1
|
Babin K, Kilinc C, Gostynska SE, Dickson A, Pioszak AA. Characterization of the Two-Domain Peptide Binding Mechanism of the Human CGRP Receptor for CGRP and the Ultrahigh Affinity ssCGRP Variant. Biochemistry 2025; 64:1770-1787. [PMID: 40172014 PMCID: PMC12004451 DOI: 10.1021/acs.biochem.4c00812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
Calcitonin gene-related peptide (CGRP) is a 37-amino acid neuropeptide that functions in pain signaling and neuroimmune communication. The CGRP receptor, CGRPR, is a class B GPCR that is a drug target for migraine headache and other disorders. Here, we used nanoBRET receptor binding and cAMP biosensor signaling assays and theoretical modeling to characterize the CGRPR "two-domain" peptide binding mechanism. Single-site extracellular domain (ECD)-binding and two-site ECD/transmembrane domain (TMD)-binding peptides were examined for CGRP and a high-affinity variant "ssCGRP" with modifications in the C-terminal region. Wildtype and ssCGRP(27-37) bound the ECD with affinities of 1 μM and 0.5 nM, and residence times of 5 s and 8 min, respectively. The (8-37) antagonist fragments had affinities of 100 nM for wildtype and 0.5 nM for ss and exhibited behavior consistent with two-site ECD/TMD binding. ssCGRP(8-37) had a residence time of 76 min. CGRP(1-37) agonist had 25-fold higher affinity for the G protein-coupled state of the CGRPR (Ki = 3 nM) than the uncoupled state (Ki = 74 nM), and elicited short-duration cAMP signaling. In contrast, ssCGRP(1-37) had similar strong affinities for both receptor states (Ki = 0.2 to 0.25 nM), and induced long-duration signaling. An equilibrium reaction network mathematical model of CGRPR activation that includes peptide and G protein binding was developed. This captured wildtype CGRP binding experiments well, but the ssCGRP binding properties were not fully reproduced, suggesting that it may exhibit a distinct binding mechanism. Together, these results advance our quantitative understanding of the CGRPR two-domain mechanism and support the ss variants as potential long-acting therapeutics.
Collapse
Affiliation(s)
- Katie
M. Babin
- Department
of Biochemistry and Physiology, University
of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Ceren Kilinc
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Sandra E. Gostynska
- Department
of Biochemistry and Physiology, University
of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Alex Dickson
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
- Department
of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Augen A. Pioszak
- Department
of Biochemistry and Physiology, University
of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
2
|
Kristensen JB, Elster L, Lundh M, Ballarín-González B, Alexopoulou F, Kræmer M, Jensen DM, Leurs U, Nielsen JC, Hansen HH, Haanes KA, Degn M. Pipeline for development of acylated peptide based CGRP receptor antagonist with extended half-life for migraine treatment. Sci Rep 2025; 15:1870. [PMID: 39805895 PMCID: PMC11730311 DOI: 10.1038/s41598-024-84547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025] Open
Abstract
Migraine is a debilitating headache disorder. The disease has neurovascular origin and migraine attacks can be elicited by vasodilative neuropeptides such as alpha calcitonin gene-related peptide (αCGRP). Antagonizing CGRP actions in migraine patients has proven clinically efficient. Here, we present a pipeline for development of a peptide-based hCGRP receptor antagonist with increased half-life capable of antagonising the vasodilatory effect of hαCGRP. A series of hαCGRP8-37 analogues carrying a C18-or C20-diacid lipidation was screened for their antagonism against the hCGRP receptor. hαCGRP8-37 analogues with a C20-diacid were 2-6 fold more potent than analogues conjugated with a C18-diacid. Half-life of hαCGRP8-37 analogues carrying a C20-diacid was estimated in mice in a pilot study (n = 1-2). Half-lives ranged from 7.3 to 13.7 h. An hαCGRP8-37 analogue conjugated with a C20 diacid at position 25 was subjected to an amino acid substitution scan to identify mutations that could further enhance hCGRP receptor antagonism. Substituting alanine with serine at position 36 resulted in a ~ 4 fold gain of potency. Vasodilative actions of hαCGRP were successfully antagonized by hαCGRP8-37 analogues carrying a C20 diacid at position 25. Our findings demonstrate that lipidation can improve hαCGRP8-37 pharmacokinetics while maintaining hαCGRP antagonism, thus demonstrating potential for a peptide-based migraine treatment strategy.
Collapse
Affiliation(s)
- Jens Bjelke Kristensen
- Gubra ApS, Hørsholm Kongevej 11B, DK-2970, Hørsholm, Denmark.
- Sensory Biology Unit, Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark.
| | - Lisbeth Elster
- Gubra ApS, Hørsholm Kongevej 11B, DK-2970, Hørsholm, Denmark
| | - Morten Lundh
- Gubra ApS, Hørsholm Kongevej 11B, DK-2970, Hørsholm, Denmark
| | | | - Flora Alexopoulou
- Gubra ApS, Hørsholm Kongevej 11B, DK-2970, Hørsholm, Denmark
- Novo Nordisk, Måløv, Denmark
| | - Martin Kræmer
- Gubra ApS, Hørsholm Kongevej 11B, DK-2970, Hørsholm, Denmark
| | | | - Ulrike Leurs
- Gubra ApS, Hørsholm Kongevej 11B, DK-2970, Hørsholm, Denmark
| | | | - Henrik H Hansen
- Gubra ApS, Hørsholm Kongevej 11B, DK-2970, Hørsholm, Denmark
| | - Kristian A Haanes
- Sensory Biology Unit, Translational Research Centre, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Matilda Degn
- Gubra ApS, Hørsholm Kongevej 11B, DK-2970, Hørsholm, Denmark.
| |
Collapse
|
3
|
Lee S. Development of the novel amylin and calcitonin receptor activators by peptide mutagenesis. Arch Biochem Biophys 2024; 762:110191. [PMID: 39481742 DOI: 10.1016/j.abb.2024.110191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
The amylin peptide hormone receptor is the complex of the calcitonin peptide hormone receptor and an accessory protein. The calcitonin receptor activation controls calcium homeostasis, while it also functions as the main component of the amylin receptor. Amylin receptor activation in brains controls blood glucose and appetite. Currently, non-selective amylin and calcitonin receptor activators have been tested for body weight reduction to treat obesity. Here, multiple peptide activators for human amylin and calcitonin receptors were developed by introducing comprehensive mutagenesis to rat amylin peptide. The rat amylin peptide C-terminal fragment that interacts with amylin receptor extracellular domain was used to screen for affinity-enhancing mutations. Up to twelve mutational combinations were found to significantly increase peptide affinity both for amylin and calcitonin receptor extracellular domains by over 100-fold. Using these affinity-enhancing mutations, three representative rat amylin analogs with thirty-seven amino acids were made to test the potency increase for amylin and calcitonin receptor activation. All three mutated rat amylin analogs showed significant potency increases by 5- to 10-fold compared to endogenous rat amylin. These mutated peptide activators also showed higher potency for human amylin and calcitonin receptor activation than a clinically available amylin receptor activator pramlintide. These amylin and calcitonin receptor activators developed in this study may be useful as the valuable pharmacological tools that activate amylin receptors in cell-based systems.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Medicinal Biotechnology, College of Health Science, Dong-A University, Busan, 49315, Republic of Korea.
| |
Collapse
|
4
|
Gostynska SE, Karim JA, Ford BE, Gordon PH, Babin KM, Inoue A, Lambert NA, Pioszak AA. Amylin receptor subunit interactions are modulated by agonists and determine signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617487. [PMID: 39416010 PMCID: PMC11482831 DOI: 10.1101/2024.10.09.617487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Three amylin receptors (AMYRs) mediate the metabolic actions of the peptide hormone amylin and are drug targets for diabetes and obesity. AMY1R, AMY2R, and AMY3R are heterodimers consisting of the G protein-coupled calcitonin receptor (CTR) paired with a RAMP1, -2, or -3 accessory subunit, respectively, which increases amylin potency. Little is known about AMYR subunit interactions and their role in signaling. Here, we show that the AMYRs have distinct basal subunit equilibriums that are modulated by peptide agonists and determine the cAMP signaling phenotype. Using a novel biochemical assay that resolves the AMYR heterodimers and free subunits, we found that the AMY1/2R subunit equilibriums favored free CTR and RAMP1/2, and rat amylin and αCGRP agonists promoted subunit association. A stronger CTR-RAMP3 transmembrane domain interface yielded a more stable AMY3R, and human and salmon calcitonin agonists promoted AMY3R dissociation. Similar changes in subunit association-dissociation were observed in live cell membranes, and G protein coupling and cAMP signaling assays showed how these altered signaling. Our findings reveal regulation of heteromeric GPCR signaling through subunit interaction dynamics.
Collapse
Affiliation(s)
- Sandra E. Gostynska
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Jordan A. Karim
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Bailee E. Ford
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Peyton H. Gordon
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Katie M. Babin
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578. Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501. Japan
| | - Nevin A. Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA. 30912. USA
| | - Augen A. Pioszak
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK. 73104. USA
| |
Collapse
|
5
|
Qin Y, Chen X, Yu Z, Zhou X, Wang Y, Li Q, Dai W, Zhang Y, Wang S, Fan Y, Xiao J, Su D, Jiao Y, Yu W. Spinal RAMP1-mediated neuropathic pain sensitisation in the aged mice through the modulation of CGRP-CRLR pain signalling. Heliyon 2024; 10:e35862. [PMID: 39224276 PMCID: PMC11367041 DOI: 10.1016/j.heliyon.2024.e35862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Pain sensitivity varies depending on both the state and age of an individual. For example, chronic pain is more common in older individuals, but the underlying mechanisms remain unknown. This study revealed that 18-month-old mice (aged) experienced more severe and long-lasting allodynia and hyperalgesia in the chronic constriction injury (CCI)-induced pain state compared to 2-month-old mice. Interestingly, the aged mice had a higher baseline mechanical pain threshold than the adult mice. The expression of spinal receptor-active modification protein 1 (RAMP1), as a key component and regulator of the calcitonin gene-related peptide (CGRP) receptor for nociceptive transmission from the periphery to the spinal cord, was reduced in the physiological state but significantly increased after CCI in the aged mice compared to the adult mice. Moreover, when RAMP1 was knocked down using shRNA, the pain sensitivity of adult mice decreased significantly, and CCI-induced allodynia in aged mice was reduced. These findings suggest that spinal RAMP1 is involved in regulating pain sensitivity in a state- and age-dependent manner. Additionally, interfering with RAMP1 could be a promising strategy for alleviating chronic pain in older individuals.
Collapse
Affiliation(s)
- Yi Qin
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| | - Xuemei Chen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| | - Zhangjie Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| | - Xiaoxin Zhou
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
| | - Yihao Wang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
| | - Qi Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
| | - Wanbing Dai
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
| | - Yizhe Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
| | - Sa Wang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
| | - Yinghui Fan
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
| | - Jie Xiao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
| | - Diansan Su
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| | - Yingfu Jiao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| |
Collapse
|
6
|
Cao J, Belousoff MJ, Danev R, Christopoulos A, Wootten D, Sexton PM. Cryo-EM Structure of the Human Amylin 1 Receptor in Complex with CGRP and Gs Protein. Biochemistry 2024; 63:1089-1096. [PMID: 38603770 PMCID: PMC11080994 DOI: 10.1021/acs.biochem.4c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
Inhibition of calcitonin gene-related peptide (CGRP) or its cognate CGRP receptor (CGRPR) has arisen as a major breakthrough in the treatment of migraine. However, a second CGRP-responsive receptor exists, the amylin (Amy) 1 receptor (AMY1R), yet its involvement in the pathology of migraine is poorly understood. AMY1R and CGRPR are heterodimers consisting of receptor activity-modifying protein 1 (RAMP1) with the calcitonin receptor (CTR) and the calcitonin receptor-like receptor (CLR), respectively. Here, we present the structure of AMY1R in complex with CGRP and Gs protein and compare it with the reported structures of the AMY1R complex with rat amylin (rAmy) and the CGRPR in complex with CGRP. Despite similar protein backbones observed within the receptors and the N- and C-termini of the two peptides bound to the AMY1R complexes, they have distinct organization in the peptide midregions (the bypass motif) that is correlated with differences in the dynamics of the respective receptor extracellular domains. Moreover, divergent conformations of extracellular loop (ECL) 3, intracellular loop (ICL) 2, and ICL3 within the CTR and CLR protomers are evident when comparing the CGRP bound to the CGRPR and AMY1R, which influences the binding mode of CGRP. However, the conserved interactions made by the C-terminus of CGRP to the CGRPR and AMY1R are likely to account for cross-reactivity of nonpeptide CGRPR antagonists observed at AMY1R, which also extends to other clinically used CGRPR blockers, including antibodies.
Collapse
Affiliation(s)
- Jianjun Cao
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Matthew J. Belousoff
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Radostin Danev
- Graduate
School of Medicine, University of Tokyo, N415, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Arthur Christopoulos
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Denise Wootten
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Patrick M. Sexton
- Drug
Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC
Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
7
|
Yang Z, Li H, Wu P, Li Q, Yu C, Wang D, Li W. Multi-biological functions of intermedin in diseases. Front Physiol 2023; 14:1233073. [PMID: 37745233 PMCID: PMC10511904 DOI: 10.3389/fphys.2023.1233073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Intermedin (IMD) is a member of the calcitonin gene-related peptide (CGRP)/calcitonin (CT) superfamily, and it is expressed extensively throughout the body. The typical receptors for IMD are complexes composed of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein (RAMP), which leads to a biased activation towards Gαs. As a diagnostic and prognostic biomarker, IMD regulates the initiation and metastasis of multiple tumors. Additionally, IMD functions as a proangiogenic factor that can restrain excessive vascular budding and facilitate the expansion of blood vessel lumen, ultimately resulting in the fusion of blood vessels. IMD has protective roles in various diseases, including ischemia-reperfusion injury, metabolic disease, cardiovascular diseases and inflammatory diseases. This review systematically elucidates IMD's expression, structure, related receptors and signal pathway, as well as its comprehensive functions in the context of acute kidney injury, obesity, diabetes, heart failure and sepsis. However, the precise formation process of IMD short peptides in vivo and their downstream signaling pathway have not been fully elucidated yet. Further in-depth studies are need to translate IMD research into clinical applications.
Collapse
Affiliation(s)
- Zhi Yang
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Pengfei Wu
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingyan Li
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - ChunYan Yu
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Denian Wang
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weimin Li
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Babin KM, Karim JA, Gordon PH, Lennon J, Dickson A, Pioszak AA. Adrenomedullin 2/intermedin is a slow off-rate, long-acting endogenous agonist of the adrenomedullin 2 G protein-coupled receptor. J Biol Chem 2023:104785. [PMID: 37146967 DOI: 10.1016/j.jbc.2023.104785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023] Open
Abstract
Adrenomedullin 2/intermedin (AM2/IMD), adrenomedullin (AM), and calcitonin gene-related peptide (CGRP) have signaling functions in the cardiovascular, lymphatic, and nervous systems by activating three heterodimeric receptors comprised of the class B GPCR CLR and a RAMP1, -2, or -3 modulatory subunit. CGRP and AM prefer the RAMP1 and RAMP2/3 complexes, respectively, whereas AM2/IMD is thought to be relatively non-selective. Accordingly, AM2/IMD exhibits overlapping actions with CGRP and AM, so the rationale for this third agonist for the CLR-RAMP complexes is unclear. Here, we report that AM2/IMD is kinetically selective for CLR-RAMP3, known as the AM2R, and we define the structural basis for its distinct kinetics. In live cell biosensor assays, AM2/IMD-AM2R elicited substantially longer duration cAMP signaling than the eight other peptide-receptor combinations. AM2/IMD and AM bound the AM2R with similar equilibrium affinities, but AM2/IMD had a much slower off-rate and longer receptor residence time, thus explaining its prolonged signaling capacity. Peptide and receptor chimeras and mutagenesis were used to map the regions responsible for the distinct binding and signaling kinetics to the AM2/IMD mid-region and the RAMP3 extracellular domain (ECD). Molecular dynamics simulations revealed how the former forms stable interactions at the CLR ECD-transmembrane domain interface and how the latter augments the CLR ECD binding pocket to anchor the AM2/IMD C-terminus. These two strong binding components only combine in the AM2R. Our findings uncover AM2/IMD-AM2R as a cognate pair with unique temporal features, reveal how AM2/IMD and RAMP3 collaborate to shape CLR signaling, and have significant implications for AM2/IMD biology.
Collapse
Affiliation(s)
- Katie M Babin
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Jordan A Karim
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Peyton H Gordon
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - James Lennon
- Departments of Biochemistry and Molecular Biology and Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Alex Dickson
- Departments of Biochemistry and Molecular Biology and Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824.
| | - Augen A Pioszak
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104.
| |
Collapse
|
9
|
Babin KM, Karim JA, Gordon PH, Lennon J, Dickson A, Pioszak AA. Adrenomedullin 2/intermedin is a slow off-rate, long-acting endogenous agonist of the adrenomedullin 2 G protein-coupled receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523955. [PMID: 36711519 PMCID: PMC9882245 DOI: 10.1101/2023.01.13.523955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The signaling peptides adrenomedullin 2/intermedin (AM2/IMD), adrenomedullin (AM), and CGRP have overlapping and distinct functions in the cardiovascular, lymphatic, and nervous systems by activating three shared receptors comprised of the class B GPCR CLR in complex with a RAMP1, -2, or -3 modulatory subunit. Here, we report that AM2/IMD, which is thought to be a non-selective agonist, is kinetically selective for CLR-RAMP3, known as the AM 2 R. AM2/IMD-AM 2 R elicited substantially longer duration cAMP signaling than the eight other peptide-receptor combinations due to AM2/IMD slow off-rate binding kinetics. The regions responsible for the slow off-rate were mapped to the AM2/IMD mid-region and the RAMP3 extracellular domain. MD simulations revealed how these bestow enhanced stability to the complex. Our results uncover AM2/IMD-AM 2 R as a cognate pair with unique temporal features, define the mechanism of kinetic selectivity, and explain how AM2/IMD and RAMP3 collaborate to shape the signaling output of a clinically important GPCR.
Collapse
Affiliation(s)
- Katie M. Babin
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Jordan A. Karim
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Peyton H. Gordon
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - James Lennon
- Departments of Biochemistry and Molecular Biology and Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Alex Dickson
- Departments of Biochemistry and Molecular Biology and Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Augen A. Pioszak
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
- Lead contact
| |
Collapse
|
10
|
Kotliar IB, Lorenzen E, Schwenk JM, Hay DL, Sakmar TP. Elucidating the Interactome of G Protein-Coupled Receptors and Receptor Activity-Modifying Proteins. Pharmacol Rev 2023; 75:1-34. [PMID: 36757898 PMCID: PMC9832379 DOI: 10.1124/pharmrev.120.000180] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/27/2022] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are known to interact with several other classes of integral membrane proteins that modulate their biology and pharmacology. However, the extent of these interactions and the mechanisms of their effects are not well understood. For example, one class of GPCR-interacting proteins, receptor activity-modifying proteins (RAMPs), comprise three related and ubiquitously expressed single-transmembrane span proteins. The RAMP family was discovered more than two decades ago, and since then GPCR-RAMP interactions and their functional consequences on receptor trafficking and ligand selectivity have been documented for several secretin (class B) GPCRs, most notably the calcitonin receptor-like receptor. Recent bioinformatics and multiplexed experimental studies suggest that GPCR-RAMP interactions might be much more widespread than previously anticipated. Recently, cryo-electron microscopy has provided high-resolution structures of GPCR-RAMP-ligand complexes, and drugs have been developed that target GPCR-RAMP complexes. In this review, we provide a summary of recent advances in techniques that allow the discovery of GPCR-RAMP interactions and their functional consequences and highlight prospects for future advances. We also provide an up-to-date list of reported GPCR-RAMP interactions based on a review of the current literature. SIGNIFICANCE STATEMENT: Receptor activity-modifying proteins (RAMPs) have emerged as modulators of many aspects of G protein-coupled receptor (GPCR)biology and pharmacology. The application of new methodologies to study membrane protein-protein interactions suggests that RAMPs interact with many more GPCRs than had been previously known. These findings, especially when combined with structural studies of membrane protein complexes, have significant implications for advancing GPCR-targeted drug discovery and the understanding of GPCR pharmacology, biology, and regulation.
Collapse
Affiliation(s)
- Ilana B Kotliar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Emily Lorenzen
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Jochen M Schwenk
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Debbie L Hay
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| |
Collapse
|
11
|
Cary BP, Zhang X, Cao J, Johnson RM, Piper SJ, Gerrard EJ, Wootten D, Sexton PM. New insights into the structure and function of class B1 GPCRs. Endocr Rev 2022; 44:492-517. [PMID: 36546772 PMCID: PMC10166269 DOI: 10.1210/endrev/bnac033] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors. Class B1 GPCRs constitute a subfamily of 15 receptors that characteristically contain large extracellular domains (ECDs) and respond to long polypeptide hormones. Class B1 GPCRs are critical regulators of homeostasis, and as such, many are important drug targets. While most transmembrane proteins, including GPCRs, are recalcitrant to crystallization, recent advances in electron cryo-microscopy (cryo-EM) have facilitated a rapid expansion of the structural understanding of membrane proteins. As a testament to this success, structures for all the class B1 receptors bound to G proteins have been determined by cryo-EM in the past five years. Further advances in cryo-EM have uncovered dynamics of these receptors, ligands, and signalling partners. Here, we examine the recent structural underpinnings of the class B1 GPCRs with an emphasis on structure-function relationships.
Collapse
Affiliation(s)
- Brian P Cary
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Xin Zhang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Jianjun Cao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Rachel M Johnson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Sarah J Piper
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Elliot J Gerrard
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| |
Collapse
|
12
|
Virtual drug repurposing study for the CGRPR identifies pentagastrin and leuprorelin as putative candidates. J Mol Graph Model 2022; 116:108254. [PMID: 35803082 DOI: 10.1016/j.jmgm.2022.108254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/14/2022]
Abstract
Calcitonin gene-related peptide receptor (CGRPR) is a heterodimer consisting of CLR and RAMP1 proteins. Activation of the CGRPR with the endogenous peptide CGRP is known to play a crucial role in migraine pathophysiology. CGRP occupies two regions in the CGRPR upon binding, namely ectodomain and transmembrane sites (sites 1 and 2, respectively). The disruption of the CGRPR heterodimer interface is one of the main strategies to prevent CGRPR activation and its resulting effects. So far, FDA approved monoclonal antibodies and small molecule gepant inhibitors are considered for the treatment of acute or chronic migraine symptoms. However, most of these gepants have severe side effects. Thus, in this study, a virtual drug repurposing approach is applied to CGRPR to find alternative or better molecules that would have a potential to inhibit or block the CLR - RAMP1 interface compared to known gepant molecules. A small molecule library of FDA-approved molecules was screened in these two different binding sites, further simulations were performed and analyzed. The objectives of this study are (i) to repurpose an FDA-approved drug having more potent features for CGRPR inhibition compared to gepants, and (ii) to examine whether the transmembrane binding site (site 2) accepts small molecules or small peptide analogues for binding. As a result of this extensive in silico analysis, two molecules were identified, namely pentagastrin and leuprorelin. It is shown that FDA approved compound rimegepant and the identified pentagastrin molecules form and maintain the interactions through CLR W72 and RAMP1 W74, which are the residues revealed to have an important role in CGRPR antagonism at binding site 1. At binding site 2, the interactions needed to be formed for CGRP binding are not captured by rimegepant nor leuprorelin, yet leuprorelin forms more interactions throughout the simulations, meaning that small molecules are also capable of binding to site 2. Moreover, it is found that the crucial interactions for receptor signaling and heterodimerization occurred between CLR and RAMP1 interface are disrupted more with the ligands bound to ectodomain site, rather than the transmembrane domain. These findings of pentagastrin and leuprorelin molecules are recommended to be considered in further de novo drug development and/or experimental studies related to CGRPR signaling blockade and antagonism.
Collapse
|
13
|
Lee S. Peptide ligand interaction with maltose-binding protein tagged to the calcitonin gene-related peptide receptor: The inhibitory role of receptor N-glycosylation. Peptides 2022; 150:170735. [PMID: 35007660 DOI: 10.1016/j.peptides.2022.170735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 11/21/2022]
Abstract
Calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) are peptide hormones and their receptors play a critical role in migraine progression and blood pressure control, respectively. CGRP and AM receptors are structurally related since they are the complex of the calcitonin receptor-like receptor (CLR) with the different types of receptor activity-modifying protein (RAMP). Several crystal structures of the CGRP and AM receptor extracellular domain (ECD) used maltose-binding protein (MBP) as a tag protein to facilitate crystallization. Unexpectedly, the recent crystal structures of CGRP receptor ECD showed that the N-terminal tag MBP located in proximity of bound/mutated peptide ligands. This study provided evidence that MBP N-terminally tagged to the CGRP receptor ECD formed chemical interaction with the mutated peptide ligands. Interestingly, N-glycosylation of the CGRP receptor ECD was predicted to prevent MBP docking to the mutated peptide ligands. I found that the N-glycosylation of CLR ECD N123 was the most critical for inhibiting MBP interaction with the mutated peptide ligands. The MBP tag protein interaction was also dependent on the sequence of the peptide ligands. In contrast to the CGRP receptor, the MBP tag was not involved in peptide ligand binding at AM receptor ECD. Here, I provided evidence that N-glycosylation of the CGRP receptor ECD inhibited the tag protein interaction suggesting an additional function of N-glycosylation in the MBP-fused CGRP receptor ECD. This study reveals the importance of using tag protein-free versions of the CGRP receptor for the accurate assessment of peptide binding affinity.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC 27268, USA.
| |
Collapse
|
14
|
Jamaluddin A, Chuang CL, Williams ET, Siow A, Yang SH, Harris PWR, Petersen JSSM, Bower RL, Chand S, Brimble MA, Walker CS, Hay DL, Loomes KM. Lipidated Calcitonin Gene-Related Peptide (CGRP) Peptide Antagonists Retain CGRP Receptor Activity and Attenuate CGRP Action In Vivo. Front Pharmacol 2022; 13:832589. [PMID: 35341216 PMCID: PMC8942775 DOI: 10.3389/fphar.2022.832589] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Signaling through calcitonin gene-related peptide (CGRP) receptors is associated with pain, migraine, and energy expenditure. Small molecule and monoclonal antibody CGRP receptor antagonists that block endogenous CGRP action are in clinical use as anti-migraine therapies. By comparison, the potential utility of peptide antagonists has received less attention due to suboptimal pharmacokinetic properties. Lipidation is an established strategy to increase peptide half-life in vivo. This study aimed to explore the feasibility of developing lipidated CGRP peptide antagonists that retain receptor antagonist activity in vitro and attenuate endogenous CGRP action in vivo. CGRP peptide analogues based on the archetypal CGRP receptor antagonist, CGRP8-37, were palmitoylated at the N-terminus, position 24, and near the C-terminus at position 35. The antagonist activities of the lipidated peptide analogues were tested in vitro using transfected Cos-7 cells expressing either the human or mouse CGRP receptor, amylin subtype 1 (AMY1) receptor, adrenomedullin (AM) receptors, or calcitonin receptor. Antagonist activities were also evaluated in SK-N-MC cells that endogenously express the human CGRP receptor. Lipidated peptides were then tested for their ability to antagonize endogenous CGRP action in vivo using a capsaicin-induced dermal vasodilation (CIDV) model in C57/BL6J mice. All lipidated peptides except for the C-terminally modified analogue retained potent antagonist activity compared to CGRP8-37 towards the CGRP receptor. The lipidated peptides also retained, and sometimes gained, antagonist activities at AMY1, AM1 and AM2 receptors. Several lipidated peptides produced robust inhibition of CIDV in mice. This study demonstrates that selected lipidated peptide antagonists based on αCGRP8-37 retain potent antagonist activity at the CGRP receptor and are capable of inhibition of endogenous CGRP action in vivo. These findings suggest that lipidation can be applied to peptide antagonists, such as αCGRP8-37 and are a potential strategy for antagonizing CGRP action.
Collapse
Affiliation(s)
- Aqfan Jamaluddin
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Chia-Lin Chuang
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Elyse T Williams
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Andrew Siow
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Sung Hyun Yang
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | | | - Rebekah L Bower
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Shanan Chand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | | | - Debbie L Hay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Kerry M Loomes
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Garelja ML, Bower RL, Brimble MA, Chand S, Harris PW, Jamaluddin MA, Petersen J, Siow A, Walker CS, Hay DL. Pharmacological characterisation of mouse calcitonin and calcitonin receptor-like receptors reveals differences compared with human receptors. Br J Pharmacol 2022; 179:416-434. [PMID: 34289083 PMCID: PMC8776895 DOI: 10.1111/bph.15628] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND AND PURPOSE The calcitonin (CT) receptor family is complex, comprising two receptors (the CT receptor [CTR] and the CTR-like receptor [CLR]), three accessory proteins (RAMPs) and multiple endogenous peptides. This family contains several important drug targets, including CGRP, which is targeted by migraine therapeutics. The pharmacology of this receptor family is poorly characterised in species other than rats and humans. To facilitate understanding of translational and preclinical data, we need to know the receptor pharmacology of this family in mice. EXPERIMENTAL APPROACH Plasmids encoding mouse CLR/CTR and RAMPs were transiently transfected into Cos-7 cells. cAMP production was measured in response to agonists in the absence or presence of antagonists. KEY RESULTS We report the first synthesis and characterisation of mouse adrenomedullin, adrenomedullin 2 and βCGRP and of mouse CTR without or with mouse RAMPs. Receptors containing m-CTR had subtly different pharmacology than human receptors; they were promiscuous in their pharmacology, both with and without RAMPs. Several peptides, including mouse αCGRP and mouse adrenomedullin 2, were potent agonists of the m-CTR:m-RAMP3 complex. Pharmacological profiles of receptors comprising m-CLR:m-RAMPs were generally similar to those of their human counterparts, albeit with reduced specificity. CONCLUSION AND IMPLICATIONS Mouse receptor pharmacology differed from that in humans, with mouse receptors displaying reduced discrimination between ligands. This creates challenges for interpreting which receptor may underlie an effect in preclinical models and thus translation of findings from mice to humans. It also highlights the need for new ligands to differentiate between these complexes. LINKED ARTICLES This article is part of a themed issue on Advances in Migraine and Headache Therapy (BJP 75th Anniversary).. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.3/issuetoc.
Collapse
Affiliation(s)
- Michael L. Garelja
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand,School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Rebekah L Bower
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Margaret A. Brimble
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand,School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Shanan Chand
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Paul W.R. Harris
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand,School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | | | - Jakeb Petersen
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Andrew Siow
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand,School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Christopher S. Walker
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Debbie L. Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand,School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand,Author to whom correspondence should be addressed,
| |
Collapse
|
16
|
Shao L, Chen Y, Zhang S, Zhang Z, Cao Y, Yang D, Wang MW. Modulating effects of RAMPs on signaling profiles of the glucagon receptor family. Acta Pharm Sin B 2022; 12:637-650. [PMID: 35256936 PMCID: PMC8897147 DOI: 10.1016/j.apsb.2021.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/04/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Receptor activity-modulating proteins (RAMPs) are accessory molecules that form complexes with specific G protein-coupled receptors (GPCRs) and modulate their functions. It is established that RAMP interacts with the glucagon receptor family of GPCRs but the underlying mechanism is poorly understood. In this study, we used a bioluminescence resonance energy transfer (BRET) approach to comprehensively investigate such interactions. In conjunction with cAMP accumulation, Gαq activation and β-arrestin1/2 recruitment assays, we not only verified the GPCR–RAMP pairs previously reported, but also identified new patterns of GPCR–RAMP interaction. While RAMP1 was able to modify the three signaling events elicited by both glucagon receptor (GCGR) and glucagon-like peptide-1 receptor (GLP-1R), and RAMP2 mainly affected β-arrestin1/2 recruitment by GCGR, GLP-1R and glucagon-like peptide-2 receptor, RAMP3 showed a widespread negative impact on all the family members except for growth hormone-releasing hormone receptor covering the three pathways. Our results suggest that RAMP modulates both G protein dependent and independent signal transduction among the glucagon receptor family members in a receptor-specific manner. Mapping such interactions provides new insights into the role of RAMP in ligand recognition and receptor activation.
Collapse
Key Words
- AMY, amylin
- Allosteric modulation
- BRET, bioluminescence resonance energy transfer
- Bmax, maximum measured BRET value
- CGRP, calcitonin gene-related peptide
- CLR, calcitonin-like receptor
- EC50, half maximal effective concentration
- ECD, extracellular domain
- Emax, maximal response
- G protein-coupled receptor
- GCGR, glucagon receptor
- GHRHR, hormone-releasing hormone receptor
- GIPR, gastric inhibitory polypeptide receptor or glucose-dependent insulinotropic polypeptide
- GLP-1R, glucagon-like peptide-1 receptor
- GLP-2R, glucagon-like peptide-2 receptor
- GPCRs, G protein-coupled receptors
- GPCR–RAMP interaction
- Glucagon receptor family
- Ligand selectivity
- RAMP, receptor activity-modulating protein
- Receptor activity-modulating protein
- Receptor pharmacology
- Rluc, Renilla luciferase
- SBA, suspension bead array
- SCTR, secretin receptor
- SV, splice variant
- Signaling
- TMD, transmembrane domain
- VPAC2R, vasoactive intestinal polypeptide 2 receptor
- cAMP, cyclic adenosine monophosphate
- pEC50, negative logarithm of EC50
- β2-AR, β2-adrenergic receptor
Collapse
Affiliation(s)
- Lijun Shao
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Chen
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shikai Zhang
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Zhihui Zhang
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yongbing Cao
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Dehua Yang
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding authors.
| | - Ming-Wei Wang
- The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Corresponding authors.
| |
Collapse
|
17
|
Molecular simulations reveal the impact of RAMP1 on ligand binding and dynamics of calcitonin gene-related peptide receptor (CGRPR) heterodimer. Comput Biol Med 2021; 141:105130. [PMID: 34923287 DOI: 10.1016/j.compbiomed.2021.105130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 01/17/2023]
Abstract
Calcitonin gene-related peptide receptor (CGRPR) is a heterodimer protein complex consisting of a class-B G protein-coupled receptor (GPCR) named calcitonin receptor-like receptor (CLR) and an accessory protein, receptor activity modifying protein type 1 (RAMP1). Here in this study, with several molecular modeling approaches and molecular dynamics (MD) simulations, the structural and dynamical effects of RAMP1 on the binding of small molecule CGRPR inhibitors (namely rimegepant and telcagepant) to the CGRPR extracellular ectodomain complex site (site 1) and transmembrane binding site (site 2) are investigated. Results showed that although these molecules stay stable at site 1, they can also bind to site 2, which may be interpreted as non-specificity of the ligands, however, most of these interactions at transmembrane binding site are not sustainable or are weak. Furthermore, to examine the site 2 for gepant binding, different in silico experiments (i.e., alanine scanning mutagenesis, SiteMap, ligand decomposition binding free energy analyses) are also conducted and the results confirmed the putative binding pocket (site 2) of the gepants at the CGRPRs.
Collapse
|
18
|
Lee S. Development of High Affinity Calcitonin Analog Fragments Targeting Extracellular Domains of Calcitonin Family Receptors. Biomolecules 2021; 11:biom11091364. [PMID: 34572577 PMCID: PMC8466238 DOI: 10.3390/biom11091364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 01/18/2023] Open
Abstract
The calcitonin and amylin receptors (CTR and AMY receptors) are the drug targets for osteoporosis and diabetes treatment, respectively. Salmon calcitonin (sCT) and pramlintide were developed as peptide drugs that activate these receptors. However, next-generation drugs with improved receptor binding profiles are desirable for more effective pharmacotherapy. The extracellular domain (ECD) of CTR was reported as the critical binding site for the C-terminal half of sCT. For the screening of high-affinity sCT analog fragments, purified CTR ECD was used for fluorescence polarization/anisotropy peptide binding assay. When three mutations (N26D, S29P, and P32HYP) were introduced to the sCT(22–32) fragment, sCT(22–32) affinity for the CTR ECD was increased by 21-fold. CTR was reported to form a complex with receptor activity-modifying protein (RAMP), and the CTR:RAMP complexes function as amylin receptors with increased binding for the peptide hormone amylin. All three types of functional AMY receptor ECDs were prepared and tested for the binding of the mutated sCT(22–32). Interestingly, the mutated sCT(22–32) also retained its high affinity for all three types of the AMY receptor ECDs. In summary, the mutated sCT(22–32) showing high affinity for CTR and AMY receptor ECDs could be considered for developing the next-generation peptide agonists.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC 27268, USA
| |
Collapse
|
19
|
Leung L, Liao S, Wu C. To Probe the Binding Interactions between Two FDA Approved Migraine Drugs (Ubrogepant and Rimegepant) and Calcitonin-Gene Related Peptide Receptor (CGRPR) Using Molecular Dynamics Simulations. ACS Chem Neurosci 2021; 12:2629-2642. [PMID: 34184869 DOI: 10.1021/acschemneuro.1c00135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Recently, the FDA approved ubrogepant and rimegepant as oral drugs to treat migraines by targeting the calcitonin-gene related peptide receptor (CGRPR). Unfortunately, there is no high-resolution complex structure with these two drugs; thus the detailed interaction between drugs and the receptor remains elusive. This study uses molecular docking and molecular dynamics simulation to model the drug-receptor complex and analyze their binding interactions at a molecular level. The complex crystal structure (3N7R) of the gepant drugs' predecessor, olcegepant, was used for our molecular docking of the two drugs and served as a control system. The three systems, with ubrogepant, rimegepant, and crystal olcegepant, were subject to 3 × 1000 ns molecular dynamics simulations and followed by the simulation interaction diagram (SID), structural clustering, and MM-GBSA binding energy analyses. Our MD data revealed that olcegepant binds most strongly to the CGRPR, followed by ubrogepant and then rimegepant, largely due to changes in hydrophobic and electrostatic interactions. The order of our MM-GBSA binding energies of these three compounds is consistent with their experimental IC50 values. SID analysis revealed the pharmacophore of the gepant class to be the dihydroquinazolinone group derivative. Subtle differences in interaction profile have been noted, including interactions with the W74 and W72 residues. The ubrogepant and rimegepant both contact A70 and M42 of the receptor, while olcegepant does not. The results of this study elucidate the interactions in the binding pocket of CGRP receptor and can assist in further development for orally available antagonists of the CGRP receptor.
Collapse
Affiliation(s)
- Lauren Leung
- College of Letters and Sciences, University of California, Santa Barbara, Santa Barbara, California 93107, United States
| | - Siyan Liao
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| | - Chun Wu
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
- College of Science and Mathematics, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
20
|
Vázquez R, Riveiro ME, Berenguer-Daizé C, O'Kane A, Gormley J, Touzelet O, Rezai K, Bekradda M, Ouafik L. Targeting Adrenomedullin in Oncology: A Feasible Strategy With Potential as Much More Than an Alternative Anti-Angiogenic Therapy. Front Oncol 2021; 10:589218. [PMID: 33489885 PMCID: PMC7815935 DOI: 10.3389/fonc.2020.589218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/02/2020] [Indexed: 12/18/2022] Open
Abstract
The development, maintenance and metastasis of solid tumors are highly dependent on the formation of blood and lymphatic vessels from pre-existing ones through a series of processes that are respectively known as angiogenesis and lymphangiogenesis. Both are mediated by specific growth-stimulating molecules, such as the vascular endothelial growth factor (VEGF) and adrenomedullin (AM), secreted by diverse cell types which involve not only the cancerogenic ones, but also those constituting the tumor stroma (i.e., macrophages, pericytes, fibroblasts, and endothelial cells). In this sense, anti-angiogenic therapy represents a clinically-validated strategy in oncology. Current therapeutic approaches are mainly based on VEGF-targeting agents, which, unfortunately, are usually limited by toxicity and/or tumor-acquired resistance. AM is a ubiquitous peptide hormone mainly secreted in the endothelium with an important involvement in blood vessel development and cardiovascular homeostasis. In this review, we will introduce the state-of-the-art in terms of AM physiology, while putting a special focus on its pro-tumorigenic role, and discuss its potential as a therapeutic target in oncology. A large amount of research has evidenced AM overexpression in a vast majority of solid tumors and a correlation between AM levels and disease stage, progression and/or vascular density has been observed. The analysis presented here indicates that the involvement of AM in the pathogenesis of cancer arises from: 1) direct promotion of cell proliferation and survival; 2) increased vascularization and the subsequent supply of nutrients and oxygen to the tumor; 3) and/or alteration of the cell phenotype into a more aggressive one. Furthermore, we have performed a deep scrutiny of the pathophysiological prominence of each of the AM receptors (AM1 and AM2) in different cancers, highlighting their differential locations and functions, as well as regulatory mechanisms. From the therapeutic point of view, we summarize here an exhaustive series of preclinical studies showing a reduction of tumor angiogenesis, metastasis and growth following treatment with AM-neutralizing antibodies, AM receptor antagonists, or AM receptor interference. Anti-AM therapy is a promising strategy to be explored in oncology, not only as an anti-angiogenic alternative in the context of acquired resistance to VEGF treatment, but also as a potential anti-metastatic approach.
Collapse
Affiliation(s)
- Ramiro Vázquez
- Preclinical Department, Early Drug Development Group (E2DG), Boulogne-Billancourt, France.,Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Maria E Riveiro
- Preclinical Department, Early Drug Development Group (E2DG), Boulogne-Billancourt, France
| | | | - Anthony O'Kane
- Discovery and Scientific Affairs Department, Fusion Antibodies plc., Belfast, United Kingdom
| | - Julie Gormley
- Discovery and Scientific Affairs Department, Fusion Antibodies plc., Belfast, United Kingdom
| | - Olivier Touzelet
- Discovery and Scientific Affairs Department, Fusion Antibodies plc., Belfast, United Kingdom
| | - Keyvan Rezai
- Department of Radio-Pharmacology, Institute Curie-René Huguenin Hospital, Saint-Cloud, France
| | - Mohamed Bekradda
- Preclinical Department, Early Drug Development Group (E2DG), Boulogne-Billancourt, France
| | - L'Houcine Ouafik
- Aix Marseille University, CNRS, INP, Institute of NeuroPhysiopathology, Marseille, France.,APHM, CHU Nord, Service de Transfert d'Oncologie Biologique, Marseille, France
| |
Collapse
|
21
|
Lee S. Asn-linked N-acetylglucosamine of the amylin receptor 2 extracellular domain enhances peptide ligand affinity. FEBS Open Bio 2020; 11:195-206. [PMID: 33227824 PMCID: PMC7780097 DOI: 10.1002/2211-5463.13042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 11/07/2022] Open
Abstract
The calcitonin receptor (CTR) has a large extracellular domain (ECD) with multiple N‐glycosylation sites. An asparagine (Asn)‐linked N‐acetylglucosamine (GlcNAc) of CTR ECD N130 was previously reported to enhance peptide hormone binding affinity for CTR ECD. CTR forms a complex with an accessory protein RAMP, and the RAMP:CTR complex gains affinity for peptide hormone amylin as the amylin receptor (AMY). Although N‐glycosylation of AMY ECD was reported to enhance peptide hormone affinity, it remains underexplored which N‐glycosites of AMY ECD are responsible for peptide affinity enhancement and it is unclear whether an Asn‐linked GlcNAc of the N‐glycosites plays a critical role. Here, I investigated the role of the Asn‐linked GlcNAc of CTR N130 in the affinity of an antagonistic amylin analog (AC413) for AMY2 ECD (the RAMP2 ECD:CTR ECD complex). I used Endo H‐treated CTR ECD in which N‐glycans were trimmed to an Asn‐linked GlcNAc on each of the N‐glycosites. I incubated Endo H‐treated CTR ECD with excess of glycan‐free RAMP2 ECD to produce the RAMP2 ECD:CTR ECD complex. Using this coincubation system, I found that the RAMP2 ECD complex with Endo H‐treated CTR ECD with N130D mutation showed a fourfold decrease in AC413 affinity compared with the RAMP2 ECD complex with Endo H‐treated CTR ECD WT. In contrast, RAMP2 ECD N‐glycosylation did not affect peptide binding affinity. These results indicate that the Asn‐linked GlcNAc of CTR N130 is an important peptide affinity enhancer for AMY2 ECD and reveals a significant role of the Asn‐linked GlcNAc in AMY2 function.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Basic Pharmaceutical SciencesFred Wilson School of PharmacyHigh Point UniversityHigh PointNCUSA
| |
Collapse
|
22
|
Molecular interaction of an antagonistic amylin analog with the extracellular domain of receptor activity-modifying protein 2 assessed by fluorescence polarization. Biophys Chem 2020; 267:106477. [PMID: 33137565 DOI: 10.1016/j.bpc.2020.106477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
The peptide hormone amylin receptor is a complex of the calcitonin receptor (CTR) and an accessory protein called receptor activity-modifying proteins (RAMPs). The soluble extracellular domain (ECD) of CTR is an important binding site of peptide hormone calcitonin. RAMPs also have an ECD and the association of CTR ECD with RAMP ECD enhances the affinity of peptide hormone amylin. However, the mechanism of how RAMP ECD association enhances amylin affinity remains elusive. Here, we report evidence supporting direct molecular interaction between an antagonistic amylin analog AC413 and RAMP2 ECD. We measured FITC-labeled peptide affinity for purified receptor ECD using fluorescence polarization (FP). We first found that RAMP2 ECD addition to maltose-binding protein (MBP)-tagged CTR ECD and an engineered MBP-tagged RAMP2 ECD-CTR ECD fusion protein (MBP-RAMP2-CTR ECD fusion) enhanced AC413 affinity. This suggests that these recombinant ECD systems represent functional amylin receptors. Interestingly, AC413 C-terminal residue Tyr25 (Y25) to Pro mutation eliminated its selective affinity for the MBP-RAMP2-CTR ECD fusion suggesting the critical role of the AC413 C-terminal residue in amylin receptor selectivity. Our structural model of the RAMP2 ECD:CTR ECD complex predicted molecular interaction of AC413 C-terminal residue Y25 with RAMP2 Glu101 (E101). Our FP peptide-binding assay showed that the RAMP2 E101A mutation of MBP-RAMP2-CTR ECD fusion decreased AC413 affinity by 7-fold, while the affinity of AC413 with the Y25P mutation was minimally changed. Consistently, AC413 binding affinity for the MBP-free RAMP2-CTR ECD fusion protein was also markedly decreased by the RAMP2 E101A mutation, while the affinity of AC413 with the Y25P mutation was moderately decreased. Together, our results support the molecular interaction between the AC413 C-terminal residue Y25 and RAMP2 E101 expanding our understanding of how the accessory protein RAMP2 enhances affinity of peptide hormone amylin for its receptor.
Collapse
|
23
|
Fischer JP, Els-Heindl S, Beck-Sickinger AG. Adrenomedullin - Current perspective on a peptide hormone with significant therapeutic potential. Peptides 2020; 131:170347. [PMID: 32569606 DOI: 10.1016/j.peptides.2020.170347] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
Abstract
The peptide hormone adrenomedullin (ADM) consists of 52 amino acids and plays a pivotal role in the regulation of many physiological processes, particularly those of the cardiovascular and lymphatic system. Like calcitonin (CT), calcitonin gene-related peptide (CGRP), intermedin (IMD) and amylin (AMY), it belongs to the CT/CGRP family of peptide hormones, which despite their low little sequence identity share certain characteristic structural features as well as a complex multicomponent receptor system. ADM, IMD and CGRP exert their biological effects by activation of the calcitonin receptor-like receptor (CLR) as a complex with one of three receptor activity-modifying proteins (RAMP), which alter the ligand affinity. Selectivity within the receptor system is largely mediated by the amidated C-terminus of the peptide hormones, which bind to the extracellular domains of the receptors. This enables their N-terminus consisting of a disulfide-bonded ring structure and a helical segment to bind within the transmembrane region and to induce an active receptor confirmation. ADM is expressed in a variety of tissues in the human body and is fundamentally involved in multitude biological processes. Thus, it is of interest as a diagnostic marker and a promising candidate for therapeutic interventions. In order to fully exploit the potential of ADM, it is necessary to improve its pharmacological profile by increasing the metabolic stability and, ideally, creating receptor subtype-selective analogs. While several successful attempts to prolong the half-life of ADM were recently reported, improving or even retaining receptor selectivity remains challenging.
Collapse
Affiliation(s)
- Jan-Patrick Fischer
- Institut für Biochemie, Universität Leipzig, Brüderstraße 34, 04103 Leipzig, Germany
| | - Sylvia Els-Heindl
- Institut für Biochemie, Universität Leipzig, Brüderstraße 34, 04103 Leipzig, Germany
| | | |
Collapse
|
24
|
Booe JM, Warner ML, Pioszak AA. Picomolar Affinity Antagonist and Sustained Signaling Agonist Peptide Ligands for the Adrenomedullin and Calcitonin Gene-Related Peptide Receptors. ACS Pharmacol Transl Sci 2020; 3:759-772. [PMID: 32832875 DOI: 10.1021/acsptsci.0c00031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Indexed: 12/31/2022]
Abstract
The calcitonin receptor-like class B G protein-coupled receptor (CLR) mediates adrenomedullin (AM) and calcitonin gene-related peptide (CGRP) functions including vasodilation, cardioprotection, and nociception. Receptor activity-modifying proteins (RAMP1-3) form heterodimers with CLR and determine its peptide ligand selectivity through an unresolved mechanism. The CGRP (RAMP1:CLR) and AM (RAMP2/3:CLR) receptors are proven or promising drug targets, but short AM and CGRP plasma half-lives limit their therapeutic utility. Here, we used synthetic peptide combinatorial library and rational design approaches to probe the ligand selectivity determinants and develop truncated AM and CGRP antagonist variants with receptor extracellular domain binding affinities that were enhanced ∼1000-fold into the low nanomolar range. Receptor binding studies and a high-resolution crystal structure of a novel library-identified AM variant bound to the RAMP2-CLR extracellular domain complex explained the increased affinities and defined roles for AM Lys46 and RAMP modulation of CLR conformation in the ligand selectivity mechanism. In longer AM and CGRP scaffolds that also bind the CLR transmembrane domain, the variants generated picomolar affinity antagonists, one with an estimated 12.5 h CGRP receptor residence time, and sustained signaling agonists "ss-AM" and "ss-CGRP" that exhibited persistent cAMP signaling after ligand washout. Sustained signaling was demonstrated in primary human umbilical vein endothelial cells and the SK-N-MC cell line, which endogenously express AM and CGRP receptors, respectively. This work clarifies the RAMP-modulated CLR ligand selectivity mechanism and provides AM and CGRP variants that are valuable pharmacological tools and may have potential as long-acting therapeutics.
Collapse
Affiliation(s)
- Jason M Booe
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Margaret L Warner
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Augen A Pioszak
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
25
|
Roehrkasse AM, Warner ML, Booe JM, Pioszak AA. Biochemical characterization of G protein coupling to calcitonin gene-related peptide and adrenomedullin receptors using a native PAGE assay. J Biol Chem 2020; 295:9736-9751. [PMID: 32487746 PMCID: PMC7363127 DOI: 10.1074/jbc.ra120.013854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/27/2020] [Indexed: 11/06/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP), adrenomedullin (AM), and adrenomedullin 2/intermedin (AM2/IMD) have overlapping and unique functions in the nervous and circulatory systems including vasodilation, cardioprotection, and pain transmission. Their actions are mediated by the class B calcitonin-like G protein-coupled receptor (CLR), which heterodimerizes with three receptor activity-modifying proteins (RAMP1-3) that determine its peptide ligand selectivity. How the three agonists and RAMPs modulate CLR binding to transducer proteins remains poorly understood. Here, we biochemically characterized agonist-promoted G protein coupling to each CLR·RAMP complex. We adapted a native PAGE method to assess the formation and thermostabilities of detergent-solubilized fluorescent protein-tagged CLR·RAMP complexes expressed in mammalian cells. Addition of agonist and the purified Gs protein surrogate mini-Gs (mGs) yielded a mobility-shifted agonist·CLR·RAMP·mGs quaternary complex gel band that was sensitive to antagonists. Measuring the apparent affinities of the agonists for the mGs-coupled receptors and of mGs for the agonist-occupied receptors revealed that both ligand and RAMP control mGs coupling and defined how agonist engagement of the CLR extracellular and transmembrane domains affects transducer recruitment. Using mini-Gsq and -Gsi chimeras, we observed a coupling rank order of mGs > mGsq > mGsi for each receptor. Last, we demonstrated the physiological relevance of the native gel assays by showing that they can predict the cAMP-signaling potencies of AM and AM2/IMD chimeras. These results highlight the power of the native PAGE assay for membrane protein biochemistry and provide a biochemical foundation for understanding the molecular basis of shared and distinct signaling properties of CGRP, AM, and AM2/IMD.
Collapse
Affiliation(s)
- Amanda M Roehrkasse
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Margaret L Warner
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jason M Booe
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Augen A Pioszak
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
26
|
Kahremany S, Hofmann L, Gruzman A, Cohen G. Advances in Understanding the Initial Steps of Pruritoceptive Itch: How the Itch Hits the Switch. Int J Mol Sci 2020; 21:ijms21144883. [PMID: 32664385 PMCID: PMC7402353 DOI: 10.3390/ijms21144883] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Pruritoceptive (dermal) itch was long considered an accompanying symptom of diseases, a side effect of drug applications, or a temporary sensation induced by invading pruritogens, as produced by the stinging nettle. Due to extensive research in recent years, it was possible to provide detailed insights into the mechanism of itch mediation and modulation. Hence, it became apparent that pruritus is a complex symptom or disease in itself, which requires particular attention to improve patients’ health. Here, we summarize recent findings in pruritoceptive itch, including how this sensation is triggered and modulated by diverse endogenous and exogenous pruritogens and their receptors. A differentiation between mediating pruritogen and modulating pruritogen seems to be of great advantage to understand and decipher the molecular mechanism of itch perception. Only a comprehensive view on itch sensation will provide a solid basis for targeting this long-neglected adverse sensation accompanying numerous diseases and many drug side effects. Finally, we identify critical aspects of itch perception that require future investigation.
Collapse
Affiliation(s)
- Shirin Kahremany
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada 86910, Israel;
- Correspondence:
| | - Lukas Hofmann
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (L.H.); (A.G.)
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada 86910, Israel;
- Ben-Gurion University of the Negev, Eilat Campus, Eilat 8855630, Israel
| |
Collapse
|
27
|
Liang YL, Belousoff MJ, Fletcher MM, Zhang X, Khoshouei M, Deganutti G, Koole C, Furness SGB, Miller LJ, Hay DL, Christopoulos A, Reynolds CA, Danev R, Wootten D, Sexton PM. Structure and Dynamics of Adrenomedullin Receptors AM 1 and AM 2 Reveal Key Mechanisms in the Control of Receptor Phenotype by Receptor Activity-Modifying Proteins. ACS Pharmacol Transl Sci 2020; 3:263-284. [PMID: 32296767 PMCID: PMC7155201 DOI: 10.1021/acsptsci.9b00080] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Indexed: 12/14/2022]
Abstract
Adrenomedullin (AM) and calcitonin gene-related peptide (CGRP) receptors are critically important for metabolism, vascular tone, and inflammatory response. AM receptors are also required for normal lymphatic and blood vascular development and angiogenesis. They play a pivotal role in embryo implantation and fertility and can provide protection against hypoxic and oxidative stress. CGRP and AM receptors are heterodimers of the calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1) (CGRPR), as well as RAMP2 or RAMP3 (AM1R and AM2R, respectively). However, the mechanistic basis for RAMP modulation of CLR phenotype is unclear. In this study, we report the cryo-EM structure of the AM1R in complex with AM and Gs at a global resolution of 3.0 Å, and structures of the AM2R in complex with either AM or intermedin/adrenomedullin 2 (AM2) and Gs at 2.4 and 2.3 Å, respectively. The structures reveal distinctions in the primary orientation of the extracellular domains (ECDs) relative to the receptor core and distinct positioning of extracellular loop 3 (ECL3) that are receptor-dependent. Analysis of dynamic data present in the cryo-EM micrographs revealed additional distinctions in the extent of mobility of the ECDs. Chimeric exchange of the linker region of the RAMPs connecting the TM helix and the ECD supports a role for this segment in controlling receptor phenotype. Moreover, a subset of the motions of the ECD appeared coordinated with motions of the G protein relative to the receptor core, suggesting that receptor ECD dynamics could influence G protein interactions. This work provides fundamental advances in our understanding of GPCR function and how this can be allosterically modulated by accessory proteins.
Collapse
Affiliation(s)
- Yi-Lynn Liang
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Matthew J. Belousoff
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Madeleine M. Fletcher
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Xin Zhang
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Maryam Khoshouei
- Department
of Molecular Structural Biology, Max Planck
Institute of Biochemistry, 82152 Martinsried, Germany
| | - Giuseppe Deganutti
- School
of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Cassandra Koole
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Sebastian G. B. Furness
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Laurence J. Miller
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- Department
of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259, United States
| | - Debbie L. Hay
- School
of Biological Sciences, and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1142, New Zealand
| | - Arthur Christopoulos
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | | | - Radostin Danev
- Graduate
School of Medicine, University of Tokyo, S402, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Denise Wootten
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- School
of Pharmacy, Fudan University, Shanghai 201203, China
| | - Patrick M. Sexton
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
- School
of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
28
|
Garelja M, Au M, Brimble MA, Gingell JJ, Hendrikse ER, Lovell A, Prodan N, Sexton PM, Siow A, Walker CS, Watkins HA, Williams GM, Wootten D, Yang SH, Harris PWR, Hay DL. Molecular Mechanisms of Class B GPCR Activation: Insights from Adrenomedullin Receptors. ACS Pharmacol Transl Sci 2020; 3:246-262. [PMID: 32296766 PMCID: PMC7155197 DOI: 10.1021/acsptsci.9b00083] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Indexed: 02/07/2023]
Abstract
Adrenomedullin (AM) is a 52 amino acid peptide that plays a regulatory role in the vasculature. Receptors for AM comprise the class B G protein-coupled receptor, the calcitonin-like receptor (CLR), in complex with one of three receptor activity-modifying proteins (RAMPs). The C-terminus of AM is involved in binding to the extracellular domain of the receptor, while the N-terminus is proposed to interact with the juxtamembranous portion of the receptor to activate signaling. There is currently limited information on the molecular determinants involved in AM signaling, thus we set out to define the importance of the AM N-terminus through five signaling pathways (cAMP production, ERK phosphorylation, CREB phosphorylation, Akt phosphorylation, and IP1 production). We characterized the three CLR:RAMP complexes through the five pathways, finding that each had a distinct repertoire of intracellular signaling pathways that it is able to regulate. We then performed an alanine scan of AM from residues 15-31 and found that most residues could be substituted with only small effects on signaling, and that most substitutions affected signaling through all receptors and pathways in a similar manner. We identify F18, T20, L26, and I30 as being critical for AM function, while also identifying an analogue (AM15-52 G19A) which has unique signaling properties relative to the unmodified AM. We interpret our findings in the context of new structural information, highlighting the complementary nature of structural biology and functional assays.
Collapse
Affiliation(s)
- Michael
L. Garelja
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Maggie Au
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Margaret A. Brimble
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Joseph J. Gingell
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Erica R. Hendrikse
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Annie Lovell
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Nicole Prodan
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Patrick M. Sexton
- Drug
Discovery Biology and Department of Pharmacology, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Andrew Siow
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Christopher S. Walker
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Harriet A. Watkins
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Geoffrey M. Williams
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Denise Wootten
- Drug
Discovery Biology and Department of Pharmacology, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Sung H. Yang
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| | - Paul W. R. Harris
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
- School
of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Debbie L. Hay
- School
of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Maurice
Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
29
|
Lee SM, Jeong Y, Simms J, Warner ML, Poyner DR, Chung KY, Pioszak AA. Calcitonin Receptor N-Glycosylation Enhances Peptide Hormone Affinity by Controlling Receptor Dynamics. J Mol Biol 2020; 432:1996-2014. [PMID: 32035902 DOI: 10.1016/j.jmb.2020.01.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/27/2019] [Accepted: 01/27/2020] [Indexed: 02/09/2023]
Abstract
The class B G protein-coupled receptor (GPCR) calcitonin receptor (CTR) is a drug target for osteoporosis and diabetes. N-glycosylation of asparagine 130 in its extracellular domain (ECD) enhances calcitonin hormone affinity with the proximal GlcNAc residue mediating this effect through an unknown mechanism. Here, we present two crystal structures of salmon calcitonin-bound, GlcNAc-bearing CTR ECD at 1.78 and 2.85 Å resolutions and analyze the mechanism of the glycan effect. The N130 GlcNAc does not contact the hormone. Surprisingly, the structures are nearly identical to a structure of hormone-bound, N-glycan-free ECD, which suggested that the GlcNAc might affect CTR dynamics not observed in the static crystallographic snapshots. Hydrogen-deuterium exchange mass spectrometry and molecular dynamics simulations revealed that glycosylation stabilized a β-sheet adjacent to the N130 GlcNAc and the N-terminal α-helix near the peptide-binding site while increasing flexibility of the peptide-binding site turret loop. These changes due to N-glycosylation increased the ligand on-rate and decreased its off-rate. The glycan effect extended to RAMP-CTR amylin receptor complexes and was also conserved in the related CGRP receptor. These results reveal that N-glycosylation can modulate GPCR function by altering receptor dynamics.
Collapse
Affiliation(s)
- Sang-Min Lee
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Present Address: Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC, 27268, USA
| | - Yejin Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - John Simms
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - Margaret L Warner
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - David R Poyner
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Augen A Pioszak
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
30
|
Pioszak AA, Hay DL. RAMPs as allosteric modulators of the calcitonin and calcitonin-like class B G protein-coupled receptors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 88:115-141. [PMID: 32416865 DOI: 10.1016/bs.apha.2020.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Receptor activity-modifying proteins (RAMPs) are a family of three single span transmembrane proteins in humans that interact with many GPCRs and can modulate their function. RAMPs were discovered as key components of the calcitonin gene-related peptide and adrenomedullin receptors. They are required for transport of this class B GPCR, calcitonin receptor-like receptor (CLR), to the cell surface and determine its peptide ligand binding preferences. Soon thereafter RAMPs were shown to modulate the binding of calcitonin and amylin peptides to the related calcitonin receptor (CTR) and in the years since an ever-growing number of RAMP-interacting receptors have been identified including most if not all of the 15 class B GPCRs and several GPCRs from other families. Studies of CLR, CTR, and a handful of other GPCRs revealed that RAMPs are able to modulate various aspects of receptor function including trafficking, ligand binding, and signaling. Here, we review RAMP interactions and functions with an emphasis on class B receptors for which our understanding is most advanced. A key focus is to discuss recent evidence that RAMPs serve as endogenous allosteric modulators of CLR and CTR. We discuss structural studies of RAMP-CLR complexes and CTR and biochemical and pharmacological studies that collectively have significantly expanded our understanding of the mechanistic basis for RAMP modulation of these class B GPCRs. Last, we consider the implications of these findings for drug development targeting RAMP-CLR/CTR complexes.
Collapse
Affiliation(s)
- Augen A Pioszak
- Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.
| | - Debbie L Hay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
31
|
Musa H, Hendrikse ER, Brimble MA, Garelja ML, Watkins HA, Harris PWR, Hay DL. Pharmacological Characterization and Investigation of N-Terminal Loop Amino Acids of Adrenomedullin 2 That Are Important for Receptor Activation. Biochemistry 2019; 58:3468-3474. [PMID: 31328503 DOI: 10.1021/acs.biochem.9b00571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Adrenomedullin 2 (AM2) is a peptide hormone with potent effects in the cardiovascular system. The N-terminal disulfide loop of AM2 is thought to be important for interacting with its receptors to initiate a signaling response. However, the relative contribution of each amino acid within this region is currently unknown. Thus, the region was investigated using an alanine scanning approach. Two AM2 peptides (AM2-47 and AM2-40) were directly compared at the CGRP, AM1, and AM2 receptors in transfected Cos7 cells and found to have equivalent activity. Analogues of AM2-40 were then synthesized, substituting each individual amino acid within the disulfide loop with alanine. The ability of these analogues to stimulate a cAMP response was evaluated at the CGRP, AM1, and AM2 receptors. AM2-40 L12A and T14A were less able to elicit cAMP responses through all tested receptors. In contrast, AM2-40 G13A was slightly more potent than the unmodified peptide at all tested receptors. Thus, it appears that residues within the disulfide loop region play differential roles in the ability of AM2 to stimulate cAMP production. The data provide the first structure-function investigation of AM2 agonism.
Collapse
Affiliation(s)
- Hala Musa
- School of Biological Sciences , The University of Auckland , 3A Symonds Street , Auckland 1010 , New Zealand
| | - Erica R Hendrikse
- School of Biological Sciences , The University of Auckland , 3A Symonds Street , Auckland 1010 , New Zealand
| | - Margaret A Brimble
- School of Biological Sciences , The University of Auckland , 3A Symonds Street , Auckland 1010 , New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , 3A Symonds Street , Auckland 1010 , New Zealand.,School of Chemical Sciences , The University of Auckland , 23 Symonds Street , Auckland 1010 , New Zealand
| | - Michael L Garelja
- School of Biological Sciences , The University of Auckland , 3A Symonds Street , Auckland 1010 , New Zealand
| | - Harriet A Watkins
- School of Biological Sciences , The University of Auckland , 3A Symonds Street , Auckland 1010 , New Zealand
| | - Paul W R Harris
- School of Biological Sciences , The University of Auckland , 3A Symonds Street , Auckland 1010 , New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , 3A Symonds Street , Auckland 1010 , New Zealand.,School of Chemical Sciences , The University of Auckland , 23 Symonds Street , Auckland 1010 , New Zealand
| | - Debbie L Hay
- School of Biological Sciences , The University of Auckland , 3A Symonds Street , Auckland 1010 , New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , 3A Symonds Street , Auckland 1010 , New Zealand
| |
Collapse
|
32
|
Pham V, Zhu Y, Dal Maso E, Reynolds CA, Deganutti G, Atanasio S, Hick CA, Yang D, Christopoulos A, Hay DL, Furness SGB, Wang MW, Wootten D, Sexton PM. Deconvoluting the Molecular Control of Binding and Signaling at the Amylin 3 Receptor: RAMP3 Alters Signal Propagation through Extracellular Loops of the Calcitonin Receptor. ACS Pharmacol Transl Sci 2019; 2:183-197. [PMID: 32219220 PMCID: PMC7088965 DOI: 10.1021/acsptsci.9b00010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Indexed: 12/18/2022]
Abstract
Amylin is coexpressed with insulin in pancreatic islet β-cells and has potent effects on gastric emptying and food intake. The effect of amylin on satiation has been postulated to involve AMY3 receptors (AMY3R) that are heteromers of the calcitonin receptor (CTR) and receptor activity-modifying protein 3 (RAMP3). Understanding the molecular control of signaling through the AMY3R is thus important for peptide drug targeting of this receptor. We have previously used alanine scanning mutagenesis to study the contribution of the extracellular surface of the CTR to binding and signaling initiated by calcitonin (CT) and related peptides (Dal Maso, E., et al. (2019) The molecular control of calcitonin receptor signaling. ACS Pharmacol. Transl. Sci. 2, 31-51). That work revealed ligand- and pathway-specific effects of mutation, with extracellular loops (ECLs) 2 and 3 particularly important in the distinct propagation of signaling mediated by individual peptides. In the current study, we have used equivalent alanine scanning of ECL2 and ECL3 of the CTR in the context of coexpression with RAMP3 to form AMY3Rs, to examine functional affinity and efficacy of peptides in cAMP accumulation and extracellular signal-regulated kinase (ERK) phosphorylation (pERK). The effect of mutation was determined on representatives of the three major distinct classes of CT peptide, salmon CT (sCT), human CT (hCT), and porcine CT (pCT), as well as rat amylin (rAmy) or human α-CGRP (calcitonin gene-related peptide, hCGRP) whose potency is enhanced by RAMP interaction. We demonstrate that the dynamic nature of CTR ECL2 and ECL3 in propagation of signaling is fundamentally altered when complexed with RAMP3 to form the AMY3R, despite only having predicted direct interactions with ECL2. Moreover, the work shows that the role of these loops in receptor signaling is highly peptide dependent, illustrating that even subtle changes to peptide sequence may change signaling output downstream of the receptor.
Collapse
Affiliation(s)
- Vi Pham
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Yue Zhu
- The
National Center for Drug Screening and CAS Key Laboratory of Receptor
Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Emma Dal Maso
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | | | - Giuseppe Deganutti
- School
of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K.
| | - Silvia Atanasio
- School
of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, U.K.
| | - Caroline A. Hick
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Dehua Yang
- The
National Center for Drug Screening and CAS Key Laboratory of Receptor
Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Arthur Christopoulos
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Debbie L. Hay
- The
University of Auckland, School of Biological
Sciences, 3 Symonds Street, Auckland 1142, New Zealand
| | - Sebastian G. B. Furness
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Ming-Wei Wang
- The
National Center for Drug Screening and CAS Key Laboratory of Receptor
Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Denise Wootten
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Patrick M. Sexton
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| |
Collapse
|
33
|
Abstract
The canonical CGRP receptor is a complex between calcitonin receptor-like receptor (CLR), a family B G-protein-coupled receptor (GPCR) and receptor activity-modifying protein 1 (RAMP1). A third protein, receptor component protein (RCP) is needed for coupling to Gs. CGRP can interact with other RAMP-receptor complexes, particularly the AMY1 receptor formed between the calcitonin receptor (CTR) and RAMP1. Crystal structures are available for the binding of CGRP27-37 [D31,P34,F35] to the extracellular domain (ECD) of CLR and RAMP1; these show that extreme C-terminal amide of CGRP interacts with W84 of RAMP1 but the rest of the analogue interacts with CLR. Comparison with the crystal structure of a fragment of the allied peptide adrenomedullin bound to the ECD of CLR/RAMP2 confirms the importance of the interaction of the ligand C-terminus and the RAMP in determining pharmacology specificity, although the RAMPs probably also have allosteric actions. A cryo-electron microscope structure of calcitonin bound to the full-length CTR associated with Gs gives important clues as to the structure of the complete receptor and suggests that the N-terminus of CGRP makes contact with His5.40b, high on TM5 of CLR. However, it is currently not known how the RAMPs interact with the TM bundle of any GPCR. Major challenges remain in understanding how the ECD and TM domains work together to determine ligand specificity, and how G-proteins influence this and the role of RCP. It seems likely that allosteric mechanisms are particularly important as are the dynamics of the receptors.
Collapse
Affiliation(s)
- John Simms
- School of Life and Health Science, Aston University, Birmingham, UK
- Coventry University, Coventry, UK
| | - Sarah Routledge
- School of Life and Health Science, Aston University, Birmingham, UK
| | - Romez Uddin
- School of Life and Health Science, Aston University, Birmingham, UK
| | - David Poyner
- School of Life and Health Science, Aston University, Birmingham, UK.
| |
Collapse
|
34
|
Gingell JJ, Hendrikse ER, Hay DL. New Insights into the Regulation of CGRP-Family Receptors. Trends Pharmacol Sci 2019; 40:71-83. [DOI: 10.1016/j.tips.2018.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 11/29/2022]
|
35
|
Natural and synthetic peptides in the cardiovascular diseases: An update on diagnostic and therapeutic potentials. Arch Biochem Biophys 2018; 662:15-32. [PMID: 30481494 DOI: 10.1016/j.abb.2018.11.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/31/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023]
Abstract
Several peptides play an important role in physiological and pathological conditions into the cardiovascular system. In addition to well-known vasoactive agents such as angiotensin II, endothelin, serotonin or natriuretic peptides, the vasoconstrictor Urotensin-II (Uro-II) and the vasodilators Urocortins (UCNs) and Adrenomedullin (AM) have been implicated in the control of vascular tone and blood pressure as well as in cardiovascular disease states including congestive heart failure, atherosclerosis, coronary artery disease, and pulmonary and systemic hypertension. Therefore these peptides, together with their receptors, become important therapeutic targets in cardiovascular diseases (CVDs). Circulating levels of these agents in the blood are markedly modified in patients with specific CVDs compared with those in healthy patients, becoming also potential biomarkers for these pathologies. This review will provide an overview of current knowledge about the physiological roles of Uro-II, UCN and AM in the cardiovascular system and their implications in cardiovascular diseases. It will further focus on the structural modifications carried out on original peptide sequences in the search of analogues with improved physiochemical properties as well as in the delivery methods. Finally, we have overviewed the possible application of these peptides and/or their precursors as biomarkers of CVDs.
Collapse
|
36
|
Kee Z, Kodji X, Brain SD. The Role of Calcitonin Gene Related Peptide (CGRP) in Neurogenic Vasodilation and Its Cardioprotective Effects. Front Physiol 2018; 9:1249. [PMID: 30283343 PMCID: PMC6156372 DOI: 10.3389/fphys.2018.01249] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/17/2018] [Indexed: 12/05/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a highly potent vasoactive peptide released from sensory nerves, which is now proposed to have protective effects in several cardiovascular diseases. The major α-form is produced from alternate splicing and processing of the calcitonin gene. The CGRP receptor is a complex composed of calcitonin like receptor (CLR) and a single transmembrane protein, RAMP1. CGRP is a potent vasodilator and proposed to have protective effects in several cardiovascular diseases. CGRP has a proven role in migraine and selective antagonists and antibodies are now reaching the clinic for treatment of migraine. These clinical trials with antagonists and antibodies indicate that CGRP does not play an obvious role in the physiological control of human blood pressure. This review discusses the vasodilator and hypotensive effects of CGRP and the role of CGRP in mediating cardioprotective effects in various cardiovascular models and disorders. In models of hypertension, CGRP protects against the onset and progression of hypertensive states by potentially counteracting against the pro-hypertensive systems such as the renin-angiotensin-aldosterone system (RAAS) and the sympathetic system. With regards to its cardioprotective effects in conditions such as heart failure and ischaemia, CGRP-containing nerves innervate throughout cardiac tissue and the vasculature, where evidence shows this peptide alleviates various aspects of their pathophysiology, including cardiac hypertrophy, reperfusion injury, cardiac inflammation, and apoptosis. Hence, CGRP has been suggested as a cardioprotective, endogenous mediator released under stress to help preserve cardiovascular function. With the recent developments of various CGRP-targeted pharmacotherapies, in the form of CGRP antibodies/antagonists as well as a CGRP analog, this review provides a summary and a discussion of the most recent basic science and clinical findings, initiating a discussion on the future of CGRP as a novel target in various cardiovascular diseases.
Collapse
Affiliation(s)
- Zizheng Kee
- Section of Vascular Biology & Inflammation, BHF Centre for Cardiovascular Research, School of Cardiovascular Medicine and Sciences, King's College London, London, United Kingdom
| | - Xenia Kodji
- Section of Vascular Biology & Inflammation, BHF Centre for Cardiovascular Research, School of Cardiovascular Medicine and Sciences, King's College London, London, United Kingdom
| | - Susan D Brain
- Section of Vascular Biology & Inflammation, BHF Centre for Cardiovascular Research, School of Cardiovascular Medicine and Sciences, King's College London, London, United Kingdom
| |
Collapse
|
37
|
Liang YL, Khoshouei M, Deganutti G, Glukhova A, Koole C, Peat TS, Radjainia M, Plitzko JM, Baumeister W, Miller LJ, Hay DL, Christopoulos A, Reynolds CA, Wootten D, Sexton PM. Cryo-EM structure of the active, G s-protein complexed, human CGRP receptor. Nature 2018; 561:492-497. [PMID: 30209400 PMCID: PMC6166790 DOI: 10.1038/s41586-018-0535-y] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/26/2018] [Indexed: 12/29/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is a widely expressed neuropeptide that has a major role in sensory neurotransmission. The CGRP receptor is a heterodimer of the calcitonin receptor-like receptor (CLR) class B G-protein-coupled receptor and a type 1 transmembrane domain protein, receptor activity-modifying protein 1 (RAMP1). Here we report the structure of the human CGRP receptor in complex with CGRP and the Gs-protein heterotrimer at 3.3 Å global resolution, determined by Volta phase-plate cryo-electron microscopy. The receptor activity-modifying protein transmembrane domain sits at the interface between transmembrane domains 3, 4 and 5 of CLR, and stabilizes CLR extracellular loop 2. RAMP1 makes only limited direct contact with CGRP, consistent with its function in allosteric modulation of CLR. Molecular dynamics simulations indicate that RAMP1 provides stability to the receptor complex, particularly in the positioning of the extracellular domain of CLR. This work provides insights into the control of G-protein-coupled receptor function.
Collapse
Affiliation(s)
- Yi-Lynn Liang
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Maryam Khoshouei
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
- Novartis Institutes for Biomedical Research, Novartis Pharma, Basel, Switzerland
| | | | - Alisa Glukhova
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Cassandra Koole
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Thomas S Peat
- CSIRO Biomedical Manufacturing, Melbourne, Victoria, Australia
| | - Mazdak Radjainia
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Jürgen M Plitzko
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Laurence J Miller
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, USA
| | - Deborah L Hay
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Arthur Christopoulos
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | | | - Denise Wootten
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- School of Pharmacy, Fudan University, Shanghai, China.
| | - Patrick M Sexton
- Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
- School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
38
|
Roehrkasse AM, Booe JM, Lee SM, Warner ML, Pioszak AA. Structure-function analyses reveal a triple β-turn receptor-bound conformation of adrenomedullin 2/intermedin and enable peptide antagonist design. J Biol Chem 2018; 293:15840-15854. [PMID: 30139742 DOI: 10.1074/jbc.ra118.005062] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/20/2018] [Indexed: 12/26/2022] Open
Abstract
The cardioprotective vasodilator peptide adrenomedullin 2/intermedin (AM2/IMD) and the related adrenomedullin (AM) and calcitonin gene-related peptide (CGRP) signal through three heterodimeric receptors comprising the calcitonin receptor-like class B G protein-coupled receptor (CLR) and a variable receptor activity-modifying protein (RAMP1, -2, or -3) that determines ligand selectivity. The CGRP receptor (RAMP1:CLR) favors CGRP binding, whereas the AM1 (RAMP2:CLR) and AM2 (RAMP3:CLR) receptors favor AM binding. How AM2/IMD binds the receptors and how RAMPs modulate its binding is unknown. Here, we show that AM2/IMD binds the three purified RAMP-CLR extracellular domain (ECD) complexes with a selectivity profile that is distinct from those of CGRP and AM. AM2/IMD bound all three ECD complexes but preferred the CGRP and AM2 receptor complexes. A 2.05 Å resolution crystal structure of an AM2/IMD antagonist fragment-bound RAMP1-CLR ECD complex revealed that AM2/IMD binds the complex through a unique triple β-turn conformation that was confirmed by peptide and receptor mutagenesis. Comparisons of the receptor-bound conformations of AM2/IMD, AM, and a high-affinity CGRP analog revealed differences that may have implications for biased signaling. Guided by the structure, enhanced-affinity AM2/IMD antagonist variants were developed, including one that discriminates the AM1 and AM2 receptors with ∼40-fold difference in affinities and one stabilized by an intramolecular disulfide bond. These results reveal differences in how the three peptides engage the receptors, inform development of AM2/IMD-based pharmacological tools and therapeutics, and provide insights into RAMP modulation of receptor pharmacology.
Collapse
Affiliation(s)
- Amanda M Roehrkasse
- From the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Jason M Booe
- From the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Sang-Min Lee
- From the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Margaret L Warner
- From the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Augen A Pioszak
- From the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
39
|
Fischer JP, Els-Heindl S, Schönauer R, Bierer D, Köbberling J, Riedl B, Beck-Sickinger AG. The Impact of Adrenomedullin Thr22 on Selectivity within the Calcitonin Receptor-like Receptor/Receptor Activity-Modifying Protein System. ChemMedChem 2018; 13:1797-1805. [DOI: 10.1002/cmdc.201800329] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/26/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Jan-Patrick Fischer
- Institute of Biochemistry; Leipzig University; Brüderstraße 34 04103 Leipzig Germany
| | - Sylvia Els-Heindl
- Institute of Biochemistry; Leipzig University; Brüderstraße 34 04103 Leipzig Germany
| | - Ria Schönauer
- Institute of Biochemistry; Leipzig University; Brüderstraße 34 04103 Leipzig Germany
| | - Donald Bierer
- Department of Medicinal Chemistry; Bayer AG; Aprather Weg 18 A 42096 Wuppertal Germany
| | - Johannes Köbberling
- Department of Medicinal Chemistry; Bayer AG; Aprather Weg 18 A 42096 Wuppertal Germany
| | - Bernd Riedl
- Department of Medicinal Chemistry; Bayer AG; Aprather Weg 18 A 42096 Wuppertal Germany
| | | |
Collapse
|
40
|
Lemos A, Melo R, Preto AJ, Almeida JG, Moreira IS, Cordeiro MNDS. In Silico Studies Targeting G-protein Coupled Receptors for Drug Research Against Parkinson's Disease. Curr Neuropharmacol 2018; 16:786-848. [PMID: 29521236 PMCID: PMC6080095 DOI: 10.2174/1570159x16666180308161642] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 02/16/2018] [Accepted: 02/02/2018] [Indexed: 11/22/2022] Open
Abstract
Parkinson's Disease (PD) is a long-term neurodegenerative brain disorder that mainly affects the motor system. The causes are still unknown, and even though currently there is no cure, several therapeutic options are available to manage its symptoms. The development of novel antiparkinsonian agents and an understanding of their proper and optimal use are, indeed, highly demanding. For the last decades, L-3,4-DihydrOxyPhenylAlanine or levodopa (L-DOPA) has been the gold-standard therapy for the symptomatic treatment of motor dysfunctions associated to PD. However, the development of dyskinesias and motor fluctuations (wearing-off and on-off phenomena) associated with long-term L-DOPA replacement therapy have limited its antiparkinsonian efficacy. The investigation for non-dopaminergic therapies has been largely explored as an attempt to counteract the motor side effects associated with dopamine replacement therapy. Being one of the largest cell membrane protein families, G-Protein-Coupled Receptors (GPCRs) have become a relevant target for drug discovery focused on a wide range of therapeutic areas, including Central Nervous System (CNS) diseases. The modulation of specific GPCRs potentially implicated in PD, excluding dopamine receptors, may provide promising non-dopaminergic therapeutic alternatives for symptomatic treatment of PD. In this review, we focused on the impact of specific GPCR subclasses, including dopamine receptors, adenosine receptors, muscarinic acetylcholine receptors, metabotropic glutamate receptors, and 5-hydroxytryptamine receptors, on the pathophysiology of PD and the importance of structure- and ligand-based in silico approaches for the development of small molecules to target these receptors.
Collapse
Affiliation(s)
- Agostinho Lemos
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007Porto, Portugal
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liège, 4000Liège, Belgium
| | - Rita Melo
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-517Coimbra, Portugal
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (ao km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Antonio Jose Preto
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-517Coimbra, Portugal
| | - Jose Guilherme Almeida
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-517Coimbra, Portugal
| | - Irina Sousa Moreira
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-517Coimbra, Portugal
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Utrecht, 3584CH, The Netherlands
| | - Maria Natalia Dias Soeiro Cordeiro
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007Porto, Portugal
| |
Collapse
|