1
|
Nadal-Gratacós N, Lleixà E, Gibert-Serramià M, Estrada-Tejedor R, Berzosa X, Batllori X, Pubill D, Camarasa J, Escubedo E, López-Arnau R. Neuropsychopharmacology of Emerging Drugs of Abuse: meta- and para-Halogen-Ring-Substituted α-PVP (“flakka”) Derivatives. Int J Mol Sci 2022; 23:ijms23042226. [PMID: 35216339 PMCID: PMC8876800 DOI: 10.3390/ijms23042226] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
Changes in the molecular structure of synthetic cathinones has led to an increase in the number of novel emerging drugs in the illicit drug market at an unprecedented rate. Unfortunately, little is known about the neuropsychopharmacology of recently emerged halogen-substituted α-PVP derivatives. Thus, the aim of this study was to investigate the role of para- and meta-halogen (F-, Cl-, and Br-) substitutions on the in vitro, in silico, and in vivo effects of α-pyrrolidinopentiophenone (α-PVP) derivatives. HEK293 cells expressing the human dopamine or serotonin transporter (hDAT and hSERT) were used for the uptake inhibition and transporter affinity assays. Molecular docking was used to model the interaction mechanism against DAT. Swiss CD-1 mice were used for the horizontal locomotor activity, open field test, and conditioned place preference paradigm. All compounds demonstrated potent DA uptake inhibition and higher DAT selectivity than cocaine. Meta-substituted cathinones showed higher DAT/SERT ratios than their para- analogs, which correlates with an increased psychostimulant effect in vivo and with different meta- and para-in silico interactions at DAT. Moreover, all compounds induced rewarding and acute anxiogenic effects in mice. In conclusion, the present study demonstrates the role of meta- and para-halogen substitutions in the mechanism of action and provides the first evidence of the rewarding and anxiety-like properties of halogenated α-PVP derivatives.
Collapse
Affiliation(s)
- Núria Nadal-Gratacós
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Biomedicine (IBUB), Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (N.N.-G.); (E.L.); (M.G.-S.); (D.P.); (J.C.)
- Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, 08017 Barcelona, Spain; (R.E.-T.); (X.B.); (X.B.)
| | - Esther Lleixà
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Biomedicine (IBUB), Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (N.N.-G.); (E.L.); (M.G.-S.); (D.P.); (J.C.)
- Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, 08017 Barcelona, Spain; (R.E.-T.); (X.B.); (X.B.)
| | - Mónica Gibert-Serramià
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Biomedicine (IBUB), Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (N.N.-G.); (E.L.); (M.G.-S.); (D.P.); (J.C.)
| | - Roger Estrada-Tejedor
- Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, 08017 Barcelona, Spain; (R.E.-T.); (X.B.); (X.B.)
| | - Xavier Berzosa
- Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, 08017 Barcelona, Spain; (R.E.-T.); (X.B.); (X.B.)
| | - Xavier Batllori
- Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, 08017 Barcelona, Spain; (R.E.-T.); (X.B.); (X.B.)
| | - David Pubill
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Biomedicine (IBUB), Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (N.N.-G.); (E.L.); (M.G.-S.); (D.P.); (J.C.)
| | - Jordi Camarasa
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Biomedicine (IBUB), Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (N.N.-G.); (E.L.); (M.G.-S.); (D.P.); (J.C.)
| | - Elena Escubedo
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Biomedicine (IBUB), Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (N.N.-G.); (E.L.); (M.G.-S.); (D.P.); (J.C.)
- Correspondence: (E.E.); (R.L.-A.); Tel.: +34-9-3402-4531 (E.E.)
| | - Raúl López-Arnau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Biomedicine (IBUB), Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (N.N.-G.); (E.L.); (M.G.-S.); (D.P.); (J.C.)
- Correspondence: (E.E.); (R.L.-A.); Tel.: +34-9-3402-4531 (E.E.)
| |
Collapse
|
2
|
Lie MEK, Kickinger S, Skovgaard-Petersen J, Ecker GF, Clausen RP, Schousboe A, White HS, Wellendorph P. Pharmacological Characterization of a Betaine/GABA Transporter 1 (BGT1) Inhibitor Displaying an Unusual Biphasic Inhibition Profile and Anti-seizure Effects. Neurochem Res 2020; 45:1551-1565. [PMID: 32248400 PMCID: PMC7297817 DOI: 10.1007/s11064-020-03017-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 12/01/2022]
Abstract
Focal epileptic seizures can in some patients be managed by inhibiting γ-aminobutyric acid (GABA) uptake via the GABA transporter 1 (GAT1) using tiagabine (Gabitril®). Synergistic anti-seizure effects achieved by inhibition of both GAT1 and the betaine/GABA transporter (BGT1) by tiagabine and EF1502, compared to tiagabine alone, suggest BGT1 as a target in epilepsy. Yet, selective BGT1 inhibitors are needed for validation of this hypothesis. In that search, a series of BGT1 inhibitors typified by (1R,2S)-2-((4,4-bis(3-methylthiophen-2-yl)but-3-en-yl)(methyl)amino)cyclohexanecarboxylic acid (SBV2-114) was developed. A thorough pharmacological characterization of SBV2-114 using a cell-based [3H]GABA uptake assay at heterologously expressed BGT1, revealed an elusive biphasic inhibition profile with two IC50 values (4.7 and 556 μM). The biphasic profile was common for this structural class of compounds, including EF1502, and was confirmed in the MDCK II cell line endogenously expressing BGT1. The possibility of two binding sites for SBV2-114 at BGT1 was assessed by computational docking studies and examined by mutational studies. These investigations confirmed that the conserved residue Q299 in BGT1 is involved in, but not solely responsible for the biphasic inhibition profile of SBV2-114. Animal studies revealed anti-seizure effects of SBV2-114 in two mouse models, supporting a function of BGT1 in epilepsy. However, as SBV2-114 is apparent to be rather non-selective for BGT1, the translational relevance of this observation is unknown. Nevertheless, SBV2-114 constitutes a valuable tool compound to study the molecular mechanism of an emerging biphasic profile of BGT1-mediated GABA transport and the putative involvement of two binding sites for this class of compounds.
Collapse
Affiliation(s)
- Maria E K Lie
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Stefanie Kickinger
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | | | - Gerhard F Ecker
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Rasmus P Clausen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - H Steve White
- Department of Pharmacy, University of Washington, Washington, USA
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Chilunda V, Calderon TM, Martinez-Aguado P, Berman JW. The impact of substance abuse on HIV-mediated neuropathogenesis in the current ART era. Brain Res 2019; 1724:146426. [PMID: 31473221 PMCID: PMC6889827 DOI: 10.1016/j.brainres.2019.146426] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/16/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022]
Abstract
Approximately 37 million people worldwide are infected with human immunodeficiency virus (HIV). One highly significant complication of HIV infection is the development of HIV-associated neurocognitive disorders (HAND) in 15-55% of people living with HIV (PLWH), that persists even in the antiretroviral therapy (ART) era. The entry of HIV into the central nervous system (CNS) occurs within 4-8 days after peripheral infection. This establishes viral reservoirs that may persist even in the presence of ART. Once in the CNS, HIV infects resident macrophages, microglia, and at low levels, astrocytes. In response to chronic infection and cell activation within the CNS, viral proteins, inflammatory mediators, and host and viral neurotoxic factors produced over extended periods of time result in neuronal injury and loss, cognitive deficits and HAND. Substance abuse is a common comorbidity in PLWH and has been shown to increase neuroinflammation and cognitive disorders. Additionally, it has been associated with poor ART adherence, and increased viral load in the cerebrospinal fluid (CSF), that may also contribute to increased neuroinflammation and neuronal injury. Studies have examined mechanisms that contribute to neuroinflammation and neuronal damage in PLWH, and how substances of abuse exacerbate these effects. This review will focus on how substances of abuse, with an emphasis on methamphetamine (meth), cocaine, and opioids, impact blood brain barrier (BBB) integrity and transmigration of HIV-infected and uninfected monocytes across the BBB, as well as their effects on monocytes/macrophages, microglia, and astrocytes within the CNS. We will also address how these substances of abuse may contribute to HIV-mediated neuropathogenesis in the context of suppressive ART. Additionally, we will review the effects of extracellular dopamine, a neurotransmitter that is increased in the CNS by substances of abuse, on HIV neuropathogenesis and how this may contribute to neuroinflammation, neuronal insult, and HAND in PLWH with active substance use. Lastly, we will discuss some potential therapies to limit CNS inflammation and damage in HIV-infected substance abusers.
Collapse
Affiliation(s)
- Vanessa Chilunda
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Tina M Calderon
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Pablo Martinez-Aguado
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Joan W Berman
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA.
| |
Collapse
|
4
|
Verma V. Classic Studies on the Interaction of Cocaine and the Dopamine Transporter. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2015; 13:227-38. [PMID: 26598579 PMCID: PMC4662164 DOI: 10.9758/cpn.2015.13.3.227] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 11/18/2022]
Abstract
The dopamine transporter is responsible for recycling dopamine after release. Inhibitors of the dopamine transporter, such as cocaine, will stop the reuptake of dopamine and allow it to stay extracellularly, causing prominent changes at the molecular, cellular, and behavioral levels. There is much left to be known about the mechanism and site(s) of binding, as well as the effect that cocaine administration does to dopamine transporter-cocaine binding sites and gene expression which also plays a strong role in cocaine abusers and their behavioral characteristics. Thus, if more light is shed on the dopamine transporter-cocaine interaction, treatments for addiction and even other diseases of the dopaminergic system may not be too far ahead. As today's ongoing research expands on the shoulders of classic research done in the 1990s and 2000s, the foundation of core research done in that time period will be reviewed, which forms the basis of today's work and tomorrow's therapies.
Collapse
Affiliation(s)
- Vivek Verma
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Sørensen L, Andersen J, Thomsen M, Hansen SMR, Zhao X, Sandelin A, Strømgaard K, Kristensen AS. Interaction of antidepressants with the serotonin and norepinephrine transporters: mutational studies of the S1 substrate binding pocket. J Biol Chem 2012; 287:43694-707. [PMID: 23086945 DOI: 10.1074/jbc.m112.342212] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serotonin transporter (SERT) and the norepinephrine transporter (NET) are sodium-dependent neurotransmitter transporters responsible for reuptake of released serotonin and norepinephrine, respectively, into nerve terminals in the brain. A wide range of inhibitors of SERT and NET are used as treatment of depression and anxiety disorders or as psychostimulant drugs of abuse. Despite their clinical importance, the molecular mechanisms by which various types of antidepressant drugs bind and inhibit SERT and NET are still elusive for the majority of the inhibitors, including the molecular basis for SERT/NET selectivity. Mutational analyses have suggested that a central substrate binding site (denoted the S1 pocket) also harbors an inhibitor binding site. In this study, we determine the effect of mutating six key S1 residues in human SERT (hSERT) and NET (hNET) on the potency of 15 prototypical SERT/NET inhibitors belonging to different drug classes. Analysis of the resulting drug sensitivity profiles provides novel information on drug binding modes in hSERT and hNET and identifies specific S1 residues as important molecular determinants for inhibitor potency and hSERT/hNET selectivity.
Collapse
Affiliation(s)
- Lena Sørensen
- Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Manepalli S, Surratt CK, Madura JD, Nolan TL. Monoamine transporter structure, function, dynamics, and drug discovery: a computational perspective. AAPS JOURNAL 2012; 14:820-31. [PMID: 22918625 DOI: 10.1208/s12248-012-9391-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 07/09/2012] [Indexed: 11/30/2022]
Abstract
With the breakthrough crystallization of the bacterial leucine transporter protein LeuT, the first available X-ray structure for the neurotransmitter/sodium symporter family, development of 3-D computational models is suddenly essential for structure-function studies on the plasmalemmal monoamine transporters (MATs). LeuT-based MAT models have been used to guide elucidation of substrate and inhibitor binding pockets, and molecular dynamics simulations using these models are providing insight into conformations involved in the substrate translocation cycle. With credible MAT models finally in hand, structure-based virtual screening for novel ligands is yielding lead compounds toward the development of new medications for psychostimulant dependence, attention deficit hyperactivity, depression, anxiety, schizophrenia, and other disorders associated with dopamine, norepinephrine, or serotonin dysregulation.
Collapse
Affiliation(s)
- Sankar Manepalli
- Department of Chemistry and Biochemistry, Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
7
|
Manepalli S, Geffert LM, Surratt CK, Madura JD. Discovery of novel selective serotonin reuptake inhibitors through development of a protein-based pharmacophore. J Chem Inf Model 2011; 51:2417-26. [PMID: 21834587 PMCID: PMC3183329 DOI: 10.1021/ci200280m] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The serotonin transporter (SERT), a member of the neurotransmitter sodium symporter (NSS) family, is responsible for the reuptake of serotonin from the synaptic cleft to maintain neurotransmitter homeostasis. SERT is established as an important target in the treatment of anxiety and depression. Because a high-resolution crystal structure is not available, a computational model of SERT was built based upon the X-ray coordinates of the leucine transporter LeuT, a bacterial NSS homologue. The model was used to develop the first SERT structure-based pharmacophore. Virtual screening (VS) of a small molecule structural library using the generated SERT computational model yielded candidate ligands of diverse scaffolds. Pharmacological analysis of the VS hits identified two SERT-selective compounds, potential lead compounds for further SERT-related medication development.
Collapse
Affiliation(s)
- Sankar Manepalli
- Department of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | | | | | | |
Collapse
|
8
|
Guptaroy B, Fraser R, Desai A, Zhang M, Gnegy ME. Site-directed mutations near transmembrane domain 1 alter conformation and function of norepinephrine and dopamine transporters. Mol Pharmacol 2011; 79:520-32. [PMID: 21149640 PMCID: PMC3061360 DOI: 10.1124/mol.110.069039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 12/13/2010] [Indexed: 11/22/2022] Open
Abstract
The human dopamine and norepinephrine transporters (hDAT and hNET, respectively) control neurotransmitter levels within the synaptic cleft and are the site of action for amphetamine (AMPH) and cocaine. We investigated the role of a threonine residue within the highly conserved and putative phosphorylation sequence RETW, located just before transmembrane domain 1, in regulating hNET and hDAT function. The Thr residue was mutated to either alanine or aspartate. Similar to the inward facing T62D-hDAT, T58D-hNET demonstrated reduced [(3)H]DA uptake but enhanced basal DA efflux compared with hNET with no further effect of AMPH. The mutations had profound effects on substrate function and binding. The potency of substrates to inhibit [(3)H]DA uptake and compete with radioligand binding was increased in T→A and/or T→D mutants. Substrates, but not inhibitors, demonstrated temperature-sensitive effects of binding. Neither the functional nor the binding potency for hNET blockers was altered from wild type in hNET mutants. There was, however, a significant reduction in potency for cocaine and benztropine to inhibit [(3)H]DA uptake in T62D-hDAT compared with hDAT. The potency of these drugs to inhibit [(3)H](-)-2-β-carbomethoxy-3-β-(4-fluorophenyl)tropane-1,5-napthalenedisulfonate (WIN35,428) binding was not increased, demonstrating a discordance between functional and binding site effects. Taken together, these results concur with the notion that the T→D mutation in RETW alters the preferred conformation of both hNET and hDAT to favor one that is more inward facing. Although substrate activity and binding are primarily altered in this conformation, the function of inhibitors with distinct structural characteristics may also be affected.
Collapse
Affiliation(s)
- Bipasha Guptaroy
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109-0632, USA
| | | | | | | | | |
Collapse
|
9
|
Liang YJ, Zhen J, Chen N, Reith MEA. Interaction of catechol and non-catechol substrates with externally or internally facing dopamine transporters. J Neurochem 2009; 109:981-94. [PMID: 19519772 DOI: 10.1111/j.1471-4159.2009.06034.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our previous work suggested that collapsing the Na(+) gradient and membrane potential converts the dopamine (DA) transporter (DAT) to an inward-facing conformation with a different substrate binding profile. Here, DAT expressing human embryonic kidney 293 cells were permeabilized with digitonin, disrupting ion/voltage gradients and allowing passage of DAT substrates. The potency of p-tyramine and other non-catechols (d-amphetamine, beta-phenethylamine, MPP(+)) in inhibiting cocaine analog binding to DAT in digitonin-treated cells was markedly weakened to a level similar to that observed in cell-free membranes. In contrast, the potency of DA and another catechol, norepinephrine, was not significantly changed by the same treatment, whereas epinephrine showed only a modest reduction. These findings suggest that catechol substrates interact symmetrically with both sides of DAT and non-catechol substrates, favoring binding to outward-facing transporter. In the cocaine analog binding assay, the mutant W84L displayed enhanced intrinsic binding affinity for substrates in interacting with both outward- and inward-facing states; D313N showed wild-type-like symmetric binding; but D267L and E428Q showed an apparent improvement in the permeation pathway from the external face towards the substrate site. Thus, the structure of both substrate and transporter play a role in the sidedness and mode of interaction between them.
Collapse
Affiliation(s)
- Ying-Jian Liang
- Department of Psychiatry, New York University School of Medicine, Millhauser Labs, New York, New York 10016, USA
| | | | | | | |
Collapse
|
10
|
Xhaard H, Backström V, Denessiouk K, Johnson MS. Coordination of Na+ by Monoamine Ligands in Dopamine, Norepinephrine, and Serotonin Transporters. J Chem Inf Model 2008; 48:1423-37. [DOI: 10.1021/ci700255d] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Henri Xhaard
- Department of Biochemistry and Pharmacy, Åbo Akademi University, Tykistökatu 6 A, Turku, FI-20520 Finland
| | - Vera Backström
- Department of Biochemistry and Pharmacy, Åbo Akademi University, Tykistökatu 6 A, Turku, FI-20520 Finland
| | - Konstantin Denessiouk
- Department of Biochemistry and Pharmacy, Åbo Akademi University, Tykistökatu 6 A, Turku, FI-20520 Finland
| | - Mark S. Johnson
- Department of Biochemistry and Pharmacy, Åbo Akademi University, Tykistökatu 6 A, Turku, FI-20520 Finland
| |
Collapse
|
11
|
Indarte M, Madura JD, Surratt CK. Dopamine transporter comparative molecular modeling and binding site prediction using the LeuT(Aa) leucine transporter as a template. Proteins 2008; 70:1033-46. [PMID: 17847094 DOI: 10.1002/prot.21598] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pharmacological and behavioral studies indicate that binding of cocaine and the amphetamines by the dopamine transporter (DAT) protein is principally responsible for initiating the euphoria and addiction associated with these drugs. The lack of an X-ray crystal structure for the DAT or any other member of the neurotransmitter:sodium symporter (NSS) family has hindered understanding of psychostimulant recognition at the atomic level; structural information has been obtained largely from mutagenesis and biophysical studies. The recent publication of a crystal structure for the bacterial leucine transporter LeuT(Aa), a distantly related NSS family homolog, provides for the first time a template for three-dimensional comparative modeling of NSS proteins. A novel computational modeling approach using the capabilities of the Molecular Operating Environment program MOE 2005.06 in conjunction with other comparative modeling servers generated the LeuT(Aa)-directed DAT model. Probable dopamine and amphetamine binding sites were identified within the DAT model using multiple docking approaches. Binding sites for the substrate ligands (dopamine and amphetamine) overlapped substantially with the analogous region of the LeuT(Aa) crystal structure for the substrate leucine. The docking predictions implicated DAT side chains known to be critical for high affinity ligand binding and suggest novel mutagenesis targets in elucidating discrete substrate and inhibitor binding sites. The DAT model may guide DAT ligand QSAR studies, and rational design of novel DAT-binding therapeutics.
Collapse
Affiliation(s)
- Martín Indarte
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, USA.
| | | | | |
Collapse
|
12
|
Ukairo OT, Ramanujapuram S, Surratt CK. Fluctuation of the dopamine uptake inhibition potency of cocaine, but not amphetamine, at mammalian cells expressing the dopamine transporter. Brain Res 2006; 1131:68-76. [PMID: 17169338 PMCID: PMC1855629 DOI: 10.1016/j.brainres.2006.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 11/02/2006] [Accepted: 11/05/2006] [Indexed: 11/22/2022]
Abstract
Cocaine, amphetamines and other psychostimulants inhibit synaptic dopamine uptake by interfering with dopamine transporter (DAT) function. The resultant potentiation of dopaminergic neurotransmission is associated with psychostimulant addiction. Fluctuations in dopamine uptake inhibition potency (DUIP) were observed for classical DAT blockers including cocaine, mazindol, methylphenidate (Ritalintrade mark) and benztropine in CHO cells expressing wild type DAT; cocaine potency also decreased in DAT-expressing non-neuronal COS-7 cells and neuronal N2A neuroblastoma cells. In contrast, the DAT substrate (+)-amphetamine did not display this DUIP fluctuation. In parallel experiments, no fluctuation was observed for the apparent binding affinities of these 5 drugs. The DUIP decrease appeared to correlate with an increase in cell surface DAT expression level, as measured by B(max) values and confocal microscopy. The fact that the DUIP profile of amphetamine diverged from that of the classical DAT blockers is consistent with the idea of fundamental differences between the mechanisms of abused psychostimulant DAT substrates and inhibitors. Identification of the cellular factors that underlie the DAT inhibitor DUIP fluctuation phenomenon may be relevant to anti-psychostimulant drug discovery efforts.
Collapse
Affiliation(s)
- Okechukwu T Ukairo
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Mellon Hall, Room 453, 600 Forbes Avenue, Pittsburgh, PA 15282, USA
| | | | | |
Collapse
|
13
|
Mazei-Robinson MS, Blakely RD. ADHD and the dopamine transporter: are there reasons to pay attention? Handb Exp Pharmacol 2006:373-415. [PMID: 16722244 DOI: 10.1007/3-540-29784-7_17] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The catecholamine dopamine (DA) plays an important role as a neurotransmitter in the brain in circuits linked to motor function, reward, and cognition. The presynaptic DA transporter (DAT) inactivates DA following release and provides a route for non-exocytotic DA release (efflux) triggered by amphetamines. The synaptic role of DATs first established through antagonist studies and more recently validated through mouse gene-knockout experiments, raises questions as to whether altered DAT structure or regulation support clinical disorders linked to compromised DA signaling, including drug abuse, schizophrenia, and attention deficit hyperactivity disorder (ADHD). As ADHD appears to have highly heritable components and the most commonly prescribed therapeutics for ADHD target DAT, studies ranging from brain imaging to genomic and genetic analyses have begun to probe the DAT gene and its protein for possible contributions to the disorder and/or its treatment. In this review, after a brief overview of ADHD prevalence and diagnostic criteria, we examine the rationale and experimental findings surrounding a role for human DAT in ADHD. Based on the available evidence from our lab and labs of workers in the field, we suggest that although a common variant within the human DAT (hDAT) gene (SLC6A3) is unlikely to play a major role in the ADHD, contributions of hDAT to risk maybe most evident in phenotypic subgroups. The in vitro and in vivo validation of functional variants, pursued for contributions to endophenotypes in a within family approach, may help elucidate DAT and DA contributions to ADHD and its treatment.
Collapse
Affiliation(s)
- M S Mazei-Robinson
- Vanderbilt School of Medicine, Suite 7140, MRB III, Nashville, TN 37232-8548, USA
| | | |
Collapse
|
14
|
Zhen J, Chen N, Reith MEA. Differences in interactions with the dopamine transporter as revealed by diminishment of Na+ gradient and membrane potential: Dopamine versus other substrates. Neuropharmacology 2005; 49:769-79. [PMID: 16122767 DOI: 10.1016/j.neuropharm.2005.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 06/22/2005] [Accepted: 07/05/2005] [Indexed: 01/12/2023]
Abstract
In heterologous cells expressing the dopamine transporter (DAT), simultaneous elevation of intracellular Na(+) and depolarization of the membrane with gramicidin reduced the potency of various DAT substrates, including dopamine, d-amphetamine, beta-phenethylamine, p-tyramine, and MPP(+), in inhibiting binding of the cocaine analog [(3)H]CFT, with the greatest reduction observed for d-amphetamine. In rat striatal synaptosomes, gramicidin exerted similar effects; in addition, the potency of d-amphetamine was reduced by the Na(+)-channel activator veratridine. The latter effect was counteracted by the Na(+)-channel blocker tetrodotoxin. In broken membranes, where, as the situation with gramicidin, both sides of the non-polarized membrane were exposed to 130 mM Na(+), gramicidin was ineffective. Dopamine had a potency for membrane preparations that was not significantly different from that for control cells or synaptosomes, while other substrates had potencies for membrane preparations that were reduced to a level similar to those observed in gramicidin-treated cells or synaptosomes. These results suggest that diminishing Na(+) gradient and membrane potential may convert DAT to a conformational state that dopamine could easily bind to when gaining free access to its intracellular portion. In contrast, non-dopamine substrates may not be able to readily interact with this state from either side of the membrane.
Collapse
Affiliation(s)
- Juan Zhen
- Department of Biological Sciences, Illinois State University, Normal, IL, USA
| | | | | |
Collapse
|
15
|
Surratt CK, Ukairo OT, Ramanujapuram S. Recognition of psychostimulants, antidepressants, and other inhibitors of synaptic neurotransmitter uptake by the plasma membrane monoamine transporters. AAPS JOURNAL 2005; 7:E739-51. [PMID: 16353950 PMCID: PMC2751276 DOI: 10.1208/aapsj070374] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plasma membrane monoamine transporters terminate neurotransmission by removing dopamine, norepinephrine, or serotonin from the synaptic cleft between neurons. Specific inhibitors for these transporters, including the abused psychostimulants cocaine and amphetamine and the tricyclic and SSRI classes of antidepressants, exert their physiological effects by interfering with synaptic uptake and thus prolonging the actions of the monoamine. Pharmacological, biochemical, and immunological characterization of the many site-directed, chimeric, and deletion mutants generated for the plasma membrane monoamine transporters have revealed much about the commonalities and dissimilarities between transporter substrate, ion, and inhibitor binding sites. Mutations that alter the binding affinity or substrate uptake inhibition potency of inhibitors by at least 3-fold are the focus of this review. These findings are clarifying the picture regarding substrate uptake inhibitor/transporter protein interactions at the level of the drug pharmacophore and the amino acid residue, information necessary for rational design of novel medications for substance abuse and a variety of psychiatric disorders.
Collapse
Affiliation(s)
- Christopher K Surratt
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA.
| | | | | |
Collapse
|
16
|
Ukairo OT, Bondi CD, Newman AH, Kulkarni SS, Kozikowski AP, Pan S, Surratt CK. Recognition of benztropine by the dopamine transporter (DAT) differs from that of the classical dopamine uptake inhibitors cocaine, methylphenidate, and mazindol as a function of a DAT transmembrane 1 aspartic acid residue. J Pharmacol Exp Ther 2005; 314:575-83. [PMID: 15879005 DOI: 10.1124/jpet.105.085829] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Binding of cocaine to the dopamine transporter (DAT) protein blocks synaptic dopamine clearance, triggering the psychoactive effects associated with the drug; the discrete drug-protein interactions, however, remain poorly understood. A longstanding postulate holds that cocaine inhibits DAT-mediated dopamine transport via competition with dopamine for formation of an ionic bond with the DAT transmembrane aspartic acid residue D79. In the present study, DAT mutations of this residue were generated and assayed for translocation of radiolabeled dopamine and binding of radiolabeled DAT inhibitors under identical conditions. When feasible, dopamine uptake inhibition potency and apparent binding affinity K(i) values were determined for structurally diverse DAT inhibitors. The glutamic acid substitution mutant (D79E) displayed values indistinguishable from wild-type DAT in both assays for the charge-neutral cocaine analog 8-oxa-norcocaine, a finding not supportive of the D79 "salt bridge" ligand-docking model. In addressing whether the D79 side chain contributes to the DAT binding sites of other portions of the cocaine pharmacophore, only inhibitors with modifications of the tropane ring C-3 substituent, i.e., benztropine and its analogs, displayed a substantially altered dopamine uptake inhibition potency as a function of the D79E mutation. A single conservative amino acid substitution thus differentiated structural requirements for benztropine function relative to those for all other classical DAT inhibitors. Distinguishing the precise mechanism of action of this DAT inhibitor with relatively low abuse liability from that of cocaine may be attainable using DAT mutagenesis and other structure-function studies, opening the door to rational design of therapeutic agents for cocaine abuse.
Collapse
Affiliation(s)
- Okechukwu T Ukairo
- Division of Pharmaceutical Sciences, Duquesne University, Mellon Hall, Room 453, 600 Forbes Ave., Pittsburgh, PA 15282, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Volz TJ, Schenk JO. A comprehensive atlas of the topography of functional groups of the dopamine transporter. Synapse 2005; 58:72-94. [PMID: 16088952 DOI: 10.1002/syn.20183] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The neuronal dopamine transporter (DAT) is a transmembrane transporter that clears DA from the synaptic cleft. Knowledge of DAT functional group topography is a prerequisite for understanding the molecular basis of transporter function, the actions of psychostimulant drugs, and mechanisms of dopaminergic neurodegeneration. Information concerning the molecular interactions of drugs of abuse (such as cocaine, amphetamine, and methamphetamine) with the DAT at the functional group level may also aid in the development of compounds useful as therapeutic agents for the treatment of drug abuse. This review will provide a cumulative and comprehensive focus on the amino acid functional group topography of the rat and human DATs, as revealed by protein chemical modification and the techniques of site-directed mutagenesis. The results from these studies, represented mostly by site-directed mutagenesis, can be classified into several main categories: modifications without substantial affects on substrate transport, DAT membrane expression, or cocaine analog binding; those modifications which alter both substrate transport and cocaine analog binding; and those that affect DAT membrane expression. Finally, some modifications can selectively affect either substrate transport or cocaine analog binding. Taken together, these literature results show that domains for substrates and cocaine analogs are formed by interactions with multiple and sometimes distinct DAT functional groups.
Collapse
Affiliation(s)
- Trent J Volz
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | | |
Collapse
|