1
|
Dance A, Fernandes J, Toussaint B, Vaillant E, Boutry R, Baron M, Loiselle H, Balkau B, Charpentier G, Franc S, Ibberson M, Marre M, Gernay M, Fadeur M, Paquot N, Vaxillaire M, Boissel M, Amanzougarene S, Derhourhi M, Khamis A, Froguel P, Bonnefond A. Exploring the role of purinergic receptor P2RY1 in type 2 diabetes risk and pathophysiology: Insights from human functional genomics. Mol Metab 2024; 79:101867. [PMID: 38159881 PMCID: PMC10792753 DOI: 10.1016/j.molmet.2023.101867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024] Open
Abstract
OBJECTIVE Human functional genomics has proven powerful in discovering drug targets for common metabolic disorders. Through this approach, we investigated the involvement of the purinergic receptor P2RY1 in type 2 diabetes (T2D). METHODS P2RY1 was sequenced in 9,266 participants including 4,177 patients with T2D. In vitro analyses were then performed to assess the functional effect of each variant. Expression quantitative trait loci (eQTL) analysis was performed in pancreatic islets from 103 pancreatectomized individuals. The effect of P2RY1 on glucose-stimulated insulin secretion was finally assessed in human pancreatic beta cells (EndoCβH5), and RNA sequencing was performed on these cells. RESULTS Sequencing P2YR1 in 9,266 participants revealed 22 rare variants, seven of which were loss-of-function according to our in vitro analyses. Carriers, except one, exhibited impaired glucose control. Our eQTL analysis of human islets identified P2RY1 variants, in a beta-cell enhancer, linked to increased P2RY1 expression and reduced T2D risk, contrasting with variants located in a silent region associated with decreased P2RY1 expression and increased T2D risk. Additionally, a P2RY1-specific agonist increased insulin secretion upon glucose stimulation, while the antagonist led to decreased insulin secretion. RNA-seq highlighted TXNIP as one of the main transcriptomic markers of insulin secretion triggered by P2RY1 agonist. CONCLUSION Our findings suggest that P2RY1 inherited or acquired dysfunction increases T2D risk and that P2RY1 activation stimulates insulin secretion. Selective P2RY1 agonists, impermeable to the blood-brain barrier, could serve as potential insulin secretagogues.
Collapse
Affiliation(s)
- Arnaud Dance
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France; Université de Lille, Lille, France
| | - Justine Fernandes
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France; Université de Lille, Lille, France
| | - Bénédicte Toussaint
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France; Université de Lille, Lille, France
| | - Emmanuel Vaillant
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France; Université de Lille, Lille, France
| | - Raphaël Boutry
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France; Université de Lille, Lille, France
| | - Morgane Baron
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France; Université de Lille, Lille, France
| | - Hélène Loiselle
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France; Université de Lille, Lille, France
| | - Beverley Balkau
- Paris-Saclay University, Paris-Sud University, UVSQ, Center for Research in Epidemiology and Population Health, Inserm U1018 Clinical Epidemiology, Villejuif, France
| | - Guillaume Charpentier
- CERITD (Centre d'Étude et de Recherche pour l'Intensification du Traitement du Diabète), Evry, France
| | - Sylvia Franc
- CERITD (Centre d'Étude et de Recherche pour l'Intensification du Traitement du Diabète), Evry, France; Department of Diabetes, Sud-Francilien Hospital, Paris-Sud University, Corbeil-Essonnes, France
| | - Mark Ibberson
- Vital-IT Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Michel Marre
- Institut Necker-Enfants Malades, Inserm, Université de Paris, Paris, France; Clinique Ambroise Paré, Neuilly-sur-Seine, France
| | - Marie Gernay
- Department of Diabetology, Nutrition and Metabolic Diseases, Sart Tilman University Hospital Center, Liège, Belgium
| | - Marjorie Fadeur
- Department of Diabetology, Nutrition and Metabolic Diseases, Sart Tilman University Hospital Center, Liège, Belgium
| | - Nicolas Paquot
- Department of Diabetology, Nutrition and Metabolic Diseases, Sart Tilman University Hospital Center, Liège, Belgium
| | - Martine Vaxillaire
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France; Université de Lille, Lille, France
| | - Mathilde Boissel
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France; Université de Lille, Lille, France
| | - Souhila Amanzougarene
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France; Université de Lille, Lille, France
| | - Mehdi Derhourhi
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France; Université de Lille, Lille, France
| | - Amna Khamis
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France; Université de Lille, Lille, France; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Philippe Froguel
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France; Université de Lille, Lille, France; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.
| | - Amélie Bonnefond
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France; Université de Lille, Lille, France; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.
| |
Collapse
|
2
|
Microbiota-dependent activation of the myeloid calcineurin-NFAT pathway inhibits B7H3- and B7H4-dependent anti-tumor immunity in colorectal cancer. Immunity 2022; 55:701-717.e7. [PMID: 35364006 DOI: 10.1016/j.immuni.2022.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023]
Abstract
Bacterial sensing by intestinal tumor cells contributes to tumor growth through cell-intrinsic activation of the calcineurin-NFAT axis, but the role of this pathway in other intestinal cells remains unclear. Here, we found that myeloid-specific deletion of calcineurin in mice activated protective CD8+ T cell responses and inhibited colorectal cancer (CRC) growth. Microbial sensing by myeloid cells promoted calcineurin- and NFAT-dependent interleukin 6 (IL-6) release, expression of the co-inhibitory molecules B7H3 and B7H4 by tumor cells, and inhibition of CD8+ T cell-dependent anti-tumor immunity. Accordingly, targeting members of this pathway activated protective CD8+ T cell responses and inhibited primary and metastatic CRC growth. B7H3 and B7H4 were expressed by the majority of human primary CRCs and metastases, which was associated with low numbers of tumor-infiltrating CD8+ T cells and poor survival. Therefore, a microbiota-, calcineurin-, and B7H3/B7H4-dependent pathway controls anti-tumor immunity, revealing additional targets for immune checkpoint inhibition in microsatellite-stable CRC.
Collapse
|
3
|
Liu PW, Yue MX, Zhou R, Niu J, Huang DJ, Xu T, Luo P, Liu XH, Zeng JW. P2Y 12 and P2Y 13 receptors involved in ADPβs induced the release of IL-1β, IL-6 and TNF-α from cultured dorsal horn microglia. J Pain Res 2017; 10:1755-1767. [PMID: 28794655 PMCID: PMC5536317 DOI: 10.2147/jpr.s137131] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective P2 receptors have been implicated in the release of neurotransmitter and pro-inflammatory cytokines due to their response to neuroexcitatory substances in the microglia. Dorsal horn P2Y12 and P2Y13 receptors are involved in the development of pain behavior induced by peripheral nerve injury. However, it is not known whether P2Y12 and P2Y13 receptors activation is associated with the expression and the release of interleukin-1B (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) in cultured dorsal spinal cord microglia. For this reason, we examined the effects of ADPβs (ADP analog) on the expression and the release of IL-1β, IL-6, and TNF-α. Methods and results In this study, we observed the effect of P2Y receptor agonist ADPβs on the expression and release of IL-1β, IL-6 and TNF-α by using real-time fluorescence quantitative polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). ADPβs induced the increased expression of Iba-1, IL-1β, IL-6 and TNF-α at the level of messenger RNA (mRNA). ADPβs-evoked increase in Iba-1, IL-1β, IL-6 and TNF-α mRNA expression was inhibited only partially by P2Y12 receptor antagonist MRS2395 or P2Y13 receptor antagonist MRS2211, respectively. Similarly, ADPβs-evoked release of IL-1β, IL-6 and TNF-α was inhibited only partially by MRS2395 or MRS2211. Furthermore, ADPβs-evoked increased expression of Iba-1, IL-1β, IL-6 and TNF-α mRNA, and release of IL-1β, IL-6 and TNF-α were nearly all blocked after co-administration of MRS2395 plus MRS2179. Further evidence indicated that P2Y12 and P2Y13 receptor-evoked increased gene expression of IL-1β, IL-6 and TNF-α were inhibited by Y-27632 (ROCK inhibitor), SB203580 (P38MAPK inhibitor) and PDTC (NF-κb inhibitor), respectively. Subsequently, P2Y12 and P2Y13 receptor-evoked release of IL-1β, IL-6 and TNF-α, were also inhibited by Y-27632, SB203580 and PDTC, respectively. Conclusion These observations suggest that P2Y12 and P2Y13 receptor-evoked gene expression and release of IL-1β, IL-6 and TNF-α are associated with ROCK/P38MAPK/NF-κb signaling pathway.
Collapse
Affiliation(s)
- Pei-Wen Liu
- Department of Physiology, Zunyi Medical College, Guizhou, China
| | - Ming-Xia Yue
- Department of Physiology, Zunyi Medical College, Guizhou, China
| | - Rui Zhou
- Department of Physiology, Zunyi Medical College, Guizhou, China
| | - Juan Niu
- Department of Physiology, Zunyi Medical College, Guizhou, China
| | - Du-Juan Huang
- Department of Physiology, Zunyi Medical College, Guizhou, China
| | - Tao Xu
- Department of Physiology, Zunyi Medical College, Guizhou, China
| | - Pei Luo
- Department of Physiology, Zunyi Medical College, Guizhou, China
| | - Xiao-Hong Liu
- Department of Physiology, Zunyi Medical College, Guizhou, China
| | - Jun-Wei Zeng
- Department of Physiology, Zunyi Medical College, Guizhou, China
| |
Collapse
|
4
|
Hamel-Côté G, Gendron D, Rola-Pleszczynski M, Stankova J. Regulation of platelet-activating factor-mediated protein tyrosine phosphatase 1B activation by a Janus kinase 2/calpain pathway. PLoS One 2017; 12:e0180336. [PMID: 28686728 PMCID: PMC5501562 DOI: 10.1371/journal.pone.0180336] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 06/14/2017] [Indexed: 11/18/2022] Open
Abstract
Atherosclerosis is a pro-inflammatory condition underlying many cardiovascular diseases. Platelet-activating factor (PAF) and interleukin 6 (IL-6) are actively involved in the onset and progression of atherosclerotic plaques. The involvement of monocyte-derived macrophages is well characterized in the installation of inflammatory conditions in the plaque, but less is known about the contribution of monocyte-derived dendritic cells (Mo-DCs). In the same way, the involvement of calcium, phospholipase C and A2 in PAF-induced IL-6 production, in different cells types, has been shown; however, the importance of the Jak/STAT pathway and its regulation by protein-tyrosine phosphatases in this response have not been addressed. In this study, we report that PAF stimulates PTP1B activity via Jak2, thereby modulating PAF-induced IL-6 production. Using HEK 293 cells stably transfected with the PAF receptor in order to discriminate the pathway components, our results suggest that Jak2 modulates PAF-induced IL-6 production via both positive and negative pathways. Jak2 kinase activity was necessary for maximal transactivation of the IL-6 promoter, as seen by luciferase assays, whereas the same kinase also downregulated this promoter transactivation through the activation of a calcium/calpain/PTP1B pathway. The same pathways were operational in monocyte-derived dendritic cells, since PAF-induced PTP1B activation negatively regulated PAF-induced IL-6 mRNA production and, in addition, Jak2 activated calpain, one of the components involved in PAF-induced PTP1B activation. Results obtained in this study indicate that Jak2 activation is important for maximal IL-6 promoter transactivation by PAF and that PTP1B is involved in the negative regulation of this transactivation. However, PTP1B does not directly regulate Jak2 activation, but rather Jak2 regulates PAF-induced PTP1B activation.
Collapse
Affiliation(s)
- Geneviève Hamel-Côté
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Daniel Gendron
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marek Rola-Pleszczynski
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jana Stankova
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- * E-mail:
| |
Collapse
|
5
|
Li Z, Chang CM, Wang L, Zhang P, Shu HKG. Cyclooxygenase-2 Induction by Amino Acid Deprivation Requires p38 Mitogen-Activated Protein Kinase in Human Glioma Cells. Cancer Invest 2017; 35:237-247. [PMID: 28333553 PMCID: PMC6300144 DOI: 10.1080/07357907.2017.1292517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 11/02/2016] [Accepted: 02/05/2017] [Indexed: 02/07/2023]
Abstract
Glioblastomas (GBMs) are malignant brain tumors that can outstrip nutrient supplies due to rapid growth. Cyclooxygenase-2 (COX-2) has been linked to GBMs and may contribute to their aggressive phenotypes. Amino acid starvation results in COX-2 mRNA and protein induction in multiple human glioma cell lines in a process requiring p38 mitogen-activated protein kinase (p38-MAPK) and the Sp1 transcription factor. Increased vascular endothelial growth factor expression results from starvation-dependent COX-2 induction. These data suggest that COX-2 induction with amino acid deprivation may be a part of the adaptation of glioma cells to these conditions, and potentially alter cellular response to anti-neoplastic therapy.
Collapse
Affiliation(s)
- Zhiwen Li
- Department of Radiation Oncology and the Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Departments of Anesthesiology First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Chi-Ming Chang
- Department of Radiation Oncology and the Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Lanfang Wang
- Department of Radiation Oncology and the Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Ping Zhang
- Hepatobiliary and Pancreatic Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Hui-Kuo G. Shu
- Department of Radiation Oncology and the Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Hu H, Han T, Zhuo M, Wu LL, Yuan C, Wu L, Lei W, Jiao F, Wang LW. Elevated COX-2 Expression Promotes Angiogenesis Through EGFR/p38-MAPK/Sp1-Dependent Signalling in Pancreatic Cancer. Sci Rep 2017; 7:470. [PMID: 28352075 PMCID: PMC5428057 DOI: 10.1038/s41598-017-00288-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 02/20/2017] [Indexed: 12/22/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) was stated to be overexpression in various human malignancies associating with angiogenesis, metastasis and chemoresistence. Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease displaying many of these characteristics. A common abnormality of PDAC is overexpression of specificity protein-1 (Sp1), which was said to correlate with malignant phenotypes of human cancers. Using RNA-seq data from The Cancer Genome Atlas (TCGA), we found that Sp1 expression was positively correlated with that of COX-2 in PDAC, and that the inhibition or overexpression of Sp1 in PDAC cells leads to decreased or elevated COX-2 expression. Luciferase reporter gene and chromatin immunoprecipitation (ChIP) assays revealed that elevated transcription of COX-2 requires Sp1 binding to sequence positions around -245/-240 of COX-2 promoter. Activated epidermal growth factor receptor (EGFR) and downstream p38 mitogen-activated protein kinase (p38-MAPK) were also profoundly altered in PDAC. The inhibition of EGFR/p38-MAPK signaling resulted in reduced Sp1 activation, decreased COX-2 and vascular endothelial growth factor (VEGF) expression. Thus, Sp1 could transcriptionally activate COX-2 expression in a process relies on activated EGFR/p38-MAPK signaling. Finally, we found that the inhibition of COX-2 leads to decreased angiogenesis in a process dependent on VEGF, which link COX-2 to angiogenesis in PDAC.
Collapse
Affiliation(s)
- Hai Hu
- Department of Medical Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Shanghai, 201620, China
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai, 201620, China
| | - Ting Han
- Department of Medical Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Shanghai, 201620, China
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai, 201620, China
| | - Meng Zhuo
- Department of Medical Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Shanghai, 201620, China
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai, 201620, China
| | - Lei-Lei Wu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 201620, China
| | - Cuncun Yuan
- Department of Pathology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201620, P.R. China
| | - Lixia Wu
- Department of Medical Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Shanghai, 201620, China
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai, 201620, China
| | - Wang Lei
- Department of Medical Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Shanghai, 201620, China.
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai, 201620, China.
| | - Feng Jiao
- Department of Medical Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Shanghai, 201620, China.
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai, 201620, China.
| | - Li-Wei Wang
- Department of Medical Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Shanghai, 201620, China.
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai, 201620, China.
| |
Collapse
|
7
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Vascular smooth muscle cell in atherosclerosis. Acta Physiol (Oxf) 2015; 214:33-50. [PMID: 25677529 DOI: 10.1111/apha.12466] [Citation(s) in RCA: 295] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/02/2015] [Accepted: 02/09/2015] [Indexed: 12/30/2022]
Abstract
Vascular smooth muscle cells (VSMCs) exhibit phenotypic and functional plasticity in order to respond to vascular injury. In case of the vessel damage, VSMCs are able to switch from the quiescent 'contractile' phenotype to the 'proinflammatory' phenotype. This change is accompanied by decrease in expression of smooth muscle (SM)-specific markers responsible for SM contraction and production of proinflammatory mediators that modulate induction of proliferation and chemotaxis. Indeed, activated VSMCs could efficiently proliferate and migrate contributing to the vascular wall repair. However, in chronic inflammation that occurs in atherosclerosis, arterial VSMCs become aberrantly regulated and this leads to increased VSMC dedifferentiation and extracellular matrix formation in plaque areas. Proatherosclerotic switch in VSMC phenotype is a complex and multistep mechanism that may be induced by a variety of proinflammatory stimuli and hemodynamic alterations. Disturbances in hemodynamic forces could initiate the proinflammatory switch in VSMC phenotype even in pre-clinical stages of atherosclerosis. Proinflammatory signals play a crucial role in further dedifferentiation of VSMCs in affected vessels and propagation of pathological vascular remodelling.
Collapse
Affiliation(s)
- D. A. Chistiakov
- Research Center for Children's Health; Moscow Russia
- The Mount Sinai Community Clinical Oncology Program; Mount Sinai Comprehensive Cancer Center; Mount Sinai Medical Center; Miami Beach FL USA
| | - A. N. Orekhov
- Institute for Atherosclerosis; Skolkovo Innovative Center; Moscow Russia
- Laboratory of Angiopathology; Institute of General Pathology and Pathophysiology; Russian Academy of Sciences; Moscow Russia
- Department of Biophysics; Biological Faculty; Moscow State University; Moscow Russia
| | - Y. V. Bobryshev
- Institute for Atherosclerosis; Skolkovo Innovative Center; Moscow Russia
- Faculty of Medicine; School of Medical Sciences; University of New South Wales; Kensington Sydney NSW Australia
- School of Medicine; University of Western Sydney; Campbelltown NSW Australia
| |
Collapse
|
8
|
Nuclear factor of activated T cells regulates neutrophil recruitment, systemic inflammation, and T-cell dysfunction in abdominal sepsis. Infect Immun 2014; 82:3275-88. [PMID: 24866796 DOI: 10.1128/iai.01569-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The signaling mechanisms regulating neutrophil recruitment, systemic inflammation, and T-cell dysfunction in polymicrobial sepsis are not clear. This study explored the potential involvement of the calcium/calcineurin-dependent transcription factor, nuclear factor of activated T cells (NFAT), in abdominal sepsis. Cecal ligation and puncture (CLP) triggered NFAT-dependent transcriptional activity in the lung, spleen, liver, and aorta in NFAT-luciferase reporter mice. Treatment with the NFAT inhibitor A-285222 prior to CLP completely prevented sepsis-induced NFAT activation in all these organs. Inhibition of NFAT activity reduced sepsis-induced formation of CXCL1, CXCL2, and CXCL5 chemokines and edema as well as neutrophil infiltration in the lung. Notably, NFAT inhibition efficiently reduced the CLP-evoked increases in HMBG1, interleukin 6 (IL-6), and CXCL5 levels in plasma. Moreover, administration of A-285222 restored sepsis-induced T-cell dysfunction, as evidenced by markedly decreased apoptosis and restored proliferative capacity of CD4 T cells. Along these lines, treatment with A-285222 restored gamma interferon (IFN-γ) and IL-4 levels in the spleen, which were markedly reduced in septic mice. CLP-induced formation of regulatory T cells (CD4(+) CD25(+) Foxp3(+)) in the spleen was also abolished in A-285222-treated animals. All together, these novel findings suggest that NFAT is a powerful regulator of pathological inflammation and T-cell immune dysfunction in abdominal sepsis. Thus, our data suggest that NFAT signaling might be a useful target to protect against respiratory failure and immunosuppression in patients with sepsis.
Collapse
|
9
|
Friedman JK, Nitta CH, Henderson KM, Codianni SJ, Sanchez L, Ramiro-Diaz JM, Howard TA, Giermakowska W, Kanagy NL, Gonzalez Bosc LV. Intermittent hypoxia-induced increases in reactive oxygen species activate NFATc3 increasing endothelin-1 vasoconstrictor reactivity. Vascul Pharmacol 2013; 60:17-24. [PMID: 24239798 DOI: 10.1016/j.vph.2013.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 10/14/2013] [Accepted: 11/05/2013] [Indexed: 02/09/2023]
Abstract
Sleep apnea (SA), defined as intermittent respiratory arrest during sleep, is associated with increased incidence of hypertension, peripheral vascular disease, stroke, and sudden cardiac death. We have shown that intermittent hypoxia with CO2 supplementation (IH), a model for SA, increases blood pressure and circulating ET-1 levels, upregulates lung pre-pro ET-1 mRNA, increases vasoconstrictor reactivity to ET-1 in rat small mesenteric arteries (MA) and increases vascular reactive oxygen species (ROS). NFAT activity is increased in the aorta (AO) and MA of mice exposed to IH in an ET-1-dependent manner, and the genetic ablation of the isoform NFATc3 prevents IH-induced hypertension. We hypothesized that IH causes an increase in arterial ROS generation, which activates NFATc3 to increase vasoconstrictor reactivity to ET-1. In support of our hypothesis, we found that IH increases ROS in AO and MA. In vivo administration of the SOD mimetic tempol during IH exposure prevents IH-induced increases in NFAT activity in mouse MA and AO. We found that IH causes an NFATc3-dependent increase in vasoconstrictor reactivity to ET-1, accompanied by an increase in vessel wall [Ca²⁺]. Our results indicate that IH exposure causes an increase in arterial ROS to activate NFATc3, which then increases vasoconstrictor reactivity and Ca²⁺ response to ET-1. These studies highlight a novel regulatory pathway, and demonstrate the potential clinical relevance of NFAT inhibition to prevent hypertension in SA patients.
Collapse
Affiliation(s)
- J K Friedman
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - C H Nitta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - K M Henderson
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - S J Codianni
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - L Sanchez
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - J M Ramiro-Diaz
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - T A Howard
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - W Giermakowska
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - N L Kanagy
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - L V Gonzalez Bosc
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| |
Collapse
|
10
|
Grol MW, Pereverzev A, Sims SM, Dixon SJ. P2 receptor networks regulate signaling duration over a wide dynamic range of ATP concentrations. J Cell Sci 2013; 126:3615-26. [PMID: 23750003 DOI: 10.1242/jcs.122705] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The primordial intercellular signaling molecule ATP acts through two families of cell-surface P2 receptors - the P2Y family of G-protein-coupled receptors and the P2X family of ligand-gated cation channels. Multiple P2 receptors are expressed in a variety of cell types. However, the significance of these networks of receptors in any biological system remains unknown. Using osteoblasts as a model system, we found that a low concentration of ATP (10 µM, ATPlow) induced transient elevation of cytosolic Ca(2+), whereas a high concentration of ATP (1 mM, ATPhigh) elicited more sustained elevation. Moreover, graded increases in the Ca(2+) signal were achieved over a remarkable million-fold range of ATP concentrations (1 nM to 1 mM). Next, we demonstrated that ATPlow caused transient nuclear localization of the Ca(2+)-regulated transcription factor NFATc1; whereas, ATPhigh elicited more sustained localization. When stimulated with ATPhigh, osteoblasts from P2X7 loss-of-function mice showed only transient Ca(2+)-NFATc1 signaling; in contrast, sustained signaling was observed in wild-type cells. Additional experiments revealed a role for P2Y receptors in mediating transient signaling induced by low ATP concentrations. Thus, distinct P2 receptors with varying affinities for ATP account for this wide range of sensitivity to extracellular nucleotides. Finally, ATPhigh, but not ATPlow, was shown to elicit robust expression of the NFAT target gene Ptgs2 (encoding COX-2), consistent with a crucial role for the duration of Ca(2+)-NFAT signaling in regulating target gene expression. Taken together, ensembles of P2 receptors provide a mechanism by which cells sense ATP over a wide concentration range and transduce this input into distinct cellular signals.
Collapse
Affiliation(s)
- Matthew W Grol
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, London, ON N6A 5C1, Canada
| | | | | | | |
Collapse
|
11
|
Zetterqvist AV, Berglund LM, Blanco F, Garcia-Vaz E, Wigren M, Dunér P, Andersson AMD, To F, Spegel P, Nilsson J, Bengtsson E, Gomez MF. Inhibition of nuclear factor of activated T-cells (NFAT) suppresses accelerated atherosclerosis in diabetic mice. PLoS One 2013; 8:e65020. [PMID: 23755169 PMCID: PMC3670844 DOI: 10.1371/journal.pone.0065020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/21/2013] [Indexed: 01/13/2023] Open
Abstract
Objective of the Study Diabetic patients have a much more widespread and aggressive form of atherosclerosis and therefore, higher risk for myocardial infarction, peripheral vascular disease and stroke, but the molecular mechanisms leading to accelerated damage are still unclear. Recently, we showed that hyperglycemia activates the transcription factor NFAT in the arterial wall, inducing the expression of the pro-atherosclerotic protein osteopontin. Here we investigate whether NFAT activation may be a link between diabetes and atherogenesis. Methodology and Principal Findings Streptozotocin (STZ)-induced diabetes in apolipoprotein E−/− mice resulted in 2.2 fold increased aortic atherosclerosis and enhanced pro-inflammatory burden, as evidenced by elevated blood monocytes, endothelial activation- and inflammatory markers in aorta, and pro-inflammatory cytokines in plasma. In vivo treatment with the NFAT blocker A-285222 for 4 weeks completely inhibited the diabetes-induced aggravation of atherosclerosis, having no effect in non-diabetic mice. STZ-treated mice exhibited hyperglycemia and higher plasma cholesterol and triglycerides, but these were unaffected by A-285222. NFAT-dependent transcriptional activity was examined in aorta, spleen, thymus, brain, heart, liver and kidney, but only augmented in the aorta of diabetic mice. A-285222 completely blocked this diabetes-driven NFAT activation, but had no impact on the other organs or on splenocyte proliferation or cytokine secretion, ruling out systemic immunosuppression as the mechanism behind reduced atherosclerosis. Instead, NFAT inhibition effectively reduced IL-6, osteopontin, monocyte chemotactic protein 1, intercellular adhesion molecule 1, CD68 and tissue factor expression in the arterial wall and lowered plasma IL-6 in diabetic mice. Conclusions Targeting NFAT signaling may be a novel and attractive approach for the treatment of diabetic macrovascular complications.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Apolipoproteins E/deficiency
- Apolipoproteins E/metabolism
- Atherosclerosis/blood
- Atherosclerosis/complications
- Atherosclerosis/pathology
- Biomarkers/metabolism
- Blood Glucose/metabolism
- Body Weight/drug effects
- Cholesterol/blood
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Disease Progression
- Inflammation/pathology
- Interleukin-6/blood
- Mice, Inbred C57BL
- Monocytes/metabolism
- NFATC Transcription Factors/antagonists & inhibitors
- NFATC Transcription Factors/metabolism
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Pyrazoles/pharmacokinetics
- Pyrazoles/pharmacology
- Signal Transduction/drug effects
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
| | - Lisa M. Berglund
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Fabiana Blanco
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Eliana Garcia-Vaz
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Maria Wigren
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Pontus Dunér
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | | | - Fong To
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Peter Spegel
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Jan Nilsson
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Eva Bengtsson
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Maria F. Gomez
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
- * E-mail:
| |
Collapse
|
12
|
Junkins RD, MacNeil AJ, Wu Z, McCormick C, Lin TJ. Regulator of Calcineurin 1 Suppresses Inflammation during Respiratory Tract Infections. THE JOURNAL OF IMMUNOLOGY 2013; 190:5178-86. [DOI: 10.4049/jimmunol.1203196] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Bierer R, Nitta CH, Friedman J, Codianni S, de Frutos S, Dominguez-Bautista JA, Howard TA, Resta TC, Bosc LVG. NFATc3 is required for chronic hypoxia-induced pulmonary hypertension in adult and neonatal mice. Am J Physiol Lung Cell Mol Physiol 2011; 301:L872-80. [PMID: 21908592 DOI: 10.1152/ajplung.00405.2010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pulmonary hypertension occurs with prolonged exposure to chronic hypoxia in both adults and neonates. The Ca(2+)-dependent transcription factor, nuclear factor of activated T cells isoform c3 (NFATc3), has been implicated in chronic hypoxia-induced pulmonary arterial remodeling in adult mice. Therefore, we hypothesized that NFATc3 is required for chronic hypoxia-induced pulmonary hypertension in adult and neonatal mice. The aim of this study was to determine whether 1) NFATc3 mediates chronic hypoxia-induced increases in right ventricular systolic pressure in adult mice; 2) NFATc3 is activated in neonatal mice exposed to chronic hypoxia; and 3) NFATc3 is involved in chronic hypoxia-induced right ventricular hypertrophy and pulmonary vascular remodeling in neonatal mice. Adult mice were exposed to hypobaric hypoxia for 2, 7, and 21 days. Neonatal mouse pups were exposed for 7 days to hypobaric chronic hypoxia within 2 days after delivery. Hypoxia-induced increases in right ventricular systolic pressure were absent in NFATc3 knockout adult mice. In neonatal mice, chronic hypoxia caused NFAT activation in whole lung and nuclear accumulation of NFATc3 in both pulmonary vascular smooth muscle and endothelial cells. In addition, heterozygous NFATc3 neonates showed less right ventricular hypertrophy and pulmonary artery wall thickness in response to chronic hypoxia than did wild-type neonates. Our results suggest that NFATc3 mediates pulmonary hypertension and vascular remodeling in both adult and neonatal mice.
Collapse
Affiliation(s)
- R Bierer
- Department of Pediatrics, School of Medicine, University of New Mexico, Albuquerque, 87131, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Xu K, Gao H, Shu HKG. Celecoxib Can Induce Vascular Endothelial Growth Factor Expression and Tumor Angiogenesis. Mol Cancer Ther 2011; 10:138-47. [DOI: 10.1158/1535-7163.mct-10-0415] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Lagunas L, Clipstone NA. Deregulated NFATc1 activity transforms murine fibroblasts via an autocrine growth factor-mediated Stat3-dependent pathway. J Cell Biochem 2010; 108:237-48. [PMID: 19565565 DOI: 10.1002/jcb.22245] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The nuclear factor of activated T cells (NFAT) family of transcription factors has recently been implicated with a role in tumorigenesis. Forced expression of a constitutively active NFATc1 mutant (caNFATc1) has been shown to transform immortalized murine fibroblasts in vitro, while constitutive activation of the NFAT-signaling pathway has been found in a number of human cancers, where it has been shown to contribute towards various aspects of the tumor phenotype. Here we have investigated the molecular mechanisms underlying the oncogenic potential of deregulated NFAT activity. We now show that ectopic expression of caNFATc1 in murine 3T3-L1 fibroblasts induces the secretion of an autocrine factor(s) that is sufficient to promote the transformed phenotype. We further demonstrate that this NFATc1-induced autocrine factor(s) specifically induces the tyrosine phosphorylation of the Stat3 transcription factor via a JAK kinase-dependent pathway. Interestingly, this effect of sustained NFAT signaling on the autocrine growth factor-mediated activation of Stat3 is not restricted to murine fibroblasts, but is also observed in the PANC-1 and MCF10A human cell lines. Most importantly, we find that the shRNA-mediated depletion of endogenous Stat3 significantly attenuates the ability of caNFATc1 to transform 3T3-L1 fibroblasts. Taken together, our results afford significant new insights into the molecular mechanisms underlying the oncogenic potential of deregulated NFATc1 activity by demonstrating that constitutive NFATc1 activity transforms cells via an autocrine factor-mediated pathway that is critically dependent upon the activity of the Stat3 transcription factor.
Collapse
Affiliation(s)
- Lucio Lagunas
- Department of Pharmacology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, USA
| | | |
Collapse
|
16
|
MOR23 promotes muscle regeneration and regulates cell adhesion and migration. Dev Cell 2009; 17:649-61. [PMID: 19922870 DOI: 10.1016/j.devcel.2009.09.004] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2008] [Revised: 07/04/2009] [Accepted: 09/15/2009] [Indexed: 12/17/2022]
Abstract
Odorant receptors (ORs) in the olfactory epithelium bind to volatile small molecules leading to the perception of smell. ORs are expressed in many tissues but their functions are largely unknown. We show multiple ORs display distinct mRNA expression patterns during myogenesis in vitro and muscle regeneration in vivo. Mouse OR23 (MOR23) expression is induced during muscle regeneration when muscle cells are extensively fusing and plays a key role in regulating migration and adhesion of muscle cells in vitro, two processes common during tissue repair. A soluble ligand for MOR23 is secreted by muscle cells in vitro and muscle tissue in vivo. MOR23 is necessary for proper skeletal muscle regeneration as loss of MOR23 leads to increased myofiber branching, commonly associated with muscular dystrophy. Together these data identify a functional role for an OR outside of the nose and suggest a larger role for ORs during tissue repair.
Collapse
|
17
|
Orr AW, Hastings NE, Blackman BR, Wamhoff BR. Complex regulation and function of the inflammatory smooth muscle cell phenotype in atherosclerosis. J Vasc Res 2009; 47:168-80. [PMID: 19851078 DOI: 10.1159/000250095] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 08/26/2009] [Indexed: 12/22/2022] Open
Abstract
Vascular smooth muscle cell (SMC) phenotypic modulation plays a key role in atherosclerosis and is classically defined as a switch from a 'contractile' phenotype to a 'synthetic' phenotype, whereby genes that define the contractile SMC phenotype are suppressed and proliferation and/or migratory mechanisms are induced. There is also evidence that SMCs may take on a 'proinflammatory' phenotype, whereby SMCs secrete cytokines and express cell adhesion molecules, e.g. IL-8, IL-6, and VCAM-1, respectively, which may functionally regulate monocyte and macrophage adhesion and other processes during atherosclerosis. Factors that drive the inflammatory phenotype are not limited to cytokines but also include hemodynamic forces imposed on the blood vessel wall and intimate interaction of endothelial cells with SMCs, as well as changes in matrix composition in the vessel wall. However, it is critical to recognize that our understanding of the complex interaction of these multiple signal inputs has only recently begun to shed light on mechanisms that regulate the inflammatory SMC phenotype, primarily through models that attempt to recreate this environment ex vivo. The goal of this review is to summarize our current knowledge in this area and identify some of the key unresolved challenges and questions requiring further study.
Collapse
Affiliation(s)
- Anthony Wayne Orr
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, La., USA
| | | | | | | |
Collapse
|
18
|
Epidermal growth factor-dependent cyclooxygenase-2 induction in gliomas requires protein kinase C-δ. Oncogene 2009; 28:1410-20. [DOI: 10.1038/onc.2008.500] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Iwata S, Ito S, Iwaki M, Kondo M, Sashio T, Takeda N, Sokabe M, Hasegawa Y, Kume H. Regulation of endothelin-1-induced interleukin-6 production by Ca2+ influx in human airway smooth muscle cells. Eur J Pharmacol 2009; 605:15-22. [PMID: 19171135 DOI: 10.1016/j.ejphar.2008.12.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 12/12/2008] [Accepted: 12/23/2008] [Indexed: 11/28/2022]
Abstract
Endothelin-1 is considered to be an important mediator in the pathophysiology of asthma because it induces contraction, hypertrophy, and proliferation in airway smooth muscle cells as well as inflammatory responses in the airway. Airway smooth muscle cells have been suggested to contribute to airway inflammation in asthma by producing cytokines. Nevertheless, the role of intracellular Ca(2+) signal in cytokine production in human airway smooth muscle cells is still unclear. We investigated the mechanisms by which endothelin-1 induces production of interleukin (IL)-6, a pleiotropic cytokine, in primary cultured human airway smooth muscle cells. Levels of IL-6 protein and mRNA were significantly increased by endothelin-1 in dose- and time-dependent manners. Endothelin-1-induced IL-6 production was markedly attenuated by EGTA and various Ca(2+) channel inhibitors such as 3,5-bis(trifluoromethyl)-1H-pyrazole derivative (BTP-2), 1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole hydrochloride (SKF96365), and nifedipine. Endothelin-1-induced increases in intracellular Ca(2+) concentrations were significantly inhibited in Ca(2+)-free solution and by BTP-2, SKF96365, and nifedipine. The IL-6 synthesis was also inhibited by the extracellular signal-regulated kinase (ERK)1/2 inhibitor 1,4-diamino-2,3-dicyano-1,4-bis(o-aminophenylmercapto)-butadiene ethanolate (U0126) and the p38 inhibitor 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole (SB203580), but not by the c-Jun NH2-terminal kinase inhibitor anthra[1,9-cd]-pyrazol-6-(2H)-one (SP600125). Endothelin-1 significantly upregulated phosphorylation of ERK1/2 and p38 but blocking Ca(2+) influx pathways did not inhibit either upregulation. These findings demonstrate that endothelin-1-induced IL-6 synthesis in airway smooth muscle cells occurs via two parallel but independent events that include Ca(2+) influx and activation of ERK1/2 and p38.
Collapse
Affiliation(s)
- Susumu Iwata
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
de Frutos S, Duling L, Alò D, Berry T, Jackson-Weaver O, Walker M, Kanagy N, González Bosc L. NFATc3 is required for intermittent hypoxia-induced hypertension. Am J Physiol Heart Circ Physiol 2008; 294:H2382-90. [PMID: 18359899 DOI: 10.1152/ajpheart.00132.2008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sleep apnea, defined as intermittent respiratory arrest during sleep, is associated with increased incidence of hypertension and peripheral vascular disease. Exposure of rodents to brief periods of intermittent hypercarbia/hypoxia (H-IH) during sleep mimics the cyclical hypoxia-normoxia of sleep apnea. Endothelin-1, an upstream activator of nuclear factor of activated T cells (NFAT), is increased during H-IH. Therefore, we hypothesized that NFATc3 is activated by H-IH and is required for H-IH-induced hypertension. Consistent with this hypothesis, we found that H-IH (20 brief exposures per hour to 5% O(2)-5% CO(2) for 7 h/day) induces systemic hypertension in mice [mean arterial pressure (MAP) = 97 +/- 2 vs. 124 +/- 2 mmHg, P < 0.05, n = 5] and increases NFATc3 transcriptional activity in aorta and mesenteric arteries. Cyclosporin A, an NFAT inhibitor, and genetic ablation of NFATc3 [NFATc3 knockout (KO)] prevented NFAT activation. More importantly, H-IH-induced hypertension was attenuated in cyclosporin A-treated mice and prevented in NFATc3 KO mice. MAP was significantly elevated in wild-type mice (Delta = 23.5 +/- 6.1 mmHg), but not in KO mice (Delta = -3.9 +/- 5.7). These results indicate that H-IH-induced increases in MAP require NFATc3 and that NFATc3 may contribute to the vascular changes associated with H-IH-induced hypertension.
Collapse
Affiliation(s)
- Sergio de Frutos
- Department of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Taurin S, Sandbo N, Yau DM, Sethakorn N, Dulin NO. Phosphorylation of beta-catenin by PKA promotes ATP-induced proliferation of vascular smooth muscle cells. Am J Physiol Cell Physiol 2008; 294:C1169-74. [PMID: 18353896 DOI: 10.1152/ajpcell.00096.2008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Extracellular ATP stimulates proliferation of vascular smooth muscle cells (VSMC) through activation of G protein-coupled P2Y purinergic receptors. We have previously shown that ATP stimulates a transient activation of protein kinase A (PKA), which, together with the established mitogenic signaling of purinergic receptors, promotes proliferation of VSMC (Hogarth DK, Sandbo N, Taurin S, Kolenko V, Miano JM, Dulin NO. Am J Physiol Cell Physiol 287: C449-C456, 2004). We also have shown that PKA can phosphorylate beta-catenin at two novel sites (Ser552 and Ser675) in vitro and in overexpression cell models (Taurin S, Sandbo N, Qin Y, Browning D, Dulin NO. J Biol Chem 281: 9971-9976, 2006). beta-Catenin promotes cell proliferation by activation of a family of T-cell factor (TCF) transcription factors, which drive the transcription of genes implicated in cell cycle progression including cyclin D1. In the present study, using the phosphospecific antibodies against phospho-Ser552 or phospho-Ser675 sites of beta-catenin, we show that ATP can stimulate PKA-dependent phosphorylation of endogenous beta-catenin at both of these sites without affecting its expression levels in VSMC. This translates to a PKA-dependent stimulation of TCF transcriptional activity through an increased association of phosphorylated (by PKA) beta-catenin with TCF-4. Using the PKA inhibitor PKI or dominant negative TCF-4 mutant, we show that ATP-induced cyclin D1 promoter activation, cyclin D1 protein expression, and proliferation of VSMC are all dependent on PKA and TCF activities. In conclusion, we show a novel mode of regulation of endogenous beta-catenin through its phosphorylation by PKA, and we demonstrate the importance of this mechanism for ATP-induced proliferation of VSMC.
Collapse
Affiliation(s)
- Sebastien Taurin
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
22
|
Kobayashi D, Ohkubo S, Nakahata N. Cooperation of calcineurin and ERK for UTP-induced IL-6 production in HaCaT keratinocytes. Eur J Pharmacol 2007; 573:249-52. [PMID: 17761160 DOI: 10.1016/j.ejphar.2007.07.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 07/25/2007] [Accepted: 07/26/2007] [Indexed: 10/23/2022]
Abstract
UTP causes IL-6 production in HaCaT keratinocytes, which is partially inhibited by PD98059, a mitogen-activated protein kinase kinase (MEK) inhibitor, suggesting that a pathway other than the extracellular signal-regulated kinase (ERK) pathway is involved in the production. In the present study, we examined the involvement of calcineurin in the UTP-induced interleukin (IL)-6 production in HaCaT keratinocytes. FK506 and cyclosporine A, calcineurin inhibitors, partially inhibited UTP-induced IL-6 mRNA expression and protein production. In addition, combined application of FK506 and PD98059 synergistically inhibited the UTP-induced IL-6 production. These results suggest that ERK and calcineurin are cooperatively involved in UTP-induced IL-6 production.
Collapse
Affiliation(s)
- Daisaku Kobayashi
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | | | | |
Collapse
|
23
|
Xu K, Shu HKG. EGFR activation results in enhanced cyclooxygenase-2 expression through p38 mitogen-activated protein kinase-dependent activation of the Sp1/Sp3 transcription factors in human gliomas. Cancer Res 2007; 67:6121-9. [PMID: 17616668 DOI: 10.1158/0008-5472.can-07-0141] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Expression of cyclooxygenase-2 (COX-2) has been linked to many cancers and may contribute to malignant phenotypes, including enhanced proliferation, angiogenesis, and resistance to cytotoxic therapies. Malignant gliomas are highly aggressive brain tumors that display many of these characteristics. One prominent molecular abnormality discovered in these astrocytic brain tumors is alteration of epidermal growth factor (EGF) receptor (EGFR) through gene amplification and/or mutation resulting in excessive signaling from this receptor. We found that EGF-mediated stimulation of EGFR tyrosine kinase in human glioma cell lines induces expression of both COX-2 mRNA and protein. The p38 mitogen-activated protein kinase (p38-MAPK) pathway was a strong downstream factor in this activation with inhibition of this pathway leading to strong suppression of COX-2 induction. The p38-MAPK pathway can activate the Sp1/Sp3 transcription factors and this seems necessary for EGFR-dependent transactivation of the COX-2 promoter. Analysis of COX-2 promoter/luciferase constructs revealed that transcriptional activation of the COX-2 promoter by EGFR requires the Sp1 binding site located at -245/-240. Furthermore, Sp1/Sp3 binding to this site in the promoter is enhanced by EGFR activation both in vitro and in vivo. Enhanced DNA binding by Sp1/Sp3 requires p38-MAPK activity and correlates with increased phosphorylation of the Sp1 transcription factor. Thus, EGFR activation in malignant gliomas can transcriptionally activate COX-2 expression in a process that requires p38-MAPK and Sp1/Sp3. Finally, treatment of glioma cell lines with prostaglandin E2, the predominant product of COX-2 activity, results in increased vascular endothelial growth factor expression, thus potentially linking elevations in COX-2 expression with tumor angiogenesis in malignant gliomas.
Collapse
Affiliation(s)
- Kaiming Xu
- Department of Radiation Oncology, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
24
|
de Frutos S, Spangler R, Alò D, Bosc LVG. NFATc3 mediates chronic hypoxia-induced pulmonary arterial remodeling with alpha-actin up-regulation. J Biol Chem 2007; 282:15081-9. [PMID: 17403661 PMCID: PMC2754407 DOI: 10.1074/jbc.m702679200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Physiological responses to chronic hypoxia include polycythemia, pulmonary arterial remodeling, and vasoconstriction. Chronic hypoxia causes pulmonary arterial hypertension leading to right ventricular hypertrophy and heart failure. During pulmonary hypertension, pulmonary arteries exhibit increased expression of smooth muscle-alpha-actin and -myosin heavy chain. NFATc3 (nuclear factor of activated T cells isoform c3), which is aCa(2+)-dependent transcription factor, has been recently linked to smooth muscle phenotypic maintenance through the regulation of the expression of alpha-actin. The aim of this study was to determine if: (a) NFATc3 is expressed in murine pulmonary arteries, (b) hypoxia induces NFAT activation, (c) NFATc3 mediates the up-regulation of alpha-actin during chronic hypoxia, and (d) NFATc3 is involved in chronic hypoxia-induced pulmonary vascular remodeling. NFATc3 transcript and protein were found in pulmonary arteries. NFAT-luciferase reporter mice were exposed to normoxia (630 torr) or hypoxia (380 torr) for 2, 7, or 21 days. Exposure to hypoxia elicited a significant increase in luciferase activity and pulmonary arterial smooth muscle nuclear NFATc3 localization, demonstrating NFAT activation. Hypoxia induced up-regulation of alpha-actin and was prevented by the calcineurin/NFAT inhibitor, cyclosporin A (25 mg/kg/day s.c.). In addition, NFATc3 knock-out mice did not showed increased alpha-actin levels and arterial wall thickness after hypoxia. These results strongly suggest that NFATc3 plays a role in the chronic hypoxia-induced vascular changes that underlie pulmonary hypertension.
Collapse
MESH Headings
- Actins/biosynthesis
- Actins/genetics
- Active Transport, Cell Nucleus/drug effects
- Active Transport, Cell Nucleus/genetics
- Animals
- Calcineurin/metabolism
- Calcineurin Inhibitors
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/metabolism
- Cardiomyopathy, Hypertrophic/pathology
- Cardiomyopathy, Hypertrophic/physiopathology
- Cell Nucleus/metabolism
- Chronic Disease
- Cyclosporine/pharmacology
- Enzyme Inhibitors/pharmacology
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Hypoxia/genetics
- Hypoxia/metabolism
- Hypoxia/pathology
- Hypoxia/physiopathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- NFATC Transcription Factors/antagonists & inhibitors
- NFATC Transcription Factors/deficiency
- NFATC Transcription Factors/metabolism
- Polycythemia/genetics
- Polycythemia/metabolism
- Polycythemia/pathology
- Polycythemia/physiopathology
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Up-Regulation/drug effects
- Up-Regulation/genetics
- Vasoconstriction/drug effects
- Vasoconstriction/genetics
- Ventricular Remodeling/drug effects
- Ventricular Remodeling/genetics
Collapse
Affiliation(s)
- Sergio de Frutos
- Department of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | |
Collapse
|
25
|
Pedersen BK, Fischer CP. Physiological roles of muscle-derived interleukin-6 in response to exercise. Curr Opin Clin Nutr Metab Care 2007; 10:265-71. [PMID: 17414493 DOI: 10.1097/mco.0b013e3280ebb5b3] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW To discuss recent findings with regard to the regulation of muscle-derived interleukin-6 as well as the possible physiological and metabolic roles of interleukin-6 in response to exercise. RECENT FINDINGS Contraction-induced transcription and release of interleukin-6 is primarily regulated by an altered intramuscular milieu in response to exercise. Accordingly, changes in calcium homeostasis, impaired glucose availability and increased formation of reactive oxygen species are all associated with exercise and capable of activating transcription factors known to regulate interleukin-6 synthesis. Acute interleukin-6 administration to humans increases lipolysis, fat oxidation and insulin-mediated glucose disposal. Adenosine monophosphate-activated protein kinase activation by interleukin-6 appears to play an important role in modulating some of these metabolic effects. Interleukin-6 facilitates an antiinflammatory milieu and may exert some of its biological effects via inhibition of the proinflammatory cytokine tumor necrosis factor-alpha. SUMMARY The discovery of contracting muscle as a cytokine-producing organ opens a new paradigm: skeletal muscle is an endocrine organ that in response to contractions produces and releases 'myokines', which subsequently can modulate the metabolic and immunological response to exercise in several tissues. In our view, interleukin-6 may be one of several myokines.
Collapse
Affiliation(s)
- Bente K Pedersen
- Centre of Inflammation and Metabolism at the Department of Infectious Diseases, and Copenhagen Muscle Research Centre, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | | |
Collapse
|
26
|
O'Connor RS, Mills ST, Jones KA, Ho SN, Pavlath GK. A combinatorial role for NFAT5 in both myoblast migration and differentiation during skeletal muscle myogenesis. J Cell Sci 2006; 120:149-59. [PMID: 17164296 DOI: 10.1242/jcs.03307] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle regeneration depends on myoblast migration, differentiation and myofiber formation. Isoforms of the nuclear factor of activated T cells (NFAT) family of transcription factors display nonredundant roles in skeletal muscle. NFAT5, a new isoform of NFAT, displays many differences from NFATc1-c4. Here, we examine the role of NFAT5 in myogenesis. NFAT5+/- mice displayed a defect in muscle regeneration with fewer myofibers formed at early times after injury. NFAT5 has a muscle-intrinsic function because inhibition of NFAT5 transcriptional activity caused both a migratory and differentiation defect in cultured myoblasts. We identified Cyr61 as a target of NFAT5 signaling in skeletal muscle cells. Addition of Cyr61 to cells expressing inhibitory forms of NFAT5 rescued the migratory phenotype. These results demonstrate a role for NFAT5 in skeletal muscle cell migration and differentiation. Furthermore, as cell-cell interactions are crucial for myoblast differentiation, these data suggest that myoblast migration and differentiation are coupled and that NFAT5 is a key regulator.
Collapse
Affiliation(s)
- Roddy S O'Connor
- Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
27
|
Nilsson LM, Sun ZW, Nilsson J, Nordström I, Chen YW, Molkentin JD, Wide-Swensson D, Hellstrand P, Lydrup ML, Gomez MF. Novel blocker of NFAT activation inhibits IL-6 production in human myometrial arteries and reduces vascular smooth muscle cell proliferation. Am J Physiol Cell Physiol 2006; 292:C1167-78. [PMID: 17079331 DOI: 10.1152/ajpcell.00590.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The calcineurin/nuclear factor of activated T cells (NFAT) signaling pathway has been found to play a role in regulating growth and differentiation in several cell types. However, the functional significance of NFAT in the vasculature is largely unclear. Here we show that NFATc1, NFATc3, and NFATc4 are expressed in human myometrial arteries. Confocal immunofluorescence and Western blot analysis revealed that endothelin-1 efficiently increases NFATc3 nuclear accumulation in native arteries. Endothelin-1 also stimulates NFAT-dependent transcriptional activity, as shown by a luciferase reporter assay. Both the agonist-induced NFAT nuclear accumulation and transcriptional activity were prevented by the calcineurin inhibitor CsA and by the novel NFAT blocker A-285222. Chronic inhibition of NFAT significantly reduced IL-6 production in intact myometrial arteries and inhibited cell proliferation in vascular smooth muscle cells cultured from explants from the same arteries. Furthermore, by using small interfering RNA-mediated reduction of NFATc3, we show that this isoform is involved in the regulation of cell proliferation. Protein synthesis in intact arteries was investigated using autoradiography of [(35)S]methionine incorporation in serum-free culture. Inhibition of NFAT signaling did not affect overall protein synthesis or specifically the synthesis rates of major proteins associated with the contractile/cytoskeletal system. An intact contractile phenotype under these conditions was also shown by unchanged force response to depolarization or agonist stimulation. Our results demonstrate NFAT expression and activation in native human vessels and point out A-285222 as a powerful pharmacological blocker of NFAT signaling in the vasculature.
Collapse
MESH Headings
- Arteries/drug effects
- Arteries/metabolism
- Cells, Cultured
- Dose-Response Relationship, Drug
- Female
- Humans
- Interleukin-6/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/physiology
- Myometrium/blood supply
- Myometrium/drug effects
- Myometrium/metabolism
- NFATC Transcription Factors/antagonists & inhibitors
- NFATC Transcription Factors/metabolism
- Pyrazoles/administration & dosage
- Signal Transduction/drug effects
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Lisa M Nilsson
- Dept. of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Keller C, Hellsten Y, Steensberg A, Pedersen BK. Differential regulation of IL-6 and TNF-α via calcineurin in human skeletal muscle cells. Cytokine 2006; 36:141-7. [PMID: 17197194 DOI: 10.1016/j.cyto.2006.10.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 09/14/2006] [Accepted: 10/26/2006] [Indexed: 12/19/2022]
Abstract
Interleukin-6 increases in skeletal muscle during exercise, and evidence points to Ca2+ as an initiator of IL-6 production. However, the signalling pathway whereby this occurs is unknown. One candidate for Ca2+ -mediated IL-6 induction is calcineurin, an activator of NF-AT. Here we investigated whether skeletal myocytes produce IL-6 in a Ca2+/calcineurin-dependent manner, and whether TNF-alpha, an inducer of IL-6, is affected by these stimuli. Human skeletal muscle cell cultures were stimulated with ionomycin time-and dose-dependently to elevate intracellular Ca2+ levels, with or without addition of cyclosporin A (CSA); a calcineurin inhibitor. mRNA was extracted from myocytes and analysed for IL-6 and TNF-alpha gene expression. IL-6 mRNA increased time- and dose-dependently with ionomycin stimulation, an effect that was blunted by approximately 75% in the presence of CSA. In contrast, TNF-alpha gene expression was decreased by approximately 70% in response to ionomycin treatment, but increased in response to addition of CSA. These data demonstrate that IL-6 and TNF-alpha are regulated differentially in skeletal muscle cells in response to a Ca2+ stimulus. Blocking the calcineurin pathway resulted in inhibition of the IL-6 response to ionomycin, whereas TNF-alpha increased by addition of CSA, further indicating a differential regulation of IL-6 and TNF-alpha in human skeletal myocytes.
Collapse
Affiliation(s)
- Charlotte Keller
- Centre of Inflammation and Metabolism, Department of Infectious Diseases and the Copenhagen Muscle Research Centre, Faculty of Health Sciences, University Hospital of Copenhagen, Tagensvej 20, 2200 Copenhagen N, Denmark.
| | | | | | | |
Collapse
|
29
|
Douillet CD, Robinson WP, Milano PM, Boucher RC, Rich PB. Nucleotides induce IL-6 release from human airway epithelia via P2Y2 and p38 MAPK-dependent pathways. Am J Physiol Lung Cell Mol Physiol 2006; 291:L734-46. [PMID: 16632518 DOI: 10.1152/ajplung.00389.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular nucleotides can mediate a variety of cellular functions via interactions with purinergic receptors. We previously showed that mechanical ventilation (MV) induces airway IL-6 and ATP release, modifies luminal nucleotide composition, and alters lung purinoceptor expression. Here we hypothesize that extracellular nucleotides induce secretion of IL-6 by small airway epithelial cells (SAEC). Human SAEC were stimulated with nucleotides in the presence or absence of inhibitors. Supernatants were analyzed for IL-6 and lysates for p38 MAPK activity by ELISA. RNA was analyzed by real-time RT-PCR. Rats (n=51) were randomized to groups as follows: control, small-volume MV, large-volume MV, large-volume MV-intratracheal apyrase, or small-volume MV-intratracheal adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS). After 1 h of MV, bronchoalveolar lavage fluid was analyzed for ATP and IL-6 by luminometry and ELISA. ATP and ATPgammaS increased SAEC IL-6 secretion in a time- and dose-dependent manner, an effect inhibited by apyrase. Agonists were ranked in the following order: ATPgammaS>ATP=UTP>ADP=adenosine>2-methylthio-ADP=control. SB-203580, but not U-0126 or JNK1 inhibitor, decreased nucleotide effects. Additionally, nucleotides induced p38 MAPK phosphorylation. Inhibitors of Ca2+ signaling, phospholipase C, transcription, and translation decreased IL-6 release. Furthermore, nucleotides increased IL-6 expression. In vivo, large-volume MV increased airway ATP and IL-6 concentrations. IL-6 release was decreased by apyrase and increased by ATPgammaS. Extracellular nucleotides induce P2Y2-mediated secretion of IL-6 by SAEC via Ca2+, phospholipase C, and p38 MAPK-dependent pathways. This effect is dependent on transcription and translation. Our findings were confirmed in an in vivo model, thus demonstrating a novel mechanism of nucleotide-induced IL-6 secretion by airway epithelia.
Collapse
Affiliation(s)
- Christelle D Douillet
- Division of Trauma and Critical Care, Department of Surgery, University of North Carolina at Chapel Hill, 4008 Burnett-Womack, Chapel Hill, NC 27599-7228, USA
| | | | | | | | | |
Collapse
|
30
|
Banzet S, Koulmann N, Sanchez H, Serrurier B, Peinnequin A, Alonso A, Bigard X. Contraction-induced interleukin-6 transcription in rat slow-type muscle is partly dependent on calcineurin activation. J Cell Physiol 2006; 210:596-601. [PMID: 17133350 DOI: 10.1002/jcp.20854] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The present work aimed at determining whether interleukin-6 (IL-6) produced by skeletal muscle during exercise is related, at least partly, to calcineurin activity. Rats were treated with two specific calcineurin inhibitors, cyclosporin A (CsA) and FK506, or vehicle (Vhl); they were then subjected to exhaustive treadmill running. Modulatory Calcineurin-Interacting Protein-1 (MCIP-1) mRNA levels, a reliable indicator of calcineurin activity, and IL-6 mRNA levels were measured by real-time RT-PCR in soleus muscles, and IL-6 protein concentration was measured in the plasma. Because low carbohydrates availability enhances IL-6 transcription through p38 Mitogen Activated Protein Kinase (MAPK) pathway, muscle glycogen content and glycaemia were measured and p38 MAPK phosphorylation was determined in skeletal muscle by western blotting. As expected, exercise induced an increase in IL-6 (P < 0.01) and MCIP-1 mRNA (P < 0.01) in soleus muscle of Vhl rats, and enhanced p38 phosphorylation and plasmatic IL-6 protein (P < 0.05). Calcineurin inhibition did not affect running time, glycemia or soleus glycogen content. CsA administration totally inhibited the exercise-induced increase in MCIP-1 mRNA (P < 0.01), blunted the IL-6 gene transcription related to muscle activity, and suppressed the changes in IL-6 protein in plasma. In addition to its inhibition of calcineurin activity, FK506 administration totally suppressed the exercise-induced IL-6 gene transcription, likely by an inhibition of p38 activation. Taken together, these results demonstrate that in addition to p38 MAPK, increased calcineurin activity is one of the signalling events involved in IL-6 gene transcription.
Collapse
Affiliation(s)
- Sébastien Banzet
- Department of Human Factors, Centre de Recherches du Service de Santé des Armées, La Tronche, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Nagamatsu Y, Nishida M, Onohara N, Fukutomi M, Maruyama Y, Kobayashi H, Sato Y, Kurose H. Heterotrimeric G Protein Gα13-Induced Induction of Cytokine mRNAs Through Two Distinct Pathways in Cardiac Fibroblasts. J Pharmacol Sci 2006; 101:144-50. [PMID: 16778360 DOI: 10.1254/jphs.fp0051036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Overexpression of constitutively active (CA)-G alpha13 significantly increased the expression of interleukin (IL)-1beta and IL-6 mRNAs and proteins in rat cardiac fibroblasts. IL-1beta mRNA induction by CA-G alpha13 was suppressed by diphenyleneiodonium (DPI), an NADPH oxidase inhibitor, but not by BAPTA-AM, an intracellular Ca2+ chelator. In contrast, IL-6 mRNA induction by CA-G alpha13 was suppressed by BAPTA-AM but not by DPI. However, both IL-1beta and IL-6 mRNA induction was suppressed by nuclear factor kappaB (NF-kappaB) inhibitors. The CA-G alpha13-induced NF-kappaB activation was suppressed by DPI and BAPTA-AM, but not C3 toxin and the Rho-kinase inhibitor Y27632. IL-6 mRNA induction by CA-G alpha13 was suppressed by SK&F96365 (1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole hydrochloride), an inhibitor of receptor-activated nonselective cation channels, and the expression of CA-G alpha13 increased basal Ca2+ influx. These results suggest that G alpha13 regulates IL-1beta mRNA induction through the reactive oxygen species-NF-kappaB pathway, while it regulates IL-6 mRNA induction through the Ca2+-NF-kappaB pathway.
Collapse
Affiliation(s)
- Yuichi Nagamatsu
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Glazova M, Aho TLT, Palmetshofer A, Murashov A, Scheinin M, Koskinen PJ. Pim-1 kinase enhances NFATc activity and neuroendocrine functions in PC12 cells. ACTA ACUST UNITED AC 2005; 138:116-23. [PMID: 15935514 DOI: 10.1016/j.molbrainres.2005.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 02/27/2005] [Accepted: 04/13/2005] [Indexed: 12/23/2022]
Abstract
The activity of NFATc family transcription factors is tightly regulated in T cells via signaling pathways initiated by stimulation of the T cell receptor or its downstream effectors such as the Pim-1 serine/threonine kinase. Here, we demonstrate that NFATc-dependent transcription is inducible also in NGF-differentiated rat PC12 pheochromocytoma cells treated with phorbol esthers, calcium ionophores and/or forskolin and that the Pim-1 kinase can further potentiate the effects of these agents. PC12 cells share many characteristics with sympathetic neurons and can be induced to produce and release catecholamines, such as dopamine and noradrenaline, and inflammatory cytokines, such as interleukin 6. Interestingly, Pim-1 can synergize with forskolin-induced signaling pathways to stimulate also neuroendocrine functions of PC12 cells.
Collapse
Affiliation(s)
- Margarita Glazova
- Turku Centre for Biotechnology, University of Turku/Abo Akademi University, Tykistökatu 6 B, FI-20520 Turku, Finland
| | | | | | | | | | | |
Collapse
|
33
|
Renault MA, Jalvy S, Potier M, Belloc I, Genot E, Dekker LV, Desgranges C, Gadeau AP. UTP induces osteopontin expression through a coordinate action of NFkappaB, activator protein-1, and upstream stimulatory factor in arterial smooth muscle cells. J Biol Chem 2004; 280:2708-13. [PMID: 15557322 DOI: 10.1074/jbc.m411786200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Osteopontin (OPN) is an important chemokinetic agent for several cell types. Our earlier studies have shown that its expression is essential for uridine triphosphate (UTP)-mediated migration of vascular smooth muscle cells. We demonstrated previously that the activation of an AP-1 binding site located 76 bp upstream of the transcription start in the rat OPN promoter is involved in the induction of OPN expression. In this work, using a luciferase promoter deletion assay, we identified a new region of the rat OPN promoter (-1837 to -1757) that is responsive to UTP. This region contains an NFkappaB site located at -1800 and an Ebox located at -1768. Supershift electrophoretic mobility shift assay and chromatin immunoprecipitation assays identified NFkappaB and USF-1/USF-2 as the DNA binding proteins induced by UTP, respectively, for these two sites. Using dominant negative mutants of IkappaB kinase and USF transcription factors, we confirmed that NFkappaB and USF-1/USF-2 are involved in the UTP-mediated expression of OPN. Using a pharmacological approach, we demonstrated that USF proteins are regulated by the extracellular signal-regulated kinase (ERK)1/2 pathway, just as the earlier discovered AP-1 complex, whereas NFkappaB is up-regulated through PKCdelta signals. Finally, our work suggests that the UTP-stimulated OPN expression involves a coordinate regulation of PKCdelta-NFkappaB, ERK1/2-USF, and ERK1/2/NAD(P)H oxidase AP-1 signaling pathways.
Collapse
|
34
|
Liu Z, Dronadula N, Rao GN. A Novel Role for Nuclear Factor of Activated T Cells in Receptor Tyrosine Kinase and G Protein-coupled Receptor Agonist-induced Vascular Smooth Muscle Cell Motility. J Biol Chem 2004; 279:41218-26. [PMID: 15272006 DOI: 10.1074/jbc.m406917200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In addition to their role in cytokine gene regulation in T cells, nuclear factors of activated T cells (NFATs) have been shown to be involved in cardiac development and hypertrophy. We have reported previously that NFATs play an important role in the regulation of vascular smooth muscle cell (VSMC) proliferation by receptor tyrosine kinase (RTK) and G protein-coupled receptor (GPCR) agonists, platelet-derived growth factor-BB (PDGF-BB) and thrombin, respectively. To understand the role of NFATs in vascular disease and development, we have now studied the role of these transcriptional factors in VSMC motility. PDGF-BB and thrombin induced VSMC motility in a dose-dependent manner. Blockade of NFAT activation resulted in substantial reduction in PDGF-BB- and thrombin-induced VSMC motility. PDGF-BB and thrombin also induced interleukin-6 (IL-6) expression in NFAT-dependent manner. Furthermore, IL-6 dose-dependently caused VSMC motility. A neutralizing anti-rat IL-6 antibody inhibited VSMC motility induced by IL-6, PDGF-BB, and thrombin. In addition, exogenous addition of IL-6 rescued both PDGF-BB- and thrombin-induced VSMC motility from inhibition by the blockade of NFAT activation. Together, these results for the first time demonstrate that NFATs mediate both RTK and GPCR agonist-induced VSMC motility via induction of expression of IL-6.
Collapse
Affiliation(s)
- Zhimin Liu
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | |
Collapse
|
35
|
Schafer R, Sedehizade F, Welte T, Reiser G. ATP- and UTP-activated P2Y receptors differently regulate proliferation of human lung epithelial tumor cells. Am J Physiol Lung Cell Mol Physiol 2003; 285:L376-85. [PMID: 12691958 DOI: 10.1152/ajplung.00447.2002] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The involvement of P2Y receptors, which are activated by extracellular nucleotides, in proliferative regulation of human lung epithelial cells is unclear. Here we show that extracellular ATP and UTP stimulate bromodeoxyuridine (BrdU) incorporation into epithelial cell lines. The nucleotide efficacy profile [ATP = ADP > UDP >or= UTP > adenosine >or= 2-methylthioadenosine-5'-diphosphate, with alpha,beta-methylene adenosine 5'-triphosphate, 2',3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate, AMP, UMP, and ATPalphaS inactive] and PCR analysis indicate involvement of P2Y2 and P2Y6 receptors. The signal transduction pathway, which, via the P2Y2 receptor, transmits the proliferative activity of ATP or UTP in A549 cells downstream of phospholipase C, depends on Ca2+/calmodulin-dependent protein kinase II and nuclear factor-kappaB, but not on protein kinase C. Signaling does not involve the mitogen-activated protein kinases extracellular signal-regulated kinases-1 and -2, the phosphatidylinositol 3-kinase pathway, or Src kinases. Thus nucleotides regulate proliferation of human lung epithelial cells by a novel pathway. The stimulatory effect of UTP, but not ATP, in A549 cells is attenuated by preincubation with interleukin-1beta and interleukin-6, but not tumor necrosis factor-alpha. This indicates an important role for the pyrimidine-activated P2Y receptor in the inflammatory response of lung epithelia. ATP antagonizes the antiproliferative effect of the anticancer drugs paclitaxel and etoposide, whereas it enhances the activity of cisplatin about fourfold. Thus pathways activated by extracellular nucleotides differentially control proliferation of lung epithelial tumor cells.
Collapse
Affiliation(s)
- Rainer Schafer
- Institut für Neurobiochemie, Otto-von-Guericke-Universität, 39120 Magdeburg, Germany
| | | | | | | |
Collapse
|
36
|
Byers BA, Pavlath GK, Murphy TJ, Karsenty G, García AJ. Cell-type-dependent up-regulation of in vitro mineralization after overexpression of the osteoblast-specific transcription factor Runx2/Cbfal. J Bone Miner Res 2002; 17:1931-44. [PMID: 12412799 DOI: 10.1359/jbmr.2002.17.11.1931] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Functional expression of the transcriptional activator Runx2/Cbfal is essential for osteoblastic differentiation and bone formation and maintenance. Forced expression of Runx2 in nonosteoblastic cells induces expression of osteoblast-specific genes, but the effects of Runx2 overexpression on in vitro matrix mineralization have not been determined. To examine whether exogenous Runx2 expression is sufficient to direct in vitro mineralization, we investigated sustained expression of Runx2 in nonosteoblastic and osteoblast-like cell lines using retroviral gene delivery. As expected, forced expression of Runx2 induced several osteoblast-specific genes in NIH3T3 and C3H10T1/2 fibroblasts and up-regulated expression in MC3T3-E1 immature osteoblast-like cells. However, Runx2 expression enhanced matrix mineralization in a cell-type-dependent manner. NIH3T3 and IMR-90 fibroblasts overexpressing Runx2 did not produce a mineralized matrix, indicating that forced expression of Runx2 in these nonosteogenic cell lines is not sufficient to direct in vitro mineralization. Consistent with the pluripotent nature of the cell line, a fraction (25%) of Runx2-expressing C3H10T1/2 fibroblast cultures produced mineralized nodules in a viral supernatant-dependent manner. Notably, bone sialoprotein (BSP) gene expression was detected at significantly higher levels in mineralizing Runx2-infected C3H10T1/2 cells compared with Runx2-expressing cultures which did not mineralize. Treatment of Runx2-infected C3H10T1/2 cultures with dexamethasone enhanced osteoblastic phenotype expression, inducing low levels of mineralization independent of viral supernatant. Finally, Runx2 overexpression in immature osteoblast-like MC3T3-E1 cells resulted in acceleration and robust up-regulation of matrix mineralization compared with controls. These results suggest that, although functional Runx2 is essential to multiple osteoblast-specific activities, in vitro matrix mineralization requires additional tissue-specific cofactors, which supplement Runx2 activity.
Collapse
Affiliation(s)
- Benjamin A Byers
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, USA
| | | | | | | | | |
Collapse
|
37
|
Gomez MF, Stevenson AS, Bonev AD, Hill-Eubanks DC, Nelson MT. Opposing actions of inositol 1,4,5-trisphosphate and ryanodine receptors on nuclear factor of activated T-cells regulation in smooth muscle. J Biol Chem 2002; 277:37756-64. [PMID: 12145283 DOI: 10.1074/jbc.m203596200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nuclear factor of activated T-cells (NFAT), originally identified in T-cells, has since been shown to play a role in mediating Ca(2+)-dependent gene transcription in diverse cell types outside of the immune system. We have previously shown that nuclear accumulation of NFATc3 is induced in ileal smooth muscle by platelet-derived growth factor in a manner that depends on Ca(2+) influx through L-type, voltage-dependent Ca(2+) channels. Here we show that NFATc3 is also the predominant NFAT isoform expressed in cerebral artery smooth muscle and is induced to accumulate in the nucleus by UTP and other G(q/11)-coupled receptor agonists. This induction is mediated by calcineurin and is dependent on sarcoplasmic reticulum Ca(2+) release through inositol 1,4,5-trisphosphate receptors and extracellular Ca(2+) influx through L-type, voltage-dependent Ca(2+) channels. Consistent with results obtained in ileal smooth muscle, depolarization-induced Ca(2+) influx fails to induce NFAT nuclear accumulation in cerebral arteries. We also provide evidence that Ca(2+) release by ryanodine receptors in the form of Ca(2+) sparks may exert an inhibitory influence on UTP-induced NFATc3 nuclear accumulation and further suggest that UTP may act, in part, by inhibiting Ca(2+) sparks. These results are consistent with a multifactorial regulation of NFAT nuclear accumulation in smooth muscle that is likely to involve several intracellular signaling pathways, including local effects of sarcoplasmic reticulum Ca(2+) release and effects attributable to global elevations in intracellular Ca(2+).
Collapse
Affiliation(s)
- Maria F Gomez
- Department of Pharmacology, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | |
Collapse
|