1
|
Su X, Sun Y, Dai A. New insights into pulmonary arterial hypertension: interaction between PANoptosis and perivascular inflammatory responses. Apoptosis 2025:10.1007/s10495-025-02086-0. [PMID: 39979525 DOI: 10.1007/s10495-025-02086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2025] [Indexed: 02/22/2025]
Abstract
Pulmonary arterial hypertension (PAH) is a heterogeneous disease characterized by various etiologies, with pulmonary vascular remodeling recognized as a main pathological change. Currently, it is widely accepted that vascular remodeling is closely associated with abnormal pulmonary vascular cell death and perivascular inflammation. The simultaneous activation of various pulmonary vascular cell death leads to immune cell adhesion and inflammatory mediator releases; And in turn, the inflammatory response may also trigger cell death and jointly promote the progression of vascular remodeling. Recently, PANoptosis has been identified as a phenomenon that describes the simultaneous activation and interaction of multiple forms of programmed cell death (PCD). Therefore, the relationship between PANoptosis and inflammation in PAH warrants further investigation. This review examines the mechanisms underlying apoptosis, necroptosis, pyroptosis, and inflammatory responses in PAH, with a focus on PANoptosis and its interactions with inflammation. And it aims to elucidate the significance of this emerging form of cell death and inflammation in the pathophysiology of PAH and to explore its potential as a therapeutic target.
Collapse
Affiliation(s)
- Xianli Su
- College of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Yinhui Sun
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Aiguo Dai
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China.
- Department of Respiratory Medicine, School of Medicine, Changsha, Hunan, 410021, People's Republic of China.
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, People's Republic of China.
| |
Collapse
|
2
|
May J, Mitchell JA, Jenkins RG. Beyond epithelial damage: vascular and endothelial contributions to idiopathic pulmonary fibrosis. J Clin Invest 2023; 133:e172058. [PMID: 37712420 PMCID: PMC10503802 DOI: 10.1172/jci172058] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease of the lung with poor survival. The incidence and mortality of IPF are rising, but treatment remains limited. Currently, two drugs can slow the scarring process but often at the expense of intolerable side effects, and without substantially changing overall survival. A better understanding of mechanisms underlying IPF is likely to lead to improved therapies. The current paradigm proposes that repetitive alveolar epithelial injury from noxious stimuli in a genetically primed individual is followed by abnormal wound healing, including aberrant activity of extracellular matrix-secreting cells, with resultant tissue fibrosis and parenchymal damage. However, this may underplay the importance of the vascular contribution to fibrogenesis. The lungs receive 100% of the cardiac output, and vascular abnormalities in IPF include (a) heterogeneous vessel formation throughout fibrotic lung, including the development of abnormal dilated vessels and anastomoses; (b) abnormal spatially distributed populations of endothelial cells (ECs); (c) dysregulation of endothelial protective pathways such as prostacyclin signaling; and (d) an increased frequency of common vascular and metabolic comorbidities. Here, we propose that vascular and EC abnormalities are both causal and consequential in the pathobiology of IPF and that fuller evaluation of dysregulated pathways may lead to effective therapies and a cure for this devastating disease.
Collapse
|
3
|
Pienkos S, Gallego N, Condon DF, Cruz-Utrilla A, Ochoa N, Nevado J, Arias P, Agarwal S, Patel H, Chakraborty A, Lapunzina P, Escribano P, Tenorio-Castaño J, de Jesús Pérez VA. Novel TNIP2 and TRAF2 Variants Are Implicated in the Pathogenesis of Pulmonary Arterial Hypertension. Front Med (Lausanne) 2021; 8:625763. [PMID: 33996849 PMCID: PMC8119639 DOI: 10.3389/fmed.2021.625763] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Pulmonary arterial hypertension (PAH) is a rare disease characterized by pulmonary vascular remodeling and right heart failure. Specific genetic variants increase the incidence of PAH in carriers with a family history of PAH, those who suffer from certain medical conditions, and even those with no apparent risk factors. Inflammation and immune dysregulation are related to vascular remodeling in PAH, but whether genetic susceptibility modifies the PAH immune response is unclear. TNIP2 and TRAF2 encode for immunomodulatory proteins that regulate NF-κB activation, a transcription factor complex associated with inflammation and vascular remodeling in PAH. Methods: Two unrelated families with PAH cases underwent whole-exome sequencing (WES). A custom pipeline for variant prioritization was carried out to obtain candidate variants. To determine the impact of TNIP2 and TRAF2 in cell proliferation, we performed an MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay on healthy lung pericytes transfected with siRNA specific for each gene. To measure the effect of loss of TNIP2 and TRAF2 on NF-kappa-beta (NF-κB) activity, we measured levels of Phospho-p65-NF-κB in siRNA-transfected pericytes using western immunoblotting. Results: We discovered a novel missense variant in the TNIP2 gene in two affected individuals from the same family. The two patients had a complex form of PAH with interatrial communication and scleroderma. In the second family, WES of the proband with PAH and primary biliary cirrhosis revealed a de novo protein-truncating variant in the TRAF2. The knockdown of TNIP2 and TRAF2 increased NF-κB activity in healthy lung pericytes, which correlated with a significant increase in proliferation over 24 h. Conclusions: We have identified two rare novel variants in TNIP2 and TRAF2 using WES. We speculate that loss of function in these genes promotes pulmonary vascular remodeling by allowing overactivation of the NF-κB signaling activity. Our findings support a role for WES in helping identify novel genetic variants associated with dysfunctional immune response in PAH.
Collapse
Affiliation(s)
- Shaun Pienkos
- Division of Pulmonary and Critical Care Medicine and Department of Medicine, Stanford University, Stanford, CA, United States
| | - Natalia Gallego
- Medical and Molecular Genetics Institute (INGEMM), IdiPaz, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - David F. Condon
- Division of Pulmonary and Critical Care Medicine and Department of Medicine, Stanford University, Stanford, CA, United States
| | - Alejandro Cruz-Utrilla
- Pulmonary Hypertension Unit, Department of Cardiology, Hospital Universitario Doce de Octubre, Madrid, Spain
- Centro de Investigación Biomedica en Red en Enfermedades Cardiovasculares, Instituto de Salud Carlos III (CIBERCV), Madrid, Spain
| | - Nuria Ochoa
- Pulmonary Hypertension Unit, Department of Cardiology, Hospital Universitario Doce de Octubre, Madrid, Spain
- Centro de Investigación Biomedica en Red en Enfermedades Cardiovasculares, Instituto de Salud Carlos III (CIBERCV), Madrid, Spain
| | - Julián Nevado
- Medical and Molecular Genetics Institute (INGEMM), IdiPaz, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Intellectual Disability, TeleHealth, Autism and Congenital Anomalies (ITHACA), European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Brussels, Belgium
| | - Pedro Arias
- Medical and Molecular Genetics Institute (INGEMM), IdiPaz, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Intellectual Disability, TeleHealth, Autism and Congenital Anomalies (ITHACA), European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Brussels, Belgium
| | - Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine and Department of Medicine, Stanford University, Stanford, CA, United States
| | - Hiral Patel
- Division of Pulmonary and Critical Care Medicine and Department of Medicine, Stanford University, Stanford, CA, United States
| | - Ananya Chakraborty
- Division of Pulmonary and Critical Care Medicine and Department of Medicine, Stanford University, Stanford, CA, United States
| | - Pablo Lapunzina
- Medical and Molecular Genetics Institute (INGEMM), IdiPaz, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Intellectual Disability, TeleHealth, Autism and Congenital Anomalies (ITHACA), European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Brussels, Belgium
| | - Pilar Escribano
- Pulmonary Hypertension Unit, Department of Cardiology, Hospital Universitario Doce de Octubre, Madrid, Spain
- Centro de Investigación Biomedica en Red en Enfermedades Cardiovasculares, Instituto de Salud Carlos III (CIBERCV), Madrid, Spain
| | - Jair Tenorio-Castaño
- Medical and Molecular Genetics Institute (INGEMM), IdiPaz, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Intellectual Disability, TeleHealth, Autism and Congenital Anomalies (ITHACA), European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability, Brussels, Belgium
| | - Vinicio A. de Jesús Pérez
- Division of Pulmonary and Critical Care Medicine and Department of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
4
|
Bryant AJ, Pham A, Gogoi H, Mitchell CR, Pais F, Jin L. The Third Man: DNA sensing as espionage in pulmonary vascular health and disease. Pulm Circ 2021; 11:2045894021996574. [PMID: 33738095 PMCID: PMC7934053 DOI: 10.1177/2045894021996574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 01/01/2023] Open
Abstract
For as long as nucleic acids have been utilized to vertically and horizontally transfer genetic material, living organisms have had to develop methods of recognizing cytosolic DNA as either pathogenic (microbial invasion) or physiologic (mitosis and cellular proliferation). Derangement in key signaling molecules involved in these pathways of DNA sensing result in a family of diseases labeled interferonopathies. An interferonopathy, characterized by constitutive expression of type I interferons, ultimately manifests as severe autoimmune disease at a young age. Afflicted patients present with a constellation of immune-mediated conditions, including primary lung manifestations such as pulmonary fibrosis and pulmonary hypertension. The latter condition is especially interesting in light of the known role that DNA damage plays in a variety of types of inherited and induced pulmonary hypertension, with free DNA detection elevated in the circulation of affected individuals. While little is known regarding the role of cytosolic DNA sensing in development of pulmonary vascular disease, exciting new research in the related fields of immunology and oncology potentially sheds light on future areas of fruitful exploration. As such, the goal of this review is to summarize the state of the field of nucleic acid sensing, extrapolating common shared pathways that parallel our knowledge of pulmonary hypertension, in a molecular and cell-specific manner. Principles of DNA sensing related to known pulmonary injury inducing stimuli are also evaluated, in addition to potential therapeutic targets. Finally, future directions in pulmonary hypertension research and treatments will be briefly discussed.
Collapse
Affiliation(s)
- Andrew J. Bryant
- University of Florida College of Medicine, Department of Medicine, Gainesville, FL, USA
| | - Ann Pham
- University of Florida College of Medicine, Department of Medicine, Gainesville, FL, USA
| | - Himanshu Gogoi
- University of Florida College of Medicine, Department of Medicine, Gainesville, FL, USA
| | - Carly R. Mitchell
- University of Florida College of Medicine, Department of Medicine, Gainesville, FL, USA
| | - Faye Pais
- University of Florida College of Medicine, Department of Medicine, Gainesville, FL, USA
| | - Lei Jin
- University of Florida College of Medicine, Department of Medicine, Gainesville, FL, USA
| |
Collapse
|
5
|
Wu BW, Wu MS, Liu Y, Lu M, Guo JD, Meng YH, Zhou YH. SIRT1-mediated deacetylation of NF-κB inhibits the MLCK/MLC2 pathway and the expression of ET-1, thus alleviating the development of coronary artery spasm. Am J Physiol Heart Circ Physiol 2021; 320:H458-H468. [PMID: 33095054 DOI: 10.1152/ajpheart.00366.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/28/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Coronary artery spasm (CAS) is an intense vasoconstriction of coronary arteries that causes total or subtotal vessel occlusion. The cardioprotective effect of sirtuin-1 (SIRT1) has been extensively highlighted in coronary artery diseases. The aims within this study include the investigation of the molecular mechanism by which SIRT1 alleviates CAS. SIRT1 expression was first determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis in an endothelin-1 (ET-1)-induced rat CAS model. Interaction among SIRT1, nuclear factor-kappaB (NF-κB), myosin light chain kinase/myosin light chain-2 (MLCK/MLC2), and ET-1 was analyzed using luciferase reporter assay, RT-qPCR, and Western blot analysis. After ectopic expression and depletion experiments in vascular smooth muscle cells (VSMCs), contraction and proliferation of VSMCs and expression of contraction-related proteins (α-SMA, calponin, and SM22α) were measured by collagen gel contraction, 5-ethynyl-2'-deoxyuridine (EdU) assay, RT-qPCR, and Western blot analysis. The obtained results showed that SIRT1 expression was reduced in rat CAS models. However, overexpression of SIRT1 inhibited the contraction and proliferation of VSMCs in vitro. Mechanistic investigation indicated that SIRT1 inhibited NF-κB expression through deacetylation. Moreover, NF-κB could activate the MLCK/MLC2 pathway and upregulate ET-1 expression by binding to their promoter regions, thus inducing VSMC contraction and proliferation in vitro. In vivo experimental results also revealed that SIRT1 alleviated CAS through regulation of the NF-κB/MLCK/MLC2/ET-1 signaling axis. Collectively, our data suggested that SIRT1 could mediate the deacetylation of NF-κB, disrupt the MLCK/MLC2 pathway, and inhibit the expression of ET-1 to relieve CAS, providing a theoretical basis for the prospect of CAS treatment and prevention.NEW & NOTEWORTHY Rat coronary artery spasm models exhibit reduced expression of SIRT1. Overexpression of SIRT1 inhibits contraction and proliferation of VSMCs. SIRT1 inhibits NF-κB through deacetylation to modulate VSMC contraction and proliferation. NF-κB activates the MLCK/MLC2 pathway. NF-κB upregulates ET-1 to modulate VSMC contraction and proliferation.
Collapse
Affiliation(s)
- Bo-Wen Wu
- Department of Biochemistry, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, People's Republic of China
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, People's Republic of China
| | - Mi-Shan Wu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, People's Republic of China
- Department of Formulaology, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, People's Republic of China
| | - Yu Liu
- Department of Biochemistry, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, People's Republic of China
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, People's Republic of China
| | - Meng Lu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, People's Republic of China
- Department of Formulaology, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, People's Republic of China
| | - Jin-Dong Guo
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, People's Republic of China
- Department of Formulaology, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, People's Republic of China
| | - Yun-Hui Meng
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, People's Republic of China
- Department of Internal Medicine, Shijiazhuang Hospital of Traditional Chinese Medicine, Shijiazhuang, People's Republic of China
| | - Yu-Hui Zhou
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, People's Republic of China
- Department of Formulaology, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, People's Republic of China
| |
Collapse
|
6
|
Ahmetaj-Shala B, Kawai R, Marei I, Nikolakopoulou Z, Shih CC, Konain B, Reed DM, Mongey R, Kirkby NS, Mitchell JA. A bioassay system of autologous human endothelial, smooth muscle cells, and leukocytes for use in drug discovery, phenotyping, and tissue engineering. FASEB J 2019; 34:1745-1754. [PMID: 31914612 PMCID: PMC6972557 DOI: 10.1096/fj.201901379rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 01/02/2023]
Abstract
Blood vessels are comprised of endothelial and smooth muscle cells. Obtaining both types of cells from vessels of living donors is not possible without invasive surgery. To address this, we have devised a strategy whereby human endothelial and smooth muscle cells derived from blood progenitors from the same donor could be cultured with autologous leukocytes to generate a same donor “vessel in a dish” bioassay. Autologous sets of blood outgrowth endothelial cells (BOECs), smooth muscle cells (BO‐SMCs), and leukocytes were obtained from four donors. Cells were treated in monoculture and cumulative coculture conditions. The endothelial specific mediator endothelin‐1 along with interleukin (IL)‐6, IL‐8, tumor necrosis factor α, and interferon gamma‐induced protein 10 were measured under control culture conditions and after stimulation with cytokines. Cocultures remained viable throughout. The profile of individual mediators released from cells was consistent with what we know of endothelial and smooth muscle cells cultured from blood vessels. For the first time, we report a proof of concept study where autologous blood outgrowth “vascular” cells and leukocytes were studied alone and in coculture. This novel bioassay has usefulness in vascular biology research, patient phenotyping, drug testing, and tissue engineering.
Collapse
Affiliation(s)
- Blerina Ahmetaj-Shala
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Ryota Kawai
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK.,Medicinal Safety Research Laboratories, Daiichi-Sankyo Co. Ltd., Tokyo, Japan
| | - Isra Marei
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK.,Qatar Foundation Research and Development Division, Doha, Qatar
| | - Zacharoula Nikolakopoulou
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK.,Centre for Haematology, Faculty of Medicine, Imperial College London, London, UK
| | - Chih-Chin Shih
- Department of Pharmacology, National Defense Medical Center, Taipei, R.O.C., Taiwan
| | - Bhatti Konain
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Daniel M Reed
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Róisín Mongey
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Nicholas S Kirkby
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Jane A Mitchell
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
7
|
Alshenqiti A, Nashabat M, AlGhoraibi H, Tamimi O, Alfadhel M. Pulmonary hypertension and vasculopathy in incontinentia pigmenti: a case report. Ther Clin Risk Manag 2017; 13:629-634. [PMID: 28533687 PMCID: PMC5431708 DOI: 10.2147/tcrm.s134705] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Incontinentia pigmenti (IP; Bloch-Sulzberger syndrome) is a rare, genetic syndrome inherited as an X-linked dominant trait. It primarily affects female infants and is lethal in the majority of males during fetal life. The clinical findings include skin lesions, developmental defects, and defects of the eyes, teeth, skeletal system, and central nervous system. Cardiovascular complications of this disease in general, and pulmonary hypertension in particular, are extremely rare. This report describes the case of a 3-year-old girl with IP complicated by pulmonary arterial hypertension. Extensive cardiology workup done to the patient indicates underlying vasculopathy. This report sheds light on the relationship between IP and pulmonary hypertension, reviews the previously reported cases, and compares them with the reported case.
Collapse
Affiliation(s)
- Abduljabbar Alshenqiti
- Division of Genetics, Department of Pediatrics, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz Uiversity for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Marwan Nashabat
- Division of Genetics, Department of Pediatrics, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz Uiversity for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Hissah AlGhoraibi
- Division of Genetics, Department of Pediatrics, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz Uiversity for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Omar Tamimi
- Department of Cardiology, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh, Saudi Arabia
| | - Majid Alfadhel
- Division of Genetics, Department of Pediatrics, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz Uiversity for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (NGHA), Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Mathew R, Huang J, Wu JM, Fallon JT, Gewitz MH. Hematological disorders and pulmonary hypertension. World J Cardiol 2016; 8:703-718. [PMID: 28070238 PMCID: PMC5183970 DOI: 10.4330/wjc.v8.i12.703] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/07/2016] [Accepted: 10/09/2016] [Indexed: 02/06/2023] Open
Abstract
Pulmonary hypertension (PH), a serious disorder with a high morbidity and mortality rate, is known to occur in a number of unrelated systemic diseases. Several hematological disorders such as sickle cell disease, thalassemia and myeloproliferative diseases develop PH which worsens the prognosis. Associated oxidant injury and vascular inflammation cause endothelial damage and dysfunction. Pulmonary vascular endothelial damage/dysfunction is an early event in PH resulting in the loss of vascular reactivity, activation of proliferative and antiapoptotic pathways leading to vascular remodeling, elevated pulmonary artery pressure, right ventricular hypertrophy and premature death. Hemolysis observed in hematological disorders leads to free hemoglobin which rapidly scavenges nitric oxide (NO), limiting its bioavailability, and leading to endothelial dysfunction. In addition, hemolysis releases arginase into the circulation which converts L-arginine to ornithine, thus bypassing NO production. Furthermore, treatments for hematological disorders such as immunosuppressive therapy, splenectomy, bone marrow transplantation, and radiation have been shown to contribute to the development of PH. Recent studies have shown deregulated iron homeostasis in patients with cardiopulmonary diseases including pulmonary arterial hypertension (PAH). Several studies have reported low iron levels in patients with idiopathic PAH, and iron deficiency is an important risk factor. This article reviews PH associated with hematological disorders and its mechanism; and iron homeostasis and its relevance to PH.
Collapse
|
9
|
Nuclear factor-κB is involved in oxyhemoglobin-induced endothelin-1 expression in cerebrovascular muscle cells of the rabbit basilar artery. Neuroreport 2016; 27:875-82. [PMID: 27391329 DOI: 10.1097/wnr.0000000000000615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present research was designed to investigate whether endothelin-1 (ET-1) secretion can be induced by oxyhemoglobin and whether nuclear factor κB (NF-κB) is involved in the regulation of ET-1 transcription in cerebrovascular muscle cells. Cerebrovascular muscle cells isolated from a rabbit basilar artery were stimulated by oxyhemoglobin (OxyHb) and ET-1 production was increased significantly in the supernatant. Inhibition of NF-κB with pyrrolidine dithiocarbamate and small interfering RNA decreased the expression of ET-1. Nuclear translocation of NF-κB and the degradation of IkB-α was observed with the stimulation of OxyHb. The supernatant obtained from cerebrovascular muscle cells stimulated by OxyHb produced contractions in arterial rings and was blocked by the ET-1 receptor antagonist (BQ-123). The time course of the OxyHb-induced contractions of the basilar artery rings correlated with the time course of the OxyHb-induced ET-1 secretion. The contraction of the basilar artery rings induced by OxyHb was attenuated when the artery rings were preincubated with pyrrolidine dithiocarbamate and SN50 (20 and 10 µM, respectively). These results indicate that cerebrovascular muscle cells may be an important source of ET-1 production after subarachnoid hemorrhage. NF-κB was involved in the expression of ET-1 and the inhibition of the NF-κB pathway may be beneficial for the treatment of cerebral vasospasm.
Collapse
|
10
|
Fiorucci S, Distrutti E. Targeting the transsulfuration-H2S pathway by FXR and GPBAR1 ligands in the treatment of portal hypertension. Pharmacol Res 2016; 111:749-756. [PMID: 27475883 DOI: 10.1016/j.phrs.2016.07.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 12/12/2022]
Abstract
Cirrhosis is a end-stage disease of the liver in which fibrogenesis, angiogenesis and distortion of intrahepatic microcirculation lead to increased intrahepatic resistance to portal blood flow, a condition known as portal hypertension. Portal hypertension is maintained by a variety of molecular mechanisms including sinusoidal endothelial cells (LSECs) hyporeactivity, activation of hepatic stellate cells (HSCs), reduction in hepatic endothelial nitric oxide synthase (eNOS) activity along with increased eNOS-derived NO generation in the splanchnic and systemic circulations. A reduction of the expression/function of the two major hydrogen sulfide (H2S)-producing enzymes, cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS), has also been demonstrated. A deficit in the transsulfuration pathway leading to the accumulation of homocysteine might contribute to defective generation of H2S and endothelial hyporeactivity. Bile acids are ligands for nuclear receptors, such as farnesoid X receptor (FXR), and G-protein-coupled receptors (GPCRs), such as the G-protein bile acid receptor 1 (GPBAR1). FXR and GPBAR1 ligands regulate the expression/activity of CSE by both genomic and non-genomic effects and have been proved effective in protecting against endothelial dysfunction observed in rodent models of cirrhosis. GPBAR1, a receptor for secondary bile acids, is selectively expressed by LSECs and its activation increases the expression of CSE and attenuates the production of endotelin-1, a potent vasoconstrictor agent. In vivo GPBAR1 ligand attenuates the imbalance between vasodilatory and vaso-constricting agents, making GPBAR1 a promising target in the treatment of portal hypertension.
Collapse
MESH Headings
- Animals
- Antihypertensive Agents/therapeutic use
- Cystathionine gamma-Lyase/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Humans
- Hydrogen Sulfide/metabolism
- Hypertension, Portal/drug therapy
- Hypertension, Portal/metabolism
- Hypertension, Portal/physiopathology
- Ligands
- Liver/drug effects
- Liver/metabolism
- Nitric Oxide/metabolism
- Portal Pressure/drug effects
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Stefano Fiorucci
- Department of Surgical and Biomedical Sciences, Nuova Facoltà di Medicina, P.zza L. Severi 1, 06132, Perugia, Italy.
| | - Eleonora Distrutti
- S.C. di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06132, Perugia, Italy.
| |
Collapse
|
11
|
Yasuda K, Minami N, Yoshikawa Y, Taketani T, Fukuda S, Yamaguchi S. Fatal pulmonary arterial hypertension in an infant girl with incontinentia pigmenti. Pediatr Int 2016; 58:394-396. [PMID: 27173419 DOI: 10.1111/ped.12831] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 08/18/2015] [Accepted: 08/24/2015] [Indexed: 11/30/2022]
Abstract
We report the case of an infant girl with incontinentia pigmenti (IP) complicated by fatal pulmonary arterial hypertension (PAH). She was diagnosed with IP, based on the presence of specific skin lesions, neonatal seizures, hypereosinophilia and a maternal family history of IP. At the age of 2 months, she was diagnosed with PAH on systolic heart murmur due to tricuspid valve regurgitation. Despite several treatments for PAH but not including epoprostenol, severe PAH persisted and she died of pulmonary hypertensive crisis at the age of 5 months. On postmortem histopathology the pulmonary artery had severe intimal thickening, with occlusion or stenosis of the vascular lumen of the small pulmonary arteries as well as partial plexiform lesions, all of which were compatible with PAH. Modulation of nuclear factor-κB signaling may be involved in the development of PAH in IP.
Collapse
Affiliation(s)
- Kenji Yasuda
- Department of Pediatrics, Shimane University Faculty of Medicine, Izumo City, Shimane, Japan
| | - Noriaki Minami
- Department of Pediatrics, Shimane University Faculty of Medicine, Izumo City, Shimane, Japan
| | - Yoko Yoshikawa
- Department of Pediatrics, Shimane University Faculty of Medicine, Izumo City, Shimane, Japan
| | - Takeshi Taketani
- Department of Pediatrics, Shimane University Faculty of Medicine, Izumo City, Shimane, Japan.,Division of Blood Transfusion, Shimane University Hospital, Izumo City, Shamane, Japan
| | - Seiji Fukuda
- Department of Pediatrics, Shimane University Faculty of Medicine, Izumo City, Shimane, Japan
| | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University Faculty of Medicine, Izumo City, Shimane, Japan
| |
Collapse
|
12
|
Zhang X, Jiang D, Li H. The interferon regulatory factors as novel potential targets in the treatment of cardiovascular diseases. Br J Pharmacol 2015; 172:5457-5476. [PMID: 25131895 PMCID: PMC4667854 DOI: 10.1111/bph.12881] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/26/2014] [Accepted: 08/12/2014] [Indexed: 02/06/2023] Open
Abstract
The family of interferon regulatory factors (IRFs) consists of nine members (IRF1-IRF9) in mammals. They act as transcription factors for the interferons and thus exert essential regulatory functions in the immune system and in oncogenesis. Recent clinical and experimental studies have identified critically important roles of the IRFs in cardiovascular diseases, arising from their participation in divergent and overlapping molecular programmes beyond the immune response. Here we review the current knowledge of the regulatory effects and mechanisms of IRFs on the immune system. The role of IRFs and their potential molecular mechanisms as novel stress sensors and mediators of cardiovascular diseases are highlighted.
Collapse
Affiliation(s)
- Xiao‐Jing Zhang
- Department of Cardiology, Renmin HospitalWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacaoChina
| | - Ding‐Sheng Jiang
- Department of Cardiology, Renmin HospitalWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
| | - Hongliang Li
- Department of Cardiology, Renmin HospitalWuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
| |
Collapse
|
13
|
Renga B, Cipriani S, Carino A, Simonetti M, Zampella A, Fiorucci S. Reversal of Endothelial Dysfunction by GPBAR1 Agonism in Portal Hypertension Involves a AKT/FOXOA1 Dependent Regulation of H2S Generation and Endothelin-1. PLoS One 2015; 10:e0141082. [PMID: 26539823 PMCID: PMC4634759 DOI: 10.1371/journal.pone.0141082] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/02/2015] [Indexed: 12/15/2022] Open
Abstract
Background GPBAR1 is a bile acids activated receptor expressed in entero-hepatic tissues. In the liver expression of GPBAR1 is restricted to sinusoidal and Kuppfer cells. In the systemic circulation vasodilation caused by GPBAR1 agonists is abrogated by inhibition of cystathione-γ-liase (CSE), an enzyme essential to the generation of hydrogen sulfide (H2S), a vasodilatory agent. Portal BAR501 is a semisynthetic bile acid derivative endowed with a potent and selective agonistic activity toward GPBAR1. Methods Cirrhosis was induced in mice by carbon tetrachloride (CCL4) administration for 9 weeks. Liver endothelial dysfunction was induced by feeding wild type and Gpbar1-/- mice with methionine for 4 weeks. In both models, mice were administered BAR501, 15 mg/kg/day. Results By transactivation assay we demonstrate that BAR501 is a selective GPBAR1 agonist devoid of any FXR agonistic activity. In naïve rats, BAR501 effectively reduced hepatic perfusion pressure and counteracted the vasoconstriction activity of norepinephrine. In the CCl4 model, 9 weeks treatment with BAR501 effectively protected against development of endothelial dysfunction by increasing liver CSE expression and activity and by reducing endothelin (ET)-1 gene expression. In mice feed methionine, treatment with BAR501 attenuated endothelial dysfunction and caused a GPBAR1-dependent regulation of CSE. Using human liver sinusoidal cells, we found that modulation of CSE expression/activity is mediated by both genomic (recruitment of CREB to CRE in the CSE promoter) and non-genomic effects, involving a Akt-dependent phosporylation of CSE and endothelial nitric oxide (NO) synthase (eNOS). BAR501, phosphorylates FOXO1 and inhibits ET-1 transcription in liver sinusoidal cells. Conclusions BAR501, a UDCA-like GPBAR1 agonist, rescues from endothelial dysfunction in rodent models of portal hypertension by exerting genomic and non-genomic effects on CSE, eNOS and ET-1 in liver sinusoidal cells.
Collapse
Affiliation(s)
- Barbara Renga
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | | | - Adriana Carino
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Michele Simonetti
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples 'Federico II', Naples, Italy
| | - Stefano Fiorucci
- Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
- * E-mail:
| |
Collapse
|
14
|
Xie R, Huang H, Li W, Chen B, Jiang J, He Y, Lv J, ma B, Zhou Y, Feng C, Chen L, He W. Identifying progression related disease risk modules based on the human subcellular signaling networks. MOLECULAR BIOSYSTEMS 2014; 10:3298-3309. [PMID: 25315201 DOI: 10.1039/c4mb00482e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many studies have shown that the structure and dynamics of the human signaling network are disturbed in complex diseases such as coronary artery disease, and gene expression profiles can distinguish variations in diseases since they can accurately reflect the status of cells. Integration of subcellular localization and the human signaling network holds promise for providing insight into human diseases. In this study, we performed a novel algorithm to identify progression-related-disease-risk modules (PRDRMs) among patients of different disease states within eleven subcellular sub-networks from a human signaling network. The functional annotation and literature retrieval showed that the PRDRMs were strongly associated with disease pathogenesis. The results indicated that the PRDRM expression values as classification features had a good classification performance to distinguish patients of different disease states. Our approach compared with the method PageRank had a better classification performance. The identification of the PRDRMs in response to the dynamic gene expression change could facilitate our understanding of the pathological basis of complex diseases. Our strategy could provide new insights into the potential use of prognostic biomarkers and the effective guidance of clinical therapy from the human subcellular signaling network perspective.
Collapse
Affiliation(s)
- Ruiqiang Xie
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province 150081, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Savale L, Sattler C, Günther S, Montani D, Chaumais MC, Perrin S, Jaïs X, Seferian A, Jovan R, Bulifon S, Parent F, Simonneau G, Humbert M, Sitbon O. Pulmonary arterial hypertension in patients treated with interferon. Eur Respir J 2014; 44:1627-34. [PMID: 25323231 DOI: 10.1183/09031936.00057914] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Isolated cases of pulmonary arterial hypertension (PAH) in patients treated with interferon (IFN) α or β have been reported in the literature. The aim of this study was to describe all consecutive cases of PAH patients with a history of IFN exposure identified in the French reference centre for severe pulmonary hypertension between 1998 and 2012. A total of 53 patients with PAH and a history of IFN therapy were identified. 48 patients had been treated with IFNα for chronic hepatitis C. Most of them had portal hypertension (85%) and 56% had HIV co-infection. Five additional patients had been treated with IFNβ for multiple sclerosis. The diagnosis of PAH was made within 3 years after IFN therapy in 66% of patients. Repeated haemodynamic assessment was available in 13 out of 16 patients exposed to IFN after the diagnosis of PAH. Increased pulmonary vascular resistance >20% was observed in 11 out of 13 cases (median 43% increase; IQR 32-67%). In five of these patients, IFN withdrawal resulted in spontaneous haemodynamic improvement. This retrospective analysis suggests that IFN therapy may trigger PAH. However, most of these patients had other risk factors for PAH. A prospective case-control study is necessary to definitively establish a link between IFN exposure and PAH.
Collapse
Affiliation(s)
- Laurent Savale
- Université Paris-Sud, Faculté de Médecine, Le Kremlin Bicêtre, France AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation (TORINO), Service de Pneumologie, Hôpital de Bicêtre, Le Kremlin Bicêtre, France UMR_S 999, INSERM, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
| | - Caroline Sattler
- Université Paris-Sud, Faculté de Médecine, Le Kremlin Bicêtre, France AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation (TORINO), Service de Pneumologie, Hôpital de Bicêtre, Le Kremlin Bicêtre, France UMR_S 999, INSERM, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
| | - Sven Günther
- Université Paris-Sud, Faculté de Médecine, Le Kremlin Bicêtre, France AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation (TORINO), Service de Pneumologie, Hôpital de Bicêtre, Le Kremlin Bicêtre, France UMR_S 999, INSERM, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
| | - David Montani
- Université Paris-Sud, Faculté de Médecine, Le Kremlin Bicêtre, France AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation (TORINO), Service de Pneumologie, Hôpital de Bicêtre, Le Kremlin Bicêtre, France UMR_S 999, INSERM, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
| | - Marie-Camille Chaumais
- UMR_S 999, INSERM, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France Univ. Paris-sud, Faculté de Pharmacie, Châtenay Malabry, France AP-HP, Service de Pharmacie, Hôpital Antoine Béclère, Clamart, France
| | - Swanny Perrin
- UMR_S 999, INSERM, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France Univ. Paris-sud, Faculté de Pharmacie, Châtenay Malabry, France
| | - Xavier Jaïs
- Université Paris-Sud, Faculté de Médecine, Le Kremlin Bicêtre, France AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation (TORINO), Service de Pneumologie, Hôpital de Bicêtre, Le Kremlin Bicêtre, France UMR_S 999, INSERM, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
| | - Andrei Seferian
- Université Paris-Sud, Faculté de Médecine, Le Kremlin Bicêtre, France AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation (TORINO), Service de Pneumologie, Hôpital de Bicêtre, Le Kremlin Bicêtre, France UMR_S 999, INSERM, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
| | - Roland Jovan
- Université Paris-Sud, Faculté de Médecine, Le Kremlin Bicêtre, France AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation (TORINO), Service de Pneumologie, Hôpital de Bicêtre, Le Kremlin Bicêtre, France UMR_S 999, INSERM, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
| | - Sophie Bulifon
- Université Paris-Sud, Faculté de Médecine, Le Kremlin Bicêtre, France AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation (TORINO), Service de Pneumologie, Hôpital de Bicêtre, Le Kremlin Bicêtre, France UMR_S 999, INSERM, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
| | - Florence Parent
- Université Paris-Sud, Faculté de Médecine, Le Kremlin Bicêtre, France AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation (TORINO), Service de Pneumologie, Hôpital de Bicêtre, Le Kremlin Bicêtre, France UMR_S 999, INSERM, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
| | - Gérald Simonneau
- Université Paris-Sud, Faculté de Médecine, Le Kremlin Bicêtre, France AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation (TORINO), Service de Pneumologie, Hôpital de Bicêtre, Le Kremlin Bicêtre, France UMR_S 999, INSERM, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
| | - Marc Humbert
- Université Paris-Sud, Faculté de Médecine, Le Kremlin Bicêtre, France AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation (TORINO), Service de Pneumologie, Hôpital de Bicêtre, Le Kremlin Bicêtre, France UMR_S 999, INSERM, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
| | - Olivier Sitbon
- Université Paris-Sud, Faculté de Médecine, Le Kremlin Bicêtre, France AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation (TORINO), Service de Pneumologie, Hôpital de Bicêtre, Le Kremlin Bicêtre, France UMR_S 999, INSERM, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France
| |
Collapse
|
16
|
Novo G, Sansone A, Rizzo M, Guarneri FP, Pernice C, Novo S. High plasma levels of endothelin-1 enhance the predictive value of preclinical atherosclerosis for future cerebrovascular and cardiovascular events. J Cardiovasc Med (Hagerstown) 2014; 15:696-701. [DOI: 10.2459/jcm.0000000000000121] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Fontoura D, Oliveira-Pinto J, Tavares-Silva M, Leite S, Vasques-Nóvoa F, Mendes-Ferreira P, Lourenço AP, Leite-Moreira AF. Myocardial and anti-inflammatory effects of chronic bosentan therapy in monocrotaline-induced pulmonary hypertension. Rev Port Cardiol 2014; 33:213-22. [PMID: 24780128 DOI: 10.1016/j.repc.2013.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/17/2013] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION AND OBJECTIVES Endothelin-1 antagonists are increasingly used in the treatment of pulmonary hypertension despite the lack of knowledge of their myocardial and systemic effects. We assessed the right ventricular myocardial and systemic effects of endothelin-1 antagonists in monocrotaline-induced pulmonary hypertension. METHODS Male Wistar rats (180-200 g, n=57) randomly received 60 mg/kg monocrotaline or vehicle subcutaneously. Two days later, bosentan was randomly started (300 mg/kg/day) by oral route in a subgroup of monocrotaline-injected rats, while the other monocrotaline-injected and control rats received vehicle. At 25-30 days, invasive hemodynamic assessment was performed under anesthesia, arterial blood samples were collected for gas analysis and plasma was extracted for quantification of endothelin-1, cytokines, nitrates and 6-keto-prostaglandin F1α. Right ventricular myocardium was collected for assessment of cyclooxygenase and nitric oxide synthase activity and gene expression. RESULTS The monocrotaline group developed pulmonary hypertension, low cardiac output, right ventricular hypertrophy and dilation, changes in gene expression and inflammatory activation that were attenuated in the group treated with bosentan. From a functional point of view, this group had improved right ventricular function and preserved ventriculo-vascular coupling, without deterioration in arterial gas parameters or systemic hypotension. In molecular terms, they showed reduced endothelin-1 and cytokine levels, decreased right ventricular inducible nitric oxide synthase and cyclooxygenase-2 activity and increased nitrate plasma levels compared with the non-treated group. CONCLUSIONS In this study we demonstrate that besides attenuating pulmonary hypertension, bosentan has beneficial hemodynamic, myocardial and anti-inflammatory effects.
Collapse
Affiliation(s)
- Dulce Fontoura
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - José Oliveira-Pinto
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Marta Tavares-Silva
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal; Department of Cardiology, São João Hospital Centre, E.P.E., Porto, Portugal
| | - Sara Leite
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Francisco Vasques-Nóvoa
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal; Department of Internal Medicine, São João Hospital Centre, E.P.E., Porto, Portugal
| | - Pedro Mendes-Ferreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - André P Lourenço
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal; Department of Anaesthesiology, São João Hospital Centre, E.P.E., Porto, Portugal.
| | - Adelino F Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal; Department Cardiothoracic Surgery, São João Hospital Centre, E.P.E., Porto, Portugal
| |
Collapse
|
18
|
Renga B, Francisci D, Schiaroli E, Carino A, Cipriani S, D'Amore C, Sidoni A, Sordo RD, Ferri I, Lucattelli M, Lunghi B, Baldelli F, Fiorucci S. The HIV matrix protein p17 promotes the activation of human hepatic stellate cells through interactions with CXCR2 and Syndecan-2. PLoS One 2014; 9:e94798. [PMID: 24736615 PMCID: PMC3988079 DOI: 10.1371/journal.pone.0094798] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/19/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The human immunodeficiency virus type 1 (HIV-1) p17 is a matrix protein involved in virus life's cycle. CXCR2 and Syndecan-2, the two major coreceptors for the p17 protein, are expressed in hepatic stellate cells (HSCs), a key cell type involved in matrix deposition in liver fibrotic disorders. AIM In this report we have investigated the in vitro impact of p17 on HSCs transdifferentiation and function and underlying signaling pathways involved in these processes. METHODS LX-2 cells, a human HSC line, and primary HSC were challenged with p17 and expressions of fibrogenic markers and of p17 receptors were assessed by qRT-PCR and Western blot. Downstream intracellular signaling pathways were evaluated with qRT-PCR and Western blot as well as after pre-treatment with specific pathway inhibitors. RESULTS Exposure of LX2 cells to p17 increases their contractile force, reshapes the cytoskeleton fibers and upregulates the expression of transdifferentiation markers including αSMA, COL1α1 and endothelin-1 through the activation of Jak/STAT and Rho signaling pathways. These effects are lost in HSCs pre-incubated with a serum from HIV positive person who underwent a vaccination with a p17 peptide. Confocal laser microscopy studies demonstrates that CXCR2 and syndecan-2 co-associate at the plasma membrane after exposure to p17. Immunostaining of HIV/HCV liver biopsies from co-infected patients reveals that the progression of liver fibrosis correlates with a reduced expression of CXCR2. CONCLUSIONS The HIV matrix protein p17 is pro-fibrogenic through its interactions both with CXCR2 and syndecan-2 on activated HSCs.
Collapse
Affiliation(s)
- Barbara Renga
- Department of Experimental and Clinical Medicine, University of Perugia, Perugia, Italy
| | - Daniela Francisci
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Elisabetta Schiaroli
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Adriana Carino
- Department of Experimental and Clinical Medicine, University of Perugia, Perugia, Italy
| | - Sabrina Cipriani
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Claudio D'Amore
- Department of Experimental and Clinical Medicine, University of Perugia, Perugia, Italy
| | - Angelo Sidoni
- Department of Experimental Medicine and Biochemical Sciences, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | - Rachele Del Sordo
- Department of Experimental Medicine and Biochemical Sciences, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | - Ivana Ferri
- Department of Experimental Medicine and Biochemical Sciences, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | | | | | - Franco Baldelli
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Stefano Fiorucci
- Department of Experimental and Clinical Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
19
|
Fontoura D, Oliveira‐Pinto J, Tavares‐Silva M, Leite S, Vasques‐Nóvoa F, Mendes‐Ferreira P, Lourenço AP, Leite‐Moreira AF. Myocardial and anti‐inflammatory effects of chronic bosentan therapy in monocrotaline‐induced pulmonary hypertension. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2014. [DOI: 10.1016/j.repce.2013.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
20
|
Patel NM, Kawut SM, Jelic S, Arcasoy SM, Lederer DJ, Borczuk AC. Pulmonary arteriole gene expression signature in idiopathic pulmonary fibrosis. Eur Respir J 2013; 41:1324-30. [PMID: 23728404 PMCID: PMC4720265 DOI: 10.1183/09031936.00084112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A third of patients with idiopathic pulmonary fibrosis (IPF) develop pulmonary hypertension (PH-IPF), which is associated with increased mortality. Whether an altered gene expression profile in the pulmonary vasculature precedes the clinical onset of PH-IPF is unknown. We compared gene expression in the pulmonary vasculature of IPF patients with and without PH with controls. Pulmonary arterioles were isolated using laser capture microdissection from 16 IPF patients: eight with PH (PH-IPF) and eight with no PH (NPH-IPF), and seven controls. Probe was prepared from extracted RNA, and hybridised to Affymetrix Hu133 2.0 Plus genechips. Biometric Research Branch array tools and Ingenuity Pathway Analysis software were used for analysis of the microarray data. Univariate analysis revealed 255 genes that distinguished IPF arterioles from controls (p<0.001). Mediators of vascular smooth muscle and endothelial cell proliferation, Wnt signalling and apoptosis were differentially expressed in IPF arterioles. Unsupervised and supervised clustering analyses revealed similar gene expression in PH-IPF and NPH-IPF arterioles. The pulmonary arteriolar gene expression profile is similar in IPF patients with and without coexistent PH. Pathways involved in vascular proliferation and aberrant apoptosis, which may contribute to pulmonary vascular remodelling, are activated in IPF patients.
Collapse
Affiliation(s)
- Nina M. Patel
- Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University, New York, NY, USA,Interstitial Lung Disease Program, New York Presbyterian Hospital, New York, NY, USA
| | - Steven M. Kawut
- Dept of Medicine and the Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sanja Jelic
- Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University, New York, NY, USA
| | - Selim M. Arcasoy
- Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University, New York, NY, USA,Interstitial Lung Disease Program, New York Presbyterian Hospital, New York, NY, USA,Lung Transplantation Program, New York Presbyterian Hospital, New York, NY, USA
| | - David J. Lederer
- Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University, New York, NY, USA,Interstitial Lung Disease Program, New York Presbyterian Hospital, New York, NY, USA,Lung Transplantation Program, New York Presbyterian Hospital, New York, NY, USA
| | - Alain C. Borczuk
- Dept of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
21
|
Effect of different interferonα2 preparations on IP10 and ET-1 release from human lung cells. PLoS One 2012; 7:e46779. [PMID: 23056449 PMCID: PMC3466308 DOI: 10.1371/journal.pone.0046779] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/05/2012] [Indexed: 01/24/2023] Open
Abstract
Background Alfa-interferons (IFNα2a, IFNα2b, 40KDa-PEGIFNα2a and 12KDa-PEGIFNα2b) are effective treatments for chronic hepatitis C infection. However, their usage has been associated with a variety of adverse events, including interstitial pneumonitis and pulmonary arterial hypertension. Although rare, these adverse events can be severe and potentially life-threatening, emphasizing the need for simple biomarkers of IFN-induced lung toxicity. Methods Human lung microvascular endothelial cells (HLMVEC), human pulmonary artery smooth muscle (HPASM) cells and A549 cells were grown under standard conditions and plated into 96- or 6-well plates. Cells were stimulated with various concentrations of different IFNs in hydrocortisone-free medium. After 24 and 48 hours, IP10 and ET-1 were measured by ELISA in conditioned medium. In a second set of experiments, cells were pre-treated with tumour necrosis factor-α (TNF-α) (10 ng/mL). Results IFNα2a, IFNα2b, 40KDa-PEGIFNα2a and 12KDa-PEGIFNα2b, but not IFNλ, induced IP10 (CXCL10) release and increased IP10 gene induction in HLMVEC. In addition, all four IFNα preparations induced IP10 release from HPASM cells and A549 cells pre-treated with TNFα. In each of these cell types, 40KDa-PEGIFNα2a was significantly less active than the native forms of IFNα2a, IFNα2b or 12KDa-PEGIFNα2b. Similarly, IFNα2a, IFNα2b and 12KDa-PEGIFNα2b, but not 40KDa-PEGIFNα2a, induced endothelin (ET)-1 release from HPASM cells. Conclusions Consistent with other interstitial pulmonary diseases, both IP10 and ET1 may serve as markers to monitor IFN-induced lung toxicity in patients. In addition, both markers may also serve to help characterize the risk associated with IFNα preparations to induce lung toxicity.
Collapse
|
22
|
Lourenço AP, Vasques-Nóvoa F, Oliveira-Pinto J, Fontoura D, Roncon-Albuquerque R, Leite-Moreira AF. Haemodynamic and neuroendocrine effects of tezosentan in chronic experimental pulmonary hypertension. Intensive Care Med 2012; 38:1050-60. [PMID: 22349420 DOI: 10.1007/s00134-012-2484-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 12/30/2011] [Indexed: 12/29/2022]
Abstract
PURPOSE Chronic pulmonary hypertension (PH) therapy is poorly investigated in intensive care. Our aim was to evaluate haemodynamic and neuroendocrine effects of the dual endothelin-1 (ET-1) blocker tezosentan in monocrotaline (MCT)-induced PH. METHODS Male Wistar rats (180-200 g, n = 194) randomly received 60 mg kg(-1) MCT or vehicle, subcutaneously, and 2 days later, a subgroup of MCT-injected rats was gavaged with 300 mg kg(-1) day(-1) bosentan (MCT BOS, n = 46), while another (MCT, n = 125) and control rats (Ctrl, n = 23) received vehicle. At 25-30 days, 48 h after interrupting bosentan, rats randomly underwent either a dose-response evaluation (0.5-20 mg kg(-1), n = 7 each group) or a 4 h perfusion of tezosentan (20 mg kg(-1) in 10 min + 10 mg g(-1) h(-1)) or vehicle (n = 8 per group, each). Haemodynamics, including blood gas analysis, were evaluated after thoracotomy under anaesthesia. After plasma, right ventricle (RV) and lung collection, plasma ET-1, cytokines, nitrate and 6-keto-PGF1α, and lung and right ventricular gene expression and cyclooxygenase (COX) and nitric oxide synthase (NOS) activities were quantified. RESULTS Monocrotaline resulted in PH, RV dilation and decreased cardiac output (CO) that were attenuated in MCT BOS. Pulmonary hypertension was attenuated by tezosentan without systemic hypotension. Tezosentan increased CO without changing ventilation-perfusion matching. Both bosentan and tezosentan reduced ET-1 and cytokine plasma levels and tissue expression, and inducible NOS and COX-2 RV activities. Bosentan increased nitrate plasma levels and non inducible NOS activities whereas tezosentan decreased circulating 6-keto-PGF1α but increased lung COX-1 activity. CONCLUSIONS Tezosentan may be useful for haemodynamic handling and bosentan replacement in critically ill PH patients exerting important beneficial neuroendocrine and anti-inflammatory actions.
Collapse
Affiliation(s)
- André P Lourenço
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | | | | | | | | |
Collapse
|
23
|
George PM, Badiger R, Alazawi W, Foster GR, Mitchell JA. Pharmacology and therapeutic potential of interferons. Pharmacol Ther 2012; 135:44-53. [PMID: 22484806 DOI: 10.1016/j.pharmthera.2012.03.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 03/12/2012] [Indexed: 02/06/2023]
Abstract
Interferon (IFN) is widely recognised to be an integral part of the innate immune response to viral infection. Since its initial discovery in 1957 by Isaacs and Lindenmann, various IFN sub-types have been identified and there are now three distinct classes recognised-Type I (IFN-α and IFN-β), Type II (IFN-γ) and Type III (IFN-λ), distinguished by their differing receptors. As well as displaying profound antiviral activity in vivo, IFN has anti-proliferative, cytotoxic and anti-tumoural roles. In an attempt to harness their immunomodulatory potential, investigators and clinicians have investigated the use of IFNs for the treatment of human diseases with considerable success. For example, IFN-α preparations are now a critical component in the treatment of chronic Hepatitis C infection and IFN-β therapy is now the first line treatment for relapsing remitting multiple sclerosis. However, IFN therapy is also associated with significant morbidity and in some patients is poorly tolerated. In this review, we explore the scientific basis for IFN therapy and outline its therapeutic scope. We describe the commonly encountered side effects and attempt to explain the less well recognised pulmonary complications including emerging evidence of life threatening and irreversible pulmonary vascular pathology. Finally, we look to the future of interferon drug treatment, examining the potential for emerging therapies.
Collapse
Affiliation(s)
- Peter M George
- Cardiothoracic Pharmacology, National Heart and Lung Institute (NHLI), Imperial College, Dovehouse Street, London SW3 6LY, UK.
| | | | | | | | | |
Collapse
|
24
|
Suen RS, Rampersad SN, Stewart DJ, Courtman DW. Differential roles of endothelin-1 in angiotensin II-induced atherosclerosis and aortic aneurysms in apolipoprotein E-null mice. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1549-59. [PMID: 21718678 DOI: 10.1016/j.ajpath.2011.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 04/29/2011] [Accepted: 05/17/2011] [Indexed: 12/16/2022]
Abstract
Because both endothelin-1 (ET-1) and angiotensin II (AngII) are independent mediators of arterial remodeling, we sought to determine the role of ET receptor inhibition in AngII-accelerated atherosclerosis and aortic aneurysm formation. We administered saline or AngII and/or bosentan, an endothelin receptor antagonist (ERA) for 7, 14, or 28 days to 6-week- and 6-month-old apolipoprotein E-knockout mice. AngII treatment increased aortic atherosclerosis, which was reduced by ERA. ET-1 immunostaining was localized to macrophage-rich regions in aneurysmal vessels. ERA did not prevent AngII-induced aneurysm formation but instead may have increased aneurysm incidence. In AngII-treated animals with aneurysms, ERA had a profound effect on the non-aneurysmal thoracic aorta via increasing wall thickness, collagen/elastin ratio, wall stiffness, and viscous responses. These observations were confirmed in acute in vitro collagen sheet production models in which ERA inhibited AngII's dose-dependent effect on collagen type 1 α 1 (COL1A1) gene transcription. However, chronic treatment reduced matrix metalloproteinase 2 mRNA expression but enhanced COL3A1, tissue inhibitor of metalloproteinase 1 (TIMP-1), and TIMP-2 mRNA expressions. These data confirm a role for the ET system in AngII-accelerated atherosclerosis but suggest that ERA therapy is not protective against the formation of AngII-induced aneurysms and can paradoxically stimulate a chronic arterial matrix remodeling response.
Collapse
Affiliation(s)
- Renée S Suen
- Terrence Donnelly Research Laboratories, Division of Cardiology, St. Michael's Hospital, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
25
|
Shao D, Park JE, Wort SJ. The role of endothelin-1 in the pathogenesis of pulmonary arterial hypertension. Pharmacol Res 2011; 63:504-11. [DOI: 10.1016/j.phrs.2011.03.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 03/09/2011] [Indexed: 02/06/2023]
|
26
|
Wan L, Cao D, Zeng J, Ziemba A, Pizzorno G. Activation of Stat1, IRF-1, and NF-kappaB is required for the induction of uridine phosphorylase by tumor necrosis factor-alpha and interferon-gamma. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 29:488-503. [PMID: 20544543 DOI: 10.1080/15257771003729682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Uridine phosphorylase (UPase) has been shown to be induced in various human and murine tumors and could potentially serve as a specific target for the modulation of tumor-selectivity of fluoropyrimidines. However, the signaling mechanisms underlying the regulation of UPase gene expression have not been determined. In this study, we investigated the effects of IFN-gamma on the regulation of TNF-alpha-induced UPase activity and have uncovered the molecular mechanisms of this potentiation, utilizing murine EMT6 breast cancer cells. Our data has shown that IFN-gamma can significantly increase UPase mRNA expression and the enzymatic activity induced by TNF-alpha in a dose-dependent manner, resulting in an enhanced sensitivity to 5-fluorouracil (5-FU) and 5'-Deoxy-5-fluorouridine (5'DFUR). We have previously shown that TNF-alpha activates NF-kappaB through increased translocation of NF-kappaB p65 from the cytoplasm into the nuclei. Exposure to IFN-gamma mainly affects nuclear IRF-1 and STAT1 in EMT6, but inhibits NF-kappaB p65 activity, indicating that the cooperative stimulation was the result of the independent activation of NF-kappaB, STAT1 and IRF-1 transcriptional factors through binding to their unique sites in the UPase promoter. Notably, the activation of NF-kappaB and STAT1 in human breast tissues is consistent with UPase activity; signifying their role in the up-regulation of the UPase gene expression in human tumors.
Collapse
Affiliation(s)
- Laxiang Wan
- Department of Internal Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | |
Collapse
|
27
|
Identification of target genes for wild type and truncated HMGA2 in mesenchymal stem-like cells. BMC Cancer 2010; 10:329. [PMID: 20576167 PMCID: PMC2912264 DOI: 10.1186/1471-2407-10-329] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 06/25/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The HMGA2 gene, coding for an architectural transcription factor involved in mesenchymal embryogenesis, is frequently deranged by translocation and/or amplification in mesenchymal tumours, generally leading to over-expression of shortened transcripts and a truncated protein. METHODS To identify pathways that are affected by sarcoma-associated variants of HMGA2, we have over-expressed wild type and truncated HMGA2 protein in an immortalized mesenchymal stem-like cell (MSC) line, and investigated the localisation of these proteins and their effects on differentiation and gene expression patterns. RESULTS Over-expression of both transgenes blocked adipogenic differentiation of these cells, and microarray analysis revealed clear changes in gene expression patterns, more pronounced for the truncated protein. Most of the genes that showed altered expression in the HMGA2-overexpressing cells fell into the group of NF-kappaB-target genes, suggesting a central role for HMGA2 in this pathway. Of particular interest was the pronounced up-regulation of SSX1, already implicated in mesenchymal oncogenesis and stem cell functions, only in cells expressing the truncated protein. Furthermore, over-expression of both HMGA2 forms was associated with a strong repression of the epithelial marker CD24, consistent with the reported low level of CD24 in cancer stem cells. CONCLUSIONS We conclude that the c-terminal part of HMGA2 has important functions at least in mesenchymal cells, and the changes in gene expression resulting from overexpressing a protein lacking this domain may add to the malignant potential of sarcomas.
Collapse
|
28
|
Tousoulis D, Bouras G, Antoniades C, Marinou K, Miliou A, Papageorgiou N, Chatzis G, Tentolouris C, Tsioufis C, Stefanadis C. The activation of endothelin-1 pathway during methionine-induced homocysteinemia mediates endothelial dysfunction in hypertensive individuals. J Hypertens 2010; 28:925-930. [PMID: 20160653 DOI: 10.1097/hjh.0b013e32833778b2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Endothelin-1 (ET-1) is a key regulator of arterial blood pressure in humans, and homocysteinemia is associated with increased oxidative stress. It is still unclear whether homocysteine-induced oxidative stress is implicated in the regulation of ET-1 expression. We examined the impact of acute homocysteinemia on endothelial function in hypertensive patients and healthy individuals, and the potential role of ET-1. METHODS In this double-blind, placebo-controlled study, 39 hypertensive and 49 healthy individuals were randomized to receive high-dose vitamins (2 g vitamin C and 800IU vitamin E) or placebo followed by methionine loading 100 mg/kg body weight. Endothelium-dependent dilation (EDD) and endothelium-independent dilation (EID) of the brachial artery were evaluated by plethysmography, at baseline and 4 h postloading (4 h PML). ET-1 was measured by ELISA, whereas total lipid hydroperoxides (per-ox) levels were measured by a commercially available photometric technique. RESULTS Acute, methionine-induced homocysteinemia decreased EDD in all study groups (P < 0.001 for all), whereas vitamins pretreatment failed to prevent this effect, despite the vitamins-induced reduction of peroxidation in the hypertensives group (P < 0.05). On the contrary, methionine loading significantly increased plasma ET-1 levels only in hypertensives (P < 0.05), an effect which was not prevented by antioxidant vitamins (P < 0.05). EID remained unchanged after methionine loading, in all study groups (P = NS for all groups). CONCLUSION Experimental homocysteinemia rapidly blunts endothelial function in both hypertensive individuals and healthy individuals. The rapid elevation of ET-1 levels observed only in hypertensives, suggests that ET-1 may be the key mediator of homocysteine-induced endothelial dysfunction, independently of oxidative stress.
Collapse
|
29
|
Osmond RIW, Das S, Crouch MF. Development of cell-based assays for cytokine receptor signaling, using an AlphaScreen SureFire assay format. Anal Biochem 2010; 403:94-101. [PMID: 20382104 DOI: 10.1016/j.ab.2010.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 03/21/2010] [Accepted: 04/05/2010] [Indexed: 11/27/2022]
Abstract
The signal transducers and activators of transcription (STAT) proteins are a small family of signaling proteins that are crucial for cytokine and growth factor receptor-mediated signaling in various blood cell types. Despite their central role in immune and hematopoietic cellular regulation, there are relatively few options for monitoring receptor-mediated JAK/STAT signaling events in a cell-based format, without the need for cellular transfections or labor intensive methodology. Indeed, traditional methods such as the Western blot or ELISA remain a standard method for determining the phosphorylation status of endogenous STAT proteins. Here we present data for the rapid detection of endogenous receptor-mediated phosphorylation of multiple STAT proteins using the bead-based AlphaScreen SureFire technology. With three different cell lines (human acute monocytic leukemia THP-1 cells, human erythroleukemic TF-1 cells, and human T lymphocytic Jurkat cells), we have optimized a rapid and homogeneous methodology for monitoring endogenous, receptor-mediated signaling via STAT 1, STAT 3, or STAT 5 phosphorylation, in response to several agonists. These assays, which can be tailored for both standard research applications or high-throughput drug screening applications, afford quantitative data for receptor-mediated signaling mechanisms in an endogenous, cellular environment.
Collapse
|
30
|
Wang CN, Chang SD, Peng HH, Lee YS, Chang YL, Cheng PJ, Chao AS, Wang TH, Wang HS. Change in amniotic fluid levels of multiple anti-angiogenic proteins before development of preeclampsia and intrauterine growth restriction. J Clin Endocrinol Metab 2010; 95:1431-41. [PMID: 20080845 DOI: 10.1210/jc.2009-1954] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT The cause of preeclampsia remains unknown. Excessive antiangiogenic proteins have been proposed to play a pathogenic role in preeclampsia. OBJECTIVE Our objective was to determine the differences in soluble endoglin (sEndoglin), soluble fms-like tyrosine kinase receptor-1 (sFLT1), leptin, adiponectin, and endothelin 1 concentrations between normal and preeclampsia amniotic fluid (AF). Such results may help us understand the pathophysiology of preeclampsia. METHODS We performed a nested case-control study. Seventy-one women with preeclampsia were matched to 71 normotensive controls. The preeclamptic women were broken into two subgroups according to the association with fetal intrauterine growth restriction (IUGR). AF concentrations of sEndoglin, sFLT1, leptin, adiponectin, and endothelin 1 were measured by ELISA. Receiver-operating characteristics curve analysis was used to compare the discriminative values of these potential biomarkers. Functional network analysis was performed using MetaCore to reveal the common functions of the interacting proteins. RESULTS Increased AF concentrations of sFLT1, sEndoglin, endothelin 1, and leptin were found in women who later developed preeclampsia. sFLT1, sEndoglin, leptin, and adiponectin were significantly higher in the preeclampsia with IUGR than those without IUGR. Leptin has the largest area under the curve (0.753). Network analysis revealed that elevated amniotic proteins are involved in the inflammatory process of the human placenta. CONCLUSIONS Significant elevation of leptin can be detected in AF 2 months earlier than the appearance of symptoms; thus, it may be used as a predictive marker for preeclampsia. The increase of these antiangiogenic proteins supports the roles of inflammation and oxidative stress in pathogenesis of preeclampsia.
Collapse
|
31
|
Wort SJ, Ito M, Chou PC, Mc Master SK, Badiger R, Jazrawi E, de Souza P, Evans TW, Mitchell JA, Pinhu L, Ito K, Adcock IM. Synergistic induction of endothelin-1 by tumor necrosis factor alpha and interferon gamma is due to enhanced NF-kappaB binding and histone acetylation at specific kappaB sites. J Biol Chem 2009; 284:24297-305. [PMID: 19592490 DOI: 10.1074/jbc.m109.032524] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Endothelin-1 (ET-1) is a potent vasoconstrictor and co-mitogen for vascular smooth muscle and is implicated in pulmonary vascular remodeling and the development of pulmonary arterial hypertension. Vascular smooth muscle is an important source of ET-1. Here we demonstrate synergistic induction of preproET-1 message RNA and release of mature peptide by a combination of tumor necrosis factor alpha (TNFalpha) and interferon gamma (IFNgamma) in primary human pulmonary artery smooth muscle cells. This induction was prevented by pretreatment with the histone acetyltransferase inhibitor anacardic acid. TNFalpha induced a rapid and prolonged pattern of nuclear factor (NF)-kappaB p65 subunit activation and binding to the native preproET-1 promoter. In contrast, IFNgamma induced a delayed activation of interferon regulatory factor-1 without any effect on NF-kappaB p65 nuclear localization or consensus DNA binding. However, we found cooperative p65 binding and histone H4 acetylation at distinct kappaB sites in the preproET-1 promoter after stimulation with both TNFalpha and IFNgamma. This was associated with enhanced recruitment of RNA polymerase II to the ATG start site and read-through of the ET-1 coding region. Understanding such mechanisms is crucial in determining the key control points in ET-1 release. This has particular relevance to developing novel treatments targeted at the inflammatory component of pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Stephen J Wort
- Department of Critical Care, National Heart and Lung Institute, Imperial College London, London SW3 6LY, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bakshi S, Zhang X, Godoy-Tundidor S, Cheng RYS, Sartor MA, Medvedovic M, Ho SM. Transcriptome analyses in normal prostate epithelial cells exposed to low-dose cadmium: oncogenic and immunomodulations involving the action of tumor necrosis factor. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:769-76. [PMID: 18560533 PMCID: PMC2430233 DOI: 10.1289/ehp.11215] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 03/03/2008] [Indexed: 05/26/2023]
Abstract
BACKGROUND Cadmium is implicated in prostate carcinogenesis, but its oncogenic action remains unclear. OBJECTIVES In this study we aimed to decipher changes in cell growth and the transcriptome in an immortalized human normal prostate epithelial cell line (NPrEC) following exposure to low-dose Cd. METHODS Synchronized NPrEC cells were exposed to different doses of Cd and assayed for cell viability and cell-cycle progression. We investigated changes in transcriptome by global profiling and used Ingenuity Pathways Analysis software to develop propositions about functional connections among differentially expressed genes. A neutralizing antibody was used to negate the effect of Cd-induced up-regulation of tumor necrosis factor (TNF) in NPrEC cells. RESULTS Exposure of NPrEC to 2.5 microM Cd enhanced cell viability and accelerated cell-cycle progression. Global expression profiling identified 48 genes that exhibited >or= 1.5-fold changes in expression after 4, 8, 16, and 32 hr of Cd treatment. Pathway analyses inferred a functional connection among 35 of these genes in one major network, with TNF as the most prominent node. Fourteen of the 35 genes are related to TNF, and 11 exhibited an average of >2-fold changes in gene expression. Real-time reverse transcriptase-polymerase chain reaction confirmed the up-regulation of 7 of the 11 genes (ADAM8, EDN1, IL8, IL24, IL13RA2, COX2/PTGS2, and SERPINB2) and uncovered a 28-fold transient increase in TNF expression in Cd-treated NPrEC cells. A TNF-neutralizing antibody effectively blocked Cd-induced elevations in the expression of these genes. CONCLUSIONS Noncytotoxic, low-dose Cd has growth-promoting effects on NPrEC cells and induces transient overexpression of TNF, leading to up-regulation of genes with oncogenic and immunomodulation functions.
Collapse
Affiliation(s)
- Shlomo Bakshi
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, and
| | - Xiang Zhang
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, and
- Cancer Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sonia Godoy-Tundidor
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, and
| | - Robert Yuk Sing Cheng
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, and
| | - Maureen A. Sartor
- Center for Environmental Genetics, and
- Division of Biostatistics and Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mario Medvedovic
- Center for Environmental Genetics, and
- Division of Biostatistics and Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Shuk-Mei Ho
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, and
- Cancer Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Center for Environmental Genetics, and
| |
Collapse
|
33
|
Vascular inflammation in absence of blood pressure elevation in transgenic murine model overexpressing endothelin-1 in endothelial cells. J Hypertens 2008; 26:1102-9. [DOI: 10.1097/hjh.0b013e3282fc2184] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Tousoulis D, Antoniades C, Marinou K, Vasiliadou C, Bouras G, Stefanadi E, Latsios G, Siasos G, Toutouzas K, Stefanadis C. Methionine-loading rapidly impairs endothelial function, by mechanisms independent of endothelin-1: evidence for an association of fasting total homocysteine with plasma endothelin-1 levels. J Am Coll Nutr 2008; 27:379-386. [PMID: 18838525 DOI: 10.1080/07315724.2008.10719714] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Homocysteinemia is associated with elevated oxidative stress and impaired endothelial function. In the present study we examined the impact of oxidative stress in the development of endothelial dysfunction in both chronic and acute (methionine-induced) homocysteinemia in humans. We also examined the role of endothelin-1 (ET-1) in the development of endothelial dysfunction in these two conditions. METHODS In this double-blind placebo controlled study, 28 subjects of both genders (14 with homocysteinemia and 14 healthy controls) underwent methionine-loading (100mg/Kg body weight) in a standard juice, containing vitamins C (2g) plus E (800IU) (n = 14) or no vitamins (placebo group, n = 14). Forearm vasodilatory response to reactive hyperemia, plasma total homocysteine (tHcy), oxidized LDL (ox-LDL), ET-1 and soluble vascular cell adhesion molecule (sVCAM-1), were evaluated at baseline and 4 hours post methionine loading (4hPML). RESULTS Chronic homocysteinemia was associated with increased oxLDL (p < 0.01), higher ET-1 (p < 0.05) and impaired endothelial function (p < 0.01). However, oxLDL (but not ET-1) was increased 4hPML in the placebo group, an effect prevented by antioxidant vitamins. The development of severe endothelial dysfunction 4hPML was not however prevented by antioxidants. In linear regression analysis, fasting tHcy was an independent predictor of baseline oxLDL (p = 0.0001), but not of ET-1 levels. On the contrary, oxLDL was the main predictor of ET-1 (p = 0.008), suggesting that tHcy may increase ET-1 by enhancing the production of oxLDL. CONCLUSIONS Both chronic and acute methionine-induced homocysteinemia are associated with elevated oxidative stress status. Although ET-1 is increased in chronic homocysteinemia, it does not participate in the rapid development of endothelial dysfunction after methionine loading. These findings suggest that despite its potential role in chronic homocysteinemia, ET-1 has a limited contribution to the development of endothelial dysfunction in acute, methionine-induced homocysteinemia in humans.
Collapse
Affiliation(s)
- Dimitris Tousoulis
- Athens University Medical School, 1st Cardiology Department, Hippokration Hospital, Athens, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Li YTY, Swales KE, Thomas GJ, Warner TD, Bishop-Bailey D. Farnesoid x receptor ligands inhibit vascular smooth muscle cell inflammation and migration. Arterioscler Thromb Vasc Biol 2007; 27:2606-11. [PMID: 18029909 DOI: 10.1161/atvbaha.107.152694] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The farnesoid X receptor/bile acid receptor (FXR; NR1H4) is a ligand-activated transcription factor that regulates bile acid and lipid homeostasis, and is highly expressed in enterohepatic tissue. FXR is also expressed in vascular tissue. We have investigated whether FXR regulates inflammation and migration in vascular smooth muscle cells. METHODS AND RESULTS The FXR target gene, small heterodimer partner (SHP), was induced in vascular smooth muscle cells after treatment with synthetic FXR ligands, GW4064, or 6alpha-ethyl-chenodeoxycholic acid. FXR ligands induced smooth muscle cell death and downregulated interleukin (IL)-1beta-induced inducible nitric oxide synthase and cyclooxygenase-2 expression. In addition, FXR ligands suppressed smooth muscle cell migration stimulated by platelet-derived growth factor-BB. Reporter gene assays showed that FXR ligands activated an FXR reporter gene and suppressed IL-1beta-induced nuclear factor (NF)-kappaB activation and iNOS in a manner that required functional FXR and SHP. CONCLUSIONS Our observations suggest that a FXR-SHP pathway may be a novel therapeutic target for vascular inflammation, remodeling, and atherosclerotic plaque stability.
Collapse
Affiliation(s)
- Yoyo T Y Li
- Centre of Translational Medicine & Therapeutics, William Harvey Research Institute, Barts & The London, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, United Kingdom
| | | | | | | | | |
Collapse
|
36
|
Schneider MP, Boesen EI, Pollock DM. Contrasting actions of endothelin ET(A) and ET(B) receptors in cardiovascular disease. Annu Rev Pharmacol Toxicol 2007. [PMID: 17002597 DOI: 10.1146/annurev.pharmtox.47.120505.105134.contrasting] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
First identified as a powerful vasoconstrictor, endothelin has an extremely diverse set of actions that influence homeostatic mechanisms throughout the body. Two receptor subtypes, ET(A) and ET(B), which usually have opposing actions, mediate the actions of endothelin. ET(A) receptors function to promote vasoconstriction, growth, and inflammation, whereas ET(B) receptors produce vasodilation, increases in sodium excretion, and inhibit growth and inflammation. Potent and selective receptor antagonists have been developed and have shown promising results in the treatment of cardiovascular diseases such as pulmonary arterial hypertension, acute and chronic heart failure, hypertension, renal failure, and atherosclerosis. However, results are often contradictory and complicated because of the tissue-specific vasoconstrictor actions of ET(B) receptors and the fact that endothelin is an autocrine and paracrine factor whose activity is difficult to measure in vivo. Considerable questions remain regarding whether ET(A)-selective or nonselective ET(A)/ET(B) receptor antagonists would be useful in a range of clinical settings.
Collapse
Affiliation(s)
- Markus P Schneider
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | |
Collapse
|
37
|
Matsumoto T, Noguchi E, Kobayashi T, Kamata K. Mechanisms underlying the chronic pioglitazone treatment-induced improvement in the impaired endothelium-dependent relaxation seen in aortas from diabetic rats. Free Radic Biol Med 2007; 42:993-1007. [PMID: 17349927 DOI: 10.1016/j.freeradbiomed.2006.12.028] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 11/20/2006] [Accepted: 12/28/2006] [Indexed: 11/23/2022]
Abstract
The objectives of this study were to determine the effects of chronic treatment with pioglitazone, a peroxisome proliferator-activated receptor gamma agonist, on the impaired endothelium-dependent relaxation seen in aortas from established streptozotocin (STZ)-induced diabetic rats, and to identify some of the molecular mechanisms involved. Starting at 8 weeks of diabetes, pioglitazone (10 mg/kg) was administered to STZ-induced diabetic rats for 4 weeks. In untreated STZ rats (vs age-matched control rats): (1) ACh-induced relaxation, cGMP accumulation, phosphorylation of the cGMP-dependent protein kinase substrate vasodilator-stimulated phosphoprotein at Ser-239 [an established biochemical end-point of nitric oxide (NO)/cGMP signaling], and Cu/Zn-superoxide dismutase (SOD) expression and SOD activity were all reduced; (2) aortic superoxide generation, nitrotyrosine expression, and NAD(P)H oxidase activity were increased; (3) plasma endothelin-1 (ET-1) and aortic c-Jun (AP-1 component) protein expressions were increased. Pioglitazone treatment markedly corrected the above abnormalities. Collectively, these results suggest that pioglitazone treatment improves endothelium-dependent relaxation by reducing oxidative stress via increased SOD activity, decreased NAD(P)H oxidase activity, and a decreased ET-1 level, and that this decreased ET-1 level may be attributable to an inhibition of the AP-1 signaling pathway.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan
| | | | | | | |
Collapse
|
38
|
Chauhan A, Hahn S, Gartner S, Pardo CA, Netesan SK, McArthur J, Nath A. Molecular programming of endothelin-1 in HIV-infected brain: role of Tat in up-regulation of ET-1 and its inhibition by statins. FASEB J 2007; 21:777-89. [PMID: 17197385 PMCID: PMC4179467 DOI: 10.1096/fj.06-7054com] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human Immune Deficiency Virus-1 (HIV-1) infection can induce severe and debilitating neurological problems, including behavioral abnormalities, motor dysfunction, and dementia. HIV can persistently infect astrocytes, during which viral accessory proteins are produced that are unaffected by current antiretroviral therapy. The effect of these proteins on astrocyte function remains unknown. Astrocytes are the predominant cells within the brain; thus, disruption of astrocyte function could influence the neuropathogenesis of HIV infection. To explore further these effects, we constitutively expressed HIV-Tat protein in astrocytes. Since the nuclear presence of Tat protein leads to alteration of host gene expression, we further analyzed the effects of Tat on host gene transcripts. Endothelin-1 (ET-1) was a significantly elevated transcript as verified by reverse transcription-polymerase chain reaction (RT-PCR), and it was subsequently released extracellularly in Tat-expressing and HIV-infected astrocytes. ET-1 expression was also prominent in reactive astrocytes and neurons in brain tissues from basal ganglia and frontal lobes of HIV encephalitic patients. HIV-Tat regulated ET-1 at the transcriptional level through NF-kappaB (NF-kappaB)-responsive sites in the ET-1 promoter. Intriguingly, simvastatin (10 microM) down-regulated HIV-Tat-induced ET-1 and also inhibited activation of NF-kappaB in astrocytes. Our findings suggest that ET-1 may be critical in mediating the neuropathogenesis of HIV dementia and that statins may have therapeutic potential in these patients.
Collapse
Affiliation(s)
- Ashok Chauhan
- Department of Neurology, Richard Johnson Division of Neuro-Immunology and Neurological Infections, The Johns Hopkins University, 509 Pathology, 600 N. Wolfe St., Baltimore, MD 21287, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Schneider MP, Boesen EI, Pollock DM. Contrasting actions of endothelin ET(A) and ET(B) receptors in cardiovascular disease. Annu Rev Pharmacol Toxicol 2007; 47:731-59. [PMID: 17002597 PMCID: PMC2825895 DOI: 10.1146/annurev.pharmtox.47.120505.105134] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
First identified as a powerful vasoconstrictor, endothelin has an extremely diverse set of actions that influence homeostatic mechanisms throughout the body. Two receptor subtypes, ET(A) and ET(B), which usually have opposing actions, mediate the actions of endothelin. ET(A) receptors function to promote vasoconstriction, growth, and inflammation, whereas ET(B) receptors produce vasodilation, increases in sodium excretion, and inhibit growth and inflammation. Potent and selective receptor antagonists have been developed and have shown promising results in the treatment of cardiovascular diseases such as pulmonary arterial hypertension, acute and chronic heart failure, hypertension, renal failure, and atherosclerosis. However, results are often contradictory and complicated because of the tissue-specific vasoconstrictor actions of ET(B) receptors and the fact that endothelin is an autocrine and paracrine factor whose activity is difficult to measure in vivo. Considerable questions remain regarding whether ET(A)-selective or nonselective ET(A)/ET(B) receptor antagonists would be useful in a range of clinical settings.
Collapse
Affiliation(s)
- Markus P Schneider
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | |
Collapse
|
40
|
Schmid H, Boucherot A, Yasuda Y, Henger A, Brunner B, Eichinger F, Nitsche A, Kiss E, Bleich M, Gröne HJ, Nelson PJ, Schlöndorff D, Cohen CD, Kretzler M. Modular activation of nuclear factor-kappaB transcriptional programs in human diabetic nephropathy. Diabetes 2006; 55:2993-3003. [PMID: 17065335 DOI: 10.2337/db06-0477] [Citation(s) in RCA: 337] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal failure and a major risk factor for cardiovascular mortality in diabetic patients. To evaluate the multiple pathogenetic factors implicated in DN, unbiased mRNA expression screening of tubulointerstitial compartments of human renal biopsies was combined with hypothesis-driven pathway analysis. Expression fingerprints obtained from biopsies with histological diagnosis of DN (n = 13) and from control subjects (pretransplant kidney donors [n = 7] and minimal change disease [n = 4]) allowed us to segregate the biopsies by disease state and stage by the specific expression signatures. Functional categorization showed regulation of genes linked to inflammation in progressive DN. Pathway mapping of nuclear factor-kappaB (NF-kappaB), a master transcriptional switch in inflammation, segregated progressive from mild DN and control subjects by showing upregulation of 54 of 138 known NF-kappaB targets. The promoter regions of regulated NF-kappaB targets were analyzed using ModelInspector, and the NF-kappaB module NFKB_IRFF_01 was found to be specifically enriched in progressive disease. Using this module, the induction of eight NFKB_IRFF_01-dependant genes was correctly predicted in progressive DN (B2M, CCL5/RANTES, CXCL10/IP10, EDN1, HLA-A, HLA-B, IFNB1, and VCAM1). The identification of a specific NF-kappaB promoter module activated in the inflammatory stress response of progressive DN has helped to characterize upstream pathways as potential targets for the treatment of progressive renal diseases such as DN.
Collapse
Affiliation(s)
- Holger Schmid
- Division of Nephrology, Medizinische Poliklinik, University of Munich, Pettenkoferstr. 8a, 80336 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sury MD, Frese-Schaper M, Mühlemann MK, Schulthess FT, Blasig IE, Täuber MG, Shaw SG, Christen S. Evidence that N-acetylcysteine inhibits TNF-alpha-induced cerebrovascular endothelin-1 upregulation via inhibition of mitogen- and stress-activated protein kinase. Free Radic Biol Med 2006; 41:1372-83. [PMID: 17023264 DOI: 10.1016/j.freeradbiomed.2006.07.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 07/13/2006] [Accepted: 07/19/2006] [Indexed: 12/20/2022]
Abstract
N-acetylcysteine (NAC) is neuroprotective in animal models of acute brain injury such as caused by bacterial meningitis. However, the mechanism(s) by which NAC exerts neuroprotection is unclear. Gene expression of endothelin-1 (ET-1), which contributes to cerebral blood flow decline in acute brain injury, is partially regulated by reactive oxygen species, and thus a potential target of NAC. We therefore examined the effect of NAC on tumor necrosis factor (TNF)-alpha-induced ET-1 production in cerebrovascular endothelial cells. NAC dose dependently inhibited TNF-alpha-induced preproET-1 mRNA upregulation and ET-1 protein secretion, while upregulation of inducible nitric oxide synthase (iNOS) was unaffected. Intriguingly, NAC had no effect on the initial activation (i.e., IkappaB degradation, nuclear p65 translocation, and Ser536 phosphorylation) of NF-kappaB by TNF-alpha. However, transient inhibition of NF-kappaB DNA binding suggested that NAC may inhibit ET-1 upregulation by inhibiting (a) parallel pathway(s) necessary for full transcriptional activation of NF-kappaB-mediated ET-1 gene expression. Similar to NAC, the MEK1/2 inhibitor U0126, the p38 inhibitor SB203580, and the protein kinase inhibitor H-89 selectively inhibited ET-1 upregulation without affecting nuclear p65 translocation, suggesting that NAC inhibits ET-1 upregulation via inhibition of mitogen- and stress-activated protein kinase (MSK). Supporting this notion, cotreatment with NAC inhibited the TNF-alpha-induced rise in MSK1 and MSK2 kinase activity, while siRNA knock-down experiments showed that MSK2 is the predominant isoform involved in TNF-alpha-induced ET-1 upregulation.
Collapse
Affiliation(s)
- Matthias D Sury
- Institute for Infectious Diseases, University of Berne, Friedbuehlstrasse 51, CH-3010 Berne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Xia HJ, Dai DZ, Dai Y. Up-regulated inflammatory factors endothelin, NFκB, TNFα and iNOS involved in exaggerated cardiac arrhythmias in l-thyroxine-induced cardiomyopathy are suppressed by darusentan in rats. Life Sci 2006; 79:1812-9. [PMID: 16822527 DOI: 10.1016/j.lfs.2006.06.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 05/17/2006] [Accepted: 06/09/2006] [Indexed: 11/18/2022]
Abstract
The exaggerated cardiac arrhythmias in cardiomyopathy induced by L-thyroxine treatment are related to ion channelopathies and to an abnormal endothelin (ET) pathway. It was hypothesized that an increased incidence of ventricular fibrillation (VF) could be mediated by inflammatory factors including the ET pathway, nuclear factor kappa B (NFkappaB), tumor necrosis factor-alpha (TNFalpha) and inducible nitric oxide synthase (iNOS). Abnormal expression of NFkappaB, TNFalpha, iNOS and enhanced VF are linked with the activated ET pathway and a significant reversion could be achieved by the selective endothelin A receptor antagonist darusentan. Cardiomyopathy in rats was produced by L-thyroxine treatment (0.3 mg kg(-1) d(-1), sc) for 10 days. The mRNA expression of the ET pathway, NFkappaB, TNFalpha, iNOS and the activity of the redox system were assayed in association with the incidence of VF produced by coronary ligation/reperfusion. Darusentan was administered on days 6-10 of L-thyroxine treatment. The VF incidence, which was higher in the l-thyroxine cardiomyopathy group, was suppressed by darusentan. The mRNA levels of preproET-1, endothelin converting enzyme, endothelin receptor A (ET(A)R), endothelin receptor B (ET(B)R), NFkappaB, TNFalpha and iNOS in left ventricle were up-regulated in the cardiomyopathic heart. There was significant oxidative stress in this cardiomyopathy model. Darusentan suppressed the up-regulated mRNA levels of ET(A)R, ET(B)R, NFkappaB, TNFalpha, and iNOS. These results indicate that the high incidence of VF which is related to up-regulation of inflammatory factors in the cardiomyopathic myocardium is significantly suppressed by selective ET(A)R blockade.
Collapse
Affiliation(s)
- Hui-Jing Xia
- Research Division of Pharmacology, China Pharmaceutical University, Nanjing, China
| | | | | |
Collapse
|
43
|
Liu SF, Malik AB. NF-kappa B activation as a pathological mechanism of septic shock and inflammation. Am J Physiol Lung Cell Mol Physiol 2006; 290:L622-L645. [PMID: 16531564 DOI: 10.1152/ajplung.00477.2005] [Citation(s) in RCA: 586] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The pathophysiology of sepsis and septic shock involves complex cytokine and inflammatory mediator networks. NF-kappaB activation is a central event leading to the activation of these networks. The role of NF-kappaB in septic pathophysiology and the signal transduction pathways leading to NF-kappaB activation during sepsis have been an area of intensive investigation. NF-kappaB is activated by a variety of pathogens known to cause septic shock syndrome. NF-kappaB activity is markedly increased in every organ studied, both in animal models of septic shock and in human subjects with sepsis. Greater levels of NF-kappaB activity are associated with a higher rate of mortality and worse clinical outcome. NF-kappaB mediates the transcription of exceptional large number of genes, the products of which are known to play important roles in septic pathophysiology. Mice deficient in those NF-kappaB-dependent genes are resistant to the development of septic shock and to septic lethality. More importantly, blockade of NF-kappaB pathway corrects septic abnormalities. Inhibition of NF-kappaB activation restores systemic hypotension, ameliorates septic myocardial dysfunction and vascular derangement, inhibits multiple proinflammatory gene expression, diminishes intravascular coagulation, reduces tissue neutrophil influx, and prevents microvascular endothelial leakage. Inhibition of NF-kappaB activation prevents multiple organ injury and improves survival in rodent models of septic shock. Thus NF-kappaB activation plays a central role in the pathophysiology of septic shock.
Collapse
Affiliation(s)
- Shu Fang Liu
- Div. of Pulmonary and Critical Care Medicine, Long Island Jewish Medical Center, RM B371, New Hyde Park, NY 11040, USA.
| | | |
Collapse
|
44
|
Inhibitory effects of polymyxin B on NF-κB activation and expression of procollagen I, III in pre-eclamptic umbilical artery smooth muscle cells. Chin Med J (Engl) 2006. [DOI: 10.1097/00029330-200603010-00006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
45
|
He F, Li J, Mu Y, Kuruba R, Ma Z, Wilson A, Alber S, Jiang Y, Stevens T, Watkins S, Pitt B, Xie W, Li S. Downregulation of endothelin-1 by farnesoid X receptor in vascular endothelial cells. Circ Res 2005; 98:192-9. [PMID: 16357303 DOI: 10.1161/01.res.0000200400.55539.85] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily that is highly expressed in liver, kidney, adrenals, and intestine. FXR may play an important role in the pathogenesis of cardiovascular diseases via regulating the metabolism and transport of cholesterol. In this study, we report that FXR is also expressed in rat pulmonary artery endothelial cells (EC), a "nonclassical" bile acid target tissue. FXR is functional in EC, as demonstrated by induction of its target genes such as small heterodimer partner (SHP) after treatment with chenodeoxycholic acid, a FXR agonist. Interestingly, activation of FXR in EC led to downregulation of endothelin (ET)-1 expression. Reporter assays showed that activation of FXR inhibited transcriptional activation of the human ET-1 gene promoter and also repressed the activity of a heterologous promoter driven by activator protein (AP)-1 response elements. Electrophoretic mobility-shift and chromatin immunoprecipitation assays indicated that FXR reduced the binding activity of AP-1 transcriptional factors, suggesting that FXR may suppress ET-1 expression via negatively interfering with AP-1 signaling. These studies suggest that FXR may play a role in endothelial homeostasis and may serve as a novel molecular target for manipulating ET-1 expression in vascular EC.
Collapse
Affiliation(s)
- Fengtian He
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hayes IM, Varigos G, Upjohn EJ, Orchard DC, Penny DJ, Savarirayan R. Unilateral acheiria and fatal primary pulmonary hypertension in a girl with incontinentia pigmenti. Am J Med Genet A 2005; 135:302-3. [PMID: 15884011 DOI: 10.1002/ajmg.a.30698] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We describe a newborn girl with incontinentia pigmenti (IP, MIM308300), unilateral acheiria, and fatal primary pulmonary hypertension. Limb deficiency has not been described previously in IP and pulmonary hypertension only on two previous occasions. A review of the cause of IP shows that these rare manifestations may not be unexpected, given the many roles of the underlying gene product.
Collapse
Affiliation(s)
- Ian M Hayes
- Genetic Health Services Victoria, MCRI, Parkville, Australia.
| | | | | | | | | | | |
Collapse
|