592, CNRS, Paris, France (T.L.); and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris, Hôpital Saint Louis, Paris, France (C.C.)
| | - Christine Chomienne
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France (Q.N., J.B., W.Z., L.-C.B., R.L., F.B., J.-M.D., F.R.L.); Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China (X.X.); Université de Paris, BIGR, UMRS 1134, INSERM, Paris, France (R.D.); Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, Paris, France (S.G., C.C., F.G.); Université de Paris, IJM, UMR 7592, CNRS, Paris, France (T.L.); and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris, Hôpital Saint Louis, Paris, France (C.C.)
| | - Florent Busi
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France (Q.N., J.B., W.Z., L.-C.B., R.L., F.B., J.-M.D., F.R.L.); Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China (X.X.); Université de Paris, BIGR, UMRS 1134, INSERM, Paris, France (R.D.); Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, Paris, France (S.G., C.C., F.G.); Université de Paris, IJM, UMR 7592, CNRS, Paris, France (T.L.); and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris, Hôpital Saint Louis, Paris, France (C.C.)
| | - Fabien Guidez
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France (Q.N., J.B., W.Z., L.-C.B., R.L., F.B., J.-M.D., F.R.L.); Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China (X.X.); Université de Paris, BIGR, UMRS 1134, INSERM, Paris, France (R.D.); Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, Paris, France (S.G., C.C., F.G.); Université de Paris, IJM, UMR 7592, CNRS, Paris, France (T.L.); and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris, Hôpital Saint Louis, Paris, France (C.C.)
| | - Jean-Marie Dupret
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France (Q.N., J.B., W.Z., L.-C.B., R.L., F.B., J.-M.D., F.R.L.); Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China (X.X.); Université de Paris, BIGR, UMRS 1134, INSERM, Paris, France (R.D.); Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, Paris, France (S.G., C.C., F.G.); Université de Paris, IJM, UMR 7592, CNRS, Paris, France (T.L.); and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris, Hôpital Saint Louis, Paris, France (C.C.)
| | - Fernando Rodrigues Lima
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France (Q.N., J.B., W.Z., L.-C.B., R.L., F.B., J.-M.D., F.R.L.); Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China (X.X.); Université de Paris, BIGR, UMRS 1134, INSERM, Paris, France (R.D.); Université de Paris, Institut de Recherche Saint-Louis, UMRS 1131, INSERM, Paris, France (S.G., C.C., F.G.); Université de Paris, IJM, UMR 7592, CNRS, Paris, France (T.L.); and Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris, Hôpital Saint Louis, Paris, France (C.C.)
| |
Collapse
|
9
|
Vlasova II, Sokolov AV, Kostevich VA, Mikhalchik EV, Vasilyev VB. Myeloperoxidase-Induced Oxidation of Albumin and Ceruloplasmin: Role of Tyrosines. BIOCHEMISTRY (MOSCOW) 2019; 84:652-662. [DOI: 10.1134/s0006297919060087] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Vlasova II. Peroxidase Activity of Human Hemoproteins: Keeping the Fire under Control. Molecules 2018; 23:E2561. [PMID: 30297621 PMCID: PMC6222727 DOI: 10.3390/molecules23102561] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022] Open
Abstract
The heme in the active center of peroxidases reacts with hydrogen peroxide to form highly reactive intermediates, which then oxidize simple substances called peroxidase substrates. Human peroxidases can be divided into two groups: (1) True peroxidases are enzymes whose main function is to generate free radicals in the peroxidase cycle and (pseudo)hypohalous acids in the halogenation cycle. The major true peroxidases are myeloperoxidase, eosinophil peroxidase and lactoperoxidase. (2) Pseudo-peroxidases perform various important functions in the body, but under the influence of external conditions they can display peroxidase-like activity. As oxidative intermediates, these peroxidases produce not only active heme compounds, but also protein-based tyrosyl radicals. Hemoglobin, myoglobin, cytochrome c/cardiolipin complexes and cytoglobin are considered as pseudo-peroxidases. Рeroxidases play an important role in innate immunity and in a number of physiologically important processes like apoptosis and cell signaling. Unfavorable excessive peroxidase activity is implicated in oxidative damage of cells and tissues, thereby initiating the variety of human diseases. Hence, regulation of peroxidase activity is of considerable importance. Since peroxidases differ in structure, properties and location, the mechanisms controlling peroxidase activity and the biological effects of peroxidase products are specific for each hemoprotein. This review summarizes the knowledge about the properties, activities, regulations and biological effects of true and pseudo-peroxidases in order to better understand the mechanisms underlying beneficial and adverse effects of this class of enzymes.
Collapse
Affiliation(s)
- Irina I Vlasova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Department of Biophysics, Malaya Pirogovskaya, 1a, Moscow 119435, Russia.
- Institute for Regenerative Medicine, Laboratory of Navigational Redox Lipidomics, Sechenov University, 8-2 Trubetskaya St., Moscow 119991, Russia.
| |
Collapse
|
11
|
Kanagasabai R, Karmahapatra S, Kientz CA, Yu Y, Hernandez VA, Kania EE, Yalowich JC, Elton TS. The Novel C-terminal Truncated 90-kDa Isoform of Topoisomerase II α (TOP2 α/90) Is a Determinant of Etoposide Resistance in K562 Leukemia Cells via Heterodimerization with the TOP2 α/170 Isoform. Mol Pharmacol 2018; 93:515-525. [PMID: 29514855 PMCID: PMC11033944 DOI: 10.1124/mol.117.111567] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 02/28/2018] [Indexed: 02/06/2023] Open
Abstract
DNA topoisomerase IIα (170 kDa, TOP2α/170) is essential in proliferating cells by resolving DNA topological entanglements during chromosome condensation, replication, and segregation. We previously characterized a C-terminally truncated isoform (TOP2α/90), detectable in human leukemia K562 cells but more abundantly expressed in a clonal subline, K/VP.5, with acquired resistance to the anticancer agent etoposide. TOP2α/90 (786 aa) is the translation product of a TOP2α mRNA that retains a processed intron 19. TOP2α/90 lacks the active-site tyrosine-805 required to generate double-strand DNA breaks as well as nuclear localization signals present in the TOP2α/170 isoform (1531 aa). Here, we found that TOP2α/90, like TOP2α/170, was detectable in the nucleus and cytoplasm of K562 and K/VP.5 cells. Coimmunoprecipitation of endogenous TOP2α/90 and TOP2α/170 demonstrated heterodimerization of these isoforms. Forced expression of TOP2α/90 in K562 cells suppressed, whereas siRNA-mediated knockdown of TOP2α/90 in K/VP.5 cells enhanced, etoposide-mediated DNA strand breaks compared with similarly treated cells transfected with empty vector or control siRNAs, respectively. In addition, forced expression of TOP2α/90 in K562 cells inhibited etoposide cytotoxicity assessed by clonogenic assays. qPCR and immunoassays demonstrated TOP2α/90 mRNA and protein expression in normal human tissues/cells and in leukemia cells from patients. Together, results strongly suggest that TOP2α/90 expression decreases drug-induced TOP2α-DNA covalent complexes and is a determinant of chemoresistance through a dominant-negative effect related to heterodimerization with TOP2α/170. Alternative processing of TOP2α pre-mRNA, and subsequent synthesis of TOP2α/90, may be an important mechanism regulating the formation and/or stability of cytotoxic TOP2α/170-DNA covalent complexes in response to TOP2α-targeting agents.
Collapse
MESH Headings
- Antineoplastic Agents, Alkylating/pharmacology
- Antineoplastic Agents, Alkylating/therapeutic use
- Cell Line
- Cell Nucleus/enzymology
- DNA Breaks, Double-Stranded/drug effects
- DNA Topoisomerases, Type II/chemistry
- DNA Topoisomerases, Type II/genetics
- DNA Topoisomerases, Type II/metabolism
- Dimerization
- Drug Resistance, Neoplasm
- Etoposide/pharmacology
- Etoposide/therapeutic use
- Humans
- Isoenzymes/chemistry
- Isoenzymes/genetics
- Isoenzymes/metabolism
- K562 Cells
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- RNA Processing, Post-Transcriptional
Collapse
Affiliation(s)
- Ragu Kanagasabai
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | | | - Corey A Kientz
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Yang Yu
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Victor A Hernandez
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Evan E Kania
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Jack C Yalowich
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Terry S Elton
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| |
Collapse
|
12
|
Karmahapatra S, Kientz C, Shetty S, Yalowich JC, Rakotondraibe LH. Capsicodendrin from Cinnamosma fragrans Exhibits Antiproliferative and Cytotoxic Activity in Human Leukemia Cells: Modulation by Glutathione. JOURNAL OF NATURAL PRODUCTS 2018; 81:625-629. [PMID: 29406734 DOI: 10.1021/acs.jnatprod.7b00887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Capsicodendrin (CPCD, 1), an epimeric mixture of a dimeric drimane-type sesquiterpene, is one of the major compounds present in the three endemic species of Madagascan traditional chemopreventive plants: Cinnamosma species ( C. fragrans, C. macrocarpa, and C. madagascariensis). Despite the popular use of Cinnamosma in Madagascan traditional medicine and the reported antiproliferative properties of CPCD, elucidation of its mechanism(s) of action is still to be accomplished. In the present study, CPCD at low micromolar concentrations was cytotoxic and induced apoptosis in human myeloid leukemia cells in a time- and concentration-dependent manner. The activity of CPCD in HL-60 and K562 cells was modulated by glutathione (GSH), since depletion of this intracellular thiol-based antioxidant with buthionine sulfoximine resulted in significantly ( p < 0.05) greater potency in antiproliferation assays. GSH depletion also significantly potentiated the cytotoxic activity in CPCD-treated human HL-60 cells. Single-cell gel electrophoresis (Comet) assays revealed that GSH depletion in HL-60 cells enhanced the formation of DNA strand breaks in the presence of CPCD. Although CPCD does not contain an obvious Michael acceptor in its structure, 1H NMR analyses indicated that cinnamodial (2), a monomer of CPCD, was formed within a few hours when dissolved in DMSO- d6 and interacts with GSH to form a covalent bond via Michael addition at the C-7 carbon. Together the results strongly suggest that 2 is responsible for the DNA-damaging, pro-apoptotic, and cytotoxic effects of CPCD and that depletion of GSH enhances overall activity by diminishing covalent interaction between GSH and this 2-alkenal decomposition product of CPCD.
Collapse
|
13
|
Vlasova II, Mikhalchik EV, Gusev AA, Balabushevich NG, Gusev SA, Kazarinov KD. Extremely high-frequency electromagnetic radiation enhances neutrophil response to particulate agonists. Bioelectromagnetics 2017; 39:144-155. [PMID: 29194676 DOI: 10.1002/bem.22103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 11/14/2017] [Indexed: 11/12/2022]
Abstract
The growing use of extremely high-frequency electromagnetic radiation (EHF EMR) in information and communication technology and in biomedical applications has raised concerns regarding the potential biological impact of millimeter waves (MMWs). Here, we elucidated the effects of MMW radiation on neutrophil activation induced by opsonized zymosan or E. coli in whole blood ex vivo. After agonist addition to blood, two samples were prepared. A control sample was incubated at ambient conditions without any treatment, and a test sample was exposed to EHF EMR (32.9-39.6 GHz, 100 W/m2 ). We used methods that allowed us to assess the functional status of neutrophils immediately after exposure: oxidant production levels were measured by luminol-dependent chemiluminescence, and morphofunctional changes to neutrophils were observed in blood smears. Results revealed that the response of neutrophils to both agonists was intensified if blood was exposed to MMW radiation for 15 min. Neutrophils were intact in both the control and irradiated samples if no agonist was added to blood before incubation. Similarly, exposing suspensions of isolated neutrophils in plasma to MMW radiation enhanced cell response to both zymosan and E. coli. Heating blood samples was shown to be the primary mechanism underlying enhanced EHF EMR-induced oxidant production by neutrophils in response to particulate agonists. Bioelectromagnetics. 39:144-155, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Irina I Vlasova
- Research and Clinical Center for Physico-Chemical Medicine, Moscow, Russia.,Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences (Fryasino branch), Fryasino, Russia
| | - Elena V Mikhalchik
- Research and Clinical Center for Physico-Chemical Medicine, Moscow, Russia
| | - Alexandr A Gusev
- Research and Clinical Center for Physico-Chemical Medicine, Moscow, Russia
| | | | - Sergey A Gusev
- Research and Clinical Center for Physico-Chemical Medicine, Moscow, Russia
| | - Konstantin D Kazarinov
- Kotel'nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences (Fryasino branch), Fryasino, Russia
| |
Collapse
|
14
|
Kanagasabai R, Serdar L, Karmahapatra S, Kientz CA, Ellis J, Ritke MK, Elton TS, Yalowich JC. Alternative RNA Processing of Topoisomerase IIα in Etoposide-Resistant Human Leukemia K562 Cells: Intron Retention Results in a Novel C-Terminal Truncated 90-kDa Isoform. J Pharmacol Exp Ther 2017; 360:152-163. [PMID: 27974648 DOI: 10.1124/jpet.116.237107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/04/2016] [Indexed: 11/22/2022] Open
Abstract
DNA topoisomerase IIα (TOP2α) is a prominent target for anticancer drugs whose clinical efficacy is often limited by chemoresistance. Using antibody specific for the N-terminal of TOP2α, immunoassays indicated the existence of two TOP2α isoforms, 170 and 90 kDa, present in K562 leukemia cells and in an acquired etoposide (VP-16)-resistant clone (K/VP.5). TOP2α/90 expression was dramatically increased in etoposide-resistant K/VP.5 compared with parental K562 cells. We hypothesized that TOP2α/90 was the translation product of novel alternatively processed pre-mRNA, confirmed by 3'-rapid amplification of cDNA ends, polymerase chain reaction, and sequencing. TOP2α/90 mRNA includes retained intron 19, which harbors an in-frame stop codon, and two consensus poly(A) sites. The processed transcript is polyadenylated. TOP2α/90 mRNA encodes a 90,076-Da translation product missing the C-terminal 770 amino acids of TOP2α/170, replaced by 25 unique amino acids through translation of the exon 19/intron 19 read-through. Immunoassays, utilizing antisera raised against these unique amino acids, confirmed that TOP2α/90 is expressed in both cell types, with overexpression in K/VP.5 cells. Immunodetection of complex of enzyme-to-DNA and single-cell gel electrophoresis (Comet) assays demonstrated that K562 cells transfected with a TOP2α/90 expression plasmid exhibited reduced etoposide-mediated TOP2α-DNA covalent complexes and decreased etoposide-induced DNA damage, respectively, compared with similarly treated K562 cells transfected with empty vector. Because TOP2α/90 lacks the active site tyrosine (Tyr805) of full-length TOP2α, these results strongly suggest that TOP2α/90 exhibits dominant-negative properties. Further studies are underway to characterize the mechanism(s) by which TOP2α/90 plays a role in acquired resistance to etoposide and other TOP2α targeting agents.
Collapse
Affiliation(s)
- Ragu Kanagasabai
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Lucas Serdar
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Soumendrakrishna Karmahapatra
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Corey A Kientz
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Justin Ellis
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Mary K Ritke
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Terry S Elton
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| | - Jack C Yalowich
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (R.K., L.S., S.K., C.A.K., J.E., T.S.E., J.C.Y.); James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.C.Y.); and Department of Biology, University of Indianapolis, Indianapolis, Indiana (M.K.R.)
| |
Collapse
|
15
|
Atwal M, Lishman EL, Austin CA, Cowell IG. Myeloperoxidase Enhances Etoposide and Mitoxantrone-Mediated DNA Damage: A Target for Myeloprotection in Cancer Chemotherapy. Mol Pharmacol 2017; 91:49-57. [PMID: 27974636 PMCID: PMC5198516 DOI: 10.1124/mol.116.106054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/08/2016] [Indexed: 01/17/2023] Open
Abstract
Myeloperoxidase is expressed exclusively in granulocytes and immature myeloid cells and transforms the topoisomerase II (TOP2) poisons etoposide and mitoxantrone to chemical forms that have altered DNA damaging properties. TOP2 poisons are valuable and widely used anticancer drugs, but they are associated with the occurrence of secondary acute myeloid leukemias. These factors have led to the hypothesis that myeloperoxidase inhibition could protect hematopoietic cells from TOP2 poison-mediated genotoxic damage and, therefore, reduce the rate of therapy-related leukemia. We show here that myeloperoxidase activity leads to elevated accumulation of etoposide- and mitoxantrone-induced TOP2A and TOP2B-DNA covalent complexes in cells, which are converted to DNA double-strand breaks. For both drugs, the effect of myeloperoxidase activity was greater for TOP2B than for TOP2A. This is a significant finding because TOP2B has been linked to genetic damage associated with leukemic transformation, including etoposide-induced chromosomal breaks at the MLL and RUNX1 loci. Glutathione depletion, mimicking in vivo conditions experienced during chemotherapy treatment, elicited further MPO-dependent increase in TOP2A and especially TOP2B-DNA complexes and DNA double-strand break formation. Together these results support targeting myeloperoxidase activity to reduce genetic damage leading to therapy-related leukemia, a possibility that is enhanced by the recent development of novel specific myeloperoxidase inhibitors for use in inflammatory diseases involving neutrophil infiltration.
Collapse
Affiliation(s)
- Mandeep Atwal
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne. United Kingdom
| | - Emma L Lishman
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne. United Kingdom
| | - Caroline A Austin
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne. United Kingdom
| | - Ian G Cowell
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne. United Kingdom
| |
Collapse
|
16
|
|
17
|
Papież MA, Krzyściak W, Szade K, Bukowska-Straková K, Kozakowska M, Hajduk K, Bystrowska B, Dulak J, Jozkowicz A. Curcumin enhances the cytogenotoxic effect of etoposide in leukemia cells through induction of reactive oxygen species. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:557-70. [PMID: 26893544 PMCID: PMC4745860 DOI: 10.2147/dddt.s92687] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Curcumin may exert a more selective cytotoxic effect in tumor cells with elevated levels of free radicals. Here, we investigated whether curcumin can modulate etoposide action in myeloid leukemia cells and in normal cells of hematopoietic origin. HL-60 cell line, normal myeloid progenitor cluster of differentiation (CD)-34+ cells, and granulocytes were incubated for 4 or 24 hours at different concentrations of curcumin and/or etoposide. Brown Norway rats with acute myeloid leukemia (BNML) were used to prove the influence of curcumin on etoposide action in vivo. Rats were treated with curcumin for 23 days and etoposide was administered for the final 3 days of the experiment. Curcumin synergistically potentiated the cytotoxic effect of etoposide, and it intensified apoptosis and phosphorylation of the histone H2AX induced by this cytostatic drug in leukemic HL-60 cells. In contrast, curcumin did not significantly modify etoposide-induced cytotoxicity and H2AX phosphorylation in normal CD34+ cells and granulocytes. Curcumin modified the cytotoxic action of etoposide in HL-60 cells through intensification of free radical production because preincubation with N-acetyl-l-cysteine (NAC) significantly reduced the cytotoxic effect of curcumin itself and a combination of two compounds. In contrast, NAC did not decrease the cytotoxic effect of etoposide. Thus, oxidative stress plays a greater role in the cytotoxic effect of curcumin than that of etoposide in HL-60 cells. In vitro results were confirmed in a BNML model. Pretreatment with curcumin enhanced the antileukemic activity of etoposide in BNML rats (1.57-fold tumor reduction versus etoposide alone; P<0.05) and induced apoptosis of BNML cells more efficiently than etoposide alone (1.54-fold change versus etoposide alone; P<0.05), but this treatment protected nonleukemic B-cells from apoptosis. Thus, curcumin can increase the antileukemic effect of etoposide through reactive oxygen species in sensitive myeloid leukemia cells, and it is harmless to normal human cells.
Collapse
Affiliation(s)
- Monika A Papież
- Department of Cytobiology, Jagiellonian University Medical College, Krakow, Poland
| | - Wirginia Krzyściak
- Department of Medical Diagnostic, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karolina Bukowska-Straková
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Department of Clinical Immunology, Institute of Pediatrics, Krakow, Poland
| | - Magdalena Kozakowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karolina Hajduk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Beata Bystrowska
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
18
|
Zhang B, Zhao J, Li S, Zeng L, Chen Y, Fang J. Mangiferin activates the Nrf2-ARE pathway and reduces etoposide-induced DNA damage in human umbilical cord mononuclear blood cells. PHARMACEUTICAL BIOLOGY 2015; 53:503-511. [PMID: 25380307 DOI: 10.3109/13880209.2014.927890] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Mangiferin (2-C-β-d-gluco-pyranosyl-1,3,6,7-tetrahydroxyxanthone) is a well-known natural antioxidant distributed in various plants of the Anacardiaceae and Gentianaceae families. Mangiferin can inhibit carcinogen-induced lung or colon tumor formation in experimental animals. However, the molecular mechanisms of its chemopreventive activity remain unexplored. OBJECTIVE This study aimed to investigate the effects of mangiferin on chemical carcinogen-induced DNA damage and Nrf2-ARE signaling in hematopoietic cells. MATERIALS AND METHODS Mononuclear cells (MNCs) were isolated from human umbilical cord blood (hUCB). DNA damage was evaluated by comet and micronucleus assays. The expression of Nrf2 and NQO1 was examined by immunofluorescence and western blotting. An electrophoretic mobility shift assay (EMSA) was used to detect the binding activity of Nrf2 with NQO1-ARE sequences. RESULTS We found that mangiferin treatment significantly reduced DNA damage in etoposide-treated MNCs, which was verified by decreased olive tail moment (OTM) and micronucleus (MN) frequency. Mangiferin treatment significantly promoted Nrf2 translocation into the nucleus and increased nuclear Nrf2 expression. Moreover, NQO1, an Nrf2 signaling target, was significantly upregulated by mangiferin treatment, and the binding activity of Nrf2 with NQO1-ARE sequences was elevated after mangiferin treatment. DISCUSSION AND CONCLUSION Mangiferin activated Nrf2 signaling, upregulated NQO1 expression, and significantly reduced etoposide-induced DNA damage. Thus, mangiferin is a potential cytoprotective agent for hematopoietic cells.
Collapse
Affiliation(s)
- Benping Zhang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China and
| | | | | | | | | | | |
Collapse
|
19
|
Irons RD, Kerzic PJ. Cytogenetics in benzene-associated myelodysplastic syndromes and acute myeloid leukemia: new insights into a disease continuum. Ann N Y Acad Sci 2014; 1310:84-8. [PMID: 24611724 DOI: 10.1111/nyas.12336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hematopoiesis in health and disease results from complex interactions between primitive hematopoietic stem cells (HSCs) and the extrinsic influences of other cells in the bone marrow (BM) niche. Advances in stem cell biology, molecular genetics, and computational biology reveal that the immortality, self-renewal, and maintenance of blood homeostasis generally attributed to individual HSCs are functions of the cells' behavior in the normal BM environment. Here we discuss how these advances, together with results of outcomes-based clinical epidemiology studies, provide new insight into the importance of epigenetic events in leukemogenesis. For the chemical benzene (Bz), development of myeloid neoplasms depends predominantly on alterations within the microenvironments in which they arise. The primary persistent disease in Bz myelotoxicity is myelodysplastic syndrome, which precedes cytogenetic injury. Evidence indicates that acute myeloid leukemia arises as a secondary event, subsequent to evolution of the leukemia-initiating cell phenotype within the altered BM microenvironment. Further explorations into the nature of chemical versus de novo disease should consider this mechanism, which is biologically distinct from previous models of clonal cytogenetic injury. Understanding alterations of homeostatic regulation in the BM niche is important for validation of models of leukemogenesis, monitoring at-risk populations, and development of novel treatment and prevention strategies.
Collapse
Affiliation(s)
- Richard D Irons
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China; Anshutz Medical Center, University of Colorado, Aurora, Colorado; Cinpathogen, Inc, Boulder, Colorado
| | | |
Collapse
|
20
|
Sinha BK, Kumar A, Bhattacharjee S, Espey MG, Mason RP. Effect of nitric oxide on the anticancer activity of the topoisomerase-active drugs etoposide and adriamycin in human melanoma cells. J Pharmacol Exp Ther 2013; 347:607-14. [PMID: 24049059 PMCID: PMC3836306 DOI: 10.1124/jpet.113.207928] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/18/2013] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (·NO) was originally identified as an innate cytotoxin. However, in tumors it can enhance resistance to chemotherapy and exacerbate cancer progression. Our previous studies indicated that (·NO/·NO-derived species react with etoposide (VP-16) in vitro and form products that show significantly reduced activity toward HL60 cells and lipopolysaccharide (LPS)-induced macrophages. Here, we further confirm the hypothesis that (÷)NO generation contributes to VP-16 resistance by examining interactions of ·NO with VP-16 in inducible nitric-oxide synthase (iNOS)-expressing human melanoma A375 cells. Inhibition of iNOS catalysis by N(6)-(1-iminoethyl)-L-lysine dihydrochloride (L-NIL) in human melanoma A375 cells reversed VP-16 resistance, leading to increased DNA damage and apoptosis. Furthermore, we found that coculturing A375 melanoma cells with LPS-induced macrophage RAW cells also significantly reduced VP-16 cytotoxicity and DNA damage in A375 cells. We also examined the interactions of (·)NO with another topoisomerase active drug, Adriamycin, in A375 cells. In contrast, to VP-16, (·)NO caused no significant modulation of cytotoxicity or Adriamycin-dependent apoptosis, suggesting that (⋅)NO does not interact with Adriamycin. Our studies support the hypothesis that (·)NO oxidative chemistry can detoxify VP-16 through direct nitrogen oxide radical attack. Our results provide insights into the pharmacology and anticancer mechanisms of VP-16 that may ultimately contribute to increased resistance, treatment failure, and induction of secondary leukemia in VP-16-treated patients.
Collapse
Affiliation(s)
- Birandra K Sinha
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (B.K.S., A.K., S.B., R.P.M.); and National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (M.G.E.)
| | | | | | | | | |
Collapse
|
21
|
Irons RD, Chen Y, Wang X, Ryder J, Kerzic PJ. Acute myeloid leukemia following exposure to benzene more closely resembles de novo than therapy related-disease. Genes Chromosomes Cancer 2013; 52:887-94. [PMID: 23840003 DOI: 10.1002/gcc.22084] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/21/2013] [Indexed: 11/10/2022] Open
Abstract
Benzene (Bz) is widely regarded as a prototype environmental leukemogen and individuals chronically exposed are at risk for myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). It is widely assumed that initiation and pathogenesis of AML following Bz exposure (Bz-AML) is similar or identical to therapy-related AML (t-AML), in which clonal cytogenetic abnormalities, including aneuploidy, are initiating events. However, this assumption is not supported by studies reporting actual disease outcomes together with cytogenetic analyses. Here, using clinically relevant cytogenetic, hematologic, and epidemiological methods, we directly show for 722 consecutive AML cases that the pattern of clonal cytogenetic abnormalities encountered in Bz-exposed cases (n = 78) more closely resembles de novo-AML than t-AML. The prevalence of aneuploidy in Bz-exposed- and de novo-AML cases was identical (23%), and no significant increases in -5/5q- (RR = 0.79) (95% CI: 0.29-2.12) or -7/7q- (RR = 1.27) (95% CI: 0.55-2.92) abnormalities were observed between Bz- vs de novo-AML, respectively. Previous studies have suggested a role for autoimmunity in Bz related MDS including immune mediated inflammatory features and positive responses to immunosuppressive therapy which are indistinguishable from those reported in MDS with low risk of progression to AML. These observations are more consistent with an epigenetic model for initiation of Bz-AML in which altered homeostatic regulation in the bone marrow niche, not direct cytogenetic injury, predominates in the initial development of the leukemic stem cell phenotype, a mechanism biologically distinct from previous models of clonal cytogenetic injury. These findings are important for further understanding the biological basis of AML, particularly in environmental and occupational settings.
Collapse
Affiliation(s)
- Richard D Irons
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China.
| | | | | | | | | |
Collapse
|
22
|
Papież MA. The influence of curcumin and (–)-epicatechin on the genotoxicity and myelosuppression induced by etoposide in bone marrow cells of male rats. Drug Chem Toxicol 2012; 36:93-101. [DOI: 10.3109/01480545.2012.726626] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Secondary leukemia associated with the anti-cancer agent, etoposide, a topoisomerase II inhibitor. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:2444-53. [PMID: 22851953 PMCID: PMC3407914 DOI: 10.3390/ijerph9072444] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 12/24/2022]
Abstract
Etoposide is an anticancer agent, which is successfully and extensively used in treatments for various types of cancers in children and adults. However, due to the increases in survival and overall cure rate of cancer patients, interest has arisen on the potential risk of this agent for therapy-related secondary leukemia. Topoisomerase II inhibitors, including etoposide and teniposide, frequently cause rearrangements involving the mixed lineage leukemia (MLL) gene on chromosome 11q23, which is associated with secondary leukemia. The prognosis is extremely poor for leukemias associated with rearrangements in the MLL gene, including etoposide-related secondary leukemias. It is of great importance to gain precise knowledge of the clinical aspects of these diseases and the mechanism underlying the leukemogenesis induced by this agent to ensure correct assessments of current and future therapy strategies. Here, I will review current knowledge regarding the clinical aspects of etoposide-related secondary leukemia, some probable mechanisms, and strategies for treating etoposide-induced leukemia.
Collapse
|
24
|
Vlasova II, Sokolov AV, Arnhold J. The free amino acid tyrosine enhances the chlorinating activity of human myeloperoxidase. J Inorg Biochem 2012; 106:76-83. [DOI: 10.1016/j.jinorgbio.2011.09.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/16/2011] [Accepted: 09/11/2011] [Indexed: 10/17/2022]
|