1
|
Foran D, Antoniades C, Akoumianakis I. Emerging Roles for Sphingolipids in Cardiometabolic Disease: A Rational Therapeutic Target? Nutrients 2024; 16:3296. [PMID: 39408263 PMCID: PMC11478599 DOI: 10.3390/nu16193296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality. New research elucidates increasingly complex relationships between cardiac and metabolic health, giving rise to new possible therapeutic targets. Sphingolipids are a heterogeneous class of bioactive lipids with critical roles in normal human physiology. They have also been shown to play both protective and deleterious roles in the pathogenesis of cardiovascular disease. Ceramides are implicated in dysregulating insulin signalling, vascular endothelial function, inflammation, oxidative stress, and lipoprotein aggregation, thereby promoting atherosclerosis and vascular disease. Ceramides also advance myocardial disease by enhancing pathological cardiac remodelling and cardiomyocyte death. Glucosylceramides similarly contribute to insulin resistance and vascular inflammation, thus playing a role in atherogenesis and cardiometabolic dysfunction. Sphingosing-1-phosphate, on the other hand, may ameliorate some of the pathological functions of ceramide by protecting endothelial barrier integrity and promoting cell survival. Sphingosine-1-phosphate is, however, implicated in the development of cardiac fibrosis. This review will explore the roles of sphingolipids in vascular, cardiac, and metabolic pathologies and will evaluate the therapeutic potential in targeting sphingolipids with the aim of prevention and reversal of cardiovascular disease in order to improve long-term cardiovascular outcomes.
Collapse
Affiliation(s)
| | | | - Ioannis Akoumianakis
- Cardiovascular Medicine Division, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (D.F.); (C.A.)
| |
Collapse
|
2
|
Borodzicz-Jażdżyk S, Jażdżyk P, Łysik W, Cudnoch-Jȩdrzejewska A, Czarzasta K. Sphingolipid metabolism and signaling in cardiovascular diseases. Front Cardiovasc Med 2022; 9:915961. [PMID: 36119733 PMCID: PMC9471951 DOI: 10.3389/fcvm.2022.915961] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/05/2022] [Indexed: 01/10/2023] Open
Abstract
Sphingolipids are a structural component of the cell membrane, derived from sphingosine, an amino alcohol. Its sphingoid base undergoes various types of enzymatic transformations that lead to the formation of biologically active compounds, which play a crucial role in the essential pathways of cellular signaling, proliferation, maturation, and death. The constantly growing number of experimental and clinical studies emphasizes the pivotal role of sphingolipids in the pathophysiology of cardiovascular diseases, including, in particular, ischemic heart disease, hypertension, heart failure, and stroke. It has also been proven that altering the sphingolipid metabolism has cardioprotective properties in cardiac pathologies, including myocardial infarction. Recent studies suggest that selected sphingolipids may serve as valuable biomarkers useful in the prognosis of cardiovascular disorders in clinical practice. This review aims to provide an overview of the current knowledge of sphingolipid metabolism and signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Sonia Borodzicz-Jażdżyk
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Jażdżyk
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- Second Department of Psychiatry, Institute of Psychiatry and Neurology in Warsaw, Warsaw, Poland
| | - Wojciech Łysik
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cudnoch-Jȩdrzejewska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Czarzasta
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Poirier B, Briand V, Kadereit D, Schäfer M, Wohlfart P, Philippo MC, Caillaud D, Gouraud L, Grailhe P, Bidouard JP, Trellu M, Muslin AJ, Janiak P, Parkar AA. A G protein-biased S1P 1 agonist, SAR247799, protects endothelial cells without affecting lymphocyte numbers. Sci Signal 2020; 13:13/634/eaax8050. [PMID: 32487716 DOI: 10.1126/scisignal.aax8050] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Endothelial dysfunction is a hallmark of tissue injury and is believed to initiate the development of vascular diseases. Sphingosine-1 phosphate receptor-1 (S1P1) plays fundamental physiological roles in endothelial function and lymphocyte homing. Currently available clinical molecules that target this receptor are desensitizing and are essentially S1P1 functional antagonists that cause lymphopenia. They are clinically beneficial in autoimmune diseases such as multiple sclerosis. In patients, several side effects of S1P1 desensitization have been attributed to endothelial damage, suggesting that drugs with the opposite effect, namely, the ability to activate S1P1, could help to restore endothelial homeostasis. We found and characterized a biased agonist of S1P1, SAR247799, which preferentially activated downstream G protein signaling to a greater extent than β-arrestin and internalization signaling pathways. SAR247799 activated S1P1 on endothelium without causing receptor desensitization and potently activated protection pathways in human endothelial cells. In a pig model of coronary endothelial damage, SAR247799 improved the microvascular hyperemic response without reducing lymphocyte numbers. Similarly, in a rat model of renal ischemia/reperfusion injury, SAR247799 preserved renal structure and function at doses that did not induce S1P1-desensitizing effects, such as lymphopenia and lung vascular leakage. In contrast, a clinically used S1P1 functional antagonist, siponimod, conferred minimal renal protection and desensitized S1P1 These findings demonstrate that sustained S1P1 activation can occur pharmacologically without compromising the immune response, providing a new approach to treat diseases associated with endothelial dysfunction and vascular hyperpermeability.
Collapse
Affiliation(s)
- Bruno Poirier
- Diabetes and Cardiovascular Research, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France
| | - Veronique Briand
- Diabetes and Cardiovascular Research, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France
| | - Dieter Kadereit
- Medicinal Chemistry, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main,, Germany
| | - Matthias Schäfer
- Diabetes and Cardiovascular Research, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Paulus Wohlfart
- Diabetes and Cardiovascular Research, Sanofi-Aventis Deutschland GmbH, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Marie-Claire Philippo
- Diabetes and Cardiovascular Research, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France
| | - Dominique Caillaud
- Diabetes and Cardiovascular Research, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France
| | - Laurent Gouraud
- Diabetes and Cardiovascular Research, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France
| | - Patrick Grailhe
- Diabetes and Cardiovascular Research, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France
| | - Jean-Pierre Bidouard
- Diabetes and Cardiovascular Research, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France
| | - Marc Trellu
- Drug Metabolism and Pharmacokinetics, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly-Mazarin, France
| | - Anthony J Muslin
- Diabetes and Cardiovascular Research, Sanofi US Services, 640 Memorial Drive, Cambridge, MA 02139, USA
| | - Philip Janiak
- Diabetes and Cardiovascular Research, Sanofi R&D, 1 Avenue Pierre Brossolette, 91385 Chilly Mazarin, France
| | - Ashfaq A Parkar
- Diabetes and Cardiovascular Research, Sanofi US Services, 55 Corporate Drive, Bridgewater, NJ 08807, USA.
| |
Collapse
|
4
|
Aktories K, Gierschik P, Heringdorf DMZ, Schmidt M, Schultz G, Wieland T. cAMP guided his way: a life for G protein-mediated signal transduction and molecular pharmacology-tribute to Karl H. Jakobs. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:887-911. [PMID: 31101932 DOI: 10.1007/s00210-019-01650-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
Abstract
Karl H. Jakobs, former editor-in-chief of Naunyn-Schmiedeberg's Archives of Pharmacology and renowned molecular pharmacologist, passed away in April 2018. In this article, his scientific achievements regarding G protein-mediated signal transduction and regulation of canonical pathways are summarized. Particularly, the discovery of inhibitory G proteins for adenylyl cyclase, methods for the analysis of receptor-G protein interactions, GTP supply by nucleoside diphosphate kinases, mechanisms in phospholipase C and phospholipase D activity regulation, as well as the development of the concept of sphingosine-1-phosphate as extra- and intracellular messenger will presented. His seminal scientific and methodological contributions are put in a general and timely perspective to display and honor his outstanding input to the current knowledge in molecular pharmacology.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert Ludwigs University, 79104, Freiburg, Germany
| | - Peter Gierschik
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, 89070, Ulm, Germany
| | - Dagmar Meyer Zu Heringdorf
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt am Main, Goethe University, 60590, Frankfurt am Main, Germany
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, 9713AV, Groningen, The Netherlands
| | - Günter Schultz
- Department of Pharmacology, Charité University Medical Center Berlin, Campus Benjamin Franklin, 14195, Berlin, Germany
| | - Thomas Wieland
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13 - 17, 68167, Mannheim, Germany.
| |
Collapse
|
5
|
Ge D, Yue HW, Liu HH, Zhao J. Emerging roles of sphingosylphosphorylcholine in modulating cardiovascular functions and diseases. Acta Pharmacol Sin 2018; 39:1830-1836. [PMID: 30050085 DOI: 10.1038/s41401-018-0036-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/03/2018] [Indexed: 11/10/2022]
Abstract
Sphingosylphosphorylcholine (SPC) is a bioactive sphingolipid in blood plasma that is metabolized from the hydrolysis of the membrane sphingolipid. SPC maintains low levels in the circulation under normal conditions, which makes studying its origin and action difficult. In recent years, however, it has been revealed that SPC may act as a first messenger through G protein-coupled receptors (S1P1-5, GPR12) or membrane lipid rafts, or as a second messenger mediating intracellular Ca2+ release in diverse human organ systems. SPC is a constituent of lipoproteins, and the activation of platelets promotes the release of SPC into blood, both implying a certain effect of SPC in modulating the pathological process of the heart and vessels. A line of evidence indeed confirms that SPC exerts a pronounced influence on the cardiovascular system through modulation of the functions of myocytes, vein endothelial cells, as well as vascular smooth muscle cells. In this review we summarize the current knowledge of the potential roles of SPC in the development of cardiovascular diseases and discuss the possible underlying mechanisms.
Collapse
|
6
|
Pulli I, Asghar MY, Kemppainen K, Törnquist K. Sphingolipid-mediated calcium signaling and its pathological effects. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1668-1677. [DOI: 10.1016/j.bbamcr.2018.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 12/15/2022]
|
7
|
Shahin MH, Gong Y, Frye RF, Rotroff DM, Beitelshees AL, Baillie RA, Chapman AB, Gums JG, Turner ST, Boerwinkle E, Motsinger-Reif A, Fiehn O, Cooper-DeHoff RM, Han X, Kaddurah-Daouk R, Johnson JA. Sphingolipid Metabolic Pathway Impacts Thiazide Diuretics Blood Pressure Response: Insights From Genomics, Metabolomics, and Lipidomics. J Am Heart Assoc 2017; 7:e006656. [PMID: 29288159 PMCID: PMC5778957 DOI: 10.1161/jaha.117.006656] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 11/01/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND Although hydrochlorothiazide (HCTZ) is a well-established first-line antihypertensive in the United States, <50% of HCTZ treated patients achieve blood pressure (BP) control. Thus, identifying biomarkers that could predict the BP response to HCTZ is critically important. In this study, we utilized metabolomics, genomics, and lipidomics to identify novel pathways and biomarkers associated with HCTZ BP response. METHODS AND RESULTS First, we conducted a pathway analysis for 13 metabolites we recently identified to be significantly associated with HCTZ BP response. From this analysis, we found the sphingolipid metabolic pathway as the most significant pathway (P=5.8E-05). Testing 78 variants, within 14 genes involved in the sphingolipid metabolic canonical pathway, with the BP response to HCTZ identified variant rs6078905, within the SPTLC3 gene, as a novel biomarker significantly associated with the BP response to HCTZ in whites (n=228). We found that rs6078905 C-allele carriers had a better BP response to HCTZ versus noncarriers (∆SBP/∆DBP: -11.4/-6.9 versus -6.8/-3.5 mm Hg; ∆SBP P=6.7E-04; ∆DBP P=4.8E-04). Additionally, in blacks (n=148), we found genetic signals in the SPTLC3 genomic region significantly associated with the BP response to HCTZ (P<0.05). Last, we observed that rs6078905 significantly affects the baseline level of 4 sphingomyelins (N24:2, N24:3, N16:1, and N22:1; false discovery rate <0.05), from which N24:2 sphingomyelin has a significant correlation with both HCTZ DBP-response (r=-0.42; P=7E-03) and SBP-response (r=-0.36; P=2E-02). CONCLUSIONS This study provides insight into potential pharmacometabolomic and genetic mechanisms underlying HCTZ BP response and suggests that SPTLC3 is a potential determinant of the BP response to HCTZ. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT00246519.
Collapse
Affiliation(s)
- Mohamed H Shahin
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL
| | - Yan Gong
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL
| | - Reginald F Frye
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL
| | - Daniel M Rotroff
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC
| | | | | | | | - John G Gums
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL
| | | | - Eric Boerwinkle
- Human Genetics Center and Institute for Molecular Medicine, University of Texas Health Science Center, Houston, TX
| | | | - Oliver Fiehn
- Genome Center, University of California at Davis, CA
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi-Arabia
| | - Rhonda M Cooper-DeHoff
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL
| | - Xianlin Han
- Sanford-Burnham Medical Research Institute, Orlando, FL
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioural Sciences and Department of Medicine, Duke University, Durham, NC
| | - Julie A Johnson
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, FL
| |
Collapse
|
8
|
Heijman J, Kirchner D, Kunze F, Chrétien EM, Michel-Reher MB, Voigt N, Knaut M, Michel MC, Ravens U, Dobrev D. Muscarinic type-1 receptors contribute to I K,ACh in human atrial cardiomyocytes and are upregulated in patients with chronic atrial fibrillation. Int J Cardiol 2017; 255:61-68. [PMID: 29290419 DOI: 10.1016/j.ijcard.2017.12.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND Basal and acetylcholine-gated inward-rectifier K+-currents (IK1 and IK,ACh, respectively) are altered in atrial fibrillation (AF). Gi-protein-coupled muscarinic (M) receptors type-2 are considered the predominant receptors activating IK,ACh. Although a role for Gq-coupled non-M2-receptor subtypes has been suggested, the precise regulation of IK,ACh by multiple M-receptor subtypes in the human atrium is unknown. Here, we investigated M1-receptor-mediated IK,ACh regulation and its remodeling in chronic AF (cAF). METHODS AND RESULTS M1-receptor mRNA and protein abundance were increased in atrial cardiomyocyte fractions and atrial homogenates from cAF patients, whereas M2-receptor levels were unchanged. The regulation of IK,ACh by M1-receptors was investigated in right-atrial cardiomyocytes using two applications of the M-receptor agonist carbachol (CCh, 2μM), with pharmacological interventions during the second application. CCh application produced a rapid current increase (Peak-IK,ACh), which declined to a quasi-steady-state level (Qss-IK,ACh). In sinus rhythm (Ctl) the selective M1-receptor antagonists pirenzepine (10nM) and muscarinic toxin-7 (MT-7, 10nM) significantly inhibited CCh-activated Peak-IK,ACh, whereas in cAF they significantly reduced both Peak- and Qss-IK,ACh, with no effects on basal inward-rectifier currents in either group. Conversely, the selective M1-receptor agonist McN-A-343 (100μM) induced a current similar to the CCh-activated current in Ctl atrial cardiomyocytes pretreated with pertussis toxin to inhibit M2-receptor-mediated Gi-protein signaling, which was abolished by MT-7. Computational modeling indicated that M1- and M2-receptors redundantly activate IK,ACh to abbreviate APD, albeit with predominant effects of M2-receptors. CONCLUSION Our data suggest that Gq-coupled M1-receptors also regulate human atrial IK,ACh and that their relative contribution to IK,ACh activation is increased in cAF patients. We provide novel insights about the role of non-M2-receptors in human atrial cardiomyocytes, which may have important implications for understanding AF pathophysiology.
Collapse
Affiliation(s)
- Jordi Heijman
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany; Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Dorit Kirchner
- Department of Pharmacology and Toxicology, Carl Gustav Carus Medical Faculty, Dresden University of Technology, Dresden, Germany
| | - Franziska Kunze
- Department of Pharmacology and Toxicology, Carl Gustav Carus Medical Faculty, Dresden University of Technology, Dresden, Germany
| | - Eva Maria Chrétien
- Department of Pharmacology and Toxicology, Carl Gustav Carus Medical Faculty, Dresden University of Technology, Dresden, Germany
| | | | - Niels Voigt
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Michael Knaut
- Heart Surgery, Heart Center Dresden, Carl Gustav Carus Medical Faculty, Dresden University of Technology, Dresden, Germany
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | - Ursula Ravens
- Department of Pharmacology and Toxicology, Carl Gustav Carus Medical Faculty, Dresden University of Technology, Dresden, Germany; Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany; Department of Pharmacology and Toxicology, Carl Gustav Carus Medical Faculty, Dresden University of Technology, Dresden, Germany.
| |
Collapse
|
9
|
Ahmed N, Linardi D, Decimo I, Mehboob R, Gebrie MA, Innamorati G, Luciani GB, Faggian G, Rungatscher A. Characterization and Expression of Sphingosine 1-Phosphate Receptors in Human and Rat Heart. Front Pharmacol 2017; 8:312. [PMID: 28596734 PMCID: PMC5442178 DOI: 10.3389/fphar.2017.00312] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/11/2017] [Indexed: 12/12/2022] Open
Abstract
Aim: Sphingosine 1-phosphate (S1P), sphingolipid derivatives are known anti-inflammatory, anti-apoptotic, and anti-oxidant agent. S1P have been demonstrated to have a role in the cardiovascular system. The purpose of this study was to understand the precise expression and distribution of S1P receptors (S1PRs) in human and rat cardiovascular tissues to know the significance and possible implementation of our experimental studies in rat models. Methods and Results: In this study, we investigated the localization of S1PRs in human heart samples from cardiac surgery department, University of Verona Hospital and rat samples. Immunohistochemical investigation of paraffin-embedded sections illustrated diffused staining of the myocardial samples from human and rat. The signals of the human heart were similar to those of the rat heart in all chambers of the heart. The immunohistochemical expression levels correlated well with the results of RT-PCR-based analysis and western blotting. We confirmed by all techniques that S1PR1 expressed strongly as compared to S1PR3, and are uniformly distributed in all chambers of the heart with no significant difference in human and rat myocardial tissue. S1PR2 expression was significantly weak while S1PR4 and S1PR5 were not detectable in RT-PCR results in both human and rat heart. Conclusion: These results indicate that experimental studies using S1PR agonists on rat models are more likely to have a potential for translation into clinical studies, and second important information revealed by this study is, S1P receptor agonist can be used for cardioprotection in global ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Naseer Ahmed
- Cardiac Surgery Division, University of Verona Medical SchoolVerona, Italy.,Translational Surgery Lab, University of Verona Medical SchoolVerona, Italy.,Section of Pharmacology, Department of Diagnostics and Public Health, University of VeronaVerona, Italy
| | - Daniele Linardi
- Cardiac Surgery Division, University of Verona Medical SchoolVerona, Italy
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostics and Public Health, University of VeronaVerona, Italy
| | - Riffat Mehboob
- Department of Biomedical Sciences, King Edward Medical UniversityLahore, Pakistan
| | - Mebratu A Gebrie
- Cardiac Surgery Division, University of Verona Medical SchoolVerona, Italy
| | - Giulio Innamorati
- Translational Surgery Lab, University of Verona Medical SchoolVerona, Italy
| | - Giovanni B Luciani
- Cardiac Surgery Division, University of Verona Medical SchoolVerona, Italy
| | - Giuseppe Faggian
- Cardiac Surgery Division, University of Verona Medical SchoolVerona, Italy
| | | |
Collapse
|
10
|
Pilote S, Simard C, Drolet B. Fingolimod (Gilenya ® ) in multiple sclerosis: bradycardia, atrioventricular blocks, and mild effect on the QTc interval. Something to do with the L-type calcium channel? Fundam Clin Pharmacol 2017; 31:392-402. [PMID: 28299825 DOI: 10.1111/fcp.12284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/03/2017] [Accepted: 03/13/2017] [Indexed: 11/28/2022]
Abstract
Cardiac arrhythmias and ECG abnormalities including bradycardia, prolongation of the QT interval, and atrioventricular (AV) conduction blocks have been extensively observed with fingolimod, the first marketed oral drug for treating the relapsing-remitting form of multiple sclerosis. This study was aiming to further elucidate the effects of fingolimod on cardiac electrophysiology at three different levels: (i) in vitro, (ii) ex vivo, and (iii) in vivo. (i) Patch-clamp experiments in whole cell configuration were performed on Cav 1.2-transfected tsA201 cells exposed to fingolimod-phosphate 100 or 500 nmol/L (n = 27 cells, total) to measure drug effect on L-type calcium current (ICaL ). (ii) Langendorff perfusion experiments were undertaken on male Hartley guinea-pigs isolated hearts (n = 4) exposed to fingolimod 10 and 100 nmol/L to evaluate drug-induced effects on monophasic action potential duration measured at 90% repolarization (MAPD90 ). (iii) Implanted cardiac telemeters were used to record ECGs in guinea-pigs (n = 7) treated with a single dose of fingolimod 0.0625 mg/kg suspension, administered as an oral gavage. (i) In vitro cellular experiments showed that fingolimod-phosphate causes a concentration-dependent reduction in ICaL . (ii) Ex vivo Langendorff experiments revealed that fingolimod had no significant effect on MAPD90 . (iii) Fingolimod caused significant prolongations of the RR, PR, QT, and QTcF intervals in vivo. Reversible AV blocks were also observed in 7/7 animals. Fingolimod possesses ICaL -blocking properties, further contributing to its AV conduction-slowing effects. These properties are also consistent with its mitigated effect on the QT interval in humans, despite previously shown HERG-blocking effect.
Collapse
Affiliation(s)
- Sylvie Pilote
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), 2725, Chemin Sainte-Foy, Québec, QC, Canada, G1V 4G5
| | - Chantale Simard
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), 2725, Chemin Sainte-Foy, Québec, QC, Canada, G1V 4G5.,Faculté de Pharmacie, Université Laval, 1050 Avenue de la médecine, Québec, QC, Canada, G1V 0A6
| | - Benoit Drolet
- Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), 2725, Chemin Sainte-Foy, Québec, QC, Canada, G1V 4G5.,Faculté de Pharmacie, Université Laval, 1050 Avenue de la médecine, Québec, QC, Canada, G1V 0A6
| |
Collapse
|
11
|
Harada T, Wilbraham D, de La Borderie G, Inoue S, Bush J, Camm AJ. Cardiac effects of amiselimod compared with fingolimod and placebo: results of a randomised, parallel-group, phase I study in healthy subjects. Br J Clin Pharmacol 2017; 83:1011-1027. [PMID: 27921320 PMCID: PMC5401982 DOI: 10.1111/bcp.13203] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 11/21/2016] [Accepted: 12/01/2016] [Indexed: 01/13/2023] Open
Abstract
Aim Amiselimod (MT‐1303) is a selective sphingosine 1‐phosphate 1 (S1P1) receptor modulator which is currently being developed for the treatment of various autoimmune diseases. Unlike some other S1P receptor modulators, amiselimod seemed to show a favourable cardiac safety profile in preclinical, phase I and II studies. The aim of the current study was to characterize the cardiac effects of amiselimod by directly comparing it with fingolimod and placebo. Methods A total of 81 healthy subjects aged 18–55 years were equally randomized to receive amiselimod 0.4 mg, amiselimod 0.8 mg, placebo or fingolimod 0.5 mg once daily for 28 days. The chronotropic/dromotropic and inotropic effects were evaluated using intensive Holter electrocardiogram and echocardiography. Results Unlike fingolimod, neither amiselimod dose exerted acute (1–6 h) negative chronotropic effects on Days 1 and 2. The lowest nadir mean hourly heart rate was observed on Day 14 in the amiselimod 0.4 mg group (least squares mean difference: −4.40 bpm, 95% confidence interval −7.15, −1.66) and Day 7 in the 0.8 mg group [−3.85 bpm (−6.58, −1.11)] compared with placebo, but these changes were smaller than those with fingolimod on Day 1 [−6.49 bpm (−8.95, −4.02)]. No clinically significant bradyarrhythmia or cardiac functional abnormalities were observed in either amiselimod group. Both amiselimod doses were well tolerated and no serious adverse events were reported. Fingolimod was also generally well tolerated, although one subject was withdrawn owing to highly frequent 2:1 atrioventricular blocks on Day 1. Conclusion The study demonstrated a more favourable cardiac safety profile for amiselimod than fingolimod when administered over 28 days in healthy subjects.
Collapse
Affiliation(s)
- Tomohiko Harada
- Mitsubishi Tanabe Pharma Europe Ltd., Dashwood House, 69 Old Broad Street, London, EC2M 1QS, UK
| | - Darren Wilbraham
- Mitsubishi Tanabe Pharma Europe Ltd., Dashwood House, 69 Old Broad Street, London, EC2M 1QS, UK
| | | | - Shinsuke Inoue
- Mitsubishi Tanabe Pharma Corporation, 17-10, Nihonbashi-Koamicho, Chuo-ku, Tokyo, 103-8405, Japan
| | - Jim Bush
- Principal Investigator, Covance CRU Ltd., Springfield House, Hyde Street, Leeds, LS2 9LH, UK
| | - A John Camm
- Cardiovascular and Cell Sciences Research Institute, St. George's University of London, London, SW17 0RE, UK
| |
Collapse
|
12
|
Xu Y, Xiao YJ, Baudhuin LM, Schwartz BM. The Role and Clinical Applications of Bioactive Lysolipids in Ovarian Cancer. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155760100800101] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yan Xu
- Department of Cancer Biology Lerner Research Institute and the Department of Gynecology and Obstetrics Cleveland Clinic Foundation; Department of Chemistry, Cleveland State University, Cleveland, Ohio; Department of Cancer Biology, Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195
| | | | | | - Benjamin M. Schwartz
- Department of Cancer Biology Lerner Research Institute and the Department of Gynecology and Obstetrics Cleveland Clinic Foundation; Department of Chemistry, Cleveland State University, Cleveland, Ohio
| |
Collapse
|
13
|
Egom EEA, Bae JS, Capel R, Richards M, Ke Y, Pharithi RB, Maher V, Kruzliak P, Lei M. Effect of sphingosine-1-phosphate on L-type calcium current and Ca2+ transient in rat ventricular myocytes. Mol Cell Biochem 2016; 419:83-92. [DOI: 10.1007/s11010-016-2752-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 06/21/2016] [Indexed: 01/05/2023]
|
14
|
Tiper IV, East JE, Subrahmanyam PB, Webb TJ. Sphingosine 1-phosphate signaling impacts lymphocyte migration, inflammation and infection. Pathog Dis 2016; 74:ftw063. [PMID: 27354294 DOI: 10.1093/femspd/ftw063] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2016] [Indexed: 01/01/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a sphingosine containing lipid intermediate obtained from ceramide. S1P is known to be an important signaling molecule and plays multiple roles in the context of immunity. This lysophospholipid binds and activates G-protein-coupled receptors (GPCRs) known as S1P receptors 1-5 (S1P1-5). Once activated, these GPCRs mediate signaling that can lead to alterations in cell proliferation, survival or migration, and can also have other effects such as promoting angiogenesis. In this review, we will present evidence demonstrating a role for S1P in lymphocyte migration, inflammation and infection, as well as in cancer. The therapeutic potential of targeting S1P receptors, kinases and lyase will also be discussed.
Collapse
Affiliation(s)
- Irina V Tiper
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, 685 W Baltimore St., Baltimore, MD 21201, USA
| | - James E East
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, 685 W Baltimore St., Baltimore, MD 21201, USA
| | - Priyanka B Subrahmanyam
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, 685 W Baltimore St., Baltimore, MD 21201, USA
| | - Tonya J Webb
- Department of Microbiology and Immunology, University of Maryland School of Medicine and the Marlene and Stewart Greenebaum Cancer Center, 685 W Baltimore St., Baltimore, MD 21201, USA
| |
Collapse
|
15
|
Waeber C, Walther T. Sphingosine-1-phosphate as a potential target for the treatment of myocardial infarction. Circ J 2014; 78:795-802. [PMID: 24632793 DOI: 10.1253/circj.cj-14-0178] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review focuses on the role of sphingosine-1-phosphate (S1P) signaling in the heart, with particular emphasis on how it could be modulated therapeutically in the context of myocardial infarction (MI). After a brief general description of sphingolipid metabolism and signaling, this review will examine the relationship between S1P and the beneficial effects of high-density lipoprotein (HDL), and finally focus on the known actions of S1P on different mechanisms relevant to MI pathophysiology (cardiomyocyte protection, fibrosis, remodeling, arrhythmia, control of vascular tone and potential repair mechanisms). The potential of particular enzyme isoforms or receptor subtypes for the development of therapeutic agents for MI will also be explored.
Collapse
Affiliation(s)
- Christian Waeber
- Department of Pharmacology and Therapeutics, School of Medicine, School of Pharmacy, University College Cork
| | | |
Collapse
|
16
|
Constitutive Activity of the Acetylcholine-Activated Potassium Current IK,ACh in Cardiomyocytes. ADVANCES IN PHARMACOLOGY 2014; 70:393-409. [DOI: 10.1016/b978-0-12-417197-8.00013-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Rey M, Hess P, Clozel M, Delahaye S, Gatfield J, Nayler O, Steiner B. Desensitization by progressive up-titration prevents first-dose effects on the heart: guinea pig study with ponesimod, a selective S1P1 receptor modulator. PLoS One 2013; 8:e74285. [PMID: 24069292 PMCID: PMC3771878 DOI: 10.1371/journal.pone.0074285] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/30/2013] [Indexed: 11/30/2022] Open
Abstract
Ponesimod, a selective S1P1 receptor modulator, reduces the blood lymphocyte count in all tested species by preventing egress of T and B cells from thymus and peripheral lymphoid organs. In addition, ponesimod transiently affects heart rate and atrioventricular (AV) conduction in humans, effects not observed in mice, rats, and dogs with selective S1P1 receptor modulators, suggesting that the regulation of heart rate and rhythm is species dependent. In the present study, we used conscious guinea pigs implanted with a telemetry device to investigate the effects of single and multiple oral doses of ponesimod on ECG variables, heart rate, and blood pressure. Oral administration of ponesimod did not affect the sinus rate (P rate) but dose-dependently induced AV block type I to III. A single oral dose of 0.1 mg/kg had no effect on ECG variables, while a dose of 3 mg/kg induced AV block type III in all treated guinea pigs. Repeated oral dosing of 1 or 3 mg/kg ponesimod resulted in rapid desensitization, so that the second dose had no or a clearly reduced effect on ECG variables as compared with the first dose. Resensitization of the S1P1 receptor in the heart was concentration dependent. After desensitization had been induced by the first dose of ponesimod, the cardiac system remained desensitized as long as the plasma concentration was ≥75 ng/ml. By using a progressive up-titration regimen, the first-dose effect of ponesimod on heart rate and AV conduction was significantly reduced due to desensitization of the S1P1 receptor. In summary, conscious guinea pigs implanted with a telemetry device represent a useful model to study first-dose effects of S1P1 receptor modulators on heart rate and rhythm. This knowledge was translated to a dosing regimen of ponesimod to be tested in humans to avoid or significantly reduce the first-dose effects.
Collapse
Affiliation(s)
- Markus Rey
- Actelion Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Patrick Hess
- Actelion Pharmaceuticals Ltd., Allschwil, Switzerland
| | | | | | - John Gatfield
- Actelion Pharmaceuticals Ltd., Allschwil, Switzerland
- * E-mail:
| | - Oliver Nayler
- Actelion Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Beat Steiner
- Actelion Pharmaceuticals Ltd., Allschwil, Switzerland
| |
Collapse
|
18
|
Alshaker H, Sauer L, Monteil D, Ottaviani S, Srivats S, Böhler T, Pchejetski D. Therapeutic potential of targeting SK1 in human cancers. Adv Cancer Res 2013; 117:143-200. [PMID: 23290780 DOI: 10.1016/b978-0-12-394274-6.00006-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sphingosine kinase 1 (SK1) is a lipid enzyme with oncogenic properties that converts the proapoptotic lipids ceramide and sphingosine into the antiapoptotic lipid sphingosine-1-phosphate and activates the signal transduction pathways that lead to cell proliferation, migration, the activation of the inflammatory response, and the impairment of apoptosis. There is compelling evidence that SK1 activation contributes to cancer progression leading to increased oncogenic transformation, tumor growth, resistance to therapies, tumor neovascularization, and metastatic spread. High levels of SK1 expression or activity have been associated with a poor prognosis in several human cancers. Recent studies using cancer cell and mouse models demonstrate a significant potential for SK1-targeting therapies to synergize with the effects of chemotherapy and radiotherapy; however, until recently the absence of clinically applicable SK1 inhibitors has limited the translation of these findings into patients. With the recent discovery of SK1 inhibiting properties of a clinically approved drug FTY720 (Fingolimod), SK1 has gained significant attention from both clinicians and the pharmaceutical industry and it is hoped that trials of newly developed SK1 inhibitors may follow soon. This review provides an overview of the SK1 signaling, its relevance to cancer progression, and the potential clinical significance of targeting SK1 for improved local or systemic control of human cancers.
Collapse
Affiliation(s)
- Heba Alshaker
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
19
|
Voigt N, Heijman J, Trausch A, Mintert-Jancke E, Pott L, Ravens U, Dobrev D. Impaired Na⁺-dependent regulation of acetylcholine-activated inward-rectifier K⁺ current modulates action potential rate dependence in patients with chronic atrial fibrillation. J Mol Cell Cardiol 2013; 61:142-52. [PMID: 23531443 DOI: 10.1016/j.yjmcc.2013.03.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 02/07/2013] [Accepted: 03/11/2013] [Indexed: 01/23/2023]
Abstract
Shortened action-potential duration (APD) and blunted APD rate adaptation are hallmarks of chronic atrial fibrillation (cAF). Basal and muscarinic (M)-receptor-activated inward-rectifier K(+) currents (IK1 and IK,ACh, respectively) contribute to regulation of human atrial APD and are subject to cAF-dependent remodeling. Intracellular Na(+) ([Na(+)]i) enhances IK,ACh in experimental models but the effect of [Na(+)]i-dependent regulation of inward-rectifier K(+) currents on APD in human atrial myocytes is currently unknown. Here, we report a [Na(+)]i-dependent inhibition of outward IK1 in atrial myocytes from sinus rhythm (SR) or cAF patients. In contrast, IK,ACh activated by carbachol, a non-selective M-receptor agonist, increased with elevation of [Na(+)]i in SR. This [Na(+)]i-dependent IK,ACh regulation was absent in cAF. Including [Na(+)]i dependence of IK1 and IK,ACh in a recent computational model of the human atrial myocyte revealed that [Na(+)]i accumulation at fast rates inhibits IK1 and blunts physiological APD rate dependence in both groups. [Na(+)]i-dependent IK,ACh augmentation at fast rates increased APD rate dependence in SR, but not in cAF. These results identify impaired Na(+)-sensitivity of IK,ACh as one potential mechanism contributing to the blunted APD rate dependence in patients with cAF. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".
Collapse
Affiliation(s)
- Niels Voigt
- Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, 45122 Essen, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Gergely P, Nuesslein-Hildesheim B, Guerini D, Brinkmann V, Traebert M, Bruns C, Pan S, Gray NS, Hinterding K, Cooke NG, Groenewegen A, Vitaliti A, Sing T, Luttringer O, Yang J, Gardin A, Wang N, Crumb WJ, Saltzman M, Rosenberg M, Wallström E. The selective sphingosine 1-phosphate receptor modulator BAF312 redirects lymphocyte distribution and has species-specific effects on heart rate. Br J Pharmacol 2013; 167:1035-47. [PMID: 22646698 PMCID: PMC3485666 DOI: 10.1111/j.1476-5381.2012.02061.x] [Citation(s) in RCA: 253] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE BAF312 is a next-generation sphingosine 1-phosphate (S1P) receptor modulator, selective for S1P1 and S1P5 receptors. S1P1 receptors are essential for lymphocyte egress from lymph nodes and a drug target in immune-mediated diseases. Here, we have characterized the immunomodulatory potential of BAF312 and the S1P receptor-mediated effects on heart rate using preclinical and human data. EXPERIMENTAL APPROACH BAF312 was tested in a rat experimental autoimmune encephalomyelitis (EAE) model. Electrophysiological recordings of G-protein-coupled inwardly rectifying potassium (GIRK) channels were carried out in human atrial myocytes. A Phase I multiple-dose trial studied the pharmacokinetics, pharmacodynamics and safety of BAF312 in 48 healthy subjects. KEY RESULTS BAF312 effectively suppressed EAE in rats by internalizing S1P1 receptors, rendering them insensitive to the egress signal from lymph nodes. In healthy volunteers, BAF312 caused preferential decreases in CD4+ T cells, Tnaïve, Tcentral memory and B cells within 4–6 h. Cell counts returned to normal ranges within a week after stopping treatment, in line with the elimination half-life of BAF312. Despite sparing S1P3 receptors (associated with bradycardia in mice), BAF312 induced rapid, transient (day 1 only) bradycardia in humans. BAF312-mediated activation of GIRK channels in human atrial myocytes can fully explain the bradycardia. CONCLUSION AND IMPLICATIONS This study illustrates species-specific differences in S1P receptor specificity for first-dose cardiac effects. Based on its profound but rapidly reversible inhibition of lymphocyte trafficking, BAF312 may have potential as a treatment for immune-mediated diseases.
Collapse
Affiliation(s)
- P Gergely
- Novartis Institutes for BioMedical Research, Basel, Switzerland Genomics Institute of the Novartis Research Foundation, San Diego, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fryer RM, Muthukumarana A, Harrison PC, Nodop Mazurek S, Chen RR, Harrington KE, Dinallo RM, Horan JC, Patnaude L, Modis LK, Reinhart GA. The clinically-tested S1P receptor agonists, FTY720 and BAF312, demonstrate subtype-specific bradycardia (S1P₁) and hypertension (S1P₃) in rat. PLoS One 2012; 7:e52985. [PMID: 23285242 PMCID: PMC3532212 DOI: 10.1371/journal.pone.0052985] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 11/22/2012] [Indexed: 12/21/2022] Open
Abstract
Sphingosine-1-phospate (S1P) and S1P receptor agonists elicit mechanism-based effects on cardiovascular function in vivo. Indeed, FTY720 (non-selective S1P(X) receptor agonist) produces modest hypertension in patients (2-3 mmHg in 1-yr trial) as well as acute bradycardia independent of changes in blood pressure. However, the precise receptor subtypes responsible is controversial, likely dependent upon the cardiovascular response in question (e.g. bradycardia, hypertension), and perhaps even species-dependent since functional differences in rodent, rabbit, and human have been suggested. Thus, we characterized the S1P receptor subtype specificity for each compound in vitro and, in vivo, the cardiovascular effects of FTY720 and the more selective S1P₁,₅ agonist, BAF312, were tested during acute i.v. infusion in anesthetized rats and after oral administration for 10 days in telemetry-instrumented conscious rats. Acute i.v. infusion of FTY720 (0.1, 0.3, 1.0 mg/kg/20 min) or BAF312 (0.5, 1.5, 5.0 mg/kg/20 min) elicited acute bradycardia in anesthetized rats demonstrating an S1P₁ mediated mechanism-of-action. However, while FTY720 (0.5, 1.5, 5.0 mg/kg/d) elicited dose-dependent hypertension after multiple days of oral administration in rat at clinically relevant plasma concentrations (24-hr mean blood pressure = 8.4, 12.8, 16.2 mmHg above baseline vs. 3 mmHg in vehicle controls), BAF312 (0.3, 3.0, 30.0 mg/kg/d) had no significant effect on blood pressure at any dose tested suggesting that hypertension produced by FTY720 is mediated S1P₃ receptors. In summary, in vitro selectivity results in combination with studies performed in anesthetized and conscious rats administered two clinically tested S1P agonists, FTY720 or BAF312, suggest that S1P₁ receptors mediate bradycardia while hypertension is mediated by S1P₃ receptor activation.
Collapse
Affiliation(s)
- Ryan M Fryer
- Department of Cardiometabolic Disease Research, Boehringer-Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Structure–activity relationship studies of S1P agonists with a dihydronaphthalene scaffold. Bioorg Med Chem Lett 2012; 22:144-8. [DOI: 10.1016/j.bmcl.2011.11.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/10/2011] [Accepted: 11/14/2011] [Indexed: 12/29/2022]
|
23
|
Qian C, Zheng J, Xiao G, Guo J, Yang Z, Huang L, Chao W, Rao L, Sun P. 3D-QSAR studies on thiazolidin-4-one S1P₁receptor agonists by CoMFA and CoMSIA. Int J Mol Sci 2011; 12:6502-16. [PMID: 22072901 PMCID: PMC3210992 DOI: 10.3390/ijms12106502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/02/2011] [Accepted: 09/05/2011] [Indexed: 11/16/2022] Open
Abstract
Selective S1P1 receptor agonists have therapeutic potential to treat a variety of immune-mediated diseases. A series of 2-imino-thiazolidin-4-one derivatives displaying potent S1P1 receptor agonistic activity were selected to establish 3D-QSAR models using CoMFA and CoMSIA methods. Internal and external cross-validation techniques were investigated as well as some measures including region focusing, progressive scrambling, bootstraping and leave-group-out. The satisfactory CoMFA model predicted a q2 value of 0.751 and an r2 value of 0.973, indicating that electrostatic and steric properties play a significant role in potency. The best CoMSIA model, based on a combination of steric, electrostatic, hydrophobic and H-bond donor descriptors, predicted a q2 value of 0.739 and an r2 value of 0.923. The models were graphically interpreted using contour plots which gave more insight into the structural requirements for increasing the activity of a compound, providing a solid basis for future rational design of more active S1P1 receptor agonists.
Collapse
Affiliation(s)
- Chuiwen Qian
- College of Biology Science and Technology, Jinan University, Guangzhou 510632, China; E-Mails: (C.Q.); (L.H.)
| | - Junxia Zheng
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China; E-Mail:
| | - Gaokeng Xiao
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; E-Mails: (G.X.); (J.G.); (Z.Y.); (W.C.); (L.R.)
| | - Jialiang Guo
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; E-Mails: (G.X.); (J.G.); (Z.Y.); (W.C.); (L.R.)
| | - Zhaoqi Yang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; E-Mails: (G.X.); (J.G.); (Z.Y.); (W.C.); (L.R.)
| | - Li Huang
- College of Biology Science and Technology, Jinan University, Guangzhou 510632, China; E-Mails: (C.Q.); (L.H.)
| | - Wei Chao
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; E-Mails: (G.X.); (J.G.); (Z.Y.); (W.C.); (L.R.)
| | - Longyi Rao
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; E-Mails: (G.X.); (J.G.); (Z.Y.); (W.C.); (L.R.)
| | - Pinghua Sun
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China; E-Mails: (G.X.); (J.G.); (Z.Y.); (W.C.); (L.R.)
- Authors to whom correspondence should be addressed; E-Mail: ; Tel.: +86-20-85221367; Fax: +86-20-85224766
| |
Collapse
|
24
|
Kleger A, Liebau S, Lin Q, von Wichert G, Seufferlein T. The impact of bioactive lipids on cardiovascular development. Stem Cells Int 2011; 2011:916180. [PMID: 21876704 PMCID: PMC3159013 DOI: 10.4061/2011/916180] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/05/2011] [Indexed: 12/30/2022] Open
Abstract
Lysophospholipids comprise a group of bioactive molecules with multiple biological functions. The cardinal members of this signalling molecule group are sphingosylphosphorylcholine (SPC), lysophosphatidic acid (LPA), and sphingosine 1-phosphate (S1P) which are, at least in part, homologous to each other. Bioactive lipids usually act via G-protein coupled receptors (GPCRs), but can also function as direct intracellular messengers. Recently, it became evident that bioactive lipids play a role during cellular differentiation development. SPC induces mesodermal differentiation of mouse ES cells and differentiation of promyelocytic leukemia cells, by a mechanism being critically dependent on MEK-ERK signalling. LPA stimulates the clonal expansion of neurospheres from neural stem/progenitor cells and induces c-fos via activation of mitogen- and stress-activated protein kinase 1 (MSK1) in ES cells. S1P acts on hematopoietic progenitor cells as a chemotactic factor and has also been found to be critical for cardiac and skeletal muscle regeneration. Furthermore, S1P promotes cardiogenesis and similarly activates Erk signalling in mouse ES cells. Interestingly, S1P may also act to maintain human stem cell pluripotency. Both LPA and S1P positively regulate the proliferative capacity of murine ES cells. In this paper we will focus on the differential and developmental impact of lysophospholipids on cardiovascular development.
Collapse
Affiliation(s)
- Alexander Kleger
- Department of Internal Medicine I, University of Ulm, 89081 Ulm, Germany
| | | | | | | | | |
Collapse
|
25
|
Discovery of S1P agonists with a dihydronaphthalene scaffold. Bioorg Med Chem Lett 2011; 21:3885-9. [DOI: 10.1016/j.bmcl.2011.05.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 05/07/2011] [Accepted: 05/10/2011] [Indexed: 12/31/2022]
|
26
|
Kienitz MC, Littwitz C, Bender K, Pott L. Remodeling of inward rectifying K+ currents in rat atrial myocytes by overexpression of A1-adenosine receptors. Basic Res Cardiol 2011; 106:953-66. [DOI: 10.1007/s00395-011-0193-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/23/2011] [Accepted: 05/06/2011] [Indexed: 10/18/2022]
|
27
|
Structure–activity relationship studies of sphingosine-1-phosphate receptor agonists with N-cinnamyl-β-alanine moiety. Bioorg Med Chem Lett 2011; 21:1390-3. [DOI: 10.1016/j.bmcl.2011.01.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/06/2011] [Accepted: 01/07/2011] [Indexed: 11/17/2022]
|
28
|
Im DS. Pharmacological tools for lysophospholipid GPCRs: development of agonists and antagonists for LPA and S1P receptors. Acta Pharmacol Sin 2010; 31:1213-22. [PMID: 20729877 DOI: 10.1038/aps.2010.135] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Previous studies on lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) using various approaches have shown that both the molecules can act as intercellular signaling molecules. The discovery of the Edg subfamily of G-protein-coupled receptors (GPCRs) (later renamed LPA(1-3) and S1P(1-5)) for these molecules has opened up a new avenue for pathophysiological research on lysophospholipids. Genetic and molecular studies on lysophospholipid GPCRs have elucidated pathophysiological impacts and roles in cellular signaling pathways. Recently, lysophospholipid GPCR genes have been used to develop receptor subtype-selective agonists and antagonists. The discovery of FTY720, a novel immune modulator, along with other chemical tools, has provided a means of elucidating the functions of each lysophospholipid GPCR on an organ and the whole body level. This communication attempts to retrospectively review the development of agonists and antagonists for lysophospholipid GPCRs, provide integrated information on pharmacological tools for lysophospholipid GPCR signaling, and speculate on future drug development.
Collapse
|
29
|
Voigt N, Trausch A, Knaut M, Matschke K, Varró A, Van Wagoner DR, Nattel S, Ravens U, Dobrev D. Left-to-right atrial inward rectifier potassium current gradients in patients with paroxysmal versus chronic atrial fibrillation. Circ Arrhythm Electrophysiol 2010; 3:472-80. [PMID: 20657029 DOI: 10.1161/circep.110.954636] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Recent evidence suggests that atrial fibrillation (AF) is maintained by high-frequency reentrant sources with a left-to-right-dominant frequency gradient, particularly in patients with paroxysmal AF (pAF). Unequal left-to-right distribution of inward rectifier K(+) currents has been suggested to underlie this dominant frequency gradient, but this hypothesis has never been tested in humans. METHODS AND RESULTS Currents were measured with whole-cell voltage-clamp in cardiomyocytes from right atrial (RA) and left (LA) atrial appendages of patients in sinus rhythm (SR) and patients with AF undergoing cardiac surgery. Western blot was used to quantify protein expression of I(K1) (Kir2.1 and Kir2.3) and I(K,ACh) (Kir3.1 and Kir3.4) subunits. Basal current was ≈2-fold larger in chronic AF (cAF) versus SR patients, without RA-LA differences. In pAF, basal current was ≈2-fold larger in LA versus RA, indicating a left-to-right atrial gradient. In both atria, Kir2.1 expression was ≈2-fold greater in cAF but comparable in pAF versus SR. Kir2.3 levels were unchanged in cAF and RA-pAF but showed a 51% decrease in LA-pAF. In SR, carbachol-activated (2 μmol/L) I(K,ACh) was 70% larger in RA versus LA. This right-to-left atrial gradient was decreased in pAF and cAF caused by reduced I(K,ACh) in RA only. Similarly, in SR, Kir3.1 and Kir3.4 proteins were greater in RA versus LA and decreased in RA of pAF and cAF. Kir3.1 and Kir3.4 expression was unchanged in LA of pAF and cAF. CONCLUSION Our results support the hypothesis that a left-to-right gradient in inward rectifier background current contributes to high-frequency sources in LA that maintain pAF. These findings have potentially important implications for development of atrial-selective therapeutic approaches.
Collapse
Affiliation(s)
- Niels Voigt
- Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Voigt N, Makary S, Nattel S, Dobrev D. Voltage-clamp-based methods for the detection of constitutively active acetylcholine-gated I(K,ACh) channels in the diseased heart. Methods Enzymol 2010; 484:653-75. [PMID: 21036255 DOI: 10.1016/b978-0-12-381298-8.00032-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vagal nerve stimulation can promote atrial fibrillation (AF) that requires activation of the acetylcholine (ACh)-gated potassium current I(K,ACh). In chronic AF (cAF), I(K,ACh) shows strong activity despite the absence of ACh or analogous pharmacological stimulation. This receptor-independent, constitutive I(K,ACh) activity is suggested to represent an atrial-selective anti-AF therapeutic target, but the underlying molecular mechanisms are unknown. This chapter provides an overview of the voltage-clamp techniques that can be used to study constitutive I(K,ACh) activity in atrial myocytes and summarizes briefly the current knowledge about the potential underlying mechanism(s) of constitutive I(K,ACh) activity in diseased heart.
Collapse
Affiliation(s)
- Niels Voigt
- Division of Experimental Cardiology, Department of Internal Medicine I--Cardiology, Angiology, Pneumology, Intensive Care and Hemostaseology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, Mannheim, Germany
| | | | | | | |
Collapse
|
31
|
Brakch N, Dormond O, Bekri S, Golshayan D, Correvon M, Mazzolai L, Steinmann B, Barbey F. Evidence for a role of sphingosine-1 phosphate in cardiovascular remodelling in Fabry disease. Eur Heart J 2009; 31:67-76. [PMID: 19773225 DOI: 10.1093/eurheartj/ehp387] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS A hallmark of Fabry disease is the concomitant development of left-ventricular hypertrophy and arterial intima-media thickening, the pathogenesis of which is thought to be related to the presence of a plasmatic circulating growth-promoting factor. We therefore characterized the plasma of patients with Fabry disease in order to identify this factor. METHODS AND RESULTS Using a classical biochemical strategy, we isolated and identified sphingosine-1 phosphate (S1P) as a proliferative factor present in the plasma of patients with Fabry disease. Plasma S1P levels were significantly higher in 17 patients with Fabry disease compared with 17 healthy controls (225 +/- 40 vs. 164 +/- 17 ng/mL; P = 0.005). There was a positive correlation between plasma S1P levels and both common carotid artery intima-media thickness and left-ventricular mass index (r(2) = 0.47; P = 0.006 and r(2) = 0.53; P = 0.0007, respectively). In an experimental model, mice treated with S1P developed cardiovascular remodelling similar to that observed in patients with Fabry disease. CONCLUSION Sphingosine-1 phosphate participates in cardiovascular remodelling in Fabry disease. Our findings have implications for the treatment of cardiovascular involvement in Fabry disease.
Collapse
Affiliation(s)
- Noureddine Brakch
- Service of Angiology and Vascular Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 5 Rue Pierre Decker, 1011 Lausanne, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The five known members of the sphingosine-1-phosphate (S1P) receptor family exhibit diverse tissue expression profiles and couple to distinct G-protein-mediated signalling pathways. S1P1, S1P2, and S1P3 receptors are all present in the heart, but the ratio of these subtypes differs for various cardiac cells. The goal of this review is to summarize data concerning which S1P receptor subtypes regulate cardiac physiology and pathophysiology, which G-proteins and signalling pathways they couple to, and in which cell types they are expressed. The available information is based on studies using a lamentably limited set of pharmacological agonists/antagonists, but is complemented by work with S1P receptor subtype-specific knockout mice and sphingosine kinase knockout mice. In cardiac myocytes, the S1P1 receptor subtype is the predominant subtype expressed, and the activation of this receptor inhibits cAMP formation and antagonizes adrenergic receptor-mediated contractility. The S1P3 receptor, while expressed at lower levels, mediates the bradycardic effect of S1P agonists. Studies using knockout mice indicate that S1P2 and S1P3 receptors play a major role in mediating cardioprotection from ischaemia/reperfusion injury in vivo. S1P receptors are also involved in remodelling, proliferation, and differentiation of cardiac fibroblasts, a cell type in which the S1P3 receptor predominates. Receptors for S1P are also present in endothelial and smooth muscle cells where they mediate peripheral vascular tone and endothelial responses, but the role of this regulatory system in the cardiac vasculature is unknown. Further understanding of the contributions of each cell and receptor subtype to cardiac function and pathophysiology should expedite consideration of the endogenous S1P signalling pathway as a therapeutic target for cardiovascular disease.
Collapse
Affiliation(s)
- Christopher K Means
- Department of Pharmacology, University of California San Diego, School of Medicine, 9500 Gilman Dr., La Jolla, CA 92093-0636, USA
| | | |
Collapse
|
33
|
Kennedy S, Kane KA, Pyne NJ, Pyne S. Targeting sphingosine-1-phosphate signalling for cardioprotection. Curr Opin Pharmacol 2008; 9:194-201. [PMID: 19070545 DOI: 10.1016/j.coph.2008.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 11/03/2008] [Indexed: 11/20/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lysophospholipid generated by the sphingosine kinase (SK1 or SK2)-catalysed phosphorylation of sphingosine. Plasma S1P is carried in high-density lipoprotein (HDL) or bound to albumin and is reported to arise from activated platelets and erythrocytes. In addition, extracellular SK1 released from vascular endothelial cells may also contribute to plasma S1P levels. S1P exerts its effects through a family of five high affinity S1P-specific G protein-coupled receptors (GPCRs), S1P(1-5). Various S1P receptors are present in the cardiovascular system, including cardiac tissue. Additionally, intracellular S1P may have a second messenger action. Since S1P is recognised as a survival factor in many tissues, there has been much interest in S1P as a cardioprotective agent. Recent evidence indicates that S1P can pre-condition and post-condition the heart and that the cardioprotective effect of HDL may be because of its S1P content. In addition, evidence is emerging that the cardioprotective effects of cannabinoids and S1P may be linked.
Collapse
Affiliation(s)
- Simon Kennedy
- Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | | | |
Collapse
|
34
|
Abstract
Sphingosine-1-phosphate (S1P) has been considered to play an important role in ischemia/reperfusion (I/R) injury. We used SEW2871 (SEW), a novel receptor-selective agonist for S1P1, to elucidate the role of S1P1 in myocardial I/R. Isolated perfused rat hearts exposed to S1P (1 and 10 mM) or SEW (1 and 0.1 mM) were subjected to 30 minutes of global no-flow ischemia and 2 hours of reperfusion. S1P at 1 and 10 mM significantly reduced infarct size and CK release compared with vehicle-control. The effect of 0.1 microM SEW on infarct size was modest. After I/R, S1P at both doses and SEW at 0.1 microM improved developed pressure (LVDP). SEW at 1 mM significantly prolonged the duration of ventricular tachycardia and ventricular fibrillation, leading to irreversible reperfusion tachyarrhythmias in 60% of the hearts. This is the first demonstration of the critical role of the S1P1 receptor in I/R injury.
Collapse
|
35
|
Duan HF, Wang H, Yi J, Liu HJ, Zhang QW, Li LB, Zhang T, Lu Y, Wu CT, Wang LS. Adenoviral gene transfer of sphingosine kinase 1 protects heart against ischemia/reperfusion-induced injury and attenuates its postischemic failure. Hum Gene Ther 2008; 18:1119-28. [PMID: 17939750 DOI: 10.1089/hum.2007.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sphingosine kinase 1 (SPK1) has been identified as a central mediator of ischemia preconditioning and plays a protective role in ischemia/reperfusion (I/R)-induced cardiomyocyte death. In the present study, we investigated the protective effect of adenovirus-mediated SPK1 gene (Ad-SPK1) transfer on I/R-induced cardiac injury, and evaluated its therapeutic action on postinfarction heart failure. Cardiac SPK1 activity was increased about 5-fold by injection of Ad-SPK1, compared with injection of adenovirus carrying the green fluorescent protein gene (Ad-GFP). A more potent performance and a lower incidence of arrhythmia were observed in Ad-SPK1-injected hearts during the reperfusion period, compared with Ad-GFP-injected hearts. An enzymatic activity assay showed that creatine kinase release was also less in Ad-SPK1-injected hearts. To investigate the therapeutic action of the SPK1 gene on postischemic heart failure, the left anterior descending branch of the coronary artery in Wistar rats was ligated after direct intramyocardial injection of Ad-SPK1 or Ad-GFP as a control. Ad-SPK1 injection significantly preserved cardiac systolic and diastolic function, as evidenced by left ventricular (LV) systolic pressure, LV end-diastolic pressure, and peak velocity of contraction (dP/dt). The LV morphometric parameters of Ad-SPK1-treated animals were also preserved. In addition, SPK1 gene delivery significantly enhanced angiogenesis and reduced fibrosis. These results demonstrate that adenovirus-mediated SPK1 gene transfer could efficiently prevent I/R-induced myocardial injury and attenuate postischemic heart failure. Thus, SPK1 gene delivery would be a novel strategy for the treatment of coronary heart disease.
Collapse
Affiliation(s)
- Hai-Feng Duan
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nixon GF, Mathieson FA, Hunter I. The multi-functional role of sphingosylphosphorylcholine. Prog Lipid Res 2008; 47:62-75. [DOI: 10.1016/j.plipres.2007.11.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 10/23/2007] [Accepted: 11/01/2007] [Indexed: 02/02/2023]
|
37
|
Landeen LK, Dederko DA, Kondo CS, Hu BS, Aroonsakool N, Haga JH, Giles WR. Mechanisms of the negative inotropic effects of sphingosine-1-phosphate on adult mouse ventricular myocytes. Am J Physiol Heart Circ Physiol 2007; 294:H736-49. [PMID: 18024550 DOI: 10.1152/ajpheart.00316.2007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sphingosine-1-phosphate (S1P) induces a transient bradycardia in mammalian hearts through activation of an inwardly rectifying K(+) current (I(K(ACh))) in the atrium that shortens action potential duration (APD) in the atrium. We have investigated probable mechanisms and receptor-subtype specificity for S1P-induced negative inotropy in isolated adult mouse ventricular myocytes. Activation of S1P receptors by S1P (100 nM) reduced cell shortening by approximately 25% (vs. untreated controls) in field-stimulated myocytes. S1P(1) was shown to be involved by using the S1P(1)-selective agonist SEW2871 on myocytes isolated from S1P(3)-null mice. However, in these myocytes, S1P(3) can modulate a somewhat similar negative inotropy, as judged by the effects of the S1P(1) antagonist VPC23019. Since S1P(1) activates G(i) exclusively, whereas S1P(3) activates both G(i) and G(q), these results strongly implicate the involvement of mainly G(i). Additional experiments using the I(K(ACh)) blocker tertiapin demonstrated that I(K(ACh)) can contribute to the negative inotropy following S1P activation of S1P(1) (perhaps through G(ibetagamma) subunits). Mathematical modeling of the effects of S1P on APD in the mouse ventricle suggests that shortening of APD (e.g., as induced by I(K(ACh))) can reduce L-type calcium current and thus can decrease the intracellular Ca(2+) concentration ([Ca(2+)](i)) transient. Both effects can contribute to the observed negative inotropic effects of S1P. In summary, these findings suggest that the negative inotropy observed in S1P-treated adult mouse ventricular myocytes may consist of two distinctive components: 1) one pathway that acts via G(i) to reduce L-type calcium channel current, blunt calcium-induced calcium release, and decrease [Ca(2+)](i); and 2) a second pathway that acts via G(i) to activate I(K(ACh)) and reduce APD. This decrease in APD is expected to decrease Ca(2+) influx and reduce [Ca(2+)](i) and myocyte contractility.
Collapse
Affiliation(s)
- Lee K Landeen
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Himmel HM. Suitability of commonly used excipients for electrophysiological in-vitro safety pharmacology assessment of effects on hERG potassium current and on rabbit Purkinje fiber action potential. J Pharmacol Toxicol Methods 2007; 56:145-58. [PMID: 17590357 DOI: 10.1016/j.vascn.2007.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Accepted: 04/26/2007] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Regulatory guidelines require investigation of the liability for delayed ventricular repolarization by new chemical entities within a broad concentration range in-vitro. However, investigation can be limited by poor drug aqueous solubility, and by solvent physicochemical attributes that disrupt cell membrane integrity. Although excipients or solubilizing agents may aid to achieve the necessary high concentrations, no comprehensive overview on the suitability of solvents for in-vitro electrophysiological safety studies exists. METHODS Excipients were tested for potential interference with the hERG (human ether-a-go-go-related gene) K(+) current (whole-cell voltage-clamp, 23+/-2 degrees C), and the shape of rabbit Purkinje fiber action potentials (conventional glass microelectrode technique, 37+/-1 degrees C). RESULTS AND DISCUSSION Water-soluble complexation builders/carriers had little effect on hERG K(+) current at up to 50 mg/ml (BSA, bovine serum albumin) and 11 mg/ml (HP-beta-CD, hydroxypropyl-beta-cyclodextrin; IC(20), concentration of 20% inhibition). Water-soluble organic (co)solvents inhibited hERG K(+) currents (IC(20), %/mM): 0.7/152, ethanol; 0.9/67, Transcutol; 1.2/154, DMSO (dimethylsulfoxide); 1.6/389, acetonitrile; 1.9/48, polyethylene glycol 400; 2.1/660, methanol. Part of their inhibitory effect is attributed to the osmolality of extracellular solutions, because hERG IC(20) and extrapolated osmolality at the hERG IC(20) strongly correlate. Water-soluble non-ionic solubilizers/surfactants are potent inhibitors of hERG K(+) current with IC(20) concentrations of 0.07% (Cremophor EL) or lower (Tween 20, Tween 80: approximately 0.001%). Part of this inhibitory effect is attributed to their interaction with lipid membranes, because hERG inhibition occurs close to critical micelle concentrations (Cremophor, approximately 0.009%; Tween 20, approximately 0.007%). Purkinje fiber action potentials are little affected by HP-beta-CD at up to 2 mg/ml, while DMSO tends to shorten the action potential duration at 1%. CONCLUSION When conducting electrophysiological in-vitro assessments of drug effects, solubilizers/surfactants (Cremophor EL, Tween 20, Tween 80) should be avoided. Instead, water-soluble organic (co)solvents (methanol, acetonitrile, DMSO) or complexation builders/carriers (HP-beta-CD, BSA) appear to be more favorable.
Collapse
Affiliation(s)
- Herbert M Himmel
- Global Drug Discovery-Toxicology, Clinical Pathology and Safety Studies, Bayer HealthCare AG, Aprather Weg 18a, D-42096 Wuppertal, Germany.
| |
Collapse
|
39
|
Zhang J, Honbo N, Goetzl EJ, Chatterjee K, Karliner JS, Gray MO. Signals from type 1 sphingosine 1-phosphate receptors enhance adult mouse cardiac myocyte survival during hypoxia. Am J Physiol Heart Circ Physiol 2007; 293:H3150-8. [PMID: 17766476 DOI: 10.1152/ajpheart.00587.2006] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a biologically active lysophospholipid that serves as a key regulator of cellular differentiation and survival. Immune stimuli increase S1P synthesis and secretion by mast cells and platelets, implicating this molecule in tissue responses to injury and inflammation. Binding of S1P to G(i) protein-coupled receptors activates phosphatidylinositol 3-kinase and Akt in a variety of tissues. To elucidate the mechanisms by which S1P enhances adult cardiac myocyte survival during hypoxia, we used a mouse cell culture system in which S1P(1) receptors were observed to transduce signals from exogenous S1P, an S1P(1) receptor antibody with agonist properties, and the pharmacological agents FTY720 and SEW2871. S1P(1) receptor mRNA and protein were abundantly expressed by adult mouse cardiac myocytes. S1P-S1P(1) receptor axis enhancement of myocyte survival during hypoxia was abolished by phosphatidylinositol 3-kinase inhibition. S1P(1) receptor function was closely associated with activation of Akt, inactivation of GSK-3beta, and reduction of cytochrome c release from heart mitochondria. These observations highlight the importance of S1P(1) receptors on ventricular myocytes as mediators of inducible resistance against cellular injury during severe hypoxic stress.
Collapse
Affiliation(s)
- Jianqing Zhang
- Medical Service and Cardiology Section, Veterans Affairs Medical Center, San Francisco, CA, USA
| | | | | | | | | | | |
Collapse
|
40
|
Koide Y, Uemoto K, Hasegawa T, Sada T, Murakami A, Takasugi H, Sakurai A, Mochizuki N, Takahashi A, Nishida A. Pharmacophore-based design of sphingosine 1-phosphate-3 receptor antagonists that include a 3,4-dialkoxybenzophenone scaffold. J Med Chem 2007; 50:442-54. [PMID: 17266196 DOI: 10.1021/jm060834d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Sphingosine 1-phosphate (S1P) receptors are G-protein-coupled receptors. Among the five identified subtypes S1P1-5, the S1P3 receptor expressed on vascular endothelial cells has been shown to play an important role in cell proliferation, migration, and inflammation. A pharmacophore-based database search was used to identify a potent scaffold for an S1P3 receptor antagonist by common feature-based alignment and further validated using the Güner-Henry (GH) scoring method. Assumed excluded volumes were merged into this model to evaluate the steric effect with the S1P3 receptor. Three commercially available compounds were identified as S1P3 receptor antagonists, with IC50 values <5 microM. The synthesis of further derivatives revealed that the 3,4-dialkoxybenzophenone scaffold is a potent component of an S1P3 receptor antagonist. Our results indicate that pharmacophore-based design of S1P3 receptor antagonists can be used to expand the possibility of structural modification through scaffold-hopping based on a database search.
Collapse
Affiliation(s)
- Yuuki Koide
- Drug Research Department, Tokyo Research Laboratories, TOA EIYO Ltd., 2-293-3 Amanuma, Oomiya, Saitama 330-0834, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Means CK, Xiao CY, Li Z, Zhang T, Omens JH, Ishii I, Chun J, Brown JH. Sphingosine 1-phosphate S1P2 and S1P3 receptor-mediated Akt activation protects against in vivo myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2007; 292:H2944-51. [PMID: 17293497 DOI: 10.1152/ajpheart.01331.2006] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sphingosine 1-phosphate (S1P) is released at sites of tissue injury and effects cellular responses through activation of G protein-coupled receptors. The role of S1P in regulating cardiomyocyte survival following in vivo myocardial ischemia-reperfusion (I/R) injury was examined by using mice in which specific S1P receptor subtypes were deleted. Mice lacking either S1P(2) or S1P(3) receptors and subjected to 1-h coronary occlusion followed by 2 h of reperfusion developed infarcts equivalent to those of wild-type (WT) mice. However, in S1P(2,3) receptor double-knockout mice, infarct size following I/R was increased by >50%. I/R leads to activation of ERK, JNK, and p38 MAP kinases; however, these responses were not diminished in S1P(2,3) receptor knockout compared with WT mice. In contrast, activation of Akt in response to I/R was markedly attenuated in S1P(2,3) receptor knockout mouse hearts. Neither S1P(2) nor S1P(3) receptor deletion alone impaired I/R-induced Akt activation, which suggests redundant signaling through these receptors and is consistent with the finding that deletion of either receptor alone did not increase I/R injury. The involvement of cardiomyocytes in S1P(2) and S1P(3) receptor mediated activation of Akt was tested by using cells from WT and S1P receptor knockout hearts. Akt was activated by S1P, and this was modestly diminished in cardiomyocytes from S1P(2) or S1P(3) receptor knockout mice and completely abolished in the S1P(2,3) receptor double-knockout myocytes. Our data demonstrate that activation of S1P(2) and S1P(3) receptors plays a significant role in protecting cardiomyocytes from I/R damage in vivo and implicate the release of S1P and receptor-mediated Akt activation in this process.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Disease Models, Animal
- Enzyme Activation
- Lysophospholipids/metabolism
- Lysophospholipids/pharmacology
- Lysophospholipids/therapeutic use
- MAP Kinase Signaling System
- Mice
- Mice, Transgenic
- Myocardial Infarction/enzymology
- Myocardial Infarction/etiology
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocardial Infarction/prevention & control
- Myocardial Ischemia/complications
- Myocardial Ischemia/metabolism
- Myocardial Reperfusion Injury/enzymology
- Myocardial Reperfusion Injury/etiology
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/prevention & control
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Proto-Oncogene Proteins c-akt/metabolism
- Receptors, Lysosphingolipid/agonists
- Receptors, Lysosphingolipid/deficiency
- Receptors, Lysosphingolipid/genetics
- Receptors, Lysosphingolipid/metabolism
- Signal Transduction/drug effects
- Sphingosine/analogs & derivatives
- Sphingosine/metabolism
- Sphingosine/pharmacology
- Sphingosine/therapeutic use
- Sphingosine-1-Phosphate Receptors
Collapse
Affiliation(s)
- Christopher K Means
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0636, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Alemany R, van Koppen CJ, Danneberg K, Ter Braak M, Meyer Zu Heringdorf D. Regulation and functional roles of sphingosine kinases. Naunyn Schmiedebergs Arch Pharmacol 2007; 374:413-28. [PMID: 17242884 DOI: 10.1007/s00210-007-0132-3] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 12/22/2006] [Indexed: 01/13/2023]
Abstract
Sphingosine kinases (SphKs) catalyze the phosphorylation of sphingosine to sphingosine-1-phosphate (S1P). Together with other sphingolipid metabolizing enzymes, SphKs regulate the balance of the lipid mediators, ceramide, sphingosine, and S1P. The ubiquitous mediator S1P regulates cellular functions such as proliferation and survival, cytoskeleton architecture and Ca(2+) homoeostasis, migration, and adhesion by activating specific high-affinity G-protein-coupled receptors or by acting intracellularly. In mammals, two isoforms of SphK have been identified. They are activated by G-protein-coupled receptors, receptor tyrosine kinases, immunoglobulin receptors, cytokines, and other stimuli. The molecular mechanisms by which SphK1 and SphK2 are specifically regulated are complex and only partially understood. Although SphK1 and SphK2 appear to have opposing roles, promoting cell growth and apoptosis, respectively, they can obviously also substitute for each other, as mice deficient in either SphK1 or SphK2 had no obvious abnormalities, whereas double-knockout animals were embryonic lethal. In this review, our understanding of structure, regulation, and functional roles of SphKs is updated and discussed with regard to their implication in pathophysiological and disease states.
Collapse
Affiliation(s)
- Regina Alemany
- Institut für Pharmakologie, Universität Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | | | | | |
Collapse
|
43
|
Giussani P, Ferraretto A, Gravaghi C, Bassi R, Tettamanti G, Riboni L, Viani P. Sphingosine-1-phosphate and calcium signaling in cerebellar astrocytes and differentiated granule cells. Neurochem Res 2006; 32:27-37. [PMID: 17151916 DOI: 10.1007/s11064-006-9219-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 11/03/2006] [Indexed: 02/01/2023]
Abstract
S1P is involved in the regulation of multiple biological processes (cell survival, growth, migration and differentiation) both in neurons and glial cells. The study was aimed at investigating the possible effects of S1P on calcium signaling in cerebellar astrocytes and differentiated granule cells. In cerebellar astrocytes S1P is able to mediate calcium signaling mainly through Gi protein coupled receptors, whereas in differentiated neurons it failed to evoke any calcium signaling, despite acting both extracellularly and intracellularly. The data indicate strict cell specificity in S1P-evoked calcium response, which could be relevant to communication between neurons and glial cells in the cerebellum.
Collapse
Affiliation(s)
- Paola Giussani
- Department of Medical Chemistry, Biochemistry and Biotechnology, L.I.T.A. via F. Cervi 93, 20090 Segrate (Milan), Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Meyer zu Heringdorf D, Jakobs KH. Lysophospholipid receptors: signalling, pharmacology and regulation by lysophospholipid metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:923-40. [PMID: 17078925 DOI: 10.1016/j.bbamem.2006.09.026] [Citation(s) in RCA: 282] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 09/28/2006] [Indexed: 12/17/2022]
Abstract
The lysophospholipids, sphingosine-1-phosphate (S1P), lysophosphatidic acid (LPA), sphingosylphosphorylcholine (SPC) and lysophosphatidylcholine (LPC), activate diverse groups of G-protein-coupled receptors that are widely expressed and regulate decisive cellular functions. Receptors of the endothelial differentiation gene family are activated by S1P (S1P(1-5)) or LPA (LPA(1-3)); two more distantly related receptors are activated by LPA (LPA(4/5)); the GPR(3/6/12) receptors have a high constitutive activity but are further activated by S1P and/or SPC; and receptors of the OGR1 cluster (OGR1, GPR4, G2A, TDAG8) appear to be activated by SPC, LPC, psychosine and/or protons. G-protein-coupled lysophospholipid receptors regulate cellular Ca(2+) homoeostasis and the cytoskeleton, proliferation and survival, migration and adhesion. They have been implicated in development, regulation of the cardiovascular, immune and nervous systems, inflammation, arteriosclerosis and cancer. The availability of S1P and LPA at their G-protein-coupled receptors is regulated by enzymes that generate or metabolize these lysophospholipids, and localization plays an important role in this process. Besides FTY720, which is phosphorylated by sphingosine kinase-2 and then acts on four of the five S1P receptors of the endothelial differentiation gene family, other compounds have been identified that interact with more ore less selectivity with lysophospholipid receptors.
Collapse
|
45
|
Koyrakh L, Roman MI, Brinkmann V, Wickman K. The heart rate decrease caused by acute FTY720 administration is mediated by the G protein-gated potassium channel I. Am J Transplant 2005; 5:529-36. [PMID: 15707407 DOI: 10.1111/j.1600-6143.2005.00754.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Sphingosine-1-phosphate (S1P) is an endogenous agonist for a family of five G protein-coupled receptors (S1P(1-5)) involved in cell proliferation, cardiovascular development and lymphocyte trafficking. The sphingolipid drug FTY720 displays structural similarity to S1P and efficacy as an immunosuppressant in models of autoimmune disease and in solid organ transplantation. While FTY720 is well-tolerated in humans, it produces a transient reduction of heart rate (HR). As S1P activates the cardiac G protein-gated potassium channel I(KACh), we speculated that the FTY720-induced HR reduction reflects I(KACh) activation. We examined FTY720 effects on atrial myocytes from wild-type and I(KACh)-deficient mice. In wild-type myocytes, the active phosphate metabolite of FTY720 (FTY720-P) induced single channel activity with conductance, open time, GTP sensitivity and rectification identical to that of I(KACh). In whole-cell recordings, FTY720-P evoked an inwardly rectifying potassium current in approximately 90% of myocytes responding to acetylcholine. Comparable channel activity was never observed in myocytes from I(KACh)-deficient mice. In wild-type mice, acute FTY720 administration produced a dose-dependent, robust HR reduction. In contrast, the HR reduction induced by FTY720 in I(KACh)-deficient mice was blunted. We conclude that the effect of acute FTY720 administration on HR is mediated primarily by I(KACh) activation.
Collapse
Affiliation(s)
- Lev Koyrakh
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
46
|
Hale JJ, Doherty G, Toth L, Mills SG, Hajdu R, Keohane CA, Rosenbach M, Milligan J, Shei GJ, Chrebet G, Bergstrom J, Card D, Forrest M, Sun SY, West S, Xie H, Nomura N, Rosen H, Mandala S. Selecting against S1P3 enhances the acute cardiovascular tolerability of 3-(N-benzyl)aminopropylphosphonic acid S1P receptor agonists. Bioorg Med Chem Lett 2005; 14:3501-5. [PMID: 15177461 DOI: 10.1016/j.bmcl.2004.04.070] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Accepted: 04/19/2004] [Indexed: 11/23/2022]
Abstract
Structurally modified 3-(N-benzylamino)propylphosphonic acid S1P receptor agonists that maintain affinity for S1P1, and have decreased affinity for S1P3 are efficacious, but exhibit decreased acute cardiovascular toxicity in rodents than do nonselective agonists.
Collapse
Affiliation(s)
- Jeffrey J Hale
- Department of Medicinal Chemistry, Merck Research Laboratories, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Jones AM, Assmann SM. Plants: the latest model system for G-protein research. EMBO Rep 2005; 5:572-8. [PMID: 15170476 PMCID: PMC1299082 DOI: 10.1038/sj.embor.7400174] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Accepted: 04/28/2004] [Indexed: 01/03/2023] Open
Abstract
In humans, heterotrimeric G proteins couple stimulus perception by G-protein-coupled receptors (GPCRs) with numerous downstream effectors. By contrast, despite great complexity in their signal-transduction attributes, plants have a simpler repertoire of G-signalling components. Nonetheless, recent studies on Arabidopsis thaliana have shown the importance of plant G-protein signalling in such fundamental processes as cell proliferation, hormone perception and ion-channel regulation.
Collapse
Affiliation(s)
- Alan M. Jones
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Tel: +1 919 962 6932; Fax: +1 919 962 1625;
| | - Sarah M. Assmann
- Biology Department, Penn State University, University Park, Pennsylvania 16802-5301, USA
- Tel: +1 814 863 9579; Fax: +1 814 865 9131;
| |
Collapse
|
48
|
Price TJ, Patwardhan A, Akopian AN, Hargreaves KM, Flores CM. Cannabinoid receptor-independent actions of the aminoalkylindole WIN 55,212-2 on trigeminal sensory neurons. Br J Pharmacol 2004; 142:257-66. [PMID: 15155534 PMCID: PMC1574952 DOI: 10.1038/sj.bjp.0705778] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The prototypical aminoalkylindole cannabinoid WIN 55,212-2 (WIN-2) has been shown to produce antihyperalgesia through a peripheral mechanism of action. However, it is not known whether WIN-2 exerts this action directly via cannabinoid receptors located on primary afferents or if other, perhaps indirect or noncannabinoid, mechanisms are involved. To address this question, we have examined the specific actions of WIN-2 on trigeminal ganglion (TG) neurons in vitro by quantifying its ability to modulate the evoked secretion of the proinflammatory neuropeptide CGRP as well as the inflammatory mediator-induced generation of cAMP. WIN-2 evoked CGRP release from TG neurons in vitro (EC(50)=26 microm) in a concentration- and calcium-dependent manner, which was mimicked by the cannabinoid receptor-inactive enantiomer WIN 55,212-3 (WIN-3). Moreover, WIN-2-evoked CGRP release was attenuated by the nonselective cation channel blocker ruthenium red but not by the vanilloid receptor type 1 (TRPV1) antagonist capsazepine, suggesting that, unlike certain endogenous and synthetic cannabinoids, WIN-2 is not a TRPV1 agonist but rather acts at an as yet unidentified cation channel. The inhibitory effects of WIN-2 on TG neurons were also examined. WIN-2 neither inhibited capsaicin-evoked CGRP release nor did it inhibit forskolin-, isoproteranol- or prostaglandin E(2)-stimulated cAMP accumulation. On the other hand, WIN-2 significantly inhibited (EC(50)=1.7 microm) 50 mm K(+)-evoked CGRP release by approximately 70%. WIN-2 inhibition of 50 mm K(+)-evoked CGRP release was not reversed by antagonists of cannabinoid type 1 (CB1) receptor, but was mimicked in magnitude and potency (EC(50)=2.7 microm) by its cannabinoid-inactive enantiomer WIN-3. These findings indicate that WIN-2 exerts both excitatory and inhibitory effects on TG neurons, neither of which appear to be mediated by CB1, CB2 or TRPV1 receptors, but by a novel calcium-dependent mechanism. The ramifications of these results are discussed in relation to our current understanding of cannabinoid/vanilloid interactions with primary sensory neurons.
Collapse
Affiliation(s)
- Theodore J Price
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, U.S.A
- Department of Endodontics, The University of Texas Health Science Center at San Antonio, U.S.A
| | - Amol Patwardhan
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, U.S.A
| | - Armen N Akopian
- Department of Endodontics, The University of Texas Health Science Center at San Antonio, U.S.A
| | - Kenneth M Hargreaves
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, U.S.A
- Department of Endodontics, The University of Texas Health Science Center at San Antonio, U.S.A
| | - Christopher M Flores
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, U.S.A
- Department of Endodontics, The University of Texas Health Science Center at San Antonio, U.S.A
- Author for correspondence:
| |
Collapse
|
49
|
Meacci E, Cencetti F, Donati C, Nuti F, Becciolini L, Bruni P. Sphingosine kinase activity is required for sphingosine-mediated phospholipase D activation in C2C12 myoblasts. Biochem J 2004; 381:655-63. [PMID: 15109308 PMCID: PMC1133874 DOI: 10.1042/bj20031636] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 04/22/2004] [Accepted: 04/27/2004] [Indexed: 11/17/2022]
Abstract
Sphingosine (Sph) has been implicated as a modulator of membrane signal transduction systems and as a regulatory element of cardiac and skeletal muscle physiology, but little information is presently available on its precise mechanism of action. Recent studies have shown that sphingosine 1-phosphate (S1P), generated by the action of sphingosine kinase (SphK) on Sph, also possesses biological activity, acting as an intracellular messenger, as well as an extracellular ligand for specific membrane receptors. At present, however, it is not clear whether the biological effects elicited by Sph are attributable to its conversion into S1P. In the present study, we show that Sph significantly stimulated phospholipase D (PLD) activity in mouse C2C12 myoblasts via a previously unrecognized mechanism that requires the conversion of Sph into S1P and its subsequent action as extracellular ligand. Indeed, Sph-induced activation of PLD was inhibited by N,N-dimethyl-D-erythro-sphingosine (DMS), at concentrations capable of specifically inhibiting SphK. Moreover, the crucial role of SphK-derived S1P in the activation of PLD by Sph was confirmed by the observed potentiated effect of Sph in myoblasts where SphK1 was overexpressed, and the attenuated response in cells transfected with the dominant negative form of SphK1. Notably, the measurement of S1P formation in vivo by employing labelled ATP revealed that cell-associated SphK activity in the extracellular compartment largely contributed to the transformation of Sph into S1P, with the amount of SphK released into the medium being negligible. It will be important to establish whether the mechanism of action identified in the present study is implicated in the multiple biological effects elicited by Sph in muscle cells.
Collapse
Affiliation(s)
- Elisabetta Meacci
- *Dipartimento di Scienze Biochimiche, Università degli Studi di Firenze, Viale G.B.Morgagni 50, 50134 Florence, Italy
- †Istituto Interuniversitario di Miologia (IIM), Università degli Studi di Firenze, Viale G.B.Morgagni 50, 50134 Florence, Italy
| | - Francesca Cencetti
- *Dipartimento di Scienze Biochimiche, Università degli Studi di Firenze, Viale G.B.Morgagni 50, 50134 Florence, Italy
| | - Chiara Donati
- *Dipartimento di Scienze Biochimiche, Università degli Studi di Firenze, Viale G.B.Morgagni 50, 50134 Florence, Italy
- †Istituto Interuniversitario di Miologia (IIM), Università degli Studi di Firenze, Viale G.B.Morgagni 50, 50134 Florence, Italy
| | - Francesca Nuti
- *Dipartimento di Scienze Biochimiche, Università degli Studi di Firenze, Viale G.B.Morgagni 50, 50134 Florence, Italy
| | - Laura Becciolini
- *Dipartimento di Scienze Biochimiche, Università degli Studi di Firenze, Viale G.B.Morgagni 50, 50134 Florence, Italy
| | - Paola Bruni
- *Dipartimento di Scienze Biochimiche, Università degli Studi di Firenze, Viale G.B.Morgagni 50, 50134 Florence, Italy
- †Istituto Interuniversitario di Miologia (IIM), Università degli Studi di Firenze, Viale G.B.Morgagni 50, 50134 Florence, Italy
- To whom correspondence should be addressed (e-mail )
| |
Collapse
|
50
|
Abstract
Drug discovery programs are actively exploring for therapeutic agents targeting enzymes and receptors regulating sphingolipid metabolism and biologic functions. FTY720 is a close structural analogue of sphingosine with immunomodulatory properties. After oral administration, FTY720 is phosphorylated by sphingosine kinase to form the active moiety FTY720-phosphate, which subsequently binds to the sphingosine-1-phosphate receptor. In characterizing the safety and pharmacological effects of FTY720, detailed clinical pharmacology studies in healthy subjects and renal transplant recipients have focused on cardiac responses and lymphocyte trafficking. After the first dose, FTY720 causes a mild, transient decrease in heart rate that returns to baseline in approximately 1 to 2 weeks despite continued administration of the drug. FTY720 elicits a prompt and dose-dependent decrease in peripheral blood lymphocytes by redirecting them from the circulation to the lymph nodes without impairing lymphocyte functions. An association among FTY720 blood concentration, decrease in lymphocyte counts, and freedom from acute rejection episodes has been observed in early clinical development trials in de novo kidney transplantation.
Collapse
|