1
|
Yin L, Ni K, Mao T, Tian S, Liu C, Chen J, Zhou M, Li H, Hu Q. Attributes novel drug candidate: Constitutive GPCR signal bias mediated by purinergic receptors. Pharmacol Ther 2025; 267:108802. [PMID: 39862926 DOI: 10.1016/j.pharmthera.2025.108802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/05/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
G protein-coupled receptors (GPCRs) can transmit signals via G protein-dependent or independent pathways due to the conformational changes of receptors and ligands, which is called biased signaling. This concept posits that ligands can selectively activate a specific signaling pathway after receptor activation, facilitating downstream signaling along a preferred pathway. Biased agonism enables the development of ligands that prioritize therapeutic signaling pathways while mitigating on-target undesired effects. As a class of GPCRs located on the surface of cell membranes, the discovery and clinical implementation of adenosine and P2Y receptors purinergic signaling modulators have progressed dramatically. However, many preclinical drug candidates targeting purinergic receptors have failed in clinical trials due to limited efficacy and/or severe on-target undesired effects. To overcome the key barriers typically encountered when transitioning ligands into the clinic, the renewed impetus has focused on the modulation of purinergic receptor function by exogenous agonists/antagonists and allosteric modulators to exploit biased agonism. This article provides a brief overview of the research progress on the mechanism of purinergic biased signal transduction from the conformational changes of purinergic GPCRs and biased ligands primarily, and highlights therapeutically relevant biased agonism at purinergic receptors.
Collapse
Affiliation(s)
- Li Yin
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Kexin Ni
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tianqi Mao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Sheng Tian
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China.
| | - Chunxiao Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Jiayao Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Mengze Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Qinghua Hu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
2
|
Andrianova I, Kowalczyk M, Denorme F. Protease activated receptor-4: ready to be part of the antithrombosis spectrum. Curr Opin Hematol 2024; 31:238-244. [PMID: 38814792 DOI: 10.1097/moh.0000000000000828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
PURPOSE OF REVIEW Cardiovascular disease is a major cause of death worldwide. Platelets play a key role in this pathological process. The serine protease thrombin is a critical regulator of platelet reactivity through protease activated receptors-1 (PAR1) and PAR4. Since targeting PAR4 comes with a low chance for bleeding, strategies blocking PAR4 function have great antithrombotic potential. Here, we reviewed the literature on platelet PAR4 with a particular focus on its role in thromboinflammation. RECENT FINDINGS Functional PAR4 variants are associated with reduced venous thrombosis risk (rs2227376) and increased risk for ischemic stroke (rs773902). Recent advances have allowed for the creation of humanized mouse lines in which human PAR4 is express instead of murine PAR4. This has led to a better understanding of the discrepancies between human and murine PAR4. It also made it possible to introduce single nucleotide polymorphisms (SNPs) in mice allowing to directly test the in vivo functional effects of a specific SNP and to develop in vivo models to study mechanistic and pharmacologic alterations induced by a SNP. SUMMARY PAR4 plays an important role in cardiovascular diseases including stroke, myocardial infarction and atherosclerosis. Targeting PAR4 hold great potential as a safe antithrombotic strategy.
Collapse
Affiliation(s)
- Izabella Andrianova
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Mia Kowalczyk
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Frederik Denorme
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
3
|
Li OQ, Yue H, DeHart AR, Roytenberg R, Aguilar R, Olanipekun O, Bai F, Liu J, Fedorova O, Kennedy D, Thompson E, Pierre SV, Li W. Sodium/Potassium ATPase Alpha 1 Subunit Fine-tunes Platelet GPCR Signaling Function and is Essential for Thrombosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593923. [PMID: 38798556 PMCID: PMC11118499 DOI: 10.1101/2024.05.13.593923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Thrombosis is a major cause of myocardial infarction and ischemic stroke. The sodium/potassium ATPase (NKA), comprising α and β subunits, is crucial in maintaining intracellular sodium and potassium gradients. However, the role of NKA in platelet function and thrombosis remains unclear. Methods We utilized wild-type (WT, α1+/+) and NKA α1 heterozygous (α1+/-) mice, aged 8 to 16 weeks, of both sexes. An intravital microscopy-based, FeCl3-induced carotid artery injury thrombosis model was employed for in vivo thrombosis assessment. Platelet transfusion assays were used to evaluate platelet NKA α1 function on thrombosis. Human platelets isolated from healthy donors and heart failure patients treated with/without digoxin were used for platelet function and signaling assay. Complementary molecular approaches were used for mechanistic studies. Results NKA α1 haplodeficiency significantly reduced its expression on platelets without affecting sodium homeostasis. It significantly inhibited 7.5% FeCl3-induced thrombosis in male but not female mice without disturbing hemostasis. Transfusion of α1+/-, but not α1+/+, platelets to thrombocytopenic WT mice substantially prolonged thrombosis. Treating WT mice with low-dose ouabain or marinobufagenin, both binding NKA α1 and inhibiting its ion-transporting function, markedly inhibited thrombosis in vivo. NKA α1 formed complexes with leucine-glycine-leucine (LGL)-containing platelet receptors, including P2Y12, PAR4, and thromboxane A2 receptor. This binding was significantly attenuated by LGL>SFT mutation or LGL peptide. Haplodeficiency of NKA α1 in mice or ouabain treatment of human platelets notably inhibited ADP-induced platelet aggregation. While not affecting 10% FeCl3-induced thrombosis, NKA α1 haplodeficiency significantly prolonged thrombosis time in mice treated with an ineffective dose of clopidogrel. Conclusion NKA α1 plays an essential role in enhancing platelet activation through binding to LGL-containing platelet GPCRs. NKA α1 haplodeficiency or inhibition with low-dose ouabain and marinobufagenin significantly inhibited thrombosis and sensitized clopidogrel's anti-thrombotic effect. Targeting NKA α1 emerges as a promising antiplatelet and antithrombotic therapeutic strategy.
Collapse
Affiliation(s)
- Oliver Q. Li
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, USA
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV, USA
| | - Hong Yue
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - Autumn R. DeHart
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - Renat Roytenberg
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - Rodrigo Aguilar
- Department of Medicine, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - Olalekan Olanipekun
- Department of Medicine, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - Fang Bai
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - Jiang Liu
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - Olga Fedorova
- National Institute on Aging, Laboratory of Cardiovascular Science of Biomedical Research Center Baltimore, MD, USA
| | - David Kennedy
- Department of Medicine, University of Toledo, Toledo, OH, USA
| | - Ellen Thompson
- Department of Medicine, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, USA
| | - Sandrine V. Pierre
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, USA
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV, USA
| | - Wei Li
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV, USA
| |
Collapse
|
4
|
Lee-Rivera I, López E, López-Colomé AM. Diversification of PAR signaling through receptor crosstalk. Cell Mol Biol Lett 2022; 27:77. [PMID: 36088291 PMCID: PMC9463773 DOI: 10.1186/s11658-022-00382-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Protease activated receptors (PARs) are among the first receptors shown to transactivate other receptors: noticeably, these interactions are not limited to members of the same family, but involve receptors as diverse as receptor kinases, prostanoid receptors, purinergic receptors and ionic channels among others. In this review, we will focus on the evidence for PAR interactions with members of their own family, as well as with other types of receptors. We will discuss recent evidence as well as what we consider as emerging areas to explore; from the signalling pathways triggered, to the physiological and pathological relevance of these interactions, since this additional level of molecular cross-talk between receptors and signaling pathways is only beginning to be explored and represents a novel mechanism providing diversity to receptor function and play important roles in physiology and disease.
Collapse
|
5
|
Gnanenthiran SR, Pennings GJ, Reddel CJ, Campbell H, Kockx M, Hamilton JR, Chen V, Kritharides L. Identification of a Distinct Platelet Phenotype in the Elderly: ADP Hypersensitivity Coexists With Platelet PAR (Protease-Activated Receptor)-1 and PAR-4-Mediated Thrombin Resistance. Arterioscler Thromb Vasc Biol 2022; 42:960-972. [PMID: 35708029 DOI: 10.1161/atvbaha.120.316772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Thrombin (via PAR [protease-activated receptor]-1 and PAR-4) and ADP (via P2Y12 receptors) are potent endogenous platelet activators implicated in the development of cardiovascular disease. We aimed to assess whether platelet pathways alter with aging. METHODS We characterized platelet activity in community-dwelling volunteers (n=174) in the following age groups: (1) 20 to 30 (young); (2) 40 to 55 (middle-aged); (3) ≥70 years (elderly). Platelet activity was assessed by aggregometry; flow cytometry (surface markers [P-selectin: alpha granule release, CD63: dense granule release, PAC-1 (measure of conformationally active GPIIb/IIIa at the fibrinogen binding site): GPIIb/IIIa conformational activation] measured under basal conditions and after agonist stimulation [ADP, thrombin, PAR-1 agonist or PAR-4 agonist]); receptor cleavage and quantification; fluorometry; calcium flux; ELISA. RESULTS The elderly had higher basal platelet activation than the young, evidenced by increased expression of P-selectin, CD63, and PAC-1, which correlated with increasing inflammation (IL [interleukin]-1β/IL-6). The elderly demonstrated higher P2Y12 receptor density, with greater ADP-induced platelet aggregation (P<0.05). However, elderly subjects were resistant to thrombin, achieving less activation in response to thrombin (higher EC50) and to selective stimulation of both PAR-1 and PAR-4, with higher basal PAR-1/PAR-4 cleavage and less inducible PAR-1/PAR-4 cleavage (all P<0.05). Thrombin resistance was attributable to a combination of reduced thrombin orienting receptor GPIbα, reduced secondary ADP contribution to thrombin-mediated activation, and blunted calcium flux. D-Dimer, a marker of in situ thrombin generation, correlated with platelet activation in the circulation, ex vivo thrombin resistance, and circulating inflammatory mediators (TNF [tumor necrosis factor]-α/IL-6). CONCLUSIONS Aging is associated with a distinctive platelet phenotype of increased basal activation, ADP hyperreactivity, and thrombin resistance. In situ thrombin generation associated with systemic inflammation may be novel target to prevent cardiovascular disease in the elderly.
Collapse
Affiliation(s)
- Sonali R Gnanenthiran
- Cardiology Department, Concord Repatriation General Hospital, NSW, Australia (S.R.G., M.K., L.K.).,ANZAC Research Institute, Concord Repatriation General Hospital, and University of Sydney, Sydney, NSW, Australia (S.R.G., G.J.P., C.J.R., H.C., M.K., V.C., L.K.)
| | - Gabrielle J Pennings
- ANZAC Research Institute, Concord Repatriation General Hospital, and University of Sydney, Sydney, NSW, Australia (S.R.G., G.J.P., C.J.R., H.C., M.K., V.C., L.K.)
| | - Caroline J Reddel
- ANZAC Research Institute, Concord Repatriation General Hospital, and University of Sydney, Sydney, NSW, Australia (S.R.G., G.J.P., C.J.R., H.C., M.K., V.C., L.K.)
| | - Heather Campbell
- ANZAC Research Institute, Concord Repatriation General Hospital, and University of Sydney, Sydney, NSW, Australia (S.R.G., G.J.P., C.J.R., H.C., M.K., V.C., L.K.)
| | - Maaike Kockx
- Cardiology Department, Concord Repatriation General Hospital, NSW, Australia (S.R.G., M.K., L.K.).,ANZAC Research Institute, Concord Repatriation General Hospital, and University of Sydney, Sydney, NSW, Australia (S.R.G., G.J.P., C.J.R., H.C., M.K., V.C., L.K.)
| | - Justin R Hamilton
- Australian Centre of Blood Diseases, Monash University, Victoria, Australia (J.R.H.)
| | - Vivien Chen
- ANZAC Research Institute, Concord Repatriation General Hospital, and University of Sydney, Sydney, NSW, Australia (S.R.G., G.J.P., C.J.R., H.C., M.K., V.C., L.K.).,Haematology Department, Concord Repatriation General Hospital, NSW, Australia (V.C.)
| | - Leonard Kritharides
- Cardiology Department, Concord Repatriation General Hospital, NSW, Australia (S.R.G., M.K., L.K.).,ANZAC Research Institute, Concord Repatriation General Hospital, and University of Sydney, Sydney, NSW, Australia (S.R.G., G.J.P., C.J.R., H.C., M.K., V.C., L.K.)
| |
Collapse
|
6
|
Cao D, Strainic MG, Counihan D, Sridar S, An F, Hussain W, Schmaier AH, Nieman M, Medof ME. Vascular Endothelial Cells Produce Coagulation Factors That Control Their Growth via Joint Protease-Activated Receptor and C5a Receptor 1 (CD88) Signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:361-378. [PMID: 35144762 PMCID: PMC8908053 DOI: 10.1016/j.ajpath.2021.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 02/03/2023]
Abstract
As per the classical view of the coagulation system, it functions solely in plasma to maintain hemostasis. An experimental approach modeling vascular reconstitution was used to show that vascular endothelial cells (ECs) endogenously synthesize coagulation factors during angiogenesis. Intracellular thrombin generated from this synthesis promotes the mitotic function of vascular endothelial cell growth factor A (VEGF-A). The thrombin concurrently cleaves C5a from EC-synthesized complement component C5 and unmasks the tethered ligand for EC-expressed protease-activated receptor 4 (PAR4). The two ligands jointly trigger EC C5a receptor-1 (C5ar1) and PAR4 signaling, which together promote VEGF receptor 2 growth signaling. C5ar1 is functionally associated with PAR4, enabling C5a or thrombin to elicit Gαi and/or Gαq signaling. EC coagulation factor and EC complement component synthesis concurrently down-regulate with contact inhibition. The connection of these processes with VEGF receptor 2 signaling provides new insights into mechanisms underlying angiogenesis. Knowledge of endogenous coagulation factor/complement component synthesis and joint PAR4/C5ar1 signaling could be applied to other cell types.
Collapse
Affiliation(s)
- Devin Cao
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio
| | | | - Daniel Counihan
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Shiva Sridar
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Fengqi An
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Wasim Hussain
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Alvin H. Schmaier
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Marvin Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - M. Edward Medof
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio,Address correspondence to M. Edward Medof, M.D., Ph.D., Institute of Pathology, 2085 Adelbert, Room 301, Cleveland, OH 44106.
| |
Collapse
|
7
|
Guo X, Li Q, Pi S, Xia Y, Mao L. G protein-coupled purinergic P2Y receptor oligomerization: Pharmacological changes and dynamic regulation. Biochem Pharmacol 2021; 192:114689. [PMID: 34274353 DOI: 10.1016/j.bcp.2021.114689] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
P2Y receptors (P2YRs) are a δ group of rhodopsin-like G protein-coupled receptors (GPCRs) with many essential functions in physiology and pathology, such as platelet aggregation, immune responses, neuroprotective effects, inflammation, and cellular proliferation. Thus, they are among the most researched therapeutic targets used for the clinical treatment of diseases (e.g., the antithrombotic drug clopidogrel and the dry eye treatment drug diquafosol). GPCRs transmit signals as dimers to increase the diversity of signalling pathways and pharmacological activities. Many studies have frequently confirmed dimerization between P2YRs and other GPCRs due to their functions in cardiovascular and cerebrovascular processes in vivo and in vitro. Recently, some P2YR dimers that dynamically balance physiological functions in the body were shown to be involved in effective signal transduction and exert pathological responses. In this review, we summarize the types, pharmacological changes, and active regulators of P2YR-related dimerization, and delineate new functions and pharmacological activities of P2YR-related dimers, which may be a novel direction to improve the effectiveness of medications.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qin Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shulan Pi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuanpeng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
8
|
The Molecular Aspects of Disturbed Platelet Activation through ADP/P2Y 12 Pathway in Multiple Sclerosis. Int J Mol Sci 2021; 22:ijms22126572. [PMID: 34207429 PMCID: PMC8234174 DOI: 10.3390/ijms22126572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 12/22/2022] Open
Abstract
Epidemiological studies confirm a high risk of ischemic events in secondary-progressive multiple sclerosis (SP MS) patients, directly associated with an increased level of pro-thrombotic activity of platelets. Our work aimed to verify potential molecular abnormalities of the platelet P2Y12 receptor expression and functionality as a cause of an increased risk of thromboembolism observed in the course of MS. We have demonstrated an enhanced platelet reactivity in response to adenosine diphosphate (ADP) in SP MS relative to controls. We have also shown an increased mRNA expression for the P2RY12 gene in both platelets and megakaryocytes, as well as enhanced density of these receptors on the platelet surface. We postulate that one of the reasons for the elevated risk of ischemic events observed in MS may be a genetically or phenotypically reinforced expression of the platelet P2Y12 receptor. In order to analyze the effect of the PAR1 (protease activated receptor type 1) signaling pathway on the expression level of P2Y12, we also analyzed the correlation parameters between P2Y12 expression and the markers of platelet activation in MS induced by selective PAR1 agonist (thrombin receptor activating peptide-6, TRAP-6). Identifying the molecular base responsible for the enlarged pro-thrombotic activity of platelets in SP MS could contribute to the implementation of prevention and targeted treatment, reducing the development of cardiovascular disorders in the course of the disease.
Collapse
|
9
|
Li Y, Wang J, Wang F, Chen W, Gao C, Wang J. RNF144A suppresses ovarian cancer stem cell properties and tumor progression through regulation of LIN28B degradation via the ubiquitin-proteasome pathway. Cell Biol Toxicol 2021; 38:809-824. [PMID: 33978933 DOI: 10.1007/s10565-021-09609-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/27/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Cancer stem cells (CSCs) are the main driving force of tumorigenesis, metastasis, recurrence, and drug resistance in epithelial ovarian cancer (EOC). The current study aimed to explore the regulatory effects of ring finger protein 144A (RNF144A), an E3 ubiquitin ligase, in the maintenance of CSC properties and tumor development in EOC. METHODS The expressions of RNF144A in EOC tissue samples and cells were examined. The knockdown or overexpression of a target gene was achieved by transfecting EOC cells with short hairpin RNA or adenoviral vectors. A mouse xenograft model was constructed by inoculating nude mice with EOC cells. Co-immunoprecipitation was used to determine the interaction between RNF144A and LIN28B. RESULTS Downregulated RNF144A expression was observed in ovarian tumor tissues and EOC cells. Low RNF144A expression was positively associated with poor survival of EOC patients. RNF144A knockdown significantly enhanced sphere formation and upregulated stem cell markers in EOC cells, while RNF144A overexpression prevented EOC cells from acquiring stem cell properties. Also, the upregulation of RNF144A inhibited ovarian tumor growth and aggressiveness in cell culture and mouse xenografts. Further analysis revealed that RNF144A induced LIN28B degradation through ubiquitination in EOC cells. LIN28B upregulation restored the expressions of stem cell pluripotency-associated transcription factors in EOC cells overexpressing RNF144A. CONCLUSION Taken together, our findings highlight the therapeutic potential of restoring RNF144A expression and thereby suppressing LIN28B-associated oncogenic signaling for EOC treatment. • Ring finger protein 144A (RNF144A) is downregulated in epithelial ovarian cancer (EOC) tissues and cell lines. • The overexpression of RNF144A prevents EOC cells from acquiring stem cell properties and inhibits ovarian tumor growth. • RNF144A induces LIN28B degradation through ubiquitination in EOC cells. • LIN28B upregulation restores the expressions of stem cell pluripotency-associated transcription factors in EOC cells overexpressing RNF144A.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynecology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, 224001, Jiangsu, China
| | - Juan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Fang Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Wenyu Chen
- Department of Obstetrics and Gynecology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, 224001, Jiangsu, China
| | - Chengzhen Gao
- Department of Obstetrics and Gynecology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, 224001, Jiangsu, China
| | - Jianhua Wang
- Department of Gastroenterology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, No. 66, Renmin South Road, Yancheng, 224001, Jiangsu, China.
| |
Collapse
|
10
|
Kennedy C. That was then, this is now: the development of our knowledge and understanding of P2 receptor subtypes. Purinergic Signal 2021; 17:9-23. [PMID: 33527235 PMCID: PMC7954963 DOI: 10.1007/s11302-021-09763-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/06/2021] [Indexed: 11/17/2022] Open
Abstract
P2 receptors are present in virtually all tissues and cell types in the human body, and they mediate the physiological and pharmacological actions of extracellular purine and pyrimidine nucleotides. They were first characterised and named by Geoff Burnstock in 1978, then subdivided into P2X and P2Y purinoceptors in 1985 on the basis of pharmacological criteria in functional studies on native receptors. Molecular cloning of receptors in the 1990s revealed P2X receptors to comprise seven different subunits that interact to produce functional homo- and heterotrimeric ligand-gated cation channels. A family of eight P2Y G protein-coupled receptors were also cloned, which can form homo- and heterodimers. Deep insight into the molecular mechanisms of agonist and antagonist action has been provided by more recent determination of the tertiary and quaternary structures of several P2X and P2Y receptor subtypes. Agonists and antagonists that are highly selective for individual subtypes are now available and some are in clinical use. This has all come about because of the intelligence, insight and drive of the force of nature that was Geoff Burnstock.
Collapse
Affiliation(s)
- Charles Kennedy
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, John Arbuthnott Building, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK.
| |
Collapse
|
11
|
Van Doren L, Nguyen N, Garzia C, Fletcher EK, Stevenson R, Jaramillo D, Kuliopulos A, Covic L. Lipid Receptor GPR31 (G-Protein-Coupled Receptor 31) Regulates Platelet Reactivity and Thrombosis Without Affecting Hemostasis. Arterioscler Thromb Vasc Biol 2021; 41:e33-e45. [PMID: 33267659 PMCID: PMC8108540 DOI: 10.1161/atvbaha.120.315154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE 12-LOX (12-lipoxygenase) produces a number of bioactive lipids including 12(S)-HETE that are involved in inflammation and platelet reactivity. The GPR31 (G-protein-coupled receptor 31) is the proposed receptor of 12(S)-HETE; however, it is not known whether the 12(S)-HETE-GPR31 signaling axis serves to enhance or inhibit platelet activity. Approach and Results: Using pepducin technology and biochemical approaches, we provide evidence that 12(S)-HETE-GPR31 signals through Gi to enhance PAR (protease-activated receptor)-4-mediated platelet activation and arterial thrombosis using both human platelets and mouse carotid artery injury models. 12(S)-HETE suppressed AC (adenylyl cyclase) activity through GPR31 and resulted in Rap1 (Ras-related protein 1) and p38 activation and low but detectable calcium flux but did not induce platelet aggregation. A GPR31 third intracellular (i3) loop-derived pepducin, GPR310 (G-protein-coupled receptor 310), significantly inhibited platelet aggregation in response to thrombin, collagen, and PAR4 agonist, AYPGKF, in human and mouse platelets but relative sparing of PAR1 agonist SFLLRN in human platelets. GPR310 treatment gave a highly significant 80% protection (P=0.0018) against ferric chloride-induced carotid artery injury in mice by extending occlusion time, without any effect on tail bleeding. PAR4-mediated dense granule secretion and calcium flux were both attenuated by GPR310. Consistent with these results, GPR310 inhibited 12(S)-HETE-mediated and PAR4-mediated Rap1-GTP and RASA3 translocation to the plasma membrane and attenuated PAR4-Akt and ERK activation. GPR310 caused a right shift in thrombin-mediated human platelet aggregation, comparable to the effects of inhibition of the Gi-coupled P2Y12 receptor. Co-immunoprecipitation studies revealed that GPR31 and PAR4 form a heterodimeric complex in recombinant systems. CONCLUSIONS The 12-LOX product 12(S)-HETE stimulates GPR31-Gi-signaling pathways, which enhance thrombin-PAR4 platelet activation and arterial thrombosis in human platelets and mouse models. Suppression of this bioactive lipid pathway, as exemplified by a GPR31 pepducin antagonist, may provide beneficial protective effects against platelet aggregation and arterial thrombosis with minimal effect on hemostasis.
Collapse
Affiliation(s)
- Layla Van Doren
- Division of Hematology/Oncology, Center for Hemostasis and Thrombosis Research, Tufts Medical Center, Boston, MA (L.V.D., N.N., C.G., E.K.F., R.S., L.C., A.K.)
| | - Nga Nguyen
- Division of Hematology/Oncology, Center for Hemostasis and Thrombosis Research, Tufts Medical Center, Boston, MA (L.V.D., N.N., C.G., E.K.F., R.S., L.C., A.K.)
| | - Christopher Garzia
- Division of Hematology/Oncology, Center for Hemostasis and Thrombosis Research, Tufts Medical Center, Boston, MA (L.V.D., N.N., C.G., E.K.F., R.S., L.C., A.K.)
| | - Elizabeth K Fletcher
- Division of Hematology/Oncology, Center for Hemostasis and Thrombosis Research, Tufts Medical Center, Boston, MA (L.V.D., N.N., C.G., E.K.F., R.S., L.C., A.K.)
| | - Ryan Stevenson
- Division of Hematology/Oncology, Center for Hemostasis and Thrombosis Research, Tufts Medical Center, Boston, MA (L.V.D., N.N., C.G., E.K.F., R.S., L.C., A.K.)
| | | | - Athan Kuliopulos
- Division of Hematology/Oncology, Center for Hemostasis and Thrombosis Research, Tufts Medical Center, Boston, MA (L.V.D., N.N., C.G., E.K.F., R.S., L.C., A.K.)
- Departments of Medicine (L.C., A.K.), Tufts University School of Medicine, Boston, MA
- Biochemistry (L.C., A.K.), Tufts University School of Medicine, Boston, MA
| | - Lidija Covic
- Division of Hematology/Oncology, Center for Hemostasis and Thrombosis Research, Tufts Medical Center, Boston, MA (L.V.D., N.N., C.G., E.K.F., R.S., L.C., A.K.)
- Departments of Medicine (L.C., A.K.), Tufts University School of Medicine, Boston, MA
- Biochemistry (L.C., A.K.), Tufts University School of Medicine, Boston, MA
| |
Collapse
|
12
|
Inhibitory Effects of P2Y12 Receptor Antagonist on PAR1- and PAR4-AP-Induced Platelet Aggregation in Patients with Stroke or TIA. J Stroke Cerebrovasc Dis 2020; 30:105547. [PMID: 33360254 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/28/2020] [Accepted: 12/07/2020] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES The inhibitory effects of P2Y12 receptor antagonist on PAR1- and PAR4-activating peptide (AP)-induced platelet aggregation have not been fully elucidated. The present study aimed to investigate the inhibitory effects of P2Y12 receptor antagonist on PAR1- and PAR4-AP-induced platelet aggregation using platelet-rich plasma (PRP) from individuals including patients with stroke or transient ischemic attack (TIA). MATERIALS AND METHODS PRP was given to 10 healthy individuals pretreated in vitro with cangrelor, then stimulated with adenosine diphosphate (ADP), PAR4-AP, or PAR1-AP. Moreover, 20 patients were enrolled from 148 consecutive patients with acute ischemic stroke or TIA admitted to our institute between December 2017 and April 2019. PRP obtained from each patient before and >7 days after initiation of clopidogrel was similarly stimulated with these agonists. Platelet aggregation was measured using an automatic coagulation analyzer in all participants. RESULTS In healthy individuals, ADP- and PAR4-AP-induced platelet aggregations were significantly inhibited depending on the cangrelor concentration in vitro, while PAR1-AP-induced platelet aggregation was slightly inhibited. In patients with stroke or TIA, clopidogrel inhibited ADP-induced platelet aggregation at all concentrations, and significantly inhibited PAR4-AP-induced platelet aggregation at 50 µmol/L of PAR4-AP (p<0.05), especially in 5 patients who showed high reactivity to PAR4-AP. PAR1-AP-induced platelet aggregation was also slightly inhibited. CONCLUSIONS We showed significant inhibitory effects on PAR4-AP-induced platelet aggregation by clopidogrel in patients with stroke or TIA who had high reactivity to PAR4-AP.
Collapse
|
13
|
Han X, Nieman MT, Kerlin BA. Protease-activated receptors: An illustrated review. Res Pract Thromb Haemost 2020; 5:17-26. [PMID: 33537526 PMCID: PMC7845062 DOI: 10.1002/rth2.12454] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 01/04/2023] Open
Abstract
Proteases are important regulators of cell behavior, survival, and apoptosis. They communicate to cells directly through a special class of G‐protein–coupled receptors known as protease‐activated receptors (PARs). N‐terminal PAR proteolysis unmasks a neo‐N‐terminus, which serves as a tethered ligand to activate PARs. Using this unique irreversible activation mechanism, PARs relay information across cell membranes. The year 2020 is the 30th year since discovery of the first member of this family, PAR1. In this illustrated review, we highlight achievements in the PAR field over the past 3 decades. Additionally, the known expression profiles of PARs in human tissues and across species are portrayed. We also illustrate the tethered ligand activation mechanism, which is unique to PARs, and PAR regulatory mechanisms. PAR1 was originally named “thrombin receptor” because thrombin was the first protease identified to activate PAR1. However, over the past 30 years, a growing number of proteases have been found to cleave PARs and trigger differential downstream signaling depending on cleavage site, cell type, and species. We exemplify the diversity of PAR1‐mediated signaling outcomes in platelets and endothelial cells as pertinent examples to the hemostasis, thrombosis, and vascular biology fields. Further, the termination and regulation of PAR signaling via endocytosis and currently available pharmacologic approaches are depicted. We conclude with portrayal of clinically translational aspects of PAR biology including pharmacologic manipulation and single‐nucleotide polymorphisms.
Collapse
Affiliation(s)
- Xu Han
- Department of Pharmacology Case Western Reserve University Cleveland OH USA
| | - Marvin T Nieman
- Department of Pharmacology Case Western Reserve University Cleveland OH USA
| | - Bryce A Kerlin
- Center for Clinical and Translational Research Abigail Wexner Research Institute at Nationwide Children's Hospital Columbus OH USA.,Department of Pediatrics The Ohio State University College of Medicine Columbus OH USA
| |
Collapse
|
14
|
Han X, Hofmann L, de la Fuente M, Alexander N, Palczewski K, Nieman MT. PAR4 activation involves extracellular loop 3 and transmembrane residue Thr153. Blood 2020; 136:2217-2228. [PMID: 32575122 PMCID: PMC7645988 DOI: 10.1182/blood.2019004634] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/24/2020] [Indexed: 12/17/2022] Open
Abstract
Protease-activated receptor 4 (PAR4) mediates sustained thrombin signaling in platelets and is required for a stable thrombus. PAR4 is activated by proteolysis of the N terminus to expose a tethered ligand. The structural basis for PAR4 activation and the location of its ligand binding site (LBS) are unknown. Using hydrogen/deuterium exchange (H/D exchange), computational modeling, and signaling studies, we determined the molecular mechanism for tethered ligand-mediated PAR4 activation. H/D exchange identified that the LBS is composed of transmembrane 3 (TM3) domain and TM7. Unbiased computational modeling further predicted an interaction between Gly48 from the tethered ligand and Thr153 from the LBS. Mutating Thr153 significantly decreased PAR4 signaling. H/D exchange and modeling also showed that extracellular loop 3 (ECL3) serves as a gatekeeper for the interaction between the tethered ligand and LBS. A naturally occurring sequence variant (P310L, rs2227376) and 2 experimental mutations (S311A and P312L) determined that the rigidity conferred by prolines in ECL3 are essential for PAR4 activation. Finally, we examined the role of the polymorphism at position 310 in venous thromboembolism (VTE) using the International Network Against Venous Thrombosis (INVENT) consortium multi-ancestry genome-wide association study (GWAS) meta-analysis. Individuals with the PAR4 Leu310 allele had a 15% reduction in relative risk for VTE (odds ratio, 0.85; 95% confidence interval, 0.77-0.94) compared with the Pro310 allele. These data are consistent with our H/D exchange, molecular modeling, and signaling studies. In conclusion, we have uncovered the structural basis for PAR4 activation and identified a previously unrecognized role for PAR4 in VTE.
Collapse
Affiliation(s)
- Xu Han
- Case Western Reserve University, School of Medicine, Cleveland, OH; and
| | - Lukas Hofmann
- Case Western Reserve University, School of Medicine, Cleveland, OH; and
| | | | - Nathan Alexander
- Case Western Reserve University, School of Medicine, Cleveland, OH; and
| | | | - Marvin T Nieman
- Case Western Reserve University, School of Medicine, Cleveland, OH; and
| |
Collapse
|
15
|
Thibeault PE, Ramachandran R. Biased signaling in platelet G-protein coupled receptors. Can J Physiol Pharmacol 2020; 99:255-269. [PMID: 32846106 DOI: 10.1139/cjpp-2020-0149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Platelets are small megakaryocyte-derived, anucleate, disk-like structures that play an outsized role in human health and disease. Both a decrease in the number of platelets and a variety of platelet function disorders result in petechiae or bleeding that can be life threatening. Conversely, the inappropriate activation of platelets, within diseased blood vessels, remains the leading cause of death and morbidity by affecting heart attacks and stroke. The fine balance of the platelet state in healthy individuals is controlled by a number of receptor-mediated signaling pathways that allow the platelet to rapidly respond and maintain haemostasis. G-protein coupled receptors (GPCRs) are particularly important regulators of platelet function. Here we focus on the major platelet-expressed GPCRs and discuss the roles of downstream signaling pathways (e.g., different G-protein subtypes or β-arrestin) in regulating the different phases of the platelet activation. Further, we consider the potential for selectively targeting signaling pathways that may contribute to platelet responses in disease through development of biased agonists. Such selective targeting of GPCR-mediated signaling pathways by drugs, often referred to as biased signaling, holds promise in delivering therapeutic interventions that do not present significant side effects, especially in finely balanced physiological systems such as platelet activation in haemostasis.
Collapse
Affiliation(s)
- Pierre E Thibeault
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, ON N6A5C1, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, ON N6A5C1, Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, ON N6A5C1, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, 1151 Richmond Street, London, ON N6A5C1, Canada
| |
Collapse
|
16
|
Thibeault PE, LeSarge JC, Arends D, Fernandes M, Chidiac P, Stathopulos PB, Luyt LG, Ramachandran R. Molecular basis for activation and biased signaling at the thrombin-activated GPCR proteinase activated receptor-4 (PAR4). J Biol Chem 2020; 295:2520-2540. [PMID: 31892516 PMCID: PMC7039573 DOI: 10.1074/jbc.ra119.011461] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/28/2019] [Indexed: 01/09/2023] Open
Abstract
Proteinase-activated receptor (PAR)-4 is a member of the proteolytically-activated PAR family of G-protein-coupled receptors (GPCR) that represents an important target in the development of anti-platelet therapeutics. PARs are activated by proteolytic cleavage of their receptor N terminus by enzymes such as thrombin, trypsin, and cathepsin-G. This reveals the receptor-activating motif, termed the tethered ligand that binds intramolecularly to the receptor and triggers signaling. However, PARs are also activated by exogenous application of synthetic peptides derived from the tethered-ligand sequence. To better understand the molecular basis for PAR4-dependent signaling, we examined PAR4-signaling responses to a peptide library derived from the canonical PAR4-agonist peptide, AYPGKF-NH2, and we monitored activation of the Gαq/11-coupled calcium-signaling pathway, β-arrestin recruitment, and mitogen-activated protein kinase (MAPK) pathway activation. We identified peptides that are poor activators of PAR4-dependent calcium signaling but were fully competent in recruiting β-arrestin-1 and -2. Peptides that were unable to stimulate PAR4-dependent calcium signaling could not trigger MAPK activation. Using in silico docking and site-directed mutagenesis, we identified Asp230 in the extracellular loop-2 as being critical for PAR4 activation by both agonist peptide and the tethered ligand. Probing the consequence of biased signaling on platelet activation, we found that a peptide that cannot activate calcium signaling fails to cause platelet aggregation, whereas a peptide that is able to stimulate calcium signaling and is more potent for β-arrestin recruitment triggered greater levels of platelet aggregation compared with the canonical PAR4 agonist peptide. These findings uncover molecular determinants critical for agonist binding and biased signaling through PAR4.
Collapse
Affiliation(s)
- Pierre E Thibeault
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A5C1, Canada
| | - Jordan C LeSarge
- Department of Chemistry, University of Western Ontario, London, Ontario N6A5C1, Canada
| | - D'Arcy Arends
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A5C1, Canada
| | - Michaela Fernandes
- Department of Chemistry, University of Western Ontario, London, Ontario N6A5C1, Canada
| | - Peter Chidiac
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A5C1, Canada
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A5C1, Canada
| | - Leonard G Luyt
- Department of Chemistry, University of Western Ontario, London, Ontario N6A5C1, Canada; Department of Oncology, University of Western Ontario, London, Ontario N6A5C1, Canada; London Regional Cancer Program, Lawson Health Research Institute, London, Ontario N6C2R5, Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A5C1, Canada.
| |
Collapse
|
17
|
de la Fuente M, Han X, Miyagi M, Nieman MT. Expression and Purification of Protease-Activated Receptor 4 (PAR4) and Analysis with Histidine Hydrogen-Deuterium Exchange. Biochemistry 2020; 59:671-681. [PMID: 31957446 DOI: 10.1021/acs.biochem.9b00987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Protease-activated receptors (PARs) are G-protein-coupled receptors that are activated by proteolysis of the N-terminus, which exposes a tethered ligand that interacts with the receptor. Numerous studies have focused on the signaling pathways mediated by PARs. However, the structural basis for initiation of these pathways is unknown. Here, we describe a strategy for the expression and purification of PAR4. This is the first PAR family member to be isolated without stabilizing modifications for biophysical studies. We monitored PAR4 activation with histidine hydrogen-deuterium exchange. PAR4 has nine histidines that are spaced throughout the protein, allowing a global view of solvent accessible and nonaccessible regions. Peptides containing each of the nine His residues were used to determine the t1/2 for each His residue in apo or thrombin-activated PAR4. The thrombin-cleaved PAR4 exhibited a 2-fold increase (p > 0.01) in t1/2 values observed for four histidine residues (His180, His229, His240, and His380), demonstrating that these regions have decreased solvent accessibility upon thrombin treatment. In agreement, thrombin-cleaved PAR4 also was resistant to thermolysin digestion. In contrast, the rate of thermolysin proteolysis following stimulation with the PAR4 activation peptide was the same as that of unstimulated PAR4. Further analysis showed the C-terminus is protected in thrombin-activated PAR4 compared to uncleaved or agonist peptide-treated PAR4. The studies described here are the first to examine the tethered ligand activation mechanism for a PAR family member biophysically and shed light on the overall conformational changes that follow activation of PARs by a protease.
Collapse
Affiliation(s)
- Maria de la Fuente
- Department of Pharmacology , Case Western Reserve University , Cleveland , Ohio 44106-4965 , United States
| | - Xu Han
- Department of Pharmacology , Case Western Reserve University , Cleveland , Ohio 44106-4965 , United States
| | - Masaru Miyagi
- Department of Pharmacology , Case Western Reserve University , Cleveland , Ohio 44106-4965 , United States
| | - Marvin T Nieman
- Department of Pharmacology , Case Western Reserve University , Cleveland , Ohio 44106-4965 , United States
| |
Collapse
|
18
|
Elaskalani O, Domenchini A, Abdol Razak NB, E. Dye D, Falasca M, Metharom P. Antiplatelet Drug Ticagrelor Enhances Chemotherapeutic Efficacy by Targeting the Novel P2Y12-AKT Pathway in Pancreatic Cancer Cells. Cancers (Basel) 2020; 12:cancers12010250. [PMID: 31968611 PMCID: PMC7016832 DOI: 10.3390/cancers12010250] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/18/2019] [Accepted: 01/09/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Extensive research has reported that extracellular ADP in the tumour microenvironment can stimulate platelets through interaction with the platelet receptor P2Y12. In turn, activated platelets release biological factors supporting cancer progression. Experimental data suggest that the tumour microenvironment components, of which platelets are integral, can promote chemotherapy resistance in pancreatic ductal adenocarcinoma (PDAC). Thus, overcoming chemoresistance requires combining multiple inhibitors that simultaneously target intrinsic pathways in cancer cells and extrinsic factors related to the tumour microenvironment. We aimed to determine whether ticagrelor, an inhibitor of the ADP–P2Y12 axis and a well-known antiplatelet drug, could be a therapeutic option for PDAC. Methods: We investigated a functional P2Y12 receptor and its downstream signalling in a panel of PDAC cell lines and non-cancer pancreatic cells termed hTERT-HPNE. We tested the synergistic effect of ticagrelor, a P2Y12 inhibitor, in combination with chemotherapeutic drugs (gemcitabine, paclitaxel and cisplatin), in vitro and in vivo. Results: Knockdown studies revealed that P2Y12 contributed to epidermal growth factor receptor (EGFR) activation and the expression of SLUG and ZEB1, which are transcriptional factors implicated in metastasis and chemoresistance. Studies using genetic and pharmacological inhibitors showed that the P2Y12–EGFR crosstalk enhanced cancer cell proliferation. Inhibition of P2Y12 signalling significantly reduced EGF-dependent AKT activation and promoted the anticancer activity of anti-EGFR treatment. Importantly, ticagrelor significantly decreased the proliferative capacity of cancer but not normal pancreatic cells. In vitro, synergism was observed when ticagrelor was combined with several chemodrugs. In vivo, a combination of ticagrelor with gemcitabine significantly reduced tumour growth, whereas gemcitabine or ticagrelor alone had a minimal effect. Conclusions: These findings uncover a novel effect and mechanism of action of the antiplatelet drug ticagrelor in PDAC cells and suggest a multi-functional role for ADP-P2Y12 signalling in the tumour microenvironment.
Collapse
Affiliation(s)
- Omar Elaskalani
- Platelet Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley Campus, Kent Street, Bentley, Building 305, Perth, WA 6102, Australia; (O.E.); (N.B.A.R.); (D.E.D.)
- Platelet Research Group, Perth Blood Institute, West Perth, WA 6005, Australia
| | - Alice Domenchini
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.D.); (M.F.)
| | - Norbaini Binti Abdol Razak
- Platelet Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley Campus, Kent Street, Bentley, Building 305, Perth, WA 6102, Australia; (O.E.); (N.B.A.R.); (D.E.D.)
| | - Danielle E. Dye
- Platelet Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley Campus, Kent Street, Bentley, Building 305, Perth, WA 6102, Australia; (O.E.); (N.B.A.R.); (D.E.D.)
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (A.D.); (M.F.)
| | - Pat Metharom
- Platelet Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health and Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley Campus, Kent Street, Bentley, Building 305, Perth, WA 6102, Australia; (O.E.); (N.B.A.R.); (D.E.D.)
- Platelet Research Group, Perth Blood Institute, West Perth, WA 6005, Australia
- Western Australian Centre for Thrombosis and Haemostasis, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia
- Correspondence: ; Tel.: +61-(08)-9266-9271
| |
Collapse
|
19
|
Shu G, Chen Y, Liu T, Ren S, Kong Y. Antimicrobial Peptide Cathelicidin-BF Inhibits Platelet Aggregation by Blocking Protease-Activated Receptor 4. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-018-9677-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Kimmelstiel C, Stevenson R, Nguyen N, Van Doren L, Zhang P, Perkins J, Kapur NK, Weintraub A, Castaneda V, Kuliopulos A, Covic L. Enhanced potency of prasugrel on protease-activated receptors following bivalirudin treatment for PCI as compared to clopidogrel. Thromb Res 2019; 177:59-69. [PMID: 30851630 DOI: 10.1016/j.thromres.2019.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/20/2018] [Accepted: 01/28/2019] [Indexed: 01/22/2023]
Abstract
ACS patients undergoing percutaneous coronary intervention (PCI) when treated with bivalirudin and clopidogrel had increased frequency of early stent thrombosis. 24 patients referred for intervention with planned bivalirudin therapy, not previously treated with a P2Y12 inhibitor and not receiving heparins or αIIbβ3 inhibitors were randomized to treatment with either clopidogrel (600 mg) or prasugrel (60 mg). Platelet aggregation (PA) was measured by light transmission aggregometry (LTA) of platelet-rich plasma in response to ADP, PAR1/PAR4 thrombin receptor agonists and collagen at baseline and at 1, 2, 4 and 16 h following the cessation of bivalirudin infusion. Prasugrel-mediated inhibition of PA was significantly greater than that of clopidogrel at all time points for ADP as well as PAR1. There was an unanticipated, significantly greater protection of PAR4-mediated platelet aggregation only detected with prasugrel and not observed with clopidogrel. We further examined the effect of the hyperreactive PAR4 Thr120 variant in the protease-activated receptor 4 (PAR4), single nucleotide polymorphism (SNP) rs773902 on aggregation protection. The PAR4 protective effect with prasugrel was lost in individuals carrying the PAR4 Thr120 variant, and not in Ala120 homozygote. PAR1, ADP and collagen inhibition was not significantly affected in the hyperreactive PAR4 Thr120 variant. We documented that the P2Y12 ADP receptor-mediated regulation of the strength of the high-affinity conformation of αIIbβ3 as detected by PAC-1 ab, and in control of platelet adhesiveness through Rap1 GTPase protein activation. Importantly, the PAR4 Thr120 variant resulted in the increased rate and magnitude of Rap1 activation. Human platelet PAR4 mediated-activation of αIIbβ3 was phospholipase C beta (PLCβ)-dependent and unlike mouse platelet PI3K-independent. These data identify a PAR4-dependent inhibitory mechanism for the prasugrel-mediated platelet inhibition, not seen with clopidogrel that could explain the reduction in stent thrombosis documented in clinical trials with prasugrel.
Collapse
Affiliation(s)
- Carey Kimmelstiel
- Cardiac Catheterization Laboratory and the Division of Cardiology, Tufts Medical Center, Boston, MA 02111, United States of America
| | - Ryan Stevenson
- Hemostasis and Thrombosis Laboratory, Division of Hematology/Oncology, Tufts Medical Center, Boston, MA 02111, United States of America
| | - Nga Nguyen
- Hemostasis and Thrombosis Laboratory, Division of Hematology/Oncology, Tufts Medical Center, Boston, MA 02111, United States of America
| | - Layla Van Doren
- Hemostasis and Thrombosis Laboratory, Division of Hematology/Oncology, Tufts Medical Center, Boston, MA 02111, United States of America
| | - Ping Zhang
- Hemostasis and Thrombosis Laboratory, Division of Hematology/Oncology, Tufts Medical Center, Boston, MA 02111, United States of America
| | - James Perkins
- Hemostasis and Thrombosis Laboratory, Division of Hematology/Oncology, Tufts Medical Center, Boston, MA 02111, United States of America
| | - Navin K Kapur
- Cardiac Catheterization Laboratory and the Division of Cardiology, Tufts Medical Center, Boston, MA 02111, United States of America
| | - Andrew Weintraub
- Cardiac Catheterization Laboratory and the Division of Cardiology, Tufts Medical Center, Boston, MA 02111, United States of America
| | - Vilma Castaneda
- Cardiac Catheterization Laboratory and the Division of Cardiology, Tufts Medical Center, Boston, MA 02111, United States of America
| | - Athan Kuliopulos
- Hemostasis and Thrombosis Laboratory, Division of Hematology/Oncology, Tufts Medical Center, Boston, MA 02111, United States of America
| | - Lidija Covic
- Hemostasis and Thrombosis Laboratory, Division of Hematology/Oncology, Tufts Medical Center, Boston, MA 02111, United States of America.
| |
Collapse
|
21
|
|
22
|
Whitley MJ, Henke D, Ghazi A, Nieman M, Stoller M, Simon LM, Chen E, Vesci J, Holinstat M, McKenzie S, Shaw C, Edelstein L, Bray PF. The protease-activated receptor 4 Ala120Thr variant alters platelet responsiveness to low-dose thrombin and protease-activated receptor 4 desensitization, and is blocked by non-competitive P2Y 12 inhibition. J Thromb Haemost 2018; 16:2501-2514. [PMID: 30347494 PMCID: PMC6289679 DOI: 10.1111/jth.14318] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Indexed: 01/07/2023]
Abstract
Essentials The rs773902 SNP results in differences in platelet protease-activated receptor (PAR4) function. The functional consequences of rs773902 were analyzed in human platelets and stroke patients. rs773902 affects thrombin-induced platelet function, PAR4 desensitization, stroke association. Enhanced PAR4 Thr120 effects on platelet function are blocked by ticagrelor. SUMMARY: Background F2RL3 encodes protease-activated receptor (PAR) 4 and harbors an A/G single-nucleotide polymorphism (SNP) (rs773902) with racially dimorphic allelic frequencies. This SNP mediates an alanine to threonine substitution at residue 120 that alters platelet PAR4 activation by the artificial PAR4-activation peptide (PAR4-AP) AYPGKF. Objectives To determine the functional effects of rs773902 on stimulation by a physiological agonist, thrombin, and on antiplatelet antagonist activity. Methods Healthy human donors were screened and genotyped for rs773902. Platelet function in response to thrombin was assessed without and with antiplatelet antagonists. The association of rs773902 alleles with stroke was assessed in the Stroke Genetics Network study. Results As compared with rs773902 GG donors, platelets from rs773902 AA donors had increased aggregation in response to subnanomolar concentrations of thrombin, increased granule secretion, and decreased sensitivity to PAR4 desensitization. In the presence of PAR1 blockade, this genotype effect was abolished by higher concentrations of or longer exposure to thrombin. We were unable to detect a genotype effect on thrombin-induced PAR4 cleavage, dimerization, and lipid raft localization; however, rs773902 AA platelets required a three-fold higher level of PAR4-AP for receptor desensitization. Ticagrelor, but not vorapaxar, abolished the PAR4 variant effect on thrombin-induced platelet aggregation. A significant association of modest effect was detected between the rs773902 A allele and stroke. Conclusion The F2RL3 rs773902 SNP alters platelet reactivity to thrombin; the allelic effect requires P2Y12 , and is not affected by gender. Ticagrelor blocks the enhanced reactivity of rs773902 A platelets. PAR4 encoded by the rs773902 A allele is relatively resistant to desensitization and may contribute to stroke risk.
Collapse
Affiliation(s)
- M. J. Whitley
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA
| | - D.M. Henke
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
| | - A. Ghazi
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
| | - M. Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - Michelle Stoller
- Program in Molecular Medicine and the Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - L. M. Simon
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
| | - E. Chen
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
| | - J. Vesci
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA
| | - M. Holinstat
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - S.E. McKenzie
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA
| | - C.A. Shaw
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX
- Department of Statistics, Rice University, Houston, TX
| | - L.C. Edelstein
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA
| | - Paul F. Bray
- Program in Molecular Medicine and the Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| |
Collapse
|
23
|
von Kügelgen I. Structure, Pharmacology and Roles in Physiology of the P2Y 12 Receptor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1051:123-138. [PMID: 28921447 DOI: 10.1007/5584_2017_98] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular nucleotides. The platelet ADP-receptor which has been denominated P2Y12 receptor is an important target in pharmacotherapy. The receptor couples to Gαi2 mediating an inhibition of cyclic AMP accumulation and additional downstream events including the activation of phosphatidylinositol-3-kinase and Rap1b proteins. The nucleoside analogue ticagrelor and active metabolites of the thienopyridine compounds ticlopidine, clopidogrel and prasugrel block P2Y12 receptors and, thereby, inhibit ADP-induced platelet aggregation. These drugs are used for the prevention and therapy of cardiovascular events such as acute coronary syndromes or stroke. The recently published three-dimensional crystal structures of the human P2Y12 receptor in complex with agonists and antagonists will facilitate the development of novel therapeutic agents with reduced adverse effects. P2Y12 receptors are also expressed on vascular smooth muscle cells and may be involved in the pathophysiology of atherogenesis. P2Y12 receptors on microglial cells operate as sensors for adenine nucleotides released during brain injury. A recent study indicated the involvement of microglial P2Y12 receptors in the activity-dependent neuronal plasticity. Interestingly, there is evidence for changes in P2Y12 receptor expression in CNS pathologies including Alzheimer's diseases and multiple sclerosis. P2Y12 receptors may also be involved in systemic immune modulating responses and the susceptibility to develop bronchial asthma.
Collapse
Affiliation(s)
- Ivar von Kügelgen
- Department of Pharmacology and Toxicology, Pharma Center, University of Bonn, D-53127, Bonn, Germany.
| |
Collapse
|
24
|
Abstract
β-arrestin1 (or arrestin2) and β-arrestin2 (or arrestin3) are ubiquitously expressed cytosolic adaptor proteins that were originally discovered for their inhibitory role in G protein-coupled receptor (GPCR) signaling through heterotrimeric G proteins. However, further biochemical characterization revealed that β-arrestins do not just "block" the activated GPCRs, but trigger endocytosis and kinase activation leading to specific signaling pathways that can be localized on endosomes. The signaling pathways initiated by β-arrestins were also found to be independent of G protein activation by GPCRs. The discovery of ligands that blocked G protein activation but promoted β-arrestin binding, or vice-versa, suggested the exciting possibility of selectively activating intracellular signaling pathways. In addition, it is becoming increasingly evident that β-arrestin-dependent signaling is extremely diverse and provokes distinct cellular responses through different GPCRs even when the same effector kinase is involved. In this review, we summarize various signaling pathways mediated by β-arrestins and highlight the physiologic effects of β-arrestin-dependent signaling.
Collapse
|
25
|
Morikawa Y, Kato H, Kashiwagi H, Nishiura N, Akuta K, Honda S, Kanakura Y, Tomiyama Y. Protease-activated receptor-4 (PAR4) variant influences on platelet reactivity induced by PAR4-activating peptide through altered Ca 2+ mobilization and ERK phosphorylation in healthy Japanese subjects. Thromb Res 2018; 162:44-52. [DOI: 10.1016/j.thromres.2017.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/09/2017] [Accepted: 12/22/2017] [Indexed: 11/29/2022]
|
26
|
Arrestins in the Cardiovascular System: An Update. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 159:27-57. [DOI: 10.1016/bs.pmbts.2018.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Nishimura A, Sunggip C, Oda S, Numaga-Tomita T, Tsuda M, Nishida M. Purinergic P2Y receptors: Molecular diversity and implications for treatment of cardiovascular diseases. Pharmacol Ther 2017. [DOI: 10.1016/j.pharmthera.2017.06.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Estevez B, Du X. New Concepts and Mechanisms of Platelet Activation Signaling. Physiology (Bethesda) 2017; 32:162-177. [PMID: 28228483 DOI: 10.1152/physiol.00020.2016] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Upon blood vessel injury, platelets are exposed to adhesive proteins in the vascular wall and soluble agonists, which initiate platelet activation, leading to formation of hemostatic thrombi. Pathological activation of platelets can induce occlusive thrombosis, resulting in ischemic events such as heart attack and stroke, which are leading causes of death globally. Platelet activation requires intracellular signal transduction initiated by platelet receptors for adhesion proteins and soluble agonists. Whereas many platelet activation signaling pathways have been established for many years, significant recent progress reveals much more complex and sophisticated signaling and amplification networks. With the discovery of new receptor signaling pathways and regulatory networks, some of the long-standing concepts of platelet signaling have been challenged. This review provides an overview of the new developments and concepts in platelet activation signaling.
Collapse
Affiliation(s)
- Brian Estevez
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Xiaoping Du
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
29
|
Role of P2Y 12 Receptor in Thrombosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 906:307-324. [PMID: 27628007 DOI: 10.1007/5584_2016_123] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
P2Y12 receptor is a 342 amino acid Gi-coupled receptor predominantly expressed on platelets. P2Y12 receptor is physiologically activated by ADP and inhibits adenyl cyclase (AC) to decrease cyclic AMP (cAMP) level, resulting in platelet aggregation. It also activates PI3 kinase (PI3K) pathway leading to fibrinogen receptor activation, and may protect platelets from apoptosis. Abnormalities of P2Y12 receptor include congenital deficiencies or high activity in diseases like diabetes mellitus (DM) and chronic kidney disease (CKD), exposing such patients to a prothrombotic condition. A series of clinical antiplatelet drugs, such as clopidogrel and ticagrelor, are designed as indirect or direct antagonists of P2Y12 receptor to reduce incidence of thrombosis mainly for patients of acute coronary syndrome (ACS) who are at high risk of thrombotic events. Studies on novel dual-/multi-target antiplatelet agents consider P2Y12 receptor as a promising part in combined targets. However, the clinical practical phenomena, such as "clopidogrel resistance" due to gene variations of cytochrome P450 or P2Y12 receptor constitutive activation, call for better antiplatelet agents. Researches also showed inverse agonist of P2Y12 receptor could play a better role over neutral antagonists. Personalized antiplatelet therapy is the most ideal destination for antiplatelet therapy in ACS patients with or without other underlying diseases like DM or CKD, however, there is still a long way to go.
Collapse
|
30
|
Smith TH, Li JG, Dores MR, Trejo J. Protease-activated receptor-4 and purinergic receptor P2Y12 dimerize, co-internalize, and activate Akt signaling via endosomal recruitment of β-arrestin. J Biol Chem 2017; 292:13867-13878. [PMID: 28652403 DOI: 10.1074/jbc.m117.782359] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/16/2017] [Indexed: 12/18/2022] Open
Abstract
Vascular inflammation and thrombosis require the concerted actions of several different agonists, many of which act on G protein-coupled receptors (GPCRs). GPCR dimerization is a well-established phenomenon that can alter protomer function. In platelets and other cell types, protease-activated receptor-4 (PAR4) has been shown to dimerize with the purinergic receptor P2Y12 to coordinate β-arrestin-mediated Akt signaling, an important mediator of integrin activation. However, the mechanism by which the PAR4-P2Y12 dimer controls β-arrestin-dependent Akt signaling is not known. We now report that PAR4 and P2Y12 heterodimer internalization is required for β-arrestin recruitment to endosomes and Akt signaling. Using bioluminescence resonance energy transfer, immunofluorescence microscopy, and co-immunoprecipitation in cells expressing receptors exogenously and endogenously, we demonstrate that PAR4 and P2Y12 specifically interact and form dimers expressed at the cell surface. We also found that activation of PAR4 but not of P2Y12 drives internalization of the PAR4-P2Y12 heterodimer. Remarkably, activated PAR4 internalization was required for recruitment of β-arrestin to endocytic vesicles, which was dependent on co-expression of P2Y12. Interestingly, stimulation of the PAR4-P2Y12 heterodimer promotes β-arrestin and Akt co-localization to intracellular vesicles. Moreover, activated PAR4-P2Y12 internalization is required for sustained Akt activation. Thus, internalization of the PAR4-P2Y12 heterodimer is necessary for β-arrestin recruitment to endosomes and Akt signaling and lays the foundation for examining whether blockade of PAR4 internalization reduces integrin and platelet activation.
Collapse
Affiliation(s)
- Thomas H Smith
- From the Biomedical Sciences Graduate Program and.,Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, 92093 and
| | - Julia G Li
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, 92093 and
| | - Michael R Dores
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, 92093 and.,the Department of Biology, Hofstra University, Hempstead, New York 11549
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California, 92093 and
| |
Collapse
|
31
|
A combined approach to early detect in vitro drug-induced hemostatic changes in preclinical safety. ACTA ACUST UNITED AC 2017; 69:275-283. [DOI: 10.1016/j.etp.2017.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 01/12/2017] [Accepted: 01/23/2017] [Indexed: 11/30/2022]
|
32
|
Sveshnikova AN, Balatskiy AV, Demianova AS, Shepelyuk TO, Shakhidzhanov SS, Balatskaya MN, Pichugin AV, Ataullakhanov FI, Panteleev MA. Systems biology insights into the meaning of the platelet's dual-receptor thrombin signaling. J Thromb Haemost 2016; 14:2045-2057. [PMID: 27513817 DOI: 10.1111/jth.13442] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Indexed: 01/16/2023]
Abstract
Essentials Roles of the two thrombin receptors in platelet signaling are poorly understood. Computational systems biology modeling was used together with continuous flow cytometry. Dual-receptor system has wide-range sensitivity to thrombin and optimal response dynamics. Procoagulant platelet formation is determined by donor-specific activities of the two receptors. SUMMARY Background Activation of human platelets with thrombin proceeds via two protease-activated receptors (PARs), PAR1 and PAR4, that have identical main intracellular signaling responses. Although there is evidence that they have different cleavage/inactivation kinetics (and some secondary variations in signaling), the reason for such redundancy is not clear. Methods We developed a multicompartmental stochastic computational systems biology model of dual-receptor thrombin signaling in platelets to gain insight into the mechanisms and roles of PAR1 and PAR4 functioning. Experiments employing continuous flow cytometry of washed human platelets were used to validate the model and test its predictions. Activity of PAR receptors in donors was evaluated by mRNA measurement and by polymorphism sequencing. Results Although PAR1 activation produced rapid and short-lived response, signaling via PAR4 developed slowly and propagated in time. Response of the dual-receptor system was both rapid and prolonged in time. Inclusion of PAR1/PAR4 heterodimer formation promoted PAR4 signaling in the medium range of thrombin concentration (about 10 nm), with little contribution at high and low thrombin. Different dynamics and dose-dependence of procoagulant platelet formation in healthy donors was associated with individual variations in PAR1 and PAR4 activities and particularly by the Ala120Thr polymorphism in the F2RL3 gene encoding PAR4. Conclusions The dual-receptor combination is critical to produce a response combining three critical advantages: sensitivity to thrombin concentration, rapid onset and steady propagation; specific features of the protease-activated receptors do not allow combination of all three in a single receptor.
Collapse
Affiliation(s)
- A N Sveshnikova
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
- Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Therapeutic Faculty, Pirogov Russian National Research Medical University, Moscow, Russia
| | - A V Balatskiy
- Medical Scientific and Educational Center, Lomonosov Moscow State University, Moscow, Russia
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - A S Demianova
- Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - T O Shepelyuk
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
- Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - S S Shakhidzhanov
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | - M N Balatskaya
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - A V Pichugin
- Institute of Immunology FMBA of Russia, Moscow, Russia
| | - F I Ataullakhanov
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
- Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
| | - M A Panteleev
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia.
- Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.
- Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia.
| |
Collapse
|
33
|
Smith TH, Coronel LJ, Li JG, Dores MR, Nieman MT, Trejo J. Protease-activated Receptor-4 Signaling and Trafficking Is Regulated by the Clathrin Adaptor Protein Complex-2 Independent of β-Arrestins. J Biol Chem 2016; 291:18453-64. [PMID: 27402844 DOI: 10.1074/jbc.m116.729285] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Indexed: 11/06/2022] Open
Abstract
Protease-activated receptor-4 (PAR4) is a G protein-coupled receptor (GPCR) for thrombin and is proteolytically activated, similar to the prototypical PAR1. Due to the irreversible activation of PAR1, receptor trafficking is intimately linked to signal regulation. However, unlike PAR1, the mechanisms that control PAR4 trafficking are not known. Here, we sought to define the mechanisms that control PAR4 trafficking and signaling. In HeLa cells depleted of clathrin by siRNA, activated PAR4 failed to internalize. Consistent with clathrin-mediated endocytosis, expression of a dynamin dominant-negative K44A mutant also blocked activated PAR4 internalization. However, unlike most GPCRs, PAR4 internalization occurred independently of β-arrestins and the receptor's C-tail domain. Rather, we discovered a highly conserved tyrosine-based motif in the third intracellular loop of PAR4 and found that the clathrin adaptor protein complex-2 (AP-2) is important for internalization. Depletion of AP-2 inhibited PAR4 internalization induced by agonist. In addition, mutation of the critical residues of the tyrosine-based motif disrupted agonist-induced PAR4 internalization. Using Dami megakaryocytic cells, we confirmed that AP-2 is required for agonist-induced internalization of endogenous PAR4. Moreover, inhibition of activated PAR4 internalization enhanced ERK1/2 signaling, whereas Akt signaling was markedly diminished. These findings indicate that activated PAR4 internalization requires AP-2 and a tyrosine-based motif and occurs independent of β-arrestins, unlike most classical GPCRs. Moreover, these findings are the first to show that internalization of activated PAR4 is linked to proper ERK1/2 and Akt activation.
Collapse
Affiliation(s)
- Thomas H Smith
- From the Biomedical Sciences Graduate Program and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Luisa J Coronel
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Julia G Li
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Michael R Dores
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093, Department of Biology, Hofstra University, Hempstead, New York 11549, and
| | - Marvin T Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44016
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093,
| |
Collapse
|
34
|
Abstract
Protease signaling in cells elicits multiple physiologically important responses via protease-activated receptors (PARs). There are 4 members of this family of G-protein-coupled receptors (PAR1-4). PARs are activated by proteolysis of the N terminus to reveal a tethered ligand. The rate-limiting step of PAR signaling is determined by the efficiency of proteolysis of the N terminus, which is regulated by allosteric binding sites, cofactors, membrane localization, and receptor dimerization. This ultimately controls the initiation of PAR signaling. In addition, these factors also control the cellular response by directing signaling toward G-protein or β-arrestin pathways. PAR1 signaling on endothelial cells is controlled by the activating protease and heterodimerization with PAR2 or PAR3. As a consequence, the genetic and epigenetic control of PARs and their cofactors in physiologic and pathophysiologic conditions have the potential to influence cellular behavior. Recent studies have uncovered polymorphisms that result in PAR4 sequence variants with altered reactivity that interact to influence platelet response. This further demonstrates how interactions within the plasma membrane can control the physiological output. Understanding the structural rearrangement following PAR activation and how PARs are allosterically controlled within the plasma membrane will determine how best to target this family of receptors therapeutically. The purpose of this article is to review how signaling from PARs is influenced by alternative cleavage sites and the physical interactions within the membrane. Going forward, it will be important to relate the altered signaling to the molecular arrangement of PARs in the cell membrane and to determine how these may be influenced genetically.
Collapse
|
35
|
French SL, Hamilton JR. Protease-activated receptor 4: from structure to function and back again. Br J Pharmacol 2016; 173:2952-65. [PMID: 26844674 DOI: 10.1111/bph.13455] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 01/22/2016] [Accepted: 01/29/2016] [Indexed: 12/21/2022] Open
Abstract
Protease-activated receptors are a family of four GPCRs (PAR1-PAR4) with a number of unique attributes. Nearly two and a half decades after the discovery of the first PAR, an antagonist targeting this receptor has been approved for human use. The first-in-class PAR1 antagonist, vorapaxar, was approved for use in the USA in 2014 for the prevention of thrombotic cardiovascular events in patients with a history of myocardial infarction or with peripheral arterial disease. These recent developments indicate the clinical potential of manipulating PAR function. While much work has been aimed at uncovering the function of PAR1 and, to a lesser extent, PAR2, comparatively little is known regarding the pharmacology and physiology of PAR3 and PAR4. Recent studies have begun to develop the pharmacological and genetic tools required to study PAR4 function in detail, and there is now emerging evidence for the function of PAR4 in disease settings. In this review, we detail the discovery, structure, pharmacology, physiological significance and therapeutic potential of PAR4. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- Shauna L French
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Justin R Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia.
| |
Collapse
|
36
|
Holinstat M, Bray PF. Protease receptor antagonism to target blood platelet therapies. Clin Pharmacol Ther 2015; 99:72-81. [PMID: 26501993 DOI: 10.1002/cpt.282] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 01/24/2023]
Abstract
Platelet activation and thrombus formation play a central role in ischemic vascular disease. Thrombin, an especially potent physiologic agonist mediating in vivo activation of platelets, acts via a unique family of G-protein-coupled receptors called protease-activated receptors (PARs) with a broad tissue expression. This review focuses on current antiplatelet therapies as well as innovative approaches to targeting PARs in patients with atherothrombotic vascular disease.
Collapse
Affiliation(s)
- M Holinstat
- University of Michigan Medical School, Departments of Pharmacology and Internal Medicine, Ann Arbor, Michigan, USA
| | - P F Bray
- Thomas Jefferson University, The Cardeza Foundation for Hematologic Research and the Department of Medicine, Jefferson Medical College, Philadelphia, Pennsylvania, USA
| |
Collapse
|
37
|
Shakhidzhanov SS, Shaturny VI, Panteleev MA, Sveshnikova AN. Modulation and pre-amplification of PAR1 signaling by ADP acting via the P2Y12 receptor during platelet subpopulation formation. Biochim Biophys Acta Gen Subj 2015; 1850:2518-29. [PMID: 26391841 DOI: 10.1016/j.bbagen.2015.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/01/2015] [Accepted: 09/11/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Two major soluble blood platelet activators are thrombin and ADP. Of these two, only thrombin can induce mitochondrial collapse and programmed cell death leading to phosphatidylserine (PS) exposure required for blood clotting reactions acceleration. Thrombin can also greatly potentiate collagen-induced PS exposure. However, ADP acting through the P2Y12 receptor was shown to increase the PS-exposing (PS+) platelets fraction produced by thrombin or thrombin-plus-collagen via an unknown mechanism. METHODS We developed a comprehensive multicompartmental computational model of platelet PAR1-and-P2Y12 calcium signal transduction that included cytoplasmic signaling, dense tubular system and mitochondria. To test model predictions, flow cytometry experiments with washed, annexin V-labeled platelets were performed. RESULTS Stimulation of thrombin receptor PAR1 in the model induced cytoplasmic calcium oscillations, calcium uptake by mitochondria, opening of the permeability transition pore and collapse of the mitochondrial membrane potential. ADP stimulation of P2Y12 led to cAMP decrease that, in turn, caused changes in phospholipase C phosphorylation by protein kinase A, increase in cytoplasmic calcium level and, consequently, PS+ platelet formation. ADP addition before stimulation of PAR1 produced much greater increase of the PS+ fraction because cAMP concentration had time to go down prior to calcium oscillations; this prediction was also tested and confirmed experimentally. CONCLUSION These results suggest a mechanism of ADP-dependent PS exposure regulation and show a likely mode of action that could be important for the PS exposure regulation in thrombi, where ADP is released before thrombin formation.
Collapse
Affiliation(s)
- S S Shakhidzhanov
- Faculty of Physics, Lomonosov Moscow State University, 1-2 Leninskie Gory, GSP-1, Moscow 119991, Rusia.
| | - V I Shaturny
- Faculty of Physics, Lomonosov Moscow State University, 1-2 Leninskie Gory, GSP-1, Moscow 119991, Rusia.
| | - M A Panteleev
- Faculty of Physics, Lomonosov Moscow State University, 1-2 Leninskie Gory, GSP-1, Moscow 119991, Rusia; Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela St, Moscow 117198, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow 119991, Russia; Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, 9 Institutskii per., Dolgoprudnyi, 141700, Russia.
| | - A N Sveshnikova
- Faculty of Physics, Lomonosov Moscow State University, 1-2 Leninskie Gory, GSP-1, Moscow 119991, Rusia; Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela St, Moscow 117198, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow 119991, Russia.
| |
Collapse
|
38
|
Mumaw MM, Nieman MT. Race differences in platelet reactivity: is protease activated receptor 4 a predictor of response to therapy? Arterioscler Thromb Vasc Biol 2015; 34:2524-6. [PMID: 25411106 DOI: 10.1161/atvbaha.114.304727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Michele M Mumaw
- From the Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - Marvin T Nieman
- From the Department of Pharmacology, Case Western Reserve University, Cleveland, OH.
| |
Collapse
|
39
|
Mumaw MM, de la Fuente M, Arachiche A, Wahl JK, Nieman MT. Development and characterization of monoclonal antibodies against Protease Activated Receptor 4 (PAR4). Thromb Res 2015; 135:1165-71. [PMID: 25890453 DOI: 10.1016/j.thromres.2015.03.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/02/2015] [Accepted: 03/30/2015] [Indexed: 01/23/2023]
Abstract
BACKGROUND Protease activated receptor 4 (PAR4) is a G protein coupled receptor (GPCR) which is activated by proteolytic cleavage of its N-terminal exodomain. This generates a tethered ligand that activates the receptor and triggers downstream signaling events. With the current focus in the development of anti-platelet therapies shifted towards PARs, new reagents are needed for expanding the field's knowledge on PAR4. Currently, there are no PAR4 reagents which are able to detect activation of the receptor. METHODS Monoclonal PAR4 antibodies were purified from hybridomas producing antibody that were generated by fusing splenocytes with NS-1 cells. Immunoblotting, immunofluorescence, and flow cytometry were utilized to detect the epitope for each antibody and to evaluate the interaction of the antibodies with cells. RESULTS Here, we report the successful generation of three monoclonal antibodies to the N-terminal extracellular domain of PAR4: 14H6, 5F10, and 2D6. We mapped the epitope on PAR4 of 14H6, 5F10, and 2D6 antibodies to residues (48-53), (41-47), and (73-78), respectively. Two of the antibodies (14H6 and 5F10) interacted close to the thrombin cleavage and were sensitive to α-thrombin cleavage of PAR4. In addition, 5F10 was able to partially inhibit the cleavage of PAR4 expressed in HEK293 cells by α-thrombin. CONCLUSIONS These new antibodies provide a means to monitor endogenous PAR4 expression and activation by proteases on cells.
Collapse
Affiliation(s)
- Michele M Mumaw
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Maria de la Fuente
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Amal Arachiche
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - James K Wahl
- Department of Oral Biology, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE, USA
| | - Marvin T Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
40
|
Balasubramaniam SL, Gopalakrishnapillai A, Gangadharan V, Duncan RL, Barwe SP. Sodium-calcium exchanger 1 regulates epithelial cell migration via calcium-dependent extracellular signal-regulated kinase signaling. J Biol Chem 2015; 290:12463-73. [PMID: 25770213 DOI: 10.1074/jbc.m114.629519] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Indexed: 12/16/2022] Open
Abstract
Na(+)/Ca(2+) exchanger-1 (NCX1) is a major calcium extrusion mechanism in renal epithelial cells enabling the efflux of one Ca(2+) ion and the influx of three Na(+) ions. The gradient for this exchange activity is provided by Na,K-ATPase, a hetero-oligomer consisting of a catalytic α-subunit and a regulatory β-subunit (Na,K-β) that also functions as a motility and tumor suppressor. We showed earlier that mice with heart-specific ablation (KO) of Na,K-β had a specific reduction in NCX1 protein and were ouabain-insensitive. Here, we demonstrate that Na,K-β associates with NCX1 and regulates its localization to the cell surface. Madin-Darby canine kidney cells with Na,K-β knockdown have reduced NCX1 protein and function accompanied by 2.1-fold increase in free intracellular calcium and a corresponding increase in the rate of cell migration. Increased intracellular calcium up-regulated ERK1/2 via calmodulin-dependent activation of PI3K. Both myosin light chain kinase and Rho-associated kinase acted as mediators of ERK1/2-dependent migration. Restoring NCX1 expression in β-KD cells reduced migration rate and ERK1/2 activation, suggesting that NCX1 functions downstream of Na,K-β in regulating cell migration. In parallel, inhibition of NCX1 by KB-R7943 in Madin-Darby canine kidney cells, LLC-PK1, and human primary renal epithelial cells (HREpiC) increased ERK1/2 activation and cell migration. This increased migration was associated with high myosin light chain phosphorylation by PI3K/ERK-dependent mechanism in HREpiC cells. These data confirm the role of NCX1 activity in regulating renal epithelial cell migration.
Collapse
Affiliation(s)
- Sona Lakshme Balasubramaniam
- From the Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803 and Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
| | - Anilkumar Gopalakrishnapillai
- From the Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803 and
| | - Vimal Gangadharan
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
| | - Randall L Duncan
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
| | - Sonali P Barwe
- From the Nemours Center for Childhood Cancer Research, Alfred I. duPont Hospital for Children, Wilmington, Delaware 19803 and Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
41
|
Mumaw MM, de la Fuente M, Noble DN, Nieman MT. Targeting the anionic region of human protease-activated receptor 4 inhibits platelet aggregation and thrombosis without interfering with hemostasis. J Thromb Haemost 2014; 12:1331-41. [PMID: 24888424 PMCID: PMC4127092 DOI: 10.1111/jth.12619] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/25/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Human platelet activation and aggregation is a complex process. To date, many therapies have been developed targeting proteins that mediate this process to prevent unwanted activation. However, the current standard of care for acute coronary syndromes still has limitations, including bleeding risk. OBJECTIVE To evaluate the protease-activated receptor 4 (PAR4) anionic cluster as a viable antiplatelet target by using a polyclonal antibody (CAN12). METHODS We used western blotting, aggregation and secretion ex vivo to evaluate the ability of CAN12 to interact with PAR4 and inhibit platelet activation. The effects of CAN12 in vivo were evaluated with the Rose Bengal arterial thrombosis model and two models of hemostasis. RESULTS CAN12 was able to interact with human PAR4 and delay PAR4 cleavage. In addition, CAN12 inhibited thrombin-induced human platelet aggregation and secretion in a dose-dependent manner. The specificity of CAN12 was agonist-dependent. In vivo, we determined that CAN12 was able to inhibit arterial thrombosis, and, using two independent methods, we found that CAN12 did not influence hemostasis. CONCLUSION Targeting the extracellular anionic cluster on PAR4 is a viable novel strategy as an antiplatelet therapy.
Collapse
Affiliation(s)
- M M Mumaw
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | |
Collapse
|