1
|
Khaksar S, Salimi M, Zeinoddini H, Naderi N. The Role of the Possible Receptors and Intracellular Pathways in Protective Effect of Exogenous Anandamide in Kindling Model of Epilepsy. Neurochem Res 2022; 47:1226-1242. [PMID: 35112235 DOI: 10.1007/s11064-021-03517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/01/2021] [Accepted: 12/24/2021] [Indexed: 11/24/2022]
Abstract
In this research, the involvement of CB1 and TRPV1 receptors in the possible protective effects of anandamide were investigated in the kindling model of epilepsy. The basolateral amygdala of the rat brain was chosen to put stimulating electrodes. Semi-rapid kindling was induced by a repetitive sub-threshold stimulation for 5-9 consecutive days. There were seven groups, six of which were kindled and used for drug testing by intracerebroventricular (i.c.v.) microinjection. (i) Sham, (ii) control group received vehicles, (iii) anandamide (AEA; 100 ng/rat), (iv) capsazepine (TRPV1 antagonist; 100 ng/rat), (v) AM251 (CB1 antagonist; 100 ng/rat), (vi) AM251 + anandamide, and (vii) capsazepine + anandamide. The after-discharge duration, seizure duration, and stage five duration were measured in rats. Moreover, the expressions of the extracellular signal-regulated kinase (ERK) and the cAMP responsive element binding (CREB) proteins in the hippocampus were also studied. The anandamide-treated group showed a significant decrease in seizure scores, while no change was shown in seizure scores in the capsazepine- and AM251-treated groups compared with the control group. Co-administrations of either capsazepine + AEA or AM251 + AEA attenuated the protective effect of AEA against seizure. Furthermore, the group received AEA showed a decrease in the expressions of CREB and p-CREB possibly through the activation of the CB1 and TRPV1 receptors. Activation of CB1 and TRPV1 receptors might be involved in AEA anticonvulsant effect in kindling model of epilepsy. This effect could be due to suppression of CREB phosphorylation in hippocampal neurons.
Collapse
Affiliation(s)
- Sepideh Khaksar
- Department of Plant Sciences, Biological Sciences, Alzahra University, Tehran, Iran
| | - Mona Salimi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Hadi Zeinoddini
- Department of Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, No. 2660, Vali-e-Asr Ave, 1996835113, Tehran, Iran
| | - Nima Naderi
- Department of Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, No. 2660, Vali-e-Asr Ave, 1996835113, Tehran, Iran. .,Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Sousa-Valente J, Varga A, Ananthan K, Khajuria A, Nagy I. Anandamide in primary sensory neurons: too much of a good thing? Eur J Neurosci 2014; 39:409-18. [DOI: 10.1111/ejn.12467] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/22/2013] [Accepted: 12/02/2013] [Indexed: 01/01/2023]
Affiliation(s)
- João Sousa-Valente
- Section of Anaesthetics, Pain Medicine and Intensive Care; Department of Surgery and Cancer; Imperial College London; 369 Fulham Road London SW10 9NH UK
| | - Angelika Varga
- Section of Anaesthetics, Pain Medicine and Intensive Care; Department of Surgery and Cancer; Imperial College London; 369 Fulham Road London SW10 9NH UK
| | - Kajaluxy Ananthan
- Section of Anaesthetics, Pain Medicine and Intensive Care; Department of Surgery and Cancer; Imperial College London; 369 Fulham Road London SW10 9NH UK
| | - Ankur Khajuria
- Section of Anaesthetics, Pain Medicine and Intensive Care; Department of Surgery and Cancer; Imperial College London; 369 Fulham Road London SW10 9NH UK
| | - Istvan Nagy
- Section of Anaesthetics, Pain Medicine and Intensive Care; Department of Surgery and Cancer; Imperial College London; 369 Fulham Road London SW10 9NH UK
| |
Collapse
|
3
|
Nguyen PT, Schmid CL, Raehal KM, Selley DE, Bohn LM, Sim-Selley LJ. β-arrestin2 regulates cannabinoid CB1 receptor signaling and adaptation in a central nervous system region-dependent manner. Biol Psychiatry 2012; 71:714-24. [PMID: 22264443 PMCID: PMC3319102 DOI: 10.1016/j.biopsych.2011.11.027] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 10/25/2011] [Accepted: 11/30/2011] [Indexed: 01/14/2023]
Abstract
BACKGROUND Cannabinoid CB(1) receptors (CB(1)Rs) mediate the effects of ▵(9)-tetrahydrocannabinol (THC), the psychoactive component in marijuana. Repeated THC administration produces tolerance and dependence, which limit therapeutic development. Moreover, THC produces motor and psychoactive side effects. β-arrestin2 mediates receptor desensitization, internalization, and signaling, but its role in these CB(1)R effects and receptor regulation is unclear. METHODS CB(1)R signaling and behaviors (antinociception, hypothermia, catalepsy) were assessed in β-arrestin2-knockout (βarr2-KO) and wild-type mice after THC administration. Cannabinoid-stimulated [(35)S]GTPγS and [(3)H]ligand autoradiography were assessed by statistical parametric mapping and region-of-interest analysis. RESULTS β-arrestin2 deletion increased CB(1)R-mediated G-protein activity in subregions of the cortex but did not affect CB(1)R binding, in vehicle-treated mice. βarr2-KO mice exhibited enhanced acute THC-mediated antinociception and hypothermia, with no difference in catalepsy. After repeated THC administration, βarr2-KO mice showed reduced CB(1)R desensitization and/or downregulation in cerebellum, caudal periaqueductal gray, and spinal cord and attenuated tolerance to THC-mediated antinociception. In contrast, greater desensitization was found in hypothalamus, cortex, globus pallidus, and substantia nigra of βarr2-KO compared with wild-type mice. Enhanced tolerance to THC-induced catalepsy was observed in βarr2-KO mice. CONCLUSIONS β-arrestin2 regulation of CB(1)R signaling following acute and repeated THC administration was region-specific, and results suggest that multiple, overlapping mechanisms regulate CB(1)Rs. The observations that βarr2-KO mice display enhanced antinociceptive responses to acute THC and decreased tolerance to the antinociceptive effects of the drug, yet enhanced tolerance to catalepsy, suggest that development of cannabinoid drugs that minimize CB(1)R interactions with β-arrestin2 might produce improved cannabinoid analgesics with reduced motor suppression.
Collapse
Affiliation(s)
- Peter T Nguyen
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
4
|
The Endocannabinoid System as Pharmacological Target Derived from Its CNS Role in Energy Homeostasis and Reward. Applications in Eating Disorders and Addiction. Pharmaceuticals (Basel) 2011; 4:1101-1136. [PMID: 32143540 PMCID: PMC4058662 DOI: 10.3390/ph4081101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/18/2011] [Accepted: 07/28/2011] [Indexed: 01/26/2023] Open
Abstract
The endocannabinoid system (ECS) has been implicated in many physiological functions, including the regulation of appetite, food intake and energy balance, a crucial involvement in brain reward systems and a role in psychophysiological homeostasis (anxiety and stress responses). We first introduce this important regulatory system and chronicle what is known concerning the signal transduction pathways activated upon the binding of endogenous cannabinoid ligands to the Gi/0-coupled CB1 cannabinoid receptor, as well as its interactions with other hormones and neuromodulators which can modify endocannabinoid signaling in the brain. Anorexia nervosa (AN) and bulimia nervosa (BN) are severe and disabling psychiatric disorders, characterized by profound eating and weight alterations and body image disturbances. Since endocannabinoids modulate eating behavior, it is plausible that endocannabinoid genes may contribute to the biological vulnerability to these diseases. We present and discuss data suggesting an impaired endocannabinoid signaling in these eating disorders, including association of endocannabinoid components gene polymorphisms and altered CB1-receptor expression in AN and BN. Then we discuss recent findings that may provide new avenues for the identification of therapeutic strategies based on the endocannabinod system. In relation with its implications as a reward-related system, the endocannabinoid system is not only a target for cannabis but it also shows interactions with other drugs of abuse. On the other hand, there may be also a possibility to point to the ECS as a potential target for treatment of drug-abuse and addiction. Within this framework we will focus on enzymatic machinery involved in endocannabinoid inactivation (notably fatty acid amide hydrolase or FAAH) as a particularly interesting potential target. Since a deregulated endocannabinoid system may be also related to depression, anxiety and pain symptomatology accompanying drug-withdrawal states, this is an area of relevance to also explore adjuvant treatments for improving these adverse emotional reactions.
Collapse
|
5
|
Martire A, Tebano MT, Chiodi V, Ferreira SG, Cunha RA, Köfalvi A, Popoli P. Pre-synaptic adenosine A2A receptors control cannabinoid CB1 receptor-mediated inhibition of striatal glutamatergic neurotransmission. J Neurochem 2010; 116:273-80. [PMID: 21062287 DOI: 10.1111/j.1471-4159.2010.07101.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
An interaction between adenosine A(2A) receptors (A(2A) Rs) and cannabinoid CB(1) receptors (CB(1) Rs) has been consistently reported to occur in the striatum, although the precise mechanisms are not completely understood. As both receptors control striatal glutamatergic transmission, we now probed the putative interaction between pre-synaptic CB(1) R and A(2A) R in the striatum. In extracellular field potentials recordings in corticostriatal slices from Wistar rats, A(2A) R activation by CGS21680 inhibited CB(1) R-mediated effects (depression of synaptic response and increase in paired-pulse facilitation). Moreover, in superfused rat striatal nerve terminals, A(2A) R activation prevented, while A(2A) R inhibition facilitated, the CB(1) R-mediated inhibition of 4-aminopyridine-evoked glutamate release. In summary, the present study provides converging neurochemical and electrophysiological support for the occurrence of a tight control of CB(1) R function by A(2A) Rs in glutamatergic terminals of the striatum. In view of the key role of glutamate to trigger the recruitment of striatal circuits, this pre-synaptic interaction between CB(1) R and A(2A) R may be of relevance for the pathogenesis and the treatment of neuropsychiatric disorders affecting the basal ganglia.
Collapse
Affiliation(s)
- Alberto Martire
- Section of Central Nervous System Pharmacology, Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
6
|
Soneji ND, Paule CC, Mlynarczyk M, Nagy I. Effects of cannabinoids on capsaicin receptor activity following exposure of primary sensory neurons to inflammatory mediators. Life Sci 2010; 87:162-8. [DOI: 10.1016/j.lfs.2010.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 06/02/2010] [Accepted: 06/08/2010] [Indexed: 01/14/2023]
|
7
|
Cannabinoid 1 receptor activation inhibits transient receptor potential vanilloid type 1 receptor-mediated cationic influx into rat cultured primary sensory neurons. Neuroscience 2009; 162:1202-11. [DOI: 10.1016/j.neuroscience.2009.05.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 05/09/2009] [Accepted: 05/14/2009] [Indexed: 01/28/2023]
|
8
|
D2 dopamine receptor activation facilitates endocannabinoid-mediated long-term synaptic depression of GABAergic synaptic transmission in midbrain dopamine neurons via cAMP-protein kinase A signaling. J Neurosci 2009; 28:14018-30. [PMID: 19109485 DOI: 10.1523/jneurosci.4035-08.2008] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Endocannabinoid (eCB) signaling mediates short-term and long-term synaptic depression (LTD) in many brain areas. In the ventral tegmental area (VTA) and striatum, D(2) dopamine receptors cooperate with group I metabotropic glutamate receptors (mGluRs) to induce eCB-mediated LTD of glutamatergic excitatory and GABAergic inhibitory (I-LTD) synaptic transmission. Because D(2) receptors and group I mGluR agonists are capable of inducing the release of eCBs, the predominant hypothesis is that the cooperation between these receptors to induce eCB-mediated synaptic depression results from the combined activation of type I cannabinoid (CB(1)) receptors by the eCBs. By determining the downstream effectors for D(2) receptor and group I mGluR activation in VTA dopamine neurons, we show that group I mGluR activation contributes to I-LTD induction by enhancing eCB release and CB(1) receptor activation. However, D(2) receptor activation does not enhance CB(1) receptor activation, but facilitates I-LTD induction via direct inhibition of cAMP-dependent protein kinase A (PKA) signaling. We further demonstrate that cAMP/PKA signaling pathway is the downstream effector for CB(1) receptors and is required for eCB-mediated I-LTD induction. Our results suggest that D(2) receptors and CB(1) receptors target the same downstream effector cAMP/PKA signaling pathway to induce I-LTD and D(2) receptor activation facilitates eCB-mediated I-LTD in dopamine neurons not by enhancing CB(1) receptor activation, but by enhancing its downstream effects.
Collapse
|
9
|
Li F, Fang Q, Liu Y, Zhao M, Li D, Wang J, Lu L. Cannabinoid CB(1) receptor antagonist rimonabant attenuates reinstatement of ketamine conditioned place preference in rats. Eur J Pharmacol 2008; 589:122-6. [PMID: 18534572 DOI: 10.1016/j.ejphar.2008.04.051] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 04/06/2008] [Accepted: 04/22/2008] [Indexed: 11/28/2022]
Abstract
Recent evidence suggests that cannabinoid CB(1) receptors may represent effective targets for therapeutic agents used to treat cocaine and heroin relapse. However, the role of cannabinoid CB(1) receptors in the potential treatment for other drugs of abuse is still largely unknown. The present study was conducted to determine whether cannabinoid CB(1) receptors play a similar role in relapse to ketamine abuse. To establish a ketamine reinstatement model in the conditioned place preference paradigm, rats were trained to develop place preference conditioned by ketamine, which was subsequently extinguished through daily exposure to the test chambers in the absence of ketamine. On the day following the last extinction session, four groups of rats were injected with ketamine (1, 5, 10 and 15 mg/kg, i.p.) to reinstate previously extinguished conditioned place preference. To investigate the effects of rimonabant, a cannabinoid CB(1) receptor antagonist, on reinstatement of ketamine-induced place preference, different doses of rimonabant (0.1, 0.5 and 3 mg/kg, i.p) were injected 30 min prior to the ketamine (5 and 15 mg/kg, i.p.) priming injection in a separate group of rats. To determine whether rimonabant itself produces conditioned place preference or conditioned place aversion, rats were trained for conditioned place preference or place aversion with rimonabant (0, 0.1, 0.5, 3.0 mg/kg, i.p.). While ketamine priming injections reinstated extinguished place preference, rimonabant administration significantly attenuated the reinstatement of ketamine-induced place preference in a dose-dependent manner. Importantly, rimonabant itself did not produce conditioned place preference or place aversion. Since the reinstatement effects of ketamine administration were inhibited by rimonabant, these findings suggest that a cannabinoid CB(1) receptor antagonist may be useful in preventing relapse to ketamine abuse.
Collapse
Affiliation(s)
- Fangqiong Li
- School of Pharmacology and the Affiliated Hospital of Guiyang Medical College, Guiyang, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Chevaleyre V, Heifets BD, Kaeser PS, Südhof TC, Castillo PE. Endocannabinoid-mediated long-term plasticity requires cAMP/PKA signaling and RIM1alpha. Neuron 2007; 54:801-12. [PMID: 17553427 PMCID: PMC2001295 DOI: 10.1016/j.neuron.2007.05.020] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Revised: 04/13/2007] [Accepted: 05/18/2007] [Indexed: 11/25/2022]
Abstract
Endocannabinoids (eCBs) have emerged as key activity-dependent signals that, by activating presynaptic cannabinoid receptors (i.e., CB1) coupled to G(i/o) protein, can mediate short-term and long-term synaptic depression (LTD). While the presynaptic mechanisms underlying eCB-dependent short-term depression have been identified, the molecular events linking CB1 receptors to LTD are unknown. Here we show in the hippocampus that long-term, but not short-term, eCB-dependent depression of inhibitory transmission requires presynaptic cAMP/PKA signaling. We further identify the active zone protein RIM1alpha as a key mediator of both CB1 receptor effects on the release machinery and eCB-dependent LTD in the hippocampus. Moreover, we show that eCB-dependent LTD in the amygdala and hippocampus shares major mechanistic features. These findings reveal the signaling pathway by which CB1 receptors mediate long-term effects of eCBs in two crucial brain structures. Furthermore, our results highlight a conserved mechanism of presynaptic plasticity in the brain.
Collapse
Affiliation(s)
- Vivien Chevaleyre
- Dept. of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 104612
| | - Boris D. Heifets
- Dept. of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 104612
| | - Pascal S. Kaeser
- Center for Basic Neuroscience, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Thomas C. Südhof
- Center for Basic Neuroscience, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Pablo E. Castillo
- Dept. of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 104612
- #Correspondence should be addressed to P.E.C. (): Pablo E. Castillo, Dominick P. Purpura Dept. of Neuroscience, Albert Einstein College of Medicine, Kennedy Center Rm. 703, 1410 Pelham Parkway South, Bronx, NY 10461, (718) 430 3263, (718) 430 8821
| |
Collapse
|
11
|
Marinelli S, Di Marzo V, Florenzano F, Fezza F, Viscomi MT, van der Stelt M, Bernardi G, Molinari M, Maccarrone M, Mercuri NB. N-arachidonoyl-dopamine tunes synaptic transmission onto dopaminergic neurons by activating both cannabinoid and vanilloid receptors. Neuropsychopharmacology 2007; 32:298-308. [PMID: 16760924 DOI: 10.1038/sj.npp.1301118] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the present study, we used electrophysiological, biochemical, and confocal microscopy techniques, to investigate the functional role of transient receptor potential vanilloid type 1 (TRPV1) and cannabinoid type 1 receptors (CB1-R) in the substantia nigra pars compacta (SNpc) and their stimulation by the endocannabinoid N-arachidonoyl-dopamine (NADA). Liquid chromatography-mass spectrometry analyses revealed that a NADA-like compound is produced in substantia nigra slices, in conditions of hyperactivity. Moreover, the functional role of both TRPV1 and CB1-R in modulating synaptic transmission in this area was suggested by confocal microscopy data, showing TRPV1 and CB1-R immunoreactivity in punctate structures, probably representing synaptic contacts on cell bodies of the SNpc. In patch-clamp recordings from dopamine (DA) neurons of the SNpc, we found that NADA increases or reduces glutamatergic transmission onto DA neurons by activating TRPV1 and CB1 receptors, respectively, whereas it decreases GABAergic transmission via CB1 stimulation. Facilitation of glutamate release through TRPV1 was blocked in the presence of a selective blocker of the putative endocannabinoid membrane transporter (EMT), indicating that NADA needs to be taken up by cells to interact with this receptor. In line with these data, biochemical results demonstrated that NADA selectively acted at CB1-R when its re-uptake was blocked. Altogether these data demonstrate a significant role exerted by the endocannabinoid/endovanilloid NADA in the regulation of synaptic transmission to DA neurons of the SNpc. Moreover, they highlight a key function of the EMT transporter in promoting the stimulation of TRPV1 or CB1-R, thus favoring facilitation or inhibition of glutamate synaptic release.
Collapse
Affiliation(s)
- Silvia Marinelli
- Experimental Neurology, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kim SH, Won SJ, Mao XO, Jin K, Greenberg DA. Molecular mechanisms of cannabinoid protection from neuronal excitotoxicity. Mol Pharmacol 2006; 69:691-6. [PMID: 16299067 DOI: 10.1124/mol.105.016428] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cannabinoids protect neurons from excitotoxic injury. We investigated the mechanisms involved by studying N-methyl-D-aspartate (NMDA) toxicity in cultured murine cerebrocortical neurons in vitro and mouse cerebral cortex in vivo. The cannabinoid agonist R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)-methyl]pyrrolo[1,2,3-de]-1,4-benzoxazin-yl]-(1-naphthalenyl)-methanone mesylate [R(+)-Win 55212] reduced neuronal death in murine cortical cultures treated with 20 microM NMDA, and its protective effect was attenuated by the CB1 cannabinoid receptor (CB1R) antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-cichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride (SR141716A). Cultures from CB1R-knockout mice were more sensitive to NMDA toxicity than were cultures from wild-type mice. The in vitro protective effect of R(+)-Win 55212 was reduced by pertussis toxin, consistent with signaling through CB1R-coupled G-proteins. The nitric-oxide synthase (NOS) inhibitors 7-nitroindazole (7-NI) and N-omega-nitro-L-arginine methyl ester also reduced NMDA toxicity. In addition, CB1R and neuronal NOS were coexpressed in cultured cortical neurons, suggesting that cannabinoids might reduce NMDA toxicity by interfering with the generation of NO. NOS activity in cerebral cortex was higher in CB1R-knockouts than in wildtype mice, and 7-NI reduced NMDA lesion size. R(+)-Win 55212 inhibited NO production after NMDA treatment of wild-type cortical neuron cultures, measured with 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate, and this effect was reversed by SR141716A. In contrast, R(+)-Win 55212 failed to inhibit NO production in cultures from CB1R knockouts. Dibutyryl-cAMP blocked the protective effect of R(+)-Win 55212, and this was reversed by the protein kinase A (PKA) inhibitor N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide (H89). Cannabinoids seem to protect neurons against NMDA toxicity at least in part by activation of CB1R and downstream inhibition of PKA signaling and NO generation.
Collapse
Affiliation(s)
- Sun Hee Kim
- Buck Institute for Age Research, 8001 Redwood Boulevard, Novato, CA 94945, USA.
| | | | | | | | | |
Collapse
|
13
|
McCarty MF. Down-regulation of microglial activation may represent a practical strategy for combating neurodegenerative disorders. Med Hypotheses 2006; 67:251-69. [PMID: 16513287 DOI: 10.1016/j.mehy.2006.01.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 01/02/2006] [Indexed: 01/03/2023]
Abstract
Chronic neurodegenerative disorders are characterized by activation of microglia in the affected neural pathways. Peroxynitrite, prostanoids, and cytokines generated by these microglia can potentiate the excitotoxicity that contributes to neuronal death and dysfunction in these disorders--both by direct effects on neurons, and by impairing the capacity of astrocytes to sequester and metabolize glutamate. This suggests a vicious cycle in which the death of neurons leads to microglial activation, which in turn potentiates neuronal damage. If this model is correct, measures which down-regulate microglial activation may have a favorable effect on the induction and progression of neurodegenerative disease, independent of the particular trigger or target involved in a given disorder. Consistent with this possibility, the antibiotic minocycline, which inhibits microglial activation, shows broad utility in rodent models of neurodegeneration. Other agents which may have potential in this regard include PPARgamma agonists, genistein, vitamin D, COX-2 inhibitors, statins (and possibly policosanol), caffeine, cannabinoids, and sesamin; some of these agents could also be expected to be directly protective to neurons threatened with excitotoxicity. To achieve optimal clinical outcomes, regimens which down-regulate microglial activation could be used in conjunction with complementary measures which address other aspects of excitotoxicity.
Collapse
Affiliation(s)
- Mark F McCarty
- Natural Alternatives International, 1185 Linda Vista Dr., San Marcos, CA 92078, USA.
| |
Collapse
|
14
|
Abstract
The CB1 cannabinoid receptor is widely distributed in the central and peripheral nervous system. Within the neuron, the CB1 receptor is often localised in axon terminals, and its activation leads to inhibition of transmitter release. The consequence is inhibition of neurotransmission via a presynaptic mechanism. Inhibition of glutamatergic, GABAergic, glycinergic, cholinergic, noradrenergic and serotonergic neurotransmission has been observed in many regions of the central nervous system. In the peripheral nervous system, CB1 receptor-mediated inhibition of adrenergic, cholinergic and sensory neuroeffector transmission has been frequently observed. It is characteristic for the ubiquitous operation of CB1 receptor-mediated presynaptic inhibition that antagonistic components of functional systems (for example, the excitatory and inhibitory inputs of the same neuron) are simultaneously inhibited by cannabinoids. Inhibition of voltage-dependent calcium channels, activation of potassium channels and direct interference with the synaptic vesicle release mechanism are all implicated in the cannabinoid-evoked inhibition of transmitter release. Many presynaptic CB1 receptors are subject to an endogenous tone, i.e. they are constitutively active and/or are continuously activated by endocannabinoids. Compared with the abundant data on presynaptic inhibition by cannabinoids, there are only a few examples for cannabinoid action on the somadendritic parts of neurons in situ.
Collapse
Affiliation(s)
- B Szabo
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität, Albertstrasse 25, 79104 Freiburg, Germany.
| | | |
Collapse
|
15
|
Makara JK, Mor M, Fegley D, Szabó SI, Kathuria S, Astarita G, Duranti A, Tontini A, Tarzia G, Rivara S, Freund TF, Piomelli D. Selective inhibition of 2-AG hydrolysis enhances endocannabinoid signaling in hippocampus. Nat Neurosci 2005; 8:1139-41. [PMID: 16116451 DOI: 10.1038/nn1521] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Accepted: 07/19/2005] [Indexed: 02/06/2023]
Abstract
The functions of 2-arachidonoylglycerol (2-AG), the most abundant endocannabinoid found in the brain, remain largely unknown. Here we show that two previously unknown inhibitors of monoacylglycerol lipase, a presynaptic enzyme that hydrolyzes 2-AG, increase 2-AG levels and enhance retrograde signaling from pyramidal neurons to GABAergic terminals in the hippocampus. These results establish a role for 2-AG in synaptic plasticity and point to monoacylglycerol lipase as a possible drug target.
Collapse
Affiliation(s)
- Judit K Makara
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, 8. Szigony u. 43., Budapest, H-1083 Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dinis P, Charrua A, Avelino A, Yaqoob M, Bevan S, Nagy I, Cruz F. Anandamide-evoked activation of vanilloid receptor 1 contributes to the development of bladder hyperreflexia and nociceptive transmission to spinal dorsal horn neurons in cystitis. J Neurosci 2005; 24:11253-63. [PMID: 15601931 PMCID: PMC6730374 DOI: 10.1523/jneurosci.2657-04.2004] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The role of anandamide in the development of inflammatory hyperalgesia and visceral hyperreflexia was studied in the rat urinary bladder. Animals were given intraperitoneal cyclophosphamide injection, which evokes painful hemorrhagic cystitis accompanied by increased bladder reflex activity. The vanilloid receptor 1 [transient receptor potential vanilloid 1 (TRPV1)] antagonist capsazepine, applied onto the serosal surface of bladders, significantly reduced the hyperreflexia. Mass spectrometric analysis revealed that cyclophosphamide injection significantly and persistently increased the anandamide content of bladder tissues. The increase in the anandamide content paralleled the development of reflex hyperactivity. Anandamide (1-100 microm), applied onto the serosal surface of naive bladders, increased the reflex activity in a concentration-dependent manner. Repeated anandamide applications did not produce desensitization of the response. The anandamide-evoked effect was blocked by capsazepine or by instillation of resiniferatoxin, the ultrapotent TRPV1 agonist, into the bladders 24 hr before the anandamide challenge. The cannabinoid 1 receptor antagonist SR141716A [N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methylpyrazole-3-carboxamide] significantly increased the potency of anandamide in enhancing bladder reflex activity in naive but not in cyclophosphamide-injected animals. Application of the fatty acid amide hydrolyze inhibitor palmitoylisopropylamine onto the serosal surface of bladders also increased the reflex activity both in naive and cyclophosphamide-injected rats. This latter effect in naive animals was blocked by capsazepine and by resiniferatoxin pretreatment. Finally, intravesical instillation of anandamide (50 microm) increased c-fos expression in the spinal cord, which was reduced by capsazepine or by resiniferatoxin pretreatment. These results suggest that anandamide, through activating TRPV1, contributes to the development of hyperreflexia and hyperalgesia during cystitis.
Collapse
Affiliation(s)
- Paulo Dinis
- Institute of Histology and Embryology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
17
|
Kim SH, Won SJ, Mao XO, Jin K, Greenberg DA. Involvement of protein kinase A in cannabinoid receptor-mediated protection from oxidative neuronal injury. J Pharmacol Exp Ther 2005; 313:88-94. [PMID: 15626718 DOI: 10.1124/jpet.104.079509] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
CB1 cannabinoid receptors (CB1Rs) are involved in protecting the brain from ischemia and related disorders. However, the underlying protective mechanisms are incompletely understood. We investigated the effect of CB1R activation on oxidative injury, which has been implicated in neuronal death after cerebral ischemia and neurodegenerative disorders, in mouse cortical neuron cultures. The CB1R agonist Win 55212-2 [R-(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazin-yl]-(1-naphthalenyl)methanone mesylate] reduced neuronal death, measured by lactate dehydrogenase release, in cultures treated with 50 microM FeCl2, and its protective effect was attenuated by the CB1R antagonist SR141716A [N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-cichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride]. The endocannabinoid anandamide reproduced the effect of Win 55212-2, as did the antioxidant 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox). Neuronal injury was more severe after in vitro or in vivo administration of FeCl2 to CB1R-knockout compared with wild-type mice. Win 55212-2 reduced the formation of reactive oxidative species in cortical neuron cultures treated with FeCl2, consistent with an antioxidant action. Pertussis toxin reduced CB1R-mediated protection, which points to a protective mechanism that involves signaling through G(i/o) proteins. Since CB1R-activated G protein signaling inhibits protein kinase A but activates phosphatidylinositol 3-kinase (PI3K), we tested the involvement of these pathways in CB1R-mediated neuroprotection. Dibutyryl-cyclic adenosine monophosphate (dbcAMP) blocked protection by Win 55212-2, whereas the PI3K inhibitor wortmannin did not, and the effect of dbcAMP was inhibited by the protein kinase A inhibitor H89 [N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide] (> or =10 nM). CB1R-induced, SR141716A-, pertussis toxin-, and dbcAMP-sensitive protection was also observed for two other oxidative insults, exposure to H2O2 or buthionine sulfoximine. Therefore, receptor-stimulated inhibition of protein kinase A seems to be required for the neuroprotective effect of CB1R activation against oxidative neuronal injury.
Collapse
Affiliation(s)
- Sun Hee Kim
- Buck Institute for Age Research, 8001 Redwood Blvd., Novato, CA 94945, USA.
| | | | | | | | | |
Collapse
|
18
|
del Carmen Godino M, Torres M, Sánchez-Prieto J. The modulation of Ca2+ and K+ channels but not changes in cAMP signaling contribute to the inhibition of glutamate release by cannabinoid receptors in cerebrocortical nerve terminals. Neuropharmacology 2005; 48:547-57. [PMID: 15755482 DOI: 10.1016/j.neuropharm.2004.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 09/28/2004] [Accepted: 11/27/2004] [Indexed: 10/25/2022]
Abstract
While cannabinoid receptors activate multiple signaling pathways in the brain, it remains unclear what influence the inhibition of adenylylcyclase has on the inhibition of glutamate release. In cerebrocortical nerve terminals, the cannabinoid receptor agonist WIN55,212-2 reduced KCl-evoked glutamate release through a mechanism that restricted the rise of cytoplasmic free Ca2+, but not the changes in plasma membrane depolarization. These effects were consistent with the inhibition of Ca2+ channels. Furthermore, WIN55,212-2 reduced 4-aminopyridine (4AP) evoked glutamate release to a larger extent by modulating the behavior of both Ca2+ and K(+)-channels. The inhibition of 4AP-evoked release was associated with a decrease in cytoplasmic free Ca2+ and in plasma membrane depolarization that was reverted by the potassium channel blocker, tetraethylammonium. Interestingly, the reduction of KCl- and 4AP-evoked release by WIN55,212-2 was independent of adenylylcyclase activity and did not affect cAMP. Forskolin and the beta-adrenergic receptor increase intrasynaptosomal cAMP and promote a PKA-dependent tetrodotoxin (TTX)-sensitive increase in the spontaneous release of glutamate. These two responses were reduced by WIN55,212-2. However, the glutamate release induced by Sp-8-Br-cAMPS, which directly activated PKA without affecting cAMP, was also similarly reduced by WIN55,212-2. Hence, we conclude that the inhibition of glutamate release by WIN55,212-2 is unrelated to changes in cAMP and that the inhibition of release that a decrease in cAMP might produce is occluded by the activation of additional pathways such as the inhibition of Ca2+ channels and/or the activation of K(+)-channels that strongly depress glutamate release.
Collapse
Affiliation(s)
- María del Carmen Godino
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid 28040, Spain
| | | | | |
Collapse
|
19
|
Melis M, Pistis M, Perra S, Muntoni AL, Pillolla G, Gessa GL. Endocannabinoids mediate presynaptic inhibition of glutamatergic transmission in rat ventral tegmental area dopamine neurons through activation of CB1 receptors. J Neurosci 2004; 24:53-62. [PMID: 14715937 PMCID: PMC6729571 DOI: 10.1523/jneurosci.4503-03.2004] [Citation(s) in RCA: 329] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The endogenous cannabinoid system has been shown to play a crucial role in controlling neuronal excitability and synaptic transmission. In this study we investigated the effects of a cannabinoid receptor (CB-R) agonist WIN 55,212-2 (WIN) on excitatory synaptic transmission in the rat ventral tegmental area (VTA). Whole-cell patch clamp recordings were performed from VTA dopamine (DA) neurons in an in vitro slice preparation. WIN reduced both NMDA and AMPA EPSCs, as well as miniature EPSCs (mEPSCs), and increased the paired-pulse ratio, indicating a presynaptic locus of its action. We also found that WIN-induced effects were dose-dependent and mimicked by the CB1-R agonist HU210. Furthermore, two CB1-R antagonists, AM281 and SR141716A, blocked WIN-induced effects, suggesting that WIN modulates excitatory synaptic transmission via activation of CB1-Rs. Our additional finding that both AM281 and SR141716A per se increased NMDA EPSCs suggests that endogenous cannabinoids, released from depolarized postsynaptic neurons, might act retrogradely on presynaptic CB1-Rs to suppress glutamate release. Hence, we report that a type of synaptic modulation, previously termed depolarization-induced suppression of excitation (DSE), is present also in the VTA as a calcium-dependent phenomenon, blocked by both AM281 and SR141716A, and occluded by WIN. Importantly, DSE was partially blocked by the D2DA antagonist eticlopride and enhanced by the D2DA agonist quinpirole without changing the presynaptic cannabinoid sensitivity. These results indicate that the two pathways work in a cooperative manner to release endocannabinoids in the VTA, where they play a role as retrograde messengers for DSE via CB1-Rs.
Collapse
Affiliation(s)
- Miriam Melis
- Centre of Excellence, Neurobiology of Addiction, University of Cagliari, Monserrato, 09042 Italy.
| | | | | | | | | | | |
Collapse
|
20
|
Kelly S, Chapman V. Cannabinoid CB1 receptor inhibition of mechanically evoked responses of spinal neurones in control rats, but not in rats with hindpaw inflammation. Eur J Pharmacol 2003; 474:209-16. [PMID: 12921864 DOI: 10.1016/s0014-2999(03)02085-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spinally administered cannabinoid receptor agonists are anti-nociceptive in a variety of models of acute and persistent pain. The present study investigated the effects of activation of spinal cannabinoid CB(1) receptors on mechanically evoked responses of spinal neurones in acute and inflammatory pain states. In vivo electrophysiology studies were carried out in anaesthetised rats. Effects of spinal administration of a selective cannabinoid CB(1) receptor agonist, arachidonyl-2-chloroethylamide (ACEA), on mechanically evoked responses of dorsal horn neurones in control rats and rats with peripheral hindpaw carrageenan-induced inflammation were compared. ACEA (0.27 nM-27 microM) significantly inhibited innocuous and noxious mechanically evoked responses of dorsal horn neurones in control rats. Pre-administration of the CB(1) receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1(2,4-dichlorophenyl)-4-methyl-1-H-pyrazole-3-carboxyamide, SR141716A, (0.43 microM) attenuated the inhibitory effects of ACEA (27 microM). ACEA did not alter mechanically evoked responses of dorsal horn neurones in rats with hindpaw carrageenan-induced inflammation. Following peripheral inflammation, there is a loss of spinal CB(1) receptor-mediated inhibition of mechanically evoked responses, which is suggestive of a functional down-regulation of CB(1) receptors under these conditions.
Collapse
MESH Headings
- Animals
- Arachidonic Acids/pharmacology
- Dose-Response Relationship, Drug
- Evoked Potentials/drug effects
- Evoked Potentials/physiology
- Hindlimb/drug effects
- Hindlimb/metabolism
- Inflammation/chemically induced
- Inflammation/metabolism
- Male
- Nerve Fibers, Unmyelinated/drug effects
- Nerve Fibers, Unmyelinated/physiology
- Neural Inhibition/drug effects
- Neural Inhibition/physiology
- Pain Measurement/drug effects
- Pain Measurement/methods
- Physical Stimulation/methods
- Posterior Horn Cells/drug effects
- Posterior Horn Cells/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
Collapse
Affiliation(s)
- Sara Kelly
- University of Nottingham Medical School, Queen's Medical Centre, NG7 2UH Nottingham, UK
| | | |
Collapse
|
21
|
Abstract
Research of cannabinoid actions was boosted in the 1990s by remarkable discoveries including identification of endogenous compounds with cannabimimetic activity (endocannabinoids) and the cloning of their molecular targets, the CB1 and CB2 receptors. Although the existence of an endogenous cannabinoid signaling system has been established for a decade, its physiological roles have just begun to unfold. In addition, the behavioral effects of exogenous cannabinoids such as delta-9-tetrahydrocannabinol, the major active compound of hashish and marijuana, await explanation at the cellular and network levels. Recent physiological, pharmacological, and high-resolution anatomical studies provided evidence that the major physiological effect of cannabinoids is the regulation of neurotransmitter release via activation of presynaptic CB1 receptors located on distinct types of axon terminals throughout the brain. Subsequent discoveries shed light on the functional consequences of this localization by demonstrating the involvement of endocannabinoids in retrograde signaling at GABAergic and glutamatergic synapses. In this review, we aim to synthesize recent progress in our understanding of the physiological roles of endocannabinoids in the brain. First, the synthetic pathways of endocannabinoids are discussed, along with the putative mechanisms of their release, uptake, and degradation. The fine-grain anatomical distribution of the neuronal cannabinoid receptor CB1 is described in most brain areas, emphasizing its general presynaptic localization and role in controlling neurotransmitter release. Finally, the possible functions of endocannabinoids as retrograde synaptic signal molecules are discussed in relation to synaptic plasticity and network activity patterns.
Collapse
Affiliation(s)
- Tamas F Freund
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest 8, Szigony u.43, H-1083 Hungary.
| | | | | |
Collapse
|
22
|
Ahluwalia J, Urban L, Bevan S, Nagy I. Anandamide regulates neuropeptide release from capsaicin-sensitive primary sensory neurons by activating both the cannabinoid 1 receptor and the vanilloid receptor 1 in vitro. Eur J Neurosci 2003; 17:2611-8. [PMID: 12823468 DOI: 10.1046/j.1460-9568.2003.02703.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of anandamide, which activates both the cannabinoid 1 (CB1) receptor and the vanilloid receptor 1 (VR1), was studied on calcitonin gene-related peptide (CGRP) release from cultured primary sensory neurons, the majority of which coexpress the CB1 receptor and VR1. Concentrations of anandamide < 1 micro m produced a small but significant CB1 receptor-mediated inhibition of basal CGRP release while higher concentrations induced VR1-mediated CGRP release. The excitatory effect of anandamide was potentiated by the CB1 receptor antagonist SR141716A. In the presence of SR141716A at concentrations < 100 nm, anandamide was equipotent with capsaicin in stimulating CGRP release. However, at higher concentrations anandamide produced more CGRP release than equimolar concentrations of capsaicin. Three and ten nanomolar anandamide inhibited the capsaicin-evoked CGRP release. In the presence of SR141716A, treatments which activated protein kinase A, protein kinase C and phospholipase C significantly potentiated the anandamide-evoked CGRP release at all anandamide concentrations. Although this potentiation was reduced when the CB1 receptor antagonist was omitted from the buffer, the CGRP release evoked by 300 nm and 1 micro m anandamide was still significantly larger than that seen with nonpotentiated cells. These data indicate that anandamide may regulate CGRP release from capsaicin-sensitive primary sensory neurons in vivo, and that the net effect of anandamide on transmitter release from capsaicin-sensitive primary sensory neurons depends on the concentration of anandamide and the state of the CB1 receptor and VR1. These findings also suggest that anandamide could be one of the molecules responsible for the development of inflammatory heat hyperalgesia.
Collapse
Affiliation(s)
- Jatinder Ahluwalia
- Department of Academic Anaesthetics, Department of Anaesthetics and Intensive Care, Faculty of Medicine, Imperial College, Chelsea and Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK
| | | | | | | |
Collapse
|
23
|
Wang SJ. Cannabinoid CB1 receptor-mediated inhibition of glutamate release from rat hippocampal synaptosomes. Eur J Pharmacol 2003; 469:47-55. [PMID: 12782184 DOI: 10.1016/s0014-2999(03)01734-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cannabinoid receptors are widely expressed in the brain and have been shown to regulate synaptic transmission through a presynaptic mechanism. Using synaptosomal preparation, I show here that 2,3-dihydro-5-methyl-3-(4-morpholinyl-methyl)-pyrrolo-1,4-benzoxazin-6-yl-1-naphthalenylmethanone (WIN 55212-2) strongly depressed 4-aminopyridine-evoked glutamate release in a concentration-dependent manner, and this effect was reversed by the selective cannabinoid CB(1) receptor antagonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide (AM 281). The inhibitory modulation by WIN 55212-2 was not due to a decrease in synaptosomal excitability or a direct effect on the release machinery because WIN 55212-2 did not alter 4-aminopyridine-mediated depolarization and ionomycin-induced glutamate release. In addition, the WIN 55212-2-mediated inhibition of glutamate release was blocked by the G(i)/G(o) protein inhibitor pertussis toxin, but not by the protein kinase A inhibitor 2,3,9,10,11,12-Hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo-benzodiazocine-10-carboxylic acid, hexyl ester (KT 5720). Furthermore, this inhibitory effect was associated with a decrease in 4-aminopyridine-evoked Ca(2+) influx, which could be completely prevented in synaptosomes pretreated with the N- and P/Q-type Ca(2+) channel blockers. Together, these observations indicate that activation of cannabinoid CB(1) receptors inhibit 4-aminopyridie-evoked glutamate release from hippocampal synaptosomes through a inhibitory G protein to suppress N- and P/Q-type Ca(2+) channel activity.
Collapse
Affiliation(s)
- Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, 510, Chung-Cheng Road, Hsin-Chuang, Taipei Hsien, 24205, Taiwan.
| |
Collapse
|
24
|
Abstract
Although neurokinin 1 (NK1) receptors contribute to hyperalgesia, and their expression is increased in the spinal cord during peripheral inflammation, little is known regarding the signaling molecules and the second messenger pathways that they activate in regulating the expression of the NK1 receptor gene. Because the promoter region of the NK1 receptor contains a cAMP response element (CRE), we tested the hypothesis that calcitonin gene-related peptide (CGRP) regulates the expression of NK1 receptors via a pathway involving activation of the transcription factor cAMP response element binding protein (CREB). Experiments were conducted on primary cultures of neonatal rat spinal neurons. Treatment of cultures with CGRP for 8-24 hr increased (125)I-substance P binding on spinal neurons; the increase in binding was preceded by an elevation in NK1 receptor mRNA. The CGRP-induced change in (125)I-substance P binding was concentration-dependent and was inhibited by the antagonist CGRP(8-37). CGRP increased phosphorylated CREB immunoreactivity and CRE-dependent transcription in neurons, indicating the involvement of the transcription factor CREB. Evidence that CGRP increased cAMP levels in spinal neurons and that the protein kinase A inhibitor H89 attenuated CGRP-induced CRE-dependent transcription suggests that the intracellular pathway stimulated by CGRP leads to activation of protein kinase A. Collectively these data define a role for CGRP as a signaling molecule that induces expression of NK1 receptors in spinal neurons. The data provide evidence that a neuropeptide receptor controls gene expression in the CNS and add another dimension to understanding the cotransmission of substance P and CGRP by primary afferent neurons.
Collapse
|
25
|
Fowler CJ. Plant-derived, synthetic and endogenous cannabinoids as neuroprotective agents. Non-psychoactive cannabinoids, 'entourage' compounds and inhibitors of N-acyl ethanolamine breakdown as therapeutic strategies to avoid pyschotropic effects. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2003; 41:26-43. [PMID: 12505646 DOI: 10.1016/s0165-0173(02)00218-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is good evidence that plant-derived and synthetic cannabinoids possess neuroprotective properties. These compounds, as a result of effects upon CB(1) cannabinoid receptors, reduce the release of glutamate, and in addition reduce the influx of calcium following NMDA receptor activation. The major obstacle to the therapeutic utilization of such compounds are their psychotropic effects, which are also brought about by actions on CB(1) receptors. However, synthesis of the endogenous cannabinoids anandamide and 2-arachidonoylglycerol, which also have neuroprotective properties, are increased under conditions of severe inflammation and ischemia, raising the possibility that compounds that prevent their metabolism may be of therapeutic utility without having the drawback of producing psychotropic effects. In this review, the evidence indicating neuroprotective actions of plant-derived, synthetic and endogenous cannabinoids is presented. In addition, the pharmacological properties of endogenous anandamide-related compounds that are not active upon cannabinoid receptors, but which are also produced during conditions of severe inflammation and ischemia and may contribute to a neuroprotective action are reviewed.
Collapse
Affiliation(s)
- Christopher J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87, Umeå, Sweden.
| |
Collapse
|