1
|
Brown KA, Ajibola MI, Gould TD. Rapid hippocampal synaptic potentiation induced by ketamine metabolite (2R,6R)-hydroxynorketamine persistently primes synaptic plasticity. Neuropsychopharmacology 2025; 50:928-940. [PMID: 40097740 PMCID: PMC12032166 DOI: 10.1038/s41386-025-02085-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
The pharmacologically active (R,S)-ketamine (ketamine) metabolite (2 R,6 R)-hydroxynorketamine (HNK) maintains ketamine's preclinical antidepressant profile without adverse effects. While hypotheses have been proposed to explain how ketamine and its metabolites initiate their antidepressant-relevant effects, it remains unclear how sustained therapeutic actions arise following drug elimination. To distinguish the physiological mechanisms involved in the rapid from sustained actions of HNK, we utilized extracellular electrophysiology combined with pharmacology to develop an in vitro hippocampal slice incubation model that exhibited pharmacological fidelity to the 1) rapid synaptic potentiation induced by HNK at the Schaffer collateral-CA1 (SC-CA1) synapse during bath-application to slices collected from mice, and 2) maintenance of metaplastic (priming) activity that enhanced N-methyl-D-aspartate receptor (NMDAR) activation-dependent long-term potentiation (LTP) hours after in vivo dosing. We used this model to reveal novel mechanisms engaged in HNK's temporally-sensitive antidepressant-relevant synaptic actions, finding that the induction of synaptic potentiation by HNK did not require NMDAR activity, but NMDAR activity was necessary to maintain synaptic priming. HNK required protein kinase A (PKA) activity to rapidly potentiate SC-CA1 neurotransmission to facilitate synaptic priming that persistently promoted LTP formation. HNK's rapid actions were blocked by inhibitors of adenylyl cyclase 1 (AC1), but not an AC5 inhibitor. We conclude that HNK rapidly potentiates SC-CA1 synaptic efficacy, which then stimulates priming mechanisms that persistently favor plasticity. Targeting such priming mechanisms may be an effective antidepressant strategy, and our incubation model may aid in revealing novel pharmacological targets.
Collapse
Affiliation(s)
- Kyle A Brown
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Musa I Ajibola
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Todd D Gould
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.
- Department of Pharmacology and Physiology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.
- Department of Neurobiology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.
- Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA.
| |
Collapse
|
2
|
Mastrodonato A, Jin M, Kee N, Lanio M, Tapia J, Quintana L, Muñoz Zamora A, Deng SX, Xu X, Landry DW, Denny CA. Prophylactic (R,S)-Ketamine and (2S,6S)-Hydroxynorketamine Decrease Fear Expression by Differentially Modulating Fear Neural Ensembles. Biol Psychiatry 2025; 97:887-899. [PMID: 39389408 PMCID: PMC11978926 DOI: 10.1016/j.biopsych.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND We previously reported that a single injection of (R,S)-ketamine or its metabolite (2S,6S)-hydroxynorketamine (HNK) prior to stress attenuated learned fear. However, whether these drugs attenuate learned fear through divergent or convergent effects on neural activity remains to be determined. METHODS 129S6/SvEv male mice were injected with saline, (R,S)-ketamine, or (2S,6S)-HNK 1 week before a 3-shock contextual fear conditioning paradigm. Five days later, mice were re-exposed to the aversive context and euthanized 1 hour later to quantify active cells. Brains were processed for c-fos immunoreactivity, and neural networks were built with a novel, wide-scale imaging pipeline. RESULTS We found that (R,S)-ketamine and (2S,6S)-HNK attenuated learned fear. Fear-related neural activity was altered in dorsal CA3 following (2S,6S)-HNK; ventral CA3 and CA1, infralimbic and prelimbic regions, insular cortex, retrosplenial cortex, piriform cortex, nucleus reuniens, and periaqueductal gray following both (R,S)-ketamine and (2S,6S)-HNK; and in the paraventricular nucleus of the thalamus (PVT) following (R,S)-ketamine. Dorsal CA3 and ventral hippocampus activation correlated with freezing in the (R,S)-ketamine group, and retrosplenial cortex activation correlated with freezing in both (R,S)-ketamine and (2S,6S)-HNK groups. (R,S)-ketamine increased connectivity between cortical and subcortical regions while (2S,6S)-HNK increased connectivity within these regions. CONCLUSIONS This work identifies novel nodes in fear networks that involve the nucleus reuniens, piriform cortex, insular cortex, periaqueductal gray, and retrosplenial cortex that can be targeted with neuromodulatory strategies or pharmaceutical compounds to treat fear-induced disorders. This approach could be used to optimize target engagement and dosing strategies of existing medications.
Collapse
Affiliation(s)
- Alessia Mastrodonato
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York; Division of Systems Neuroscience, Area Neuroscience, Research Foundation for Mental Hygiene, Inc./New York State Psychiatric Institute, New York, New York; MIND Area, Research Foundation for Mental Hygiene, Inc./New York State Psychiatric Institute, New York, New York.
| | - Michelle Jin
- Neurobiology and Behavior Graduate Program, Columbia University, New York, New York; Medical Scientist Training Program, Columbia University Irving Medical Center, New York, New York
| | - Noelle Kee
- Department of Neuroscience and Behavior, Barnard College, New York, New York
| | - Marcos Lanio
- Neurobiology and Behavior Graduate Program, Columbia University, New York, New York; Medical Scientist Training Program, Columbia University Irving Medical Center, New York, New York
| | - Juliana Tapia
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York; Division of Systems Neuroscience, Area Neuroscience, Research Foundation for Mental Hygiene, Inc./New York State Psychiatric Institute, New York, New York
| | - Liliette Quintana
- Department of Neuroscience and Behavior, Barnard College, New York, New York
| | - Andrea Muñoz Zamora
- Division of Systems Neuroscience, Area Neuroscience, Research Foundation for Mental Hygiene, Inc./New York State Psychiatric Institute, New York, New York
| | - Shi-Xian Deng
- Department of Medicine, Columbia University Irving Medical Center, New York, New York; Organic Chemistry Collaborative Center, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Xiaoming Xu
- Department of Medicine, Columbia University Irving Medical Center, New York, New York; Organic Chemistry Collaborative Center, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Donald W Landry
- Department of Medicine, Columbia University Irving Medical Center, New York, New York; Organic Chemistry Collaborative Center, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Christine A Denny
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York; Division of Systems Neuroscience, Area Neuroscience, Research Foundation for Mental Hygiene, Inc./New York State Psychiatric Institute, New York, New York.
| |
Collapse
|
3
|
Veraart JKE, Smith-Apeldoorn SY, Kamphuis J, Touw DJ, Schoevers RA. Plasma esketamine and noresketamine levels and antidepressant response with oral esketamine treatment. Eur J Pharmacol 2025; 998:177470. [PMID: 40058750 DOI: 10.1016/j.ejphar.2025.177470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/17/2025] [Accepted: 03/04/2025] [Indexed: 03/18/2025]
Abstract
OBJECTIVE Oral esketamine has relatively low and variable bioavailability, which may complicate broader use as an antidepressant. This study aimed to investigate associations between different pharmacokinetic outcomes and change in depressive symptoms following oral esketamine administration in patients with treatment-resistant depression. Understanding such associations may inform dosing and administration strategies in clinical practice. METHODS Oral esketamine was administered twice weekly for six weeks using a titration approach in 17 patients. Esketamine and noresketamine serum levels were measured 30 min and 60 min after esketamine administration. Change in depression severity was plotted against the serum levels of esketamine and noresketamine, their sum and their ratios. RESULTS We observed high inter-individual variability in oral esketamine pharmacokinetics, and we found no association between depressive symptom change and the pharmacokinetic outcomes. The small sample size and flexible-dose regimen complicate definitive conclusions. DISCUSSION In the treatment of depression, clinical response may not correspond to esketamine pharmacokinetic outcomes. Individually-based titration strategies based on clinical antidepressant effects appear to be the optimal approach moving forward.
Collapse
Affiliation(s)
- Jolien K E Veraart
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Psychiatry, PsyQ Haaglanden, Parnassia Psychiatric Institute, The Hague, the Netherlands.
| | - Sanne Y Smith-Apeldoorn
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jeanine Kamphuis
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Daan J Touw
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Robert A Schoevers
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Behavioral Science Institute, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
4
|
Faustino Martins AC, Badenoch B, da Silva Gomes R. Insights for the Next Generation of Ketamine for the Treatment of Depressive Disorder. J Med Chem 2025; 68:944-952. [PMID: 39757458 DOI: 10.1021/acs.jmedchem.4c02467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Treatment-resistant depression responds quickly to ketamine. As an N-methyl-d-aspartate receptor (NMDAR) antagonist, ketamine may affect prefrontal cortex (PFC) neurons. Recent investigations reveal that the (R)-enantiomer is the most effective and least abuseable antidepressant. The Food and Drug Administration approves only the (S)-enantiomer for medical usage. (2R,6R)-Hydroxynorketamine (HNK) inhibits mGlu2, linked to a Gi, in presynaptic glutamatergic neurons, increasing brain-derived neurotrophic factor (BDNF) release, which autocrinely activates Tropomyosin receptor kinase B (TrkB) and promotes synaptogenesis. Ketamine, originally an anesthetic, has garnered attention for its many pharmacological effects, including its potential as a rapid-acting antidepressant and recreational use. In this Perspective, we explore the synthesis, pharmacology, metabolism, and effects of ketamine and its metabolites in animal and human studies to explain the difference in the biological activity between the enantiomers.
Collapse
Affiliation(s)
- Allana Cristina Faustino Martins
- Department of Pharmaceutical Sciences, College of Health and Human Sciences, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Bretton Badenoch
- Department of Pharmaceutical Sciences, College of Health and Human Sciences, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Roberto da Silva Gomes
- Department of Pharmaceutical Sciences, College of Health and Human Sciences, North Dakota State University, Fargo, North Dakota 58105, United States
| |
Collapse
|
5
|
Wang H, He Y, Tang J, Liu Y, Wu C, Li C, Sun H, Sun L. (2R, 6R)-hydroxynorketamine ameliorates PTSD-like behaviors during the reconsolidation phase of fear memory in rats by modulating the VGF/BDNF/GluA1 signaling pathway in the hippocampus. Behav Brain Res 2025; 476:115273. [PMID: 39326635 DOI: 10.1016/j.bbr.2024.115273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
RATIONALE Fear memory, a fundamental symptom of post-traumatic stress disorder (PTSD), is improved by (2R, 6R)-hydroxynorketamine ((2R, 6R)-HNK) administration. However, the phase of fear memory in which the injected drug is the most effective at mitigating PTSD-like effects remains unknown. OBJECTIVE This study aimed to explore the effects of (2 R, 6 R)-HNK administration during three phases [acquisition (AP), reconsolidation (RP), and extinction (EP)] on PTSD-like behaviors in single prolonged stress (SPS) and contextual fear conditioning (CFC) rat models. The effects of VGF-inducible type of nerve growth factor (VGF), brain-derived neurotrophic factor (BDNF), and GluA1 on hippocampus (HIP) expression were also explored. METHODS SPS and CFC (SPSC) were used to establish a PTSD rat model. After lateral ventricle injection of 5 μL (2 R, 6 R)-HNK (0.5 nmol). Anxiety-depression-like behaviors were assessed in rats by the open field test (OFT) and elevated plus maze test (EPMT). Situational fear responses were evaluated in rodents by freezing behavior test (FBT) test. In addition, GluA1, VGF, and BDNF were assessed in the hippocampus by Western blot assay (WB) and Immunohistochemistry assay (IF). RESULTS SPSC procedure induced PTSD-like behaviors. The SPSC group had decreased spontaneous exploratory behavior and increased fear response. The (2R, 6R)-HNK group showed improved SPSC-induced reduction in GluA1, VGF, and BDNF levels in the HIP. During RP, anxiety and fear avoidance behaviors were alleviated, and the protein levels of GluA1, VGF, and BDNF in the HIP were restored. In contrast, no significant improvement was noted during AP and EP. CONCLUSIONS (2R,6R)-HNK modulates the VGF/BDNF/GluA1 signaling pathway in the hippocampus and improves PTSD-like behaviors during the reconsolidation phase of fear memory in rats, which may provide a new target for the clinical treatment and prevention of fear-related disorders such as PTSD.
Collapse
Affiliation(s)
- Han Wang
- School of Mental Health, Jining Medical University, Jining, Shandong 272067, China; School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Yuxuan He
- Department of Clinical Medicine, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Jiahao Tang
- Department of Clinical Medicine, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Yang Liu
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Chunyan Wu
- Department of Neurology, Affiliated Hospital of Shandong Second Medical University, Weifang 261031, China
| | - Changjiang Li
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Hongwei Sun
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Lin Sun
- School of Psychology, Shandong Second Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China.
| |
Collapse
|
6
|
Beaglehole B, Glue P, Neehoff S, Shadli S, McNaughton N, Kimber B, Muirhead C, de Bie A, Day-Brown R, Hughes-Medlicott NJ. Ketamine for treatment-resistant obsessive-compulsive disorder: Double-blind active-controlled crossover study. J Psychopharmacol 2025; 39:23-28. [PMID: 39609659 PMCID: PMC11760645 DOI: 10.1177/02698811241301215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
BACKGROUND Obsessive-Compulsive Disorder (OCD) may respond to ketamine treatment. AIM To examine the responsiveness and tolerability of treatment-refractory OCD to intramuscular (IM) ketamine compared to IM fentanyl. METHODS This was a randomised double-blind psychoactive-controlled study with single doses of racemic ketamine 0.5 mg/kg, 1.0 mg/kg or fentanyl 50 µg (psychoactive control). Pre-dosing with 4 mg oral ondansetron provided nausea prophylaxis. Eligible participants were aged between 18 and 50 years with severe treatment-resistant OCD. The primary efficacy measure was the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS). Tolerability was measured with the Clinician-Administered Dissociative States Scale (CADSS). Repeated measures analysis of variance with orthogonal polynomial trends was used to assess the effect of drug treatment on Y-BOCS and CADSS scores. RESULTS Twelve participants were randomised and 10 completed the study (7 females, 3 males, mean age 33 years). Two participants dropped out due to not tolerating dissociative effects associated with the study medication. The reductions in Y-BOCS scores were greater and statistically dose-related for both ketamine doses than fentanyl (dose [linear], F(1, 9) = 6.5, p = 0.031). Score changes for all treatments were maximal at 1-2 h with a steady separation of scores out to 168 h. Ketamine was associated with short-term dissociative and cardiovascular effects. CONCLUSIONS We provide further preliminary evidence for the efficacy and tolerability of IM ketamine in an outpatient cohort of OCD. Additional work is required to establish the optimal dosing regimen and longer-term role of ketamine for OCD. These findings are encouraging given the well-known limitations that exist for treatments in this area.
Collapse
Affiliation(s)
- Ben Beaglehole
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - Paul Glue
- Department of Psychological Medicine, University of Otago, Dunedin, New Zealand
| | - Shona Neehoff
- Department of Psychological Medicine, University of Otago, Dunedin, New Zealand
| | - Shabah Shadli
- Department of Psychology, University of Otago, Dunedin, New Zealand
- School of Psychology, Charles Sturt University, Bathurst, NSW, Australia
| | - Neil McNaughton
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Bridget Kimber
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - Chrissie Muirhead
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - Aroha de Bie
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - Rachel Day-Brown
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | | |
Collapse
|
7
|
Raja SM, Guptill JT, Mack M, Peterson M, Byard S, Twieg R, Jordan L, Rich N, Castledine R, Bourne S, Wilmshurst M, Oxendine S, Avula SG, Zuleta H, Quigley P, Lawson S, McQuaker SJ, Ahmadkhaniha R, Appelbaum LG, Kowalski K, Barksdale CT, Gufford BT, Awan A, Sancho AR, Moore MC, Berrada K, Cogan GB, DeLaRosa J, Radcliffe J, Pao M, Kennedy M, Lawrence Q, Goldfeder L, Amanfo L, Zanos P, Gilbert JR, Morris PJ, Moaddel R, Gould TD, Zarate CA, Thomas CJ. A Phase 1 Assessment of the Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of (2R,6R)-Hydroxynorketamine in Healthy Volunteers. Clin Pharmacol Ther 2024; 116:1314-1324. [PMID: 39054770 PMCID: PMC11479831 DOI: 10.1002/cpt.3391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
(R,S)-Ketamine (ketamine) is a dissociative anesthetic that also possesses analgesic and antidepressant activity. Undesirable dissociative side effects and misuse potential limit expanded use of ketamine in several mental health disorders despite promising clinical activity and intensifying medical need. (2R,6R)-Hydroxynorketamine (RR-HNK) is a metabolite of ketamine that lacks anesthetic and dissociative activity but maintains antidepressant and analgesic activity in multiple preclinical models. To enable future assessments in selected human indications, we report the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of RR-HNK in a Phase 1 study in healthy volunteers (NCT04711005). A six-level single-ascending dose (SAD) (0.1-4 mg/kg) and a two-level multiple ascending dose (MAD) (1 and 2 mg/kg) study was performed using a 40-minute IV administration emulating the common practice for ketamine administration for depression. Safety assessments showed RR-HNK possessed a minimal adverse event profile and no serious adverse events at all doses examined. Evaluations of dissociation and sedation demonstrated that RR-HNK did not possess anesthetic or dissociative characteristics in the doses examined. RR-HNK PK parameters were measured in both the SAD and MAD studies and exhibited dose-proportional increases in exposure. Quantitative electroencephalography (EEG) measurements collected as a PD parameter based on preclinical findings and ketamine's established effect on gamma-power oscillations demonstrated increases of gamma power in some participants at the lower/mid-range doses examined. Cerebrospinal fluid examination confirmed RR-HNK exposure within the central nervous system (CNS). Collectively, these data demonstrate RR-HNK is well tolerated with an acceptable PK profile and promising PD outcomes to support the progression into Phase 2.
Collapse
Affiliation(s)
- Shruti M. Raja
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jeffrey T. Guptill
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
- Argenx BV, 9052 Gent, Belgium
| | - Michelle Mack
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | - Stephen Byard
- Quotient Sciences, Alnwick, Northumberland, NE66 2DH, England
| | - Robert Twieg
- Labcorp Bioanalytical Services, Indianapolis, IN, 46214, USA
| | - Lynn Jordan
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | | | - Samuel Bourne
- Quotient Sciences, Alnwick, Northumberland, NE66 2DH, England
| | | | - Sarah Oxendine
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | - Helen Zuleta
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Paul Quigley
- Quotient Sciences, Alnwick, Northumberland, NE66 2DH, England
| | - Sheila Lawson
- Quotient Sciences, Alnwick, Northumberland, NE66 2DH, England
| | | | - Reza Ahmadkhaniha
- National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 22124, USA
| | - Lawrence G. Appelbaum
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kevin Kowalski
- Labcorp Bioanalytical Services, Indianapolis, IN, 46214, USA
| | | | - Brandon T. Gufford
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Asaad Awan
- Office of the Director, Intramural Research Program, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alfredo R. Sancho
- Office of the Director, Intramural Research Program, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Max C. Moore
- Drug Discovery and Development Program, Frederick National Laboratory, Fredrick, MD, 21701, USA
| | - Karim Berrada
- Drug Discovery and Development Program, Frederick National Laboratory, Fredrick, MD, 21701, USA
| | - Gregory B. Cogan
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jesse DeLaRosa
- Duke Early Phase Research Unit, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jeanne Radcliffe
- Office of the Clinical Director, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Maryland Pao
- Office of the Clinical Director, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | - Lisa Goldfeder
- Office of the Director, Intramural Research Program, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Leslie Amanfo
- Office of the Director, Intramural Research Program, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Panos Zanos
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus
| | - Jessica R Gilbert
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Patrick J. Morris
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville MD, 20850, USA
| | - Ruin Moaddel
- National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD, 22124, USA
| | - Todd D. Gould
- Departments of Psychiatry, Pharmacology, and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Baltimore Veterans Affairs Medical Center, Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA
| | - Carlos A. Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Craig J. Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville MD, 20850, USA
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
8
|
Brown KA, Ajibola MI, Gould TD. Rapid Hippocampal Synaptic Potentiation Induced by Ketamine Metabolite ( 2R , 6R )-Hydroxynorketamine Persistently Primes Synaptic Plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619152. [PMID: 39484512 PMCID: PMC11526997 DOI: 10.1101/2024.10.18.619152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The pharmacologically active ( R , S )-ketamine (ketamine) metabolite ( 2R , 6R )-hydroxynorketamine (HNK) maintains ketamine's preclinical antidepressant profile without adverse effects. While hypotheses have been proposed to explain how ketamine and its metabolites initiate their antidepressant-relevant effects, it remains unclear how sustained therapeutic actions arise following drug elimination. To distinguish the physiological mechanisms involved in the rapid from sustained actions of HNK, we utilized extracellular electrophysiology combined with pharmacology to develop an in vitro hippocampal slice incubation model that exhibited pharmacological fidelity to the 1) rapid synaptic potentiation induced by HNK at the Schaffer collateral-CA1 (SC-CA1) synapse during bath-application to slices collected from mice, and 2) maintenance of metaplastic (priming) activity that lowered the threshold for N- methyl-D-aspartate receptor (NMDAR) activation-dependent long-term potentiation (LTP) hours after in vivo dosing. We then used this model to reveal novel druggable mechanisms engaged in HNK's temporally-sensitive antidepressant synaptic actions, finding that the induction of synaptic potentiation by HNK did not require NMDAR activity, but NMDAR activity was necessary to maintain synaptic priming. HNK required protein kinase A (PKA) activity to rapidly potentiate SC-CA1 neurotransmission to facilitate synaptic priming that persistently promoted LTP formation. HNK's rapid actions were blocked by inhibitors of adenylyl cyclase 1 (AC1), but not an AC5 inhibitor. We conclude that HNK rapidly potentiates SC-CA1 synaptic efficacy, which then stimulates priming mechanisms that persistently favor antidepressant-relevant plasticity. Targeting such priming mechanisms may be an effective antidepressant strategy, and using approaches such as our incubation model may aid in revealing novel pharmacological targets.
Collapse
|
9
|
Kawczak P, Feszak I, Bączek T. Ketamine, Esketamine, and Arketamine: Their Mechanisms of Action and Applications in the Treatment of Depression and Alleviation of Depressive Symptoms. Biomedicines 2024; 12:2283. [PMID: 39457596 PMCID: PMC11505277 DOI: 10.3390/biomedicines12102283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Research over the past years has compared the enantiomers (S)-ketamine (esketamine) and (R)-ketamine (arketamine) of the previously known racemic mixture called ketamine (R/S-ketamine). Esketamine has been found to be more potent, offering three times stronger analgesic effects and 1.5 times greater anesthetic efficacy than arketamine. It provides smoother anesthesia with fewer side effects and is widely used in clinical settings due to its neuroprotective, bronchodilatory, and antiepileptic properties. Approved by the FDA and EMA in 2019, esketamine is currently used alongside SSRIs or SNRIs for treatment-resistant depression (TRD). On the other hand, arketamine has shown potential for treating neurological disorders such as Alzheimer's, Parkinson's, and multiple sclerosis, offering possible antidepressant effects and anti-inflammatory benefits. While esketamine is already in clinical use, arketamine's future depends on further research to address its safety, efficacy, and optimal dosing. Both enantiomers hold significant clinical value, with esketamine excelling in anesthesia, and arketamine showing promise in neurological and psychiatric treatments.
Collapse
Affiliation(s)
- Piotr Kawczak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
| | - Igor Feszak
- Institute of Health Sciences, Pomeranian University in Słupsk, 76-200 Słupsk, Poland;
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
- Department of Nursing and Medical Rescue, Institute of Health Sciences, Pomeranian University in Słupsk, 76-200 Słupsk, Poland
| |
Collapse
|
10
|
Glue P, Loo C, Fam J, Lane HY, Young AH, Surman P. Extended-release ketamine tablets for treatment-resistant depression: a randomized placebo-controlled phase 2 trial. Nat Med 2024; 30:2004-2009. [PMID: 38914860 PMCID: PMC11271411 DOI: 10.1038/s41591-024-03063-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 05/08/2024] [Indexed: 06/26/2024]
Abstract
Ketamine has rapid-onset antidepressant activity in patients with treatment-resistant major depression (TRD). The safety and tolerability of racemic ketamine may be improved if given orally, as an extended-release tablet (R-107), compared with other routes of administration. In this phase 2 multicenter clinical trial, male and female adult patients with TRD and Montgomery-Asberg Depression Rating Scale (MADRS) scores ≥20 received open-label R-107 tablets 120 mg per day for 5 days and were assessed on day 8 (enrichment phase). On day 8, responders (MADRS scores ≤12 and reduction ≥50%) were randomized on a 1:1:1:1:1 basis to receive double-blind R-107 doses of 30, 60, 120 or 180 mg, or placebo, twice weekly for a further 12 weeks. Nonresponders on day 8 exited the study. The primary endpoint was least square mean change in MADRS for each active treatment compared with placebo at 13 weeks, starting with the 180 mg dose, using a fixed sequence step-down closed test procedure. Between May 2019 and August 2021, 329 individuals were screened for eligibility, 231 entered the open-label enrichment phase (days 1-8) and 168 responders were randomized to double-blind treatment. The primary objective was met; the least square mean difference of MADRS score for the 180 mg tablet group and placebo was -6.1 (95% confidence interval 1.0 to 11.16, P = 0.019) at 13 weeks. Relapse rates during double-blind treatment showed a dose response from 70.6% for placebo to 42.9% for 180 mg. Tolerability was excellent, with no changes in blood pressure, minimal reports of sedation and minimal dissociation. The most common adverse events were headache, dizziness and anxiety. During the randomized phase of the study, most patient dosing occurred at home. R-107 tablets were effective, safe and well tolerated in a patient population with TRD, enriched for initial response to R-107 tablets. ClinicalTrials.gov registration: ACTRN12618001042235 .
Collapse
Affiliation(s)
- Paul Glue
- University of Otago, Dunedin, New Zealand.
| | - Colleen Loo
- Black Dog Institute & University of New South Wales, Sydney, New South Wales, Australia
- George Institute for Global Health, Sydney, New South Wales, Australia
| | - Johnson Fam
- National University of Singapore, Singapore, Singapore
| | - Hsien-Yuan Lane
- China Medical University, Taichung, Taiwan
- China Medical University Hospital, Taichung, Taiwan
| | - Allan H Young
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | | |
Collapse
|
11
|
Shafique H, Demers JC, Biesiada J, Golani LK, Cerne R, Smith JL, Szostak M, Witkin JM. ( R)-(-)-Ketamine: The Promise of a Novel Treatment for Psychiatric and Neurological Disorders. Int J Mol Sci 2024; 25:6804. [PMID: 38928508 PMCID: PMC11203826 DOI: 10.3390/ijms25126804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
NMDA receptor antagonists have potential for therapeutics in neurological and psychiatric diseases, including neurodegenerative diseases, epilepsy, traumatic brain injury, substance abuse disorder (SUD), and major depressive disorder (MDD). (S)-ketamine was the first of a novel class of antidepressants, rapid-acting antidepressants, to be approved for medical use. The stereoisomer, (R)-ketamine (arketamine), is currently under development for treatment-resistant depression (TRD). The compound has demonstrated efficacy in multiple animal models. Two clinical studies disclosed efficacy in TRD and bipolar depression. A study by the drug sponsor recently failed to reach a priori clinical endpoints but post hoc analysis revealed efficacy. The clinical value of (R)-ketamine is supported by experimental data in humans and rodents, showing that it is less sedating, does not produce marked psychotomimetic or dissociative effects, has less abuse potential than (S)-ketamine, and produces efficacy in animal models of a range of neurological and psychiatric disorders. The mechanisms of action of the antidepressant effects of (R)-ketamine are hypothesized to be due to NMDA receptor antagonism and/or non-NMDA receptor mechanisms. We suggest that further clinical experimentation with (R)-ketamine will create novel and improved medicines for some of the neurological and psychiatric disorders that are underserved by current medications.
Collapse
Affiliation(s)
- Hana Shafique
- Duke University School of Medicine, Durham, NC 27710, USA
| | - Julie C. Demers
- Indiana University-Purdue University, Indianapolis, IN 46202, USA; (J.C.D.); (J.B.)
| | - Julia Biesiada
- Indiana University-Purdue University, Indianapolis, IN 46202, USA; (J.C.D.); (J.B.)
| | - Lalit K. Golani
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA;
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN 46260, USA; (R.C.); (J.L.S.)
| | - Jodi L. Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN 46260, USA; (R.C.); (J.L.S.)
| | - Marta Szostak
- Department of Psychology, SWPS University, 03-815 Warsaw, Poland;
| | - Jeffrey M. Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN 46260, USA; (R.C.); (J.L.S.)
- Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN 46260, USA
| |
Collapse
|
12
|
Das V, Basovich MB, Thomas CJ, Kroin JS, Buvanendran A, McCarthy RJ. A Pharmacological Evaluation of the Analgesic Effect and Hippocampal Protein Modulation of the Ketamine Metabolite (2R,6R)-Hydroxynorketamine in Murine Pain Models. Anesth Analg 2024; 138:1094-1106. [PMID: 37319016 PMCID: PMC10721716 DOI: 10.1213/ane.0000000000006590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
BACKGROUND The ketamine metabolite (2R,6R)-hydroxynorketamine ([2R,6R]-HNK) has analgesic efficacy in murine models of acute, neuropathic, and chronic pain. The purpose of this study was to evaluate the α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) dependence of (2R,6R)-HNK analgesia and protein changes in the hippocampus in murine pain models administered (2R,6R)-HNK or saline. METHODS All mice were CD-1 IGS outbred mice. Male and female mice underwent plantar incision (PI) (n = 60), spared nerve injury (SNI) (n = 64), or tibial fracture (TF) (n = 40) surgery on the left hind limb. Mechanical allodynia was assessed using calibrated von Frey filaments. Mice were randomized to receive saline, naloxone, or the brain-penetrating AMPA blocker (1,2,3,4-Tetrahydro-6-nitro-2,3-dioxobenzo [f]quinoxaline-7-sulfonamide [NBQX]) before (2R,6R)-HNK 10 mg/kg, and this was repeated for 3 consecutive days. The area under the paw withdrawal threshold by time curve for days 0 to 3 (AUC 0-3d ) was calculated using trapezoidal integration. The AUC 0-3d was converted to percent antiallodynic effect using the baseline and pretreatment values as 0% and 100%. In separate experiments, a single dose of (2R,6R)-HNK 10 mg/kg or saline was administered to naive mice (n = 20) and 2 doses to PI (n = 40), SNI injury (n = 40), or TF (n = 40) mice. Naive mice were tested for ambulation, rearing, and motor strength. Immunoblot studies of the right hippocampal tissue were performed to evaluate the ratios of glutamate ionotropic receptor (AMPA) type subunit 1 (GluA1), glutamate ionotropic receptor (AMPA) type subunit 2 (GluA2), phosphorylated voltage-gated potassium channel 2.1 (p-Kv2.1), phosphorylated-calcium/calmodulin-dependent protein kinase II (p-CaMKII), brain-derived neurotrophic factor (BDNF), phosphorylated protein kinase B (p-AKT), phosphorylated extracellular signal-regulated kinase (p-ERK), CXC chemokine receptor 4 (CXCR4), phosphorylated eukaryotic translation initiation factor 2 subunit 1 (p-EIF2SI), and phosphorylated eukaryotic translation initiation factor 4E (p-EIF4E) to glyceraldehyde 3-phosphate dehydrogenase (GAPDH). RESULTS No model-specific gender difference in antiallodynic responses before (2R,6R)-HNK administration was observed. The antiallodynic AUC 0-3d of (2R,6R)-HNK was decreased by NBQX but not with pretreatment with naloxone or saline. The adjusted mean (95% confidence interval [CI]) antiallodynic effect of (2R,6R)-HNK in the PI, SNI, and TF models was 40.7% (34.1%-47.3%), 55.1% (48.7%-61.5%), and 54.7% (46.5%-63.0%), greater in the SNI, difference 14.3% (95% CI, 3.1-25.6; P = .007) and TF, difference 13.9% (95% CI, 1.9-26.0; P = .019) compared to the PI model. No effect of (2R,6R)-HNK on ambulation, rearing, or motor coordination was observed. Administration of (2R,6R)-HNK was associated with increased GluA1, GluA2, p-Kv2.1, and p-CaMKII and decreased BDNF ratios in the hippocampus, with model-specific variations in proteins involved in other pain pathways. CONCLUSIONS (2R,6R)-HNK analgesia is AMPA-dependent, and (2R,6R)-HNK affected glutamate, potassium, calcium, and BDNF pathways in the hippocampus. At 10 mg/kg, (2R,6R)-HNK demonstrated a greater antiallodynic effect in models of chronic compared with acute pain. Protein analysis in the hippocampus suggests that AMPA-dependent alterations in BDNF-TrkB and Kv2.1 pathways may be involved in the antiallodynic effect of (2R,6R)-HNK.
Collapse
Affiliation(s)
- Vaskar Das
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL 60612
| | - Michael B. Basovich
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL 60612
| | - Craig J. Thomas
- Division of Preclinical Innovation, Chemistry Technologies, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Jeffrey S. Kroin
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL 60612
| | | | - Robert J McCarthy
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL 60612
| |
Collapse
|
13
|
Liang G, Cao W, Tang D, Zhang H, Yu Y, Ding J, Karges J, Xiao H. Nanomedomics. ACS NANO 2024; 18:10979-11024. [PMID: 38635910 DOI: 10.1021/acsnano.3c11154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Nanomaterials have attractive physicochemical properties. A variety of nanomaterials such as inorganic, lipid, polymers, and protein nanoparticles have been widely developed for nanomedicine via chemical conjugation or physical encapsulation of bioactive molecules. Superior to traditional drugs, nanomedicines offer high biocompatibility, good water solubility, long blood circulation times, and tumor-targeting properties. Capitalizing on this, several nanoformulations have already been clinically approved and many others are currently being studied in clinical trials. Despite their undoubtful success, the molecular mechanism of action of the vast majority of nanomedicines remains poorly understood. To tackle this limitation, herein, this review critically discusses the strategy of applying multiomics analysis to study the mechanism of action of nanomedicines, named nanomedomics, including advantages, applications, and future directions. A comprehensive understanding of the molecular mechanism could provide valuable insight and therefore foster the development and clinical translation of nanomedicines.
Collapse
Affiliation(s)
- Ganghao Liang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wanqing Cao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
14
|
Deng Q, Parker E, Wu C, Zhu L, Liu TCY, Duan R, Yang L. Repurposing Ketamine in the Therapy of Depression and Depression-Related Disorders: Recent Advances and Future Potential. Aging Dis 2024; 16:804-840. [PMID: 38916735 PMCID: PMC11964445 DOI: 10.14336/ad.2024.0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/29/2024] [Indexed: 06/26/2024] Open
Abstract
Depression represents a prevalent and enduring mental disorder of significant concern within the clinical domain. Extensive research indicates that depression is very complex, with many interconnected pathways involved. Most research related to depression focuses on monoamines, neurotrophic factors, the hypothalamic-pituitary-adrenal axis, tryptophan metabolism, energy metabolism, mitochondrial function, the gut-brain axis, glial cell-mediated inflammation, myelination, homeostasis, and brain neural networks. However, recently, Ketamine, an ionotropic N-methyl-D-aspartate (NMDA) receptor antagonist, has been discovered to have rapid antidepressant effects in patients, leading to novel and successful treatment approaches for mood disorders. This review aims to summarize the latest findings and insights into various signaling pathways and systems observed in depression patients and animal models, providing a more comprehensive view of the neurobiology of anxious-depressive-like behavior. Specifically, it highlights the key mechanisms of ketamine as a rapid-acting antidepressant, aiming to enhance the treatment of neuropsychiatric disorders. Moreover, we discuss the potential of ketamine as a prophylactic or therapeutic intervention for stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Qianting Deng
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| | - Emily Parker
- Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Chongyun Wu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| | - Ling Zhu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| | - Timon Cheng-Yi Liu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| | - Rui Duan
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| | - Luodan Yang
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
15
|
Hillhouse TM, Partridge KJ, Garrett PI, Honeycutt SC, Porter JH. Effects of (2R,6R)-hydroxynorketamine in assays of acute pain-stimulated and pain-depressed behaviors in mice. PLoS One 2024; 19:e0301848. [PMID: 38640139 PMCID: PMC11029659 DOI: 10.1371/journal.pone.0301848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/22/2024] [Indexed: 04/21/2024] Open
Abstract
Ketamine has been shown to produce analgesia in various acute and chronic pain states; however, abuse liability concerns have limited its utility. The ketamine metabolite (2R,6R)-hydroxynorketamine (HNK) has been shown to produce antidepressant-like effects similar to ketamine without abuse liability concerns. (2R,6R)-HNK produces sustained analgesia in models of chronic pain, but has yet to be evaluated in models of acute pain. The present study evaluated the efficacy of acute (2R,6R)-HNK administration (one injection) in assays of pain-stimulated (52- and 56-degree hot plate test and acetic acid writhing) and pain-depressed behavior (locomotor activity and rearing) in male and female C57BL/6 mice. In assays of pain-stimulated behaviors, (2R,6R)-HNK (1-32 mg/kg) failed to produce antinociception in the 52- and 56-degree hot plate and acetic acid writhing assays. In assays of pain-depressed behaviors, 0.56% acetic acid produced a robust depression of locomotor activity and rearing that was not blocked by pretreatment of (2R,6R)-HNK (3.2-32 mg/kg). The positive controls morphine (hot plate test) and ketoprofen (acetic acid writhing, locomotor activity, and rearing) blocked pain-stimulated and pain-depressed behaviors. Finally, the effects of intermittent (2R,6R)-HNK administration were evaluated in 52-degree hot plate and pain-depressed locomotor activity and rearing. Intermittent administration of (2R,6R)-HNK also did not produce antinociceptive effects in the hot plate or pain-depressed locomotor activity assays. These results suggest that (2R,6R)-HNK is unlikely to have efficacy in treating acute pain; however, the efficacy of (2R,6R)-HNK in chronic pain states should continue to be evaluated.
Collapse
Affiliation(s)
- Todd M. Hillhouse
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin, United States of America
| | - Kaitlyn J. Partridge
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin, United States of America
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Patrick I. Garrett
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Sarah C. Honeycutt
- Department of Psychology, University at Buffalo, Buffalo, New York, United States of America
| | - Joseph H. Porter
- Department of Psychology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Psychological Sciences, Northern Michigan, Marquette, Michigan, United States of America
| |
Collapse
|
16
|
Vallianatou T, de Souza Anselmo C, Tsiara I, Bèchet NB, Lundgaard I, Globisch D. Identification of New Ketamine Metabolites and Their Detailed Distribution in the Mammalian Brain. ACS Chem Neurosci 2024; 15:1335-1341. [PMID: 38506562 PMCID: PMC10995950 DOI: 10.1021/acschemneuro.4c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
Ketamine is a common anesthetic used in human and veterinary medicine. This drug has recently received increased medical and scientific attention due to its indications for neurological diseases. Despite being applied for decades, ketamine's entire metabolism and pharmacological profile have not been elucidated yet. Therefore, insights into the metabolism and brain distribution are important toward identification of neurological effects. Herein, we have investigated ketamine and its metabolites in the pig brain, cerebrospinal fluid, and plasma using mass spectrometric and metabolomics analysis. We discovered previously unknown metabolites and validated their chemical structures. Our comprehensive analysis of the brain distribution of ketamine and 30 metabolites describes significant regional differences detected mainly for phase II metabolites. Elevated levels of these metabolites were identified in brain regions linked to clearance through the cerebrospinal fluid. This study provides the foundation for multidisciplinary studies of ketamine metabolism and the elucidation of neurological effects by ketamine.
Collapse
Affiliation(s)
- Theodosia Vallianatou
- Department
of Chemistry-BMC, Science for Life Laboratory, Uppsala University, Box 576, 75123 Uppsala, Sweden
| | - Carina de Souza Anselmo
- Department
of Chemistry-BMC, Science for Life Laboratory, Uppsala University, Box 576, 75123 Uppsala, Sweden
| | - Ioanna Tsiara
- Department
of Chemistry-BMC, Science for Life Laboratory, Uppsala University, Box 576, 75123 Uppsala, Sweden
| | - Nicholas B. Bèchet
- Department
of Experimental Medical Science, Lund University, 22362 Lund, Sweden
- Wallenberg
Centre for Molecular Medicine, Lund University, 22362 Lund, Sweden
| | - Iben Lundgaard
- Department
of Experimental Medical Science, Lund University, 22362 Lund, Sweden
- Wallenberg
Centre for Molecular Medicine, Lund University, 22362 Lund, Sweden
| | - Daniel Globisch
- Department
of Chemistry-BMC, Science for Life Laboratory, Uppsala University, Box 576, 75123 Uppsala, Sweden
| |
Collapse
|
17
|
Zhou L, Duan J. The role of NMDARs in the anesthetic and antidepressant effects of ketamine. CNS Neurosci Ther 2024; 30:e14464. [PMID: 37680076 PMCID: PMC11017467 DOI: 10.1111/cns.14464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND As a phencyclidine (PCP) analog, ketamine can generate rapid-onset and substantial anesthetic effects. Contrary to traditional anesthetics, ketamine is a dissociative anesthetic and can induce loss of consciousness in patients. Recently, the subanaesthetic dose of ketamine was found to produce rapid-onset and lasting antidepressant effects. AIM However, how different concentrations of ketamine can induce diverse actions remains unclear. Furthermore, the molecular mechanisms underlying the NMDAR-mediated anesthetic and antidepressant effects of ketamine are not fully understood. METHOD In this review, we have introduced ketamine and its metabolism, summarized recent advances in the molecular mechanisms underlying NMDAR inhibition in the anesthetic and antidepressant effects of ketamine, explored the possible functions of NMDAR subunits in the effects of ketamine, and discussed the future directions of ketamine-based anesthetic and antidepressant drugs. RESULT Both the anesthetic and antidepressant effects of ketamine were thought to be mediated by N-methyl-D-aspartate receptor (NMDAR) inhibition. CONCLUSION The roles of NMDARs have been extensively studied in the anaesthetic effects of ketamine. However, the roles of NMDARs in antidepressant effects of ketamine are complicated and controversial.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Pharmacology, College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Jingjing Duan
- Department of Anatomy and Neurobiology, Zhongshan School of MedicineSunYat‐sen UniversityGuangzhouChina
| |
Collapse
|
18
|
De Gasperi R, Gama Sosa MA, Perez Garcia G, Perez GM, Pryor D, Morrison CLA, Lind R, Abutarboush R, Kawoos U, Statz JK, Patterson J, Hof PR, Zhu CW, Ahlers ST, Cook DG, Elder GA. Metabotropic Glutamate Receptor 2 Expression Is Chronically Elevated in Male Rats With Post-Traumatic Stress Disorder Related Behavioral Traits Following Repetitive Low-Level Blast Exposure. J Neurotrauma 2024; 41:714-733. [PMID: 37917117 PMCID: PMC10902502 DOI: 10.1089/neu.2023.0252] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Many military veterans who experienced blast-related traumatic brain injuries in the conflicts in Iraq and Afghanistan currently suffer from chronic cognitive and mental health problems that include depression and post-traumatic stress disorder (PTSD). Male rats exposed to repetitive low-level blast develop cognitive and PTSD-related behavioral traits that are present for more than 1 year after exposure. We previously reported that a group II metabotropic receptor (mGluR2/3) antagonist reversed blast-induced behavioral traits. In this report, we explored mGluR2/3 expression following blast exposure in male rats. Western blotting revealed that mGluR2 protein (but not mGluR3) was increased in all brain regions studied (anterior cortex, hippocampus, and amygdala) at 43 or 52 weeks after blast exposure but not at 2 weeks or 6 weeks. mGluR2 RNA was elevated at 52 weeks while mGluR3 was not. Immunohistochemical staining revealed no changes in the principally presynaptic localization of mGluR2 by blast exposure. Administering the mGluR2/3 antagonist LY341495 after behavioral traits had emerged rapidly reversed blast-induced effects on novel object recognition and cued fear responses 10 months following blast exposure. These studies support alterations in mGluR2 receptors as a key pathophysiological event following blast exposure and provide further support for group II metabotropic receptors as therapeutic targets in the neurobehavioral effects that follow blast injury.
Collapse
Affiliation(s)
- Rita De Gasperi
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Miguel A. Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Georgina Perez Garcia
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gissel M. Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Dylan Pryor
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Chenel L-A. Morrison
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Northeast Regional Alliance Health Careers Opportunity Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rachel Lind
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| | - Rania Abutarboush
- Department of Neurotrauma, Naval Medical Research Command, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Naval Medical Research Command, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
| | - Jonathan K. Statz
- Department of Neurotrauma, Naval Medical Research Command, Silver Spring, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, Maryland, USA
| | - Jacob Patterson
- Department of Neurotrauma, Naval Medical Research Command, Silver Spring, Maryland, USA
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carolyn W. Zhu
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephen T. Ahlers
- Department of Neurotrauma, Naval Medical Research Command, Silver Spring, Maryland, USA
| | - David G. Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
- Department of Medicine, Pharmacology, and Psychiatry, University of Washington, Seattle, Washington, USA
- Department of Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Gregory A. Elder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Alzheimer's Disease Research Center and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, New York, USA
| |
Collapse
|
19
|
Guhathakurta D, Petrušková A, Akdaş EY, Perelló-Amorós B, Frischknecht R, Anni D, Weiss EM, Walter M, Fejtová A. Hydroxynorketamine, but not ketamine, acts via α7 nicotinic acetylcholine receptor to control presynaptic function and gene expression. Transl Psychiatry 2024; 14:47. [PMID: 38253622 PMCID: PMC10803733 DOI: 10.1038/s41398-024-02744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Ketamine is clinically used fast-acting antidepressant. Its metabolite hydroxynorketamine (HNK) shows a robust antidepressant effect in animal studies. It is unclear, how these chemically distinct compounds converge on similar neuronal effects. While KET acts mostly as N-methyl-d-aspartate receptor (NMDAR) antagonist, the molecular target of HNK remains enigmatic. Here, we show that KET and HNK converge on rapid inhibition of glutamate release by reducing the release competence of synaptic vesicles and induce nuclear translocation of pCREB that controls expression of neuroplasticity genes connected to KET- and HNK-mediated antidepressant action. Ro25-6981, a selective antagonist of GluN2B, mimics effect of KET indicating that GluN2B-containing NMDAR might mediate the presynaptic effect of KET. Selective antagonist of α7 nicotinic acetylcholine receptors (α7nAChRs) or genetic deletion of Chrna7, its pore-forming subunit, fully abolishes HNK-induced synaptic and nuclear regulations, but leaves KET-dependent cellular effects unaffected. Thus, KET or HNK-induced modulation of synaptic transmission and nuclear translocation of pCREB can be mediated by selective signaling via NMDAR or α7nAChRs, respectively. Due to the rapid metabolism of KET to HNK, it is conceivable that subsequent modulation of glutamatergic and cholinergic neurotransmission affects circuits in a cell-type-specific manner and contributes to the therapeutic potency of KET. This finding promotes further exploration of new combined medications for mood disorders.
Collapse
Affiliation(s)
- Debarpan Guhathakurta
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Aneta Petrušková
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Enes Yağız Akdaş
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bartomeu Perelló-Amorós
- Department of Biology, Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Renato Frischknecht
- Department of Biology, Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Daniela Anni
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Eva-Maria Weiss
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Jena, Jena, Germany
| | - Anna Fejtová
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
20
|
Elder GA, Gama Sosa MA, De Gasperi R, Perez Garcia G, Perez GM, Abutarboush R, Kawoos U, Zhu CW, Janssen WGM, Stone JR, Hof PR, Cook DG, Ahlers ST. The Neurovascular Unit as a Locus of Injury in Low-Level Blast-Induced Neurotrauma. Int J Mol Sci 2024; 25:1150. [PMID: 38256223 PMCID: PMC10816929 DOI: 10.3390/ijms25021150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Blast-induced neurotrauma has received much attention over the past decade. Vascular injury occurs early following blast exposure. Indeed, in animal models that approximate human mild traumatic brain injury or subclinical blast exposure, vascular pathology can occur in the presence of a normal neuropil, suggesting that the vasculature is particularly vulnerable. Brain endothelial cells and their supporting glial and neuronal elements constitute a neurovascular unit (NVU). Blast injury disrupts gliovascular and neurovascular connections in addition to damaging endothelial cells, basal laminae, smooth muscle cells, and pericytes as well as causing extracellular matrix reorganization. Perivascular pathology becomes associated with phospho-tau accumulation and chronic perivascular inflammation. Disruption of the NVU should impact activity-dependent regulation of cerebral blood flow, blood-brain barrier permeability, and glymphatic flow. Here, we review work in an animal model of low-level blast injury that we have been studying for over a decade. We review work supporting the NVU as a locus of low-level blast injury. We integrate our findings with those from other laboratories studying similar models that collectively suggest that damage to astrocytes and other perivascular cells as well as chronic immune activation play a role in the persistent neurobehavioral changes that follow blast injury.
Collapse
Affiliation(s)
- Gregory A. Elder
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA;
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; (M.A.G.S.); (R.D.G.)
- Mount Sinai Alzheimer’s Disease Research Center and the Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.W.Z.); (P.R.H.)
| | - Miguel A. Gama Sosa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; (M.A.G.S.); (R.D.G.)
- General Medical Research Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468, USA
| | - Rita De Gasperi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA; (M.A.G.S.); (R.D.G.)
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
| | - Georgina Perez Garcia
- Department of Neurology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, USA;
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
| | - Gissel M. Perez
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
| | - Rania Abutarboush
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical ResearchCommand, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (R.A.); (U.K.); (S.T.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Usmah Kawoos
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical ResearchCommand, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (R.A.); (U.K.); (S.T.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Carolyn W. Zhu
- Mount Sinai Alzheimer’s Disease Research Center and the Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.W.Z.); (P.R.H.)
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA;
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - William G. M. Janssen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James R. Stone
- Department of Radiology and Medical Imaging, University of Virginia, 480 Ray C Hunt Drive, Charlottesville, VA 22903, USA;
| | - Patrick R. Hof
- Mount Sinai Alzheimer’s Disease Research Center and the Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.W.Z.); (P.R.H.)
- Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David G. Cook
- Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, 1660 S Columbian Way, Seattle, WA 98108, USA;
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Stephen T. Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical ResearchCommand, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA; (R.A.); (U.K.); (S.T.A.)
| |
Collapse
|
21
|
Jóźwiak-Bębenista M, Sokołowska P, Wiktorowska-Owczarek A, Kowalczyk E, Sienkiewicz M. Ketamine - A New Antidepressant Drug with Anti-Inflammatory Properties. J Pharmacol Exp Ther 2024; 388:134-144. [PMID: 37977808 DOI: 10.1124/jpet.123.001823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/04/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023] Open
Abstract
Ketamine is a new, potent and rapid-acting antidepressant approved for therapy of treatment-resistant depression, which has a different mechanism of action than currently-available antidepressant therapies. It owes its uniquely potent antidepressant properties to a complex mechanism of action, which currently remains unclear. However, it is thought that it acts by modulating the functioning of the glutamatergic system, which plays an important role in the process of neuroplasticity associated with depression. However, preclinical and clinical studies have also found ketamine to reduce inflammation, either directly or indirectly (by activating neuroprotective branches of the kynurenine pathway), among patients exhibiting higher levels of inflammation. Inflammation and immune system activation are believed to play key roles in the development and course of depression. Therefore, the present work examines the role of the antidepressant effect of ketamine and its anti-inflammatory properties in the treatment of depression. SIGNIFICANCE STATEMENT: The present work examines the relationship between the antidepressant effect of ketamine and its anti-inflammatory properties, and the resulting benefits in treatment-resistant depression (TRD). The antidepressant mechanism of ketamine remains unclear, and there is an urgent need to develop new therapeutic strategies for treatment of depression, particularly TRD.
Collapse
Affiliation(s)
- Marta Jóźwiak-Bębenista
- Department of Pharmacology and Toxicology (M.J.-B., P.S., A.W.-O., E.K.) and Department of Pharmaceutical Microbiology and Microbiological Diagnostics (M.S.), Medical University of Lodz, Lodz, Poland
| | - Paulina Sokołowska
- Department of Pharmacology and Toxicology (M.J.-B., P.S., A.W.-O., E.K.) and Department of Pharmaceutical Microbiology and Microbiological Diagnostics (M.S.), Medical University of Lodz, Lodz, Poland
| | - Anna Wiktorowska-Owczarek
- Department of Pharmacology and Toxicology (M.J.-B., P.S., A.W.-O., E.K.) and Department of Pharmaceutical Microbiology and Microbiological Diagnostics (M.S.), Medical University of Lodz, Lodz, Poland
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology (M.J.-B., P.S., A.W.-O., E.K.) and Department of Pharmaceutical Microbiology and Microbiological Diagnostics (M.S.), Medical University of Lodz, Lodz, Poland
| | - Monika Sienkiewicz
- Department of Pharmacology and Toxicology (M.J.-B., P.S., A.W.-O., E.K.) and Department of Pharmaceutical Microbiology and Microbiological Diagnostics (M.S.), Medical University of Lodz, Lodz, Poland
| |
Collapse
|
22
|
Riggs LM, Pereira EFR, Thompson SM, Gould TD. cAMP-dependent protein kinase signaling is required for ( 2R,6R)-hydroxynorketamine to potentiate hippocampal glutamatergic transmission. J Neurophysiol 2024; 131:64-74. [PMID: 38050689 PMCID: PMC11286304 DOI: 10.1152/jn.00326.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023] Open
Abstract
(2R,6R)-Hydroxynorketamine (HNK) is a ketamine metabolite that shows rapid antidepressant-like effects in preclinical studies and lacks the adverse N-methyl-d-aspartate receptor (NMDAR) inhibition-related properties of ketamine. Investigating how (2R,6R)-HNK exerts its antidepressant actions may be informative in the design of novel pharmacotherapies with improved safety and efficacy. We sought to identify the molecular substrates through which (2R,6R)-HNK induces functional changes at excitatory synapses, a prevailing hypothesis for how rapid antidepressant effects are initiated. We recorded excitatory postsynaptic potentials in hippocampal slices from male Wistar Kyoto rats, which have impaired hippocampal plasticity and are resistant to traditional antidepressants. (2R,6R)-HNK (10 µM) led to a rapid potentiation of electrically evoked excitatory postsynaptic potentials at Schaffer collateral CA1 stratum radiatum synapses. This potentiation was associated with a decrease in paired pulse facilitation, suggesting an increase in the probability of glutamate release. The (2R,6R)-HNK-induced potentiation was blocked by inhibiting either cyclic adenosine monophosphate (cAMP) or its downstream target, cAMP-dependent protein kinase (PKA). As cAMP is a potent regulator of brain-derived neurotrophic factor (BDNF) release, we assessed whether (2R,6R)-HNK exerts this acute potentiation through a rapid increase in cAMP-dependent BDNF-TrkB signaling. We found that the cAMP-PKA-dependent potentiation was not dependent on TrkB activation by BDNF, which functionally delimits the acute synaptic effects of (2R,6R)-HNK from its sustained BDNF-dependent actions in vivo. These results suggest that, by potentiating glutamate release via cAMP-PKA signaling, (2R,6R)-HNK initiates acute adaptations in fast excitatory synaptic transmission that promote structural plasticity leading to maintained antidepressant action.NEW & NOTEWORTHY Ketamine is a rapid-acting antidepressant and its preclinical effects are mimicked by its (2R,6R)-(HNK) metabolite. We found that (2R,6R)-HNK initiates acute adaptations in fast excitatory synaptic transmission by potentiating glutamate release via cAMP-PKA signaling at hippocampal Schaffer collateral synapses. This cAMP-PKA-dependent potentiation was not dependent on TrkB activation by BDNF, which functionally delimits the rapid synaptic effects of (2R,6R)-HNK from its sustained BDNF-dependent actions that are thought to maintain antidepressant action in vivo.
Collapse
Affiliation(s)
- Lace M Riggs
- Program in Neuroscience and Training Program in Integrative Membrane Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Edna F R Pereira
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Scott M Thompson
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Veterans Affairs Maryland Health Care System, Baltimore, Maryland, United States
| |
Collapse
|
23
|
Liu AR, Lin ZJ, Wei M, Tang Y, Zhang H, Peng XG, Li Y, Zheng YF, Tan Z, Zhou LJ, Feng X. The potent analgesia of intrathecal 2R, 6R-HNK via TRPA1 inhibition in LF-PENS-induced chronic primary pain model. J Headache Pain 2023; 24:141. [PMID: 37858040 PMCID: PMC10585932 DOI: 10.1186/s10194-023-01667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Chronic primary pain (CPP) is an intractable pain of unknown cause with significant emotional distress and/or dysfunction that is a leading factor of disability globally. The lack of a suitable animal model that mimic CPP in humans has frustrated efforts to curb disease progression. 2R, 6R-hydroxynorketamine (2R, 6R-HNK) is the major antidepressant metabolite of ketamine and also exerts antinociceptive action. However, the analgesic mechanism and whether it is effective for CPP are still unknown. METHODS Based on nociplastic pain is evoked by long-term potentiation (LTP)-inducible high- or low-frequency electrical stimulation (HFS/LFS), we wanted to develop a novel CPP mouse model with mood and cognitive comorbidities by noninvasive low-frequency percutaneous electrical nerve stimulation (LF-PENS). Single/repeated 2R, 6R-HNK or other drug was intraperitoneally (i.p.) or intrathecally (i.t.) injected into naïve or CPP mice to investigate their analgesic effect in CPP model. A variety of behavioral tests were used to detect the changes in pain, mood and memory. Immunofluorescent staining, western blot, reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) and calcium imaging of in cultured dorsal root ganglia (DRG) neurons by Fluo-8-AM were used to elucidate the role and mechanisms of 2R, 6R-HNK in vivo or in vitro. RESULTS Intrathecal 2R, 6R-HNK, rather than intraperitoneal 2R, 6R-HNK or intrathecal S-Ketamine, successfully mitigated HFS-induced pain. Importantly, intrathecal 2R, 6R-HNK displayed effective relief of bilateral pain hypersensitivity and depressive and cognitive comorbidities in a dose-dependent manner in LF-PENS-induced CPP model. Mechanically, 2R, 6R-HNK markedly attenuated neuronal hyperexcitability and the upregulation of calcitonin gene-related peptide (CGRP), transient receptor potential ankyrin 1 (TRPA1) or vanilloid-1 (TRPV1), and vesicular glutamate transporter-2 (VGLUT2) in peripheral nociceptive pathway. In addition, 2R, 6R-HNK suppressed calcium responses and CGRP overexpression in cultured DRG neurons elicited by the agonists of TRPA1 or/and TRPV1. Strikingly, the inhibitory effects of 2R, 6R-HNK on these pain-related molecules and mechanical allodynia were substantially occluded by TRPA1 antagonist menthol. CONCLUSIONS In the newly designed CPP model, our findings highlighted the potential utility of intrathecal 2R, 6R-HNK for preventing and therapeutic modality of CPP. TRPA1-mediated uprgulation of CGRP and neuronal hyperexcitability in nociceptive pathways may undertake both unique characteristics and solving process of CPP.
Collapse
Affiliation(s)
- An-Ran Liu
- Department of Anesthesiology and Pain Clinic, First Affiliated Hospital of Sun Yat-Sen University, No.58, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Zhen-Jia Lin
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Ming Wei
- Department of Anesthesiology and Pain Clinic, First Affiliated Hospital of Sun Yat-Sen University, No.58, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Yuan Tang
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Hui Zhang
- Department of Anesthesiology, Guangdong Second Provincial General Hospital, No.466, Mid Xingang Road, Haizhu District, Guangzhou, 510317, China
| | - Xiang-Ge Peng
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Ying Li
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Yu-Fan Zheng
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China
| | - Zhi Tan
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China.
| | - Li-Jun Zhou
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Guangdong Province Key Laboratory of Brain Function and Disease, Sun Yat-Sen University, No.74, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China.
| | - Xia Feng
- Department of Anesthesiology and Pain Clinic, First Affiliated Hospital of Sun Yat-Sen University, No.58, 2Nd Zhongshan Road, Yuexiu District, Guangzhou, 510080, China.
| |
Collapse
|
24
|
Beaglehole B, Glue P, Clarke M, Porter R. Multidisciplinary development of guidelines for ketamine treatment for treatment-resistant major depression disorder for use by adult specialist mental health services in New Zealand. BJPsych Open 2023; 9:e191. [PMID: 37828915 PMCID: PMC10594164 DOI: 10.1192/bjo.2023.577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/09/2023] [Accepted: 09/02/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND The evidence base for racemic ketamine treatment for treatment-resistant major depressive disorder (TRD) continues to expand, but there are major challenges translating this evidence base into routine clinical care. AIM To prepare guidelines for ketamine treatment of TRD that are suitable for routine use by publicly funded specialist mental health services. METHOD We consulted with senior leadership, clinical pharmacy, psychiatrists, nursing, service users and Māori mental health workers on issues relating to ketamine treatment. We prepared treatment guidelines taking the evidence base for ketamine treatment and the consultation into account. RESULTS Ketamine treatment guidance is reported. This offers two treatment pathways, including a test of ketamine responsiveness with intramuscular ketamine and the dominant use of oral ketamine for a 3-month course to maximise the opportunity for the short-term benefits of ketamine to accumulate. CONCLUSIONS We have responded to the challenges of translating the evidence base for ketamine treatment into a form suitable for routine care.
Collapse
Affiliation(s)
- Ben Beaglehole
- Department of Psychological Medicine, University of Otago, New Zealand
| | - Paul Glue
- Department of Psychological Medicine, University of Otago, New Zealand
| | - Mike Clarke
- Specialist Mental Health Services, Te Whatu Ora – Health New Zealand Waitaha Canterbury, New Zealand
| | - Richard Porter
- Department of Psychological Medicine, University of Otago, New Zealand
| |
Collapse
|
25
|
Weber H, Drouvé N, Kortenbrede L, El Sheikh S. A Broadly Applicable Diels-Alder-Based Synthesis of Ketamine-Related Arylcyclohexylamines. J Org Chem 2023. [PMID: 37463857 DOI: 10.1021/acs.joc.3c01226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Herein, we report the synthesis of aryl derivatives of ketamine and of ketamine's major metabolites hydroxynorketamine (HNK), norketamine (NK), and dehydronorketamine (DHNK) via a microwave-assisted Diels-Alder reaction to form the substituted cyclohexane core structure. Starting with aryl acrylic esters as dienophiles and siloxybutadienes as diene counterparts, a wide range of substituted arylcyclohexylamines was obtained after several modification steps of the initial Diels-Alder products [El Sheikh, S.; Weber, H.; Kortenbrede, L.; Drouvé, N. A broadly applicable Diels-Alder based Synthesis of Ketamine related Arylcyclohexylamines. ChemRxiv 2022, 10.26434/chemrxiv- 2022-xf1l9].
Collapse
Affiliation(s)
- Henrik Weber
- Faculty of Applied Natural Sciences, Cologne University of Applied Sciences, Campusplatz 1, 51379 Leverkusen, Germany
| | - Nils Drouvé
- Faculty of Applied Natural Sciences, Cologne University of Applied Sciences, Campusplatz 1, 51379 Leverkusen, Germany
| | - Lana Kortenbrede
- Faculty of Applied Natural Sciences, Cologne University of Applied Sciences, Campusplatz 1, 51379 Leverkusen, Germany
| | - Sherif El Sheikh
- Faculty of Applied Natural Sciences, Cologne University of Applied Sciences, Campusplatz 1, 51379 Leverkusen, Germany
| |
Collapse
|
26
|
Covey DF, Evers AS, Izumi Y, Maguire JL, Mennerick SJ, Zorumski CF. Neurosteroid enantiomers as potentially novel neurotherapeutics. Neurosci Biobehav Rev 2023; 149:105191. [PMID: 37085023 PMCID: PMC10750765 DOI: 10.1016/j.neubiorev.2023.105191] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023]
Abstract
Endogenous neurosteroids and synthetic neuroactive steroids (NAS) are important targets for therapeutic development in neuropsychiatric disorders. These steroids modulate major signaling systems in the brain and intracellular processes including inflammation, cellular stress and autophagy. In this review, we describe studies performed using unnatural enantiomers of key neurosteroids, which are physiochemically identical to their natural counterparts except for rotation of polarized light. These studies led to insights in how NAS interact with receptors, ion channels and intracellular sites of action. Certain effects of NAS show high enantioselectivity, consistent with actions in chiral environments and likely direct interactions with signaling proteins. Other effects show no enantioselectivity and even reverse enantioselectivity. The spectrum of effects of NAS enantiomers raises the possibility that these agents, once considered only as tools for preclinical studies, have therapeutic potential that complements and in some cases may exceed their natural counterparts. Here we review studies of NAS enantiomers from the perspective of their potential development as novel neurotherapeutics.
Collapse
Affiliation(s)
- Douglas F Covey
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA; Anesthesiology Washington University School of Medicine, St. Louis, MO, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Alex S Evers
- Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA; Anesthesiology Washington University School of Medicine, St. Louis, MO, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Yukitoshi Izumi
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Jamie L Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Steven J Mennerick
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F Zorumski
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
27
|
Adzic M, Lukic I, Mitic M, Glavonic E, Dragicevic N, Ivkovic S. Contribution of the opioid system to depression and to the therapeutic effects of classical antidepressants and ketamine. Life Sci 2023:121803. [PMID: 37245840 DOI: 10.1016/j.lfs.2023.121803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Major depressive disorder (MDD) afflicts approximately 5 % of the world population, and about 30-50 % of patients who receive classical antidepressant medications do not achieve complete remission (treatment resistant depressive patients). Emerging evidence suggests that targeting opioid receptors mu (MOP), kappa (KOP), delta (DOP), and the nociceptin/orphanin FQ receptor (NOP) may yield effective therapeutics for stress-related psychiatric disorders. As depression and pain exhibit significant overlap in their clinical manifestations and molecular mechanisms involved, it is not a surprise that opioids, historically used to alleviate pain, emerged as promising and effective therapeutic options in the treatment of depression. The opioid signaling is dysregulated in depression and numerous preclinical studies and clinical trials strongly suggest that opioid modulation can serve as either an adjuvant or even an alternative to classical monoaminergic antidepressants. Importantly, some classical antidepressants require the opioid receptor modulation to exert their antidepressant effects. Finally, ketamine, a well-known anesthetic whose extremely efficient antidepressant effects were recently discovered, was shown to mediate its antidepressant effects via the endogenous opioid system. Thus, although opioid system modulation is a promising therapeutical venue in the treatment of depression further research is warranted to fully understand the benefits and weaknesses of such approach.
Collapse
Affiliation(s)
- Miroslav Adzic
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Iva Lukic
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milos Mitic
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Emilija Glavonic
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nina Dragicevic
- Department of Pharmacy, Singidunum University, Belgrade, Serbia
| | - Sanja Ivkovic
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
28
|
Borsellino P, Krider RI, Chea D, Grinnell R, Vida TA. Ketamine and the Disinhibition Hypothesis: Neurotrophic Factor-Mediated Treatment of Depression. Pharmaceuticals (Basel) 2023; 16:ph16050742. [PMID: 37242525 DOI: 10.3390/ph16050742] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Ketamine is a promising alternative to traditional pharmacotherapies for major depressive disorder, treatment-resistant depression, and other psychiatric conditions that heavily contribute to the global disease burden. In contrast to the current standard of care medications for these disorders, ketamine offers rapid onset, enduring clinical efficacy, and unique therapeutic potential for use in acute, psychiatric emergencies. This narrative presents an alternative framework for understanding depression, as mounting evidence supports a neuronal atrophy and synaptic disconnection theory, rather than the prevailing monoamine depletion hypothesis. In this context, we describe ketamine, its enantiomers, and various metabolites in a range of mechanistic actions through multiple converging pathways, including N-methyl-D-aspartate receptor (NMDAR) inhibition and the enhancement of glutamatergic signaling. We describe the disinhibition hypothesis, which posits that ketamine's pharmacological action ultimately results in excitatory cortical disinhibition, causing the release of neurotrophic factors, the most important of which is brain-derived neurotrophic factor (BDNF). BDNF-mediated signaling along with vascular endothelial growth factor (VEGF) and insulin-like growth factor 1 (IGF-1) subsequently give rise to the repair of neuro-structural abnormalities in patients with depressive disorders. Ketamine's efficacious amelioration of treatment-resistant depression is revolutionizing psychiatric treatment and opening up fresh vistas for understanding the underlying causes of mental illness.
Collapse
Affiliation(s)
- Philip Borsellino
- Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA
| | - Reese I Krider
- Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA
| | - Deanna Chea
- Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA
| | - Ryan Grinnell
- Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA
| | - Thomas A Vida
- Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA
| |
Collapse
|
29
|
Riccardi A, Guarino M, Serra S, Spampinato MD, Vanni S, Shiffer D, Voza A, Fabbri A, De Iaco F. Narrative Review: Low-Dose Ketamine for Pain Management. J Clin Med 2023; 12:jcm12093256. [PMID: 37176696 PMCID: PMC10179418 DOI: 10.3390/jcm12093256] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Pain is the leading cause of medical consultations and occurs in 50-70% of emergency department visits. To date, several drugs have been used to manage pain. The clinical use of ketamine began in the 1960s and it immediately emerged as a manageable and safe drug for sedation and anesthesia. The analgesic properties of this drug were first reported shortly after its use; however, its psychomimetic effects have limited its use in emergency departments. Owing to the misuse and abuse of opioids in some countries worldwide, ketamine has become a versatile tool for sedation and analgesia. In this narrative review, ketamine's role as an analgesic is discussed, with both known and new applications in various contexts (acute, chronic, and neuropathic pain), along with its strengths and weaknesses, especially in terms of psychomimetic, cardiovascular, and hepatic effects. Moreover, new scientific evidence has been reviewed on the use of additional drugs with ketamine, such as magnesium infusion for improving analgesia and clonidine for treating psychomimetic symptoms. Finally, this narrative review was refined by the experience of the Pain Group of the Italian Society of Emergency Medicine (SIMEU) in treating acute and chronic pain with acute manifestations in Italian Emergency Departments.
Collapse
Affiliation(s)
| | - Mario Guarino
- Emergency Department, Centro Traumatologico Ortopedico, Azienda Ospedaliera di Rilievo Nazionale dei Colli, 80131 Napoli, Italy
| | - Sossio Serra
- Emergency Department, Maurizio Bufalini Hospital, 47522 Cesena, Italy
| | | | - Simone Vanni
- Dipartimento Emergenza e Area Critica, Azienda USL Toscana Centro Struttura Complessa di Medicina d'Urgenza, 50053 Empoli, Italy
| | - Dana Shiffer
- Emergency Department, Humanitas University, Via Rita Levi Montalcini 4, 20089 Milan, Italy
| | - Antonio Voza
- Emergency Department, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Andrea Fabbri
- Emergency Department, AUSL Romagna, Presidio Ospedaliero Morgagni-Pierantoni, 47121 Forlì, Italy
| | - Fabio De Iaco
- Emergency Department, Ospedale Maria Vittoria, 10144 Turin, Italy
| |
Collapse
|
30
|
Gou L, Li Y, Liu S, Sang H, Lan J, Chen J, Wang L, Li C, Lian B, Zhang X, Sun H, Sun L. (2R,6R)-hydroxynorketamine improves PTSD-associated behaviors and structural plasticity via modulating BDNF-mTOR signaling in the nucleus accumbens. J Affect Disord 2023; 335:129-140. [PMID: 37137411 DOI: 10.1016/j.jad.2023.04.101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/16/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) is a mental illness caused by either experiencing or observing a traumatic event that is perceived to pose a serious risk to one's life. (2R,6R)-HNK has an alleviating effect on negative emotions, nevertheless, the mechanism of (2R,6R)-HNK action is unclear. METHODS In this study, the single prolonged stress and electric foot shock (SPS&S) method was used to establish a rat model of PTSD. After determining the validity of the model, (2R,6R)-HNK was administered to the NAc by microinjection using a concentration gradient of 10, 50, and 100 μM, and the effects of the drug in the SPS&S rat model were evaluated. Moreover, our study measured changes in related proteins in the NAc (BDNF, p-mTOR/mTOR, and PSD95) and synaptic ultrastructure. RESULTS In the SPS&S group, the protein expression of brain-derived neurotrophic factor (BDNF), mammalian target of rapamycin (mTOR), and PSD95 was reduced and synaptic morphology was damaged in the NAc. In contrast, after the administration of 50 μM (2R,6R)-HNK, SPS&S-treated rats improved their exploration and depression-linked behavior, while protein levels and synaptic ultrastructure were also restored in the NAc. With the administration of 100 μM (2R,6R)-HNK, locomotor behavior, and social interaction improved in the PTSD model. LIMITATIONS The mechanism of BDNF-mTOR signaling after (2R,6R)-HNK administration was not explored. CONCLUSION (2R,6R)-HNK may ameliorate negative mood and social avoidance symptoms in PTSD rats by regulating BDNF/mTOR-mediated synaptic structural plasticity in the NAc, providing new targets for the development of anti-PTSD drugs.
Collapse
Affiliation(s)
- Luping Gou
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, China
| | - Yu Li
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, China
| | - Shiqi Liu
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, China
| | - Haohan Sang
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, China
| | - Jiajun Lan
- School of Clinical Medical, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, China
| | - Jinhong Chen
- College of Extended Education, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, China
| | - Ling Wang
- Clinical Competency Training Center, Medical Experiment and Training Center, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong, 261053, China
| | - Changjiang Li
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, China
| | - Bo Lian
- Department of Bioscience and Technology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, China
| | - Xianqiang Zhang
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, China; National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Hongwei Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, China.
| | - Lin Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, China.
| |
Collapse
|
31
|
Witkin JM, Golani LK, Smith JL. Clinical pharmacological innovation in the treatment of depression. Expert Rev Clin Pharmacol 2023; 16:349-362. [PMID: 37000975 DOI: 10.1080/17512433.2023.2198703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
INTRODUCTION Deficiencies in standard of care antidepressants are driving novel drug discovery. A new age of antidepressant medications has emerged with the introduction of rapid-acting antidepressants with efficacy in treatment-resistant patients. AREAS COVERED The newly approved medicines and those in clinical development for major depressive disorder (MDD) are documented in this scoping review of newly approved and emerging antidepressants. Compounds are evaluated for clinical efficacy, tolerability, and safety and compared to those of standard of care medicines. EXPERT OPINION A new age of antidepressant discovery relies heavily on glutamatergic mechanisms. New medicines based upon the model of ketamine have been delivered and are in clinical development. Rapid onset and the ability to impact treatment-resistant depression, raises the question of the best first-line medicines for patients. Drugs with improvements in tolerability are being investigated (e.g. mGlu2/3 receptor antagonists, AMPA receptor potentiators, and novel NMDA receptor modulators). Multiple companies are working toward the identification of novel psychedelic drugs where the requirement for psychedelic activity is not fully known. Gaps still exist - methods for matching patients with specific medicines are needed, and medicines for the prevention of MDD and its disease progression need research attention.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA
- Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN USA
| | - Lalit K Golani
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA
| |
Collapse
|
32
|
Xu Y, Yu Z, Chen S, Li Z, Long X, Chen M, Lee CS, Peng HY, Lin TB, Hsieh MC, Lai CY, Chou D. (2R,6R)-hydroxynorketamine targeting the basolateral amygdala regulates fear memory. Neuropharmacology 2023; 225:109402. [PMID: 36565854 DOI: 10.1016/j.neuropharm.2022.109402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/28/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
(2R,6R)-Hydroxynorketamine (HNK), a ketamine metabolite, has been proposed as an ideal next-generation antidepressant due to its rapid-acting and long-lasting antidepression-relevant actions. Interestingly, recent studies have shown that (2R,6R)-HNK may have diverse impacts on memory formation. However, its effect on fear memory extinction is still unknown. In the present study, we assessed the effects of (2R,6R)-HNK on synaptic transmission and plasticity in the basolateral amygdala (BLA) and explored its actions on auditory fear memory extinction. Adult male C57BL/6J mice were used in this study. The extracellular electrophysiological recording was conducted to assay synaptic transmission and plasticity. The auditory fear conditioning paradigm was performed to test fear extinction. The results showed that (2R,6R)-HNK at 30 mg/kg increased the number of c-fos-positive cells in the BLA. Moreover, (2R,6R)-HNK enhanced the induction and maintenance of long-term potentiation (LTP) in the BLA in a dose-dependent manner (at 1, 10, and 30 mg/kg). In addition, (2R,6R)-HNK at 30 mg/kg and directly slice perfusion of (2R,6R)-HNK enhanced BLA synaptic transmission. Furthermore, intra-BLA application and systemic administration of (2R,6R)-HNK reduced the retrieval of recent fear memory and decreased the retrieval of remote fear memory. Both local and systemic (2R,6R)-HNK also inhibited the spontaneous recovery of remote fear memory. Taken together, these results indicated that (2R,6R)-HNK could regulate BLA synaptic transmission and plasticity and act through the BLA to modulate fear memory. The results revealed that (2R,6R)-HNK may be a potential drug to treat posttraumatic stress disorder (PTSD) patients.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Department of Pharmacology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China.
| | - Zhenfei Yu
- Department of Pharmacology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China.
| | - Si Chen
- Department of Human Anatomy and Histology & Embryology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China.
| | - Zhenlong Li
- School of Basic Medical Sciences, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China.
| | - Xiting Long
- Department of Pharmacology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China.
| | - Mengxu Chen
- Department of Pharmacology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China.
| | - Chau-Shoun Lee
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan; Department of Psychiatry, MacKay Memorial Hospital, Taipei, Taiwan.
| | - Hsien-Yu Peng
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan.
| | - Tzer-Bin Lin
- Institute of New Drug Development, College of Medicine, China Medical University, Taichung, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Chun Hsieh
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan.
| | - Cheng-Yuan Lai
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei, Taiwan.
| | - Dylan Chou
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan; Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China.
| |
Collapse
|
33
|
Onisiforou A, Georgiou P, Zanos P. Role of group II metabotropic glutamate receptors in ketamine's antidepressant actions. Pharmacol Biochem Behav 2023; 223:173531. [PMID: 36841543 DOI: 10.1016/j.pbb.2023.173531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023]
Abstract
Major Depressive Disorder (MDD) is a serious neuropsychiatric disorder afflicting around 16-17 % of the global population and is accompanied by recurrent episodes of low mood, hopelessness and suicidal thoughts. Current pharmacological interventions take several weeks to even months for an improvement in depressive symptoms to emerge, with a significant percentage of individuals not responding to these medications at all, thus highlighting the need for rapid and effective next-generation treatments for MDD. Pre-clinical studies in animals have demonstrated that antagonists of the metabotropic glutamate receptor subtype 2/3 (mGlu2/3 receptor) exert rapid antidepressant-like effects, comparable to the actions of ketamine. Therefore, it is possible that mGlu2 or mGlu3 receptors to have a regulatory role on the unique antidepressant properties of ketamine, or that convergent intracellular mechanisms exist between mGlu2/3 receptor signaling and ketamine's effects. Here, we provide a comprehensive and critical evaluation of the literature on these convergent processes underlying the antidepressant action of mGlu2/3 receptor inhibitors and ketamine. Importantly, combining sub-threshold doses of mGlu2/3 receptor inhibitors with sub-antidepressant ketamine doses induce synergistic antidepressant-relevant behavioral effects. We review the evidence supporting these combinatorial effects since sub-effective dosages of mGlu2/3 receptor antagonists and ketamine could reduce the risk for the emergence of significant adverse events compared with taking normal dosages. Overall, deconvolution of ketamine's pharmacological targets will give critical insights to influence the development of next-generation antidepressant treatments with rapid actions.
Collapse
Affiliation(s)
- Anna Onisiforou
- Department of Psychology, University of Cyprus, Nicosia 2109, Cyprus
| | - Polymnia Georgiou
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus; Department of Psychology, University of Wisconsin Milwaukee, WI 53211, USA
| | - Panos Zanos
- Department of Psychology, University of Cyprus, Nicosia 2109, Cyprus.
| |
Collapse
|
34
|
Sandbaumhüter FA, Aerts JT, Theurillat R, Andrén PE, Thormann W, Jansson ET. Enantioselective CE-MS analysis of ketamine metabolites in urine. Electrophoresis 2023; 44:125-134. [PMID: 36398998 PMCID: PMC10108174 DOI: 10.1002/elps.202200175] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
The chiral drug ketamine has long-lasting antidepressant effects with a fast onset and is also suitable to treat patients with therapy-resistant depression. The metabolite hydroxynorketamine (HNK) plays an important role in the antidepressant mechanism of action. Hydroxylation at the cyclohexanone ring occurs at positions 4, 5, and 6 and produces a total of 12 stereoisomers. Among those, the four 6HNK stereoisomers have the strongest antidepressant effects. Capillary electrophoresis with highly sulfated γ-cyclodextrin (CD) as a chiral selector in combination with mass spectrometry (MS) was used to develop a method for the enantioselective analysis of HNK stereoisomers with a special focus on the 6HNK stereoisomers. The partial filling approach was applied in order to avoid contamination of the MS with the chiral selector. Concentration of the chiral selector and the length of the separation zone were optimized. With 5% highly sulfated γ-CD in 20 mM ammonium formate with 10% formic acid and a 75% filling the four 6HNK stereoisomers could be separated with a resolution between 0.79 and 3.17. The method was applied to analyze fractionated equine urine collected after a ketamine infusion and to screen the fractions as well as unfractionated urine for the parent drug ketamine and other metabolites, including norketamine and dehydronorketamine.
Collapse
Affiliation(s)
| | - Jordan T Aerts
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Regula Theurillat
- Clinical Pharmacology Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Per E Andrén
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, Uppsala, Sweden
| | - Wolfgang Thormann
- Clinical Pharmacology Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Erik T Jansson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
35
|
Grieco SF, Castrén E, Knudsen GM, Kwan AC, Olson DE, Zuo Y, Holmes TC, Xu X. Psychedelics and Neural Plasticity: Therapeutic Implications. J Neurosci 2022; 42:8439-8449. [PMID: 36351821 PMCID: PMC9665925 DOI: 10.1523/jneurosci.1121-22.2022] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Psychedelic drugs have reemerged as tools to treat several brain disorders. Cultural attitudes toward them are changing, and scientists are once again investigating the neural mechanisms through which these drugs impact brain function. The significance of this research direction is reflected by recent work, including work presented by these authors at the 2022 meeting of the Society for Neuroscience. As of 2022, there were hundreds of clinical trials recruiting participants for testing the therapeutic effects of psychedelics. Emerging evidence suggests that psychedelic drugs may exert some of their long-lasting therapeutic effects by inducing structural and functional neural plasticity. Herein, basic and clinical research attempting to elucidate the mechanisms of these compounds is showcased. Topics covered include psychedelic receptor binding sites, effects of psychedelics on gene expression, and on dendrites, and psychedelic effects on microcircuitry and brain-wide circuits. We describe unmet clinical needs and the current state of translation to the clinic for psychedelics, as well as other unanswered basic neuroscience questions addressable with future studies.
Collapse
Affiliation(s)
- Steven F Grieco
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California 92697
| | - Eero Castrén
- Neuroscience Center-HiLIFE, University of Helsinki, Helsinki, Finland 00014
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark 2200
| | - Alex C Kwan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853
| | - David E Olson
- Department of Chemistry, University of California-Davis, Davis, California 95616
- Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, California 95817
- Center for Neuroscience, University of California-Davis, Davis, California 95618
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California-Santa Cruz, Santa Cruz, California 95064
| | - Todd C Holmes
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California 92697
- Center for Neural Circuit Mapping, University of California-Irvine, Irvine, California 92697
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California 92697
- Center for Neural Circuit Mapping, University of California-Irvine, Irvine, California 92697
| |
Collapse
|
36
|
Yost JG, Browne CA, Lucki I. (2R,6R)-hydroxynorketamine (HNK) reverses mechanical hypersensitivity in a model of localized inflammatory pain. Neuropharmacology 2022; 221:109276. [PMID: 36198332 DOI: 10.1016/j.neuropharm.2022.109276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 10/07/2022]
Abstract
The ketamine metabolite (2R,6R)-hydroxynorketamine, or (2R,6R)-HNK, was recently reported to evoke antinociception in response to a noxious thermal stimulus in healthy mice and reverse mechanical hypersensitivity in a murine model of neuropathic pain. This study reports the behavioral effects of (2R,6R)-HNK in male and female C57BL/6J mice exposed to a localized inflammatory pain condition and the broad pharmacological mechanism underlying this effect. Hind paw intraplantar injection of λ-carrageenan (CARR) caused inflammation and mechanical hypersensitivity in mice within 2 hours, lasting at least 48 hours. Intraperitoneal administration of (2R,6R)-HNK (10-30 mg/kg i.p.) 2 hours following CARR injection significantly reversed mechanical hypersensitivity within 1 hour in male and female mice, and the effect persisted for 24 hours following a single dose. The magnitude and timing of the analgesic effect of (2R,6R)-HNK were comparable to the non-steroidal anti-inflammatory drug carprofen. The reversal of hypersensitivity by (2R,6R)-HNK was blocked at 4 and 24 hours after administration by pretreatment with the AMPA receptor antagonist NBQX and was not accompanied by changes in locomotor activity. These findings reinforce the growing evidence supporting (2R,6R)-HNK as a novel analgesic in multiple preclinical pain models and further support an AMPAR-dependent mechanism of action. SIGNIFICANCE: The ketamine metabolite (2R,6R)-HNK reversed mechanical hypersensitivity associated with localized inflammation with onset less than one hour and duration greater than 24 hours in an effect comparable to the NSAID carprofen. Reversal of mechanical hypersensitivity by (2R,6R)-HNK is AMPAR-dependent.
Collapse
Affiliation(s)
- Jonathan G Yost
- Neuroscience Graduate Program, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Caroline A Browne
- Neuroscience Graduate Program, Uniformed Services University, Bethesda, MD, 20814, USA; Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, MD, 20814, USA
| | - Irwin Lucki
- Neuroscience Graduate Program, Uniformed Services University, Bethesda, MD, 20814, USA; Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, Bethesda, MD, 20814, USA; Department of Psychiatry, Uniformed Services University, Bethesda, MD, 20814, USA.
| |
Collapse
|
37
|
Bonaventura J, Gomez JL, Carlton ML, Lam S, Sanchez-Soto M, Morris PJ, Moaddel R, Kang HJ, Zanos P, Gould TD, Thomas CJ, Sibley DR, Zarate CA, Michaelides M. Target deconvolution studies of (2R,6R)-hydroxynorketamine: an elusive search. Mol Psychiatry 2022; 27:4144-4156. [PMID: 35768639 PMCID: PMC10013843 DOI: 10.1038/s41380-022-01673-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
The off-label use of racemic ketamine and the FDA approval of (S)-ketamine are promising developments for the treatment of depression. Nevertheless, racemic ketamine and (S)-ketamine are controlled substances with known abuse potential and their use is associated with undesirable side effects. For these reasons, research efforts have focused on identifying alternatives. One candidate is (2R,6R)-hydroxynorketamine ((2R,6R)-HNK), a ketamine metabolite that in preclinical models lacks the dissociative and abuse properties of ketamine while retaining its antidepressant-like behavioral efficacy. (2R,6R)-HNK's mechanism of action however is unclear. The main goals of this study were to perform an in-depth pharmacological characterization of (2R,6R)-HNK at known ketamine targets, to use target deconvolution approaches to discover novel proteins that bind to (2R,6R)-HNK, and to characterize the biodistribution and behavioral effects of (2R,6R)-HNK across several procedures related to substance use disorder liability. We found that unlike (S)- or (R)-ketamine, (2R,6R)-HNK did not directly bind to any known or proposed ketamine targets. Extensive screening and target deconvolution experiments at thousands of human proteins did not identify any other direct (2R,6R)-HNK-protein interactions. Biodistribution studies using radiolabeled (2R,6R)-HNK revealed non-selective brain regional enrichment, and no specific binding in any organ other than the liver. (2R,6R)-HNK was inactive in conditioned place preference, open-field locomotor activity, and intravenous self-administration procedures. Despite these negative findings, (2R,6R)-HNK produced a reduction in immobility time in the forced swim test and a small but significant increase in metabolic activity across a network of brain regions, and this metabolic signature differed from the brain metabolic profile induced by ketamine enantiomers. In sum, our results indicate that (2R,6R)-HNK does not share pharmacological or behavioral profile similarities with ketamine or its enantiomers. However, it could still be possible that both ketamine and (2R,6R)-HNK exert antidepressant-like efficacy through a common and previously unidentified mechanism. Given its pharmacological profile, we predict that (2R,6R)-HNK will exhibit a favorable safety profile in clinical trials, and we must wait for clinical studies to determine its antidepressant efficacy.
Collapse
Affiliation(s)
- Jordi Bonaventura
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, 21224, MD, USA
- Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Catalonia, Spain
| | - Juan L Gomez
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, 21224, MD, USA
| | - Meghan L Carlton
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, 21224, MD, USA
| | - Sherry Lam
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, 21224, MD, USA
| | - Marta Sanchez-Soto
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, 20892, MD, USA
| | - Patrick J Morris
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, 20850, MD, USA
| | - Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA
| | - Hye Jin Kang
- National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, 27599, NC, USA
| | - Panos Zanos
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus
| | - Todd D Gould
- Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA
- Departments of Psychiatry, Pharmacology, and Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, 21201, MD, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, 20850, MD, USA
| | - David R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, 20892, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Intramural Research Program, Bethesda, 20892, MD, USA
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, 21224, MD, USA.
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA.
| |
Collapse
|
38
|
Tully JL, Dahlén AD, Haggarty CJ, Schiöth HB, Brooks S. Ketamine treatment for refractory anxiety: A systematic review. Br J Clin Pharmacol 2022; 88:4412-4426. [PMID: 35510346 PMCID: PMC9540337 DOI: 10.1111/bcp.15374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
There is a growing interest in the psychiatric properties of the dissociative anaesthetic ketamine, as single doses have been shown to have fast-acting mood-enhancing and anxiolytic effects, which persist for up to a week after the main psychoactive symptoms have diminished. Therefore, ketamine poses potential beneficial effects in patients with refractory anxiety disorders, where other conventional anxiolytics have been ineffective. Ketamine is a noncompetitive antagonist of the N-methyl-d-aspartate (NMDA) glutamate receptor, which underlies its induction of pain relief and anaesthesia. However, the role of NMDA receptors in anxiety reduction is still relatively unknown. To fill this paucity in the literature, this systematic review assesses the evidence that ketamine significantly reduces refractory anxiety and discusses to what extent this may be mediated by NMDA receptor antagonism and other receptors. We highlight the temporary nature of the anxiolytic effects and discuss the high discrepancy among the study designs regarding many fundamental factors such as administration routes, complementary treatments and other treatments.
Collapse
Affiliation(s)
- Jamie L. Tully
- College of Life and Environmental SciencesUniversity of ExeterExeterUK
| | - Amelia D. Dahlén
- Department of Surgical SciencesUniversity of UppsalaUppsalaSweden
| | - Connor J. Haggarty
- Human Behavioral Pharmacology Lab, Biological Sciences DivisionUniversity of ChicagoUSA
| | - Helgi B. Schiöth
- Department of Surgical SciencesUniversity of UppsalaUppsalaSweden
| | - Samantha Brooks
- Faculty of HealthLiverpool John Moores UniversityLiverpoolUK
| |
Collapse
|
39
|
Pilc A, Machaczka A, Kawalec P, Smith JL, Witkin JM. Where do we go next in antidepressant drug discovery? A new generation of antidepressants: a pivotal role of AMPA receptor potentiation and mGlu2/3 receptor antagonism. Expert Opin Drug Discov 2022; 17:1131-1146. [PMID: 35934973 DOI: 10.1080/17460441.2022.2111415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Major depressive disorder remains a prevalent world-wide health problem. Currently available antidepressant medications take weeks of dosing, do not produce antidepressant response in all patients, and have undesirable ancillary effects. AREAS COVERED The present opinion piece focuses on the major inroads to the creation of new antidepressants. These include N-methyl-D-aspartate (NMDA) receptor antagonists and related compounds like ketamine, psychedelic drugs like psilocybin, and muscarinic receptor antagonists like scopolamine. The preclinical and clinical pharmacological profile of these new-age antidepressant drugs is discussed. EXPERT OPINION Preclinical and clinical data have accumulated to predict a next generation of antidepressant medicines. In contrast to the current standard of care antidepressant drugs, these compounds differ in that they demonstrate rapid activity, often after a single dose, and effects that outlive their presence in brain. These compounds also can provide efficacy for treatment-resistant depressed patients. The mechanism of action of these compounds suggests a strong glutamatergic component that involves the facilitation of AMPA receptor function. Antagonism of mGlu2/3 receptors is also relevant to the antidepressant pharmacology of this new class of drugs. Based upon the ongoing efforts to develop these new-age antidepressants, new drug approvals are predicted in the near future.
Collapse
Affiliation(s)
- Andrzej Pilc
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.,Drug Management Department, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University, Krakow, Poland
| | - Agata Machaczka
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Paweł Kawalec
- Drug Management Department, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University, Krakow, Poland
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA
| | - Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN, USA
| |
Collapse
|
40
|
Tian H, Hu Z, Xu J, Wang C. The molecular pathophysiology of depression and the new therapeutics. MedComm (Beijing) 2022; 3:e156. [PMID: 35875370 PMCID: PMC9301929 DOI: 10.1002/mco2.156] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 12/21/2022] Open
Abstract
Major depressive disorder (MDD) is a highly prevalent and disabling disorder. Despite the many hypotheses proposed to understand the molecular pathophysiology of depression, it is still unclear. Current treatments for depression are inadequate for many individuals, because of limited effectiveness, delayed efficacy (usually two weeks), and side effects. Consequently, novel drugs with increased speed of action and effectiveness are required. Ketamine has shown to have rapid, reliable, and long-lasting antidepressant effects in treatment-resistant MDD patients and represent a breakthrough therapy for patients with MDD; however, concerns regarding its efficacy, potential misuse, and side effects remain. In this review, we aimed to summarize molecular mechanisms and pharmacological treatments for depression. We focused on the fast antidepressant treatment and clarified the safety, tolerability, and efficacy of ketamine and its metabolites for the MDD treatment, along with a review of the potential pharmacological mechanisms, research challenges, and future clinical prospects.
Collapse
Affiliation(s)
- Haihua Tian
- Ningbo Key Laboratory of Behavioral NeuroscienceNingbo University School of MedicineNingboZhejiangChina
- Zhejiang Provincial Key Laboratory of PathophysiologySchool of MedicineNingbo UniversityNingboZhejiangChina
- Department of Physiology and PharmacologyNingbo University School of MedicineNingboZhejiangChina
- Department of Laboratory MedicineNingbo Kangning HospitalNingboZhejiangChina
| | - Zhenyu Hu
- Department of Child PsychiatryNingbo Kanning HospitalNingboZhejiangChina
| | - Jia Xu
- Ningbo Key Laboratory of Behavioral NeuroscienceNingbo University School of MedicineNingboZhejiangChina
- Zhejiang Provincial Key Laboratory of PathophysiologySchool of MedicineNingbo UniversityNingboZhejiangChina
- Department of Physiology and PharmacologyNingbo University School of MedicineNingboZhejiangChina
| | - Chuang Wang
- Ningbo Key Laboratory of Behavioral NeuroscienceNingbo University School of MedicineNingboZhejiangChina
- Zhejiang Provincial Key Laboratory of PathophysiologySchool of MedicineNingbo UniversityNingboZhejiangChina
- Department of Physiology and PharmacologyNingbo University School of MedicineNingboZhejiangChina
| |
Collapse
|
41
|
Yost JG, Wulf HA, Browne CA, Lucki I. Antinociceptive and Analgesic Effects of (2 R,6 R)-Hydroxynorketamine. J Pharmacol Exp Ther 2022; 382:256-265. [PMID: 35779947 PMCID: PMC9426759 DOI: 10.1124/jpet.122.001278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022] Open
Abstract
Commonly used pain therapeutics, such as opioid medications, exert dangerous side effects and lack effectiveness in treating some types of pain. Ketamine is also used to treat pain, but side effects limit its widespread use. (2R,6R)-hydroxynorketamine (HNK) is a ketamine metabolite that potentially shares some beneficial behavioral effects of its parent drug without causing significant side effects. This study compared the profile and potential mechanisms mediating the antinociception activity of ketamine and (2R,6R)-HNK in C57BL/6J mice. Additionally, this study compared the reversal of mechanical allodynia by (2R,6R)-HNK with gabapentin in a model of neuropathic pain. Unlike the near-immediate and short-lived antinociception caused by ketamine, (2R,6R)-HNK produced late-developing antinociception 24 hours following administration. Pharmacological blockade of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors with 2,3-dioxo-6-nitro-7-sulfamoyl-benzo[f]quinoxaline (NBQX) prevented the initiation and expressionof (2R,6R)-HNK antinociception, suggesting the involvement of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor-dependent glutamatergic mechanisms in the pain reduction-like responses. Blockade of opioid receptors with naltrexone partially prevented the antinociceptive effect of ketamine but was ineffective against (2R,6R)-HNK. Furthermore, (2R,6R)-HNK did not produce dystaxia, even when tested at doses five times greater than those needed to produce antinociception, indicating a superior safety profile for (2R,6R)-HNK over ketamine. Additionally, (2R,6R)-HNK reversed mechanical allodynia in a spared nerve injury model of neuropathic pain with similar short-term efficacy to gabapentin (within 4 hours) while outperforming gabapentin 24 hours after administration. These findings support the further study of (2R,6R)-HNK as a potentially valuable agent for treating different types of pain and establish certain advantages of (2R,6R)-HNK treatment over ketamine and gabapentin in corresponding assays for pain. SIGNIFICANCE STATEMENT: The ketamine metabolite (2R,6R)-HNK produced antinociception in male and female mice 24 hours after administration via activation of AMPA receptors. The effects of (2R,6R)-HNK differed in time course and mechanism and presented a better safety profile than ketamine. (2R,6R)-HNK also reversed allodynia in SNI-operated animals within 4 hours of treatment onset, with a duration of effect lasting longer than gabapentin. Taken together, (2R,6R)-HNK demonstrates the potential for development as a non-opioid analgesic drug.
Collapse
Affiliation(s)
- Jonathan G Yost
- Neuroscience Graduate Program (J.G.Y., C.A.B., I.L.), Department of Pharmacology and Molecular Therapeutics (H.A.W., C.A.B., I.L.), and Department of Psychiatry (I.L.), Uniformed Services University, Bethesda, Maryland
| | - Hildegard A Wulf
- Neuroscience Graduate Program (J.G.Y., C.A.B., I.L.), Department of Pharmacology and Molecular Therapeutics (H.A.W., C.A.B., I.L.), and Department of Psychiatry (I.L.), Uniformed Services University, Bethesda, Maryland
| | - Caroline A Browne
- Neuroscience Graduate Program (J.G.Y., C.A.B., I.L.), Department of Pharmacology and Molecular Therapeutics (H.A.W., C.A.B., I.L.), and Department of Psychiatry (I.L.), Uniformed Services University, Bethesda, Maryland
| | - Irwin Lucki
- Neuroscience Graduate Program (J.G.Y., C.A.B., I.L.), Department of Pharmacology and Molecular Therapeutics (H.A.W., C.A.B., I.L.), and Department of Psychiatry (I.L.), Uniformed Services University, Bethesda, Maryland
| |
Collapse
|
42
|
Medeiros GC, Gould TD, Prueitt WL, Nanavati J, Grunebaum MF, Farber NB, Singh B, Selvaraj S, Machado-Vieira R, Achtyes ED, Parikh SV, Frye MA, Zarate CA, Goes FS. Blood-based biomarkers of antidepressant response to ketamine and esketamine: A systematic review and meta-analysis. Mol Psychiatry 2022; 27:3658-3669. [PMID: 35760879 PMCID: PMC9933928 DOI: 10.1038/s41380-022-01652-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 02/08/2023]
Abstract
(R,S)-ketamine (ketamine) and its enantiomer (S)-ketamine (esketamine) can produce rapid and substantial antidepressant effects. However, individual response to ketamine/esketamine is variable, and there are no well-accepted methods to differentiate persons who are more likely to benefit. Numerous potential peripheral biomarkers have been reported, but their current utility is unclear. We conducted a systematic review/meta-analysis examining the association between baseline levels and longitudinal changes in blood-based biomarkers, and response to ketamine/esketamine. Of the 5611 citations identified, 56 manuscripts were included (N = 2801 participants), and 26 were compatible with meta-analytical calculations. Random-effect models were used, and effect sizes were reported as standardized mean differences (SMD). Our assessments revealed that more than 460 individual biomarkers were examined. Frequently studied groups included neurotrophic factors (n = 15), levels of ketamine and ketamine metabolites (n = 13), and inflammatory markers (n = 12). There were no consistent associations between baseline levels of blood-based biomarkers, and response to ketamine. However, in a longitudinal analysis, ketamine responders had statistically significant increases in brain-derived neurotrophic factor (BDNF) when compared to pre-treatment levels (SMD [95% CI] = 0.26 [0.03, 0.48], p = 0.02), whereas non-responders showed no significant changes in BDNF levels (SMD [95% CI] = 0.05 [-0.19, 0.28], p = 0.70). There was no consistent evidence to support any additional longitudinal biomarkers. Findings were inconclusive for esketamine due to the small number of studies (n = 2). Despite a diverse and substantial literature, there is limited evidence that blood-based biomarkers are associated with response to ketamine, and no current evidence of clinical utility.
Collapse
Affiliation(s)
- Gustavo C. Medeiros
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Todd D. Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,Departments of Pharmacology and Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.,Veterans Affairs Maryland Health Care System, Baltimore, MD, USA
| | | | - Julie Nanavati
- Welch Medical Library, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael F. Grunebaum
- Columbia University Irving Medical Center and New York State Psychiatric Institute, New York City, NY, USA
| | - Nuri B. Farber
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Balwinder Singh
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Sudhakar Selvaraj
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Rodrigo Machado-Vieira
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Eric D. Achtyes
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA.,Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA
| | - Sagar V. Parikh
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Mark A. Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Carlos A. Zarate
- Experimental Therapeutics & Pathophysiology Branch, NIMH-NIH, Bethesda, MD, USA
| | - Fernando S. Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Correspondence and requests for materials should be addressed to Fernando S. Goes.,
| |
Collapse
|
43
|
Georgiou P, Zanos P, Mou TCM, An X, Gerhard DM, Dryanovski DI, Potter LE, Highland JN, Jenne CE, Stewart BW, Pultorak KJ, Yuan P, Powels CF, Lovett J, Pereira EFR, Clark SM, Tonelli LH, Moaddel R, Zarate CA, Duman RS, Thompson SM, Gould TD. Experimenters' sex modulates mouse behaviors and neural responses to ketamine via corticotropin releasing factor. Nat Neurosci 2022; 25:1191-1200. [PMID: 36042309 PMCID: PMC10186684 DOI: 10.1038/s41593-022-01146-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/14/2022] [Indexed: 11/09/2022]
Abstract
We show that the sex of human experimenters affects mouse behaviors and responses following administration of the rapid-acting antidepressant ketamine and its bioactive metabolite (2R,6R)-hydroxynorketamine. Mice showed aversion to the scent of male experimenters, preference for the scent of female experimenters and increased stress susceptibility when handled by male experimenters. This human-male-scent-induced aversion and stress susceptibility was mediated by the activation of corticotropin-releasing factor (CRF) neurons in the entorhinal cortex that project to hippocampal area CA1. Exposure to the scent of male experimenters before ketamine administration activated CA1-projecting entorhinal cortex CRF neurons, and activation of this CRF pathway modulated in vivo and in vitro antidepressant-like effects of ketamine. A better understanding of the specific and quantitative contributions of the sex of human experimenters to study outcomes in rodents may improve replicability between studies and, as we have shown, reveal biological and pharmacological mechanisms.
Collapse
Affiliation(s)
- Polymnia Georgiou
- Veterans Affairs Maryland Health Care System, Baltimore, MD, USA.,Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA.,Department of Biology, University of Cyprus, Nicosia, Cyprus
| | - Panos Zanos
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA.,Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Ta-Chung M Mou
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Xiaoxian An
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Danielle M Gerhard
- Department of Psychiatry, Yale University, New Haven, CT, USA.,Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Dilyan I Dryanovski
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Liam E Potter
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA.,Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jaclyn N Highland
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA.,The Graduate Program in Toxicology, University of Maryland, Baltimore, MD, USA
| | - Carleigh E Jenne
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Brent W Stewart
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA.,The Graduate Program in Neuroscience, University of Maryland, Baltimore, MD, USA
| | - Katherine J Pultorak
- The Graduate Program in Neuroscience, University of Maryland, Baltimore, MD, USA
| | - Peixiong Yuan
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Chris F Powels
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Jacqueline Lovett
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Edna F R Pereira
- Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Sarah M Clark
- Veterans Affairs Maryland Health Care System, Baltimore, MD, USA.,Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Leonardo H Tonelli
- Veterans Affairs Maryland Health Care System, Baltimore, MD, USA.,Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Ronald S Duman
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Scott M Thompson
- Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA.,Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Todd D Gould
- Veterans Affairs Maryland Health Care System, Baltimore, MD, USA. .,Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD, USA. .,Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, USA. .,Department of Anatomy and Neurobiology, School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
44
|
Riggs LM, Thompson SM, Gould TD. (2R,6R)-hydroxynorketamine rapidly potentiates optically-evoked Schaffer collateral synaptic activity. Neuropharmacology 2022; 214:109153. [PMID: 35661657 PMCID: PMC9904284 DOI: 10.1016/j.neuropharm.2022.109153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/31/2022]
Abstract
(2R,6R)-hydroxynorketamine (HNK) is a metabolite of ketamine that exerts rapid and sustained antidepressant-like effects in preclinical studies. We hypothesize that the rapid antidepressant actions of (2R,6R)-HNK involve an acute increase in glutamate release at Schaffer collateral synapses. Here, we used an optogenetic approach to assess whether (2R,6R)-HNK promotes glutamate release at CA1-projecting Schaffer collateral terminals in response to select optical excitation of CA3 afferents. The red-shifted channelrhodopsin, ChrimsonR, was expressed in dorsal CA3 neurons of adult male Sprague Dawley rats. Transverse slices were collected four weeks later to determine ChrimsonR expression and to assess the acute synaptic effects of an antidepressant-relevant concentration of (2R,6R)-HNK (10 μM). (2R,6R)-HNK led to a rapid potentiation of CA1 field excitatory postsynaptic potentials evoked by recurrent optical stimulation of ChrimsonR-expressing CA3 afferents. This potentiation is mediated in part by an increase in glutamate release probability, as (2R,6R)-HNK suppressed paired-pulse facilitation at CA3 projections, an effect that correlated with the magnitude of the (2R,6R)-HNK-induced potentiation of CA1 activity. These results demonstrate that (2R,6R)-HNK increases the probability of glutamate release at CA1-projecting Schaffer collateral afferents, which may be involved in the antidepressant-relevant behavioral adaptations conferred by (2R,6R)-HNK in vivo. The current study also establishes proof-of-principle that genetically-encoded light-sensitive proteins can be used to investigate the synaptic plasticity induced by novel antidepressant compounds in neuronal subcircuits.
Collapse
Affiliation(s)
- Lace M Riggs
- Program in Neuroscience and Training Program in Integrative Membrane Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Scott M Thompson
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA.
| |
Collapse
|
45
|
Langmia IM, Just KS, Yamoune S, Müller JP, Stingl JC. Pharmacogenetic and drug interaction aspects on ketamine safety in its use as antidepressant - implications for precision dosing in a global perspective. Br J Clin Pharmacol 2022; 88:5149-5165. [PMID: 35863300 DOI: 10.1111/bcp.15467] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 12/01/2022] Open
Abstract
Ketamine and its enantiomer S-ketamine (esketamine) are known to produce rapid-onset antidepressant effects in major depression. Intranasal esketamine has recently come into the market as an antidepressant. Besides experience from short-term use in anesthesia and analgesia, the experience with ketamine as long-term medication is rather low. The use of ketamine and esketamine is limited due to potential neurotoxicity, psychocomimetic side effects, potential abuse and interindividual variability in treatment response including cessation of therapy. Therefore, taking a look at individual patient risks and potential underlying variability in pharmacokinetics may improve safety and dosing of these new antidepressant drugs in clinical practice. Differential drug metabolism due to polymorphic cytochrome P450 (CYP) enzymes and gene-drug interactions are known to influence the efficacy and safety of many drugs. Ketamine and esketamine are metabolized by polymorphic CYP enzymes including CYP2B6, CYP3A4, CYP2C9 and CYP2A6. In antidepressant drug therapy, usually multiple drugs are administered which are substrates of CYP enzymes, increasing the risk for drug-drug interactions (DDIs). We reviewed the potential impact of polymorphic CYP variants and common DDIs in antidepressant drug therapy affecting ketamine pharmacokinetics, and the role for dose optimization. The use of ketamine or intranasal esketamine as antidepressants demands a better understanding of the factors that may impact its metabolism and efficacy in long-term use. In addition to other clinical and environmental confounders, prior information on the pharmacodynamic and pharmacokinetic determinants of response variability to ketamine and esketamine may inform on dose optimization and identification of individuals at risk of adverse drug reactions.
Collapse
Affiliation(s)
- Immaculate M Langmia
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Katja S Just
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Sabrina Yamoune
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Aachen, Germany.,Federal Institute for Drugs and Medical Devices, BfArM, Bonn, Germany
| | - Julian Peter Müller
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Julia C Stingl
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Aachen, Germany
| |
Collapse
|
46
|
Simons P, Olofsen E, van Velzen M, van Lemmen M, Mooren R, van Dasselaar T, Mohr P, Hammes F, van der Schrier R, Niesters M, Dahan A. S-Ketamine Oral Thin Film—Part 1: Population Pharmacokinetics of S-Ketamine, S-Norketamine and S-Hydroxynorketamine. FRONTIERS IN PAIN RESEARCH 2022; 3:946486. [PMID: 35899184 PMCID: PMC9309697 DOI: 10.3389/fpain.2022.946486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/23/2022] [Indexed: 11/20/2022] Open
Abstract
Ketamine is administered predominantly via the intravenous route for the various indications, including anesthesia, pain relief and treatment of depression. Here we report on the pharmacokinetics of sublingual and buccal fast-dissolving oral-thin-films that contain 50 mg of S-ketamine in a population of healthy male and female volunteers. Twenty volunteers received one or two oral thin films on separate occasions in a randomized crossover design. The oral thin films were placed sublingually (n = 15) or buccally (n = 5) and left to dissolve for 10 min in the mouth during which the subjects were not allowed to swallow. For 6 subsequent hours, pharmacokinetic blood samples were obtained after which 20 mg S-ketamine was infused intravenously and blood sampling continued for another 2-hours. A population pharmacokinetic analysis was performed in NONMEM pharmacokinetic model of S-ketamine and its metabolites S-norketamine and S-hydroxynorketamine; p < 0.01 were considered significant. S-ketamine bioavailability was 26 ± 1% (estimate ± standard error of the estimate) with a 20% lower bioavailability of the 100 mg oral thin film relative to the 50 mg film, although this difference did not reach the level of significance. Due to the large first pass-effect, 80% of S-ketamine was metabolized into S-norketamine leading to high plasma levels of S-norketamine following the oral thin film application with 56% of S-ketamine finally metabolized into S-hydroxynorketamine. No differences in pharmacokinetics were observed for the sublingual and buccal administration routes. The S-ketamine oral thin film is a safe and practical alternative to intravenous S-ketamine administration that results in relatively high plasma levels of S-ketamine and its two metabolites.
Collapse
Affiliation(s)
- Pieter Simons
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| | - Erik Olofsen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| | - Monique van Velzen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| | - Maarten van Lemmen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| | - René Mooren
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| | - Tom van Dasselaar
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| | - Patrick Mohr
- LTS Lohmann Therapie-Systeme AG, Andernach, Germany
| | | | | | - Marieke Niesters
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
- PainLess Foundation, Leiden, Netherlands
- *Correspondence: Albert Dahan
| |
Collapse
|
47
|
Le TT, Cordero IP, Jawad MY, Swainson J, Di Vincenzo JD, Jaberi S, Phan L, Lui LMW, Ho R, Rosenblat JD, McIntyre RS. The abuse liability of ketamine: A scoping review of preclinical and clinical studies. J Psychiatr Res 2022; 151:476-496. [PMID: 35623124 DOI: 10.1016/j.jpsychires.2022.04.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/17/2022] [Accepted: 04/25/2022] [Indexed: 12/22/2022]
Abstract
While ketamine has been used clinically over the past decades, it has only been recently shown to be a promising therapy for treatment-resistant depression (TRD). However, ketamine and related dissociative agents may also be misused recreationally, creating significant concerns for abuse liability when prescribed for depression. Although the abuse potential of ketamine is widely recognized, there is limited evidence on the differential abuse liability of ketamine enantiomers, (S)-ketamine and (R)-ketamine. The current scoping review aims to summarize the extant literature on the abuse liability of (R,S)-ketamine and the enantiomers. A systematic search was conducted on the Embase, Medline, and APA PsycInfo databases from 1947 to July 29, 2021. Clinical and preclinical studies that assessed the abuse potential of (R,S)-ketamine, (S)-ketamine, and (R)-ketamine were screened and assessed for eligibility by two independent reviewers. A total of 65 eligible studies were identified; 55 were preclinical studies and 10 were clinical studies. Only 4 preclinical studies evaluated the abuse liability of ketamine enantiomers. Available preclinical evidence suggests that (R,S)-ketamine and (S)-ketamine have greater risk for abuse compared to (R)-ketamine. (R)-ketamine, at the antidepressant-relevant doses in rodents, appears to be safe with minimal liability for abuse. Although the abuse potential of (R,S)-ketamine is well-established in animals, limited clinical studies indicate that single or repeated ketamine administrations in professionally controlled settings did not result in misuse, dependence, diversion and/or gateway activity in patients with TRD. However, most clinical studies were retrospective and did not systematically evaluate the abuse liability of ketamine via validated psychological scales/questionnaires. Future randomized controlled trials are warranted to ascertain the abuse liability of racemic, (S)- and (R)-ketamine in TRD population, especially among patients with comorbid substance use disorders.
Collapse
Affiliation(s)
- Tuyen T Le
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Isabel Pazos Cordero
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, ON, Canada; Department of Human Biology, University of Toronto, Toronto, ON, Canada
| | - Muhammad Youshay Jawad
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, ON, Canada
| | | | - Joshua D Di Vincenzo
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Saja Jaberi
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, ON, Canada
| | - Lee Phan
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, ON, Canada
| | - Leanna M W Lui
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, ON, Canada
| | - Roger Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore, Singapore
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Alberta, Edmonton, Canada; Institute of Medical Science, University of Toronto, ON, Canada; Canadian Rapid Treatment Center of Excellence, Mississauga, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, University Health Network, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Canadian Rapid Treatment Center of Excellence, Mississauga, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
48
|
Artin H, Bentley S, Mehaffey E, Liu FX, Sojourner K, Bismark AW, Printz D, Lee EE, Martis B, De Peralta S, Baker DG, Mishra J, Ramanathan D. Effects of intranasal ( S)-ketamine on Veterans with co-morbid treatment-resistant depression and PTSD: A retrospective case series. EClinicalMedicine 2022; 48:101439. [PMID: 35706484 PMCID: PMC9092498 DOI: 10.1016/j.eclinm.2022.101439] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/05/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND (S)-ketamine is a glutamatergic drug with potent and rapid acting effects for the treatment of depression. Little is known about the effectiveness of intranasal (S)-ketamine for treating patients with comorbid depression and post-traumatic stress disorder (PTSD). METHODS We performed a retrospective case series analysis of clinical outcomes in 35 Veterans with co-morbid depression and PTSD who were treated with intranasal (S)-ketamine treatments at the VA San Diego Neuromodulation Clinic between Jan 2020 and March 2021. Veterans were not randomized or blinded to treatment. The primary outcome measured was a change in patient health questionnaire-9 (PHQ-9) and PTSD Checklist for DSM-5 (PCL-5) scores across the first 8 treatments (induction period) using a repeated measures analysis of variance (ANOVA). In a smaller sub-group (n = 19) of Veterans who received at least 8 additional treatments, we analyzed whether intranasal (S)-ketamine continued to show treatment effects. Finally, we performed a sub-group and correlation analyses to understand how changes in PHQ-9 and PCL-5 scores were related across treatments. FINDINGS During the induction phase of treatment there was an absolute reduction of 5.1 (SEM 0.7) on the patient health questionnaire-9 (PHQ-9) rating scale for depression, from 19.8 (SEM 0.7) at treatment 1 to 14.7 (SEM 0.8) at treatment 8 (week 4) (F(7238) = 8.3, p = 1e-6, partial η2 = 0.2). Five Veterans (14%) showed a clinically meaningful response (50% reduction in PHQ-9 score) at treatment 8. There was an absolute reduction of 15.5 +/- 2.4 on the patient checklist 5 (PCL-5) rating scale for PTSD, from 54.8 (SEM 2) at treatment 1 down to 39.3 (SEM 2.5) at treatment 8 (F(7238) = 15.5, p = 2e-7, partial η2 = 0.31). Sixteen Veterans (46%) showed a clinically meaningful response (reduction in PCL-5 of > 30%) in PTSD. Change in PHQ-9 correlated with change in PCL-5 at treatment 8 (r = 0.47, p = 0.005), but a decrease in PTSD symptoms were observable in some individuals with minimal anti-depressant response. INTERPRETATIONS While this is an open-label retrospective analysis, our results indicate that both depression and PTSD symptoms in Veterans with dual-diagnoses may improve with repeated intranasal (S)-ketamine treatment. The effects of (S)-ketamine on PTSD symptoms were temporally and individually distinct from those on depression, suggesting potentially different modes of action on the two disorders. This work may warrant formal randomized controlled studies on the effects of intranasal (S)-ketamine for individuals with co-morbid MDD and PTSD. FUNDING VA Center of Excellence in Stress and Mental Health, VA ORD (Career Development Award to DSR), Burroughs-Wellcome Fund Award (DSR), NIMH (EL).
Collapse
Affiliation(s)
- Hewa Artin
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Sean Bentley
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Eamonn Mehaffey
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Fred X. Liu
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Kevin Sojourner
- Mental Health Service, VA San Diego Healthcare System (VASDHS), San Diego, CA 92161, USA
| | - Andrew W. Bismark
- Mental Health Service, VA San Diego Healthcare System (VASDHS), San Diego, CA 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - David Printz
- Mental Health Service, VA San Diego Healthcare System (VASDHS), San Diego, CA 92161, USA
- Center of Excellence for Stress and Mental Health, VASDHS, San Diego, CA 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Ellen E. Lee
- Mental Health Service, VA San Diego Healthcare System (VASDHS), San Diego, CA 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Brian Martis
- Mental Health Service, VA San Diego Healthcare System (VASDHS), San Diego, CA 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Sharon De Peralta
- Mental Health Service, VA San Diego Healthcare System (VASDHS), San Diego, CA 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Dewleen G. Baker
- Mental Health Service, VA San Diego Healthcare System (VASDHS), San Diego, CA 92161, USA
- Center of Excellence for Stress and Mental Health, VASDHS, San Diego, CA 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Jyoti Mishra
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Dhakshin Ramanathan
- Mental Health Service, VA San Diego Healthcare System (VASDHS), San Diego, CA 92161, USA
- Center of Excellence for Stress and Mental Health, VASDHS, San Diego, CA 92161, USA
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
- Corresponding author at: Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
49
|
Hess EM, Riggs LM, Michaelides M, Gould TD. Mechanisms of ketamine and its metabolites as antidepressants. Biochem Pharmacol 2022; 197:114892. [PMID: 34968492 PMCID: PMC8883502 DOI: 10.1016/j.bcp.2021.114892] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023]
Abstract
Treating major depression is a medical need that remains unmet by monoaminergic therapeutic strategies that commonly fail to achieve symptom remission. A breakthrough in the treatment of depression was the discovery that the anesthetic (R,S)-ketamine (ketamine), when administered at sub-anesthetic doses, elicits rapid (sometimes within hours) antidepressant effects in humans that are otherwise resistant to monoaminergic-acting therapies. While this finding was revolutionary and led to the FDA approval of (S)-ketamine (esketamine) for use in adults with treatment-resistant depression and suicidal ideation, the mechanisms underlying how ketamine or esketamine elicit their effects are still under active investigation. An emerging view is that metabolism of ketamine may be a crucial step in its mechanism of action, as several metabolites of ketamine have neuroactive effects of their own and may be leveraged as therapeutics. For example, (2R,6R)-hydroxynorketamine (HNK), is readily observed in humans following ketamine treatment and has shown therapeutic potential in preclinical tests of antidepressant efficacy and synaptic potentiation while being devoid of the negative adverse effects of ketamine, including its dissociative properties and abuse potential. We discuss preclinical and clinical studies pertaining to how ketamine and its metabolites produce antidepressant effects. Specifically, we explore effects on glutamate neurotransmission through N-methyl D-aspartate receptors (NMDARs) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), synaptic structural changes via brain derived neurotrophic factor (BDNF) signaling, interactions with opioid receptors, and the enhancement of serotonin, norepinephrine, and dopamine signaling. Strategic targeting of these mechanisms may result in novel rapid-acting antidepressants with fewer undesirable side effects compared to ketamine.
Collapse
Affiliation(s)
- Evan M Hess
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Lace M Riggs
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Program in Neuroscience and Training Program in Integrative Membrane Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Michael Michaelides
- Biobehavioral Imaging & Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD 21224, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Departments of Pharmacology and Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Baltimore Veterans Affairs Medical Center, Veterans Affairs Maryland Health Care System, Baltimore, MD 21201, USA.
| |
Collapse
|
50
|
Highland JN, Morris PJ, Konrath KM, Riggs LM, Hagen NR, Zanos P, Powels CF, Moaddel R, Thomas CJ, Wang AQ, Gould TD. Hydroxynorketamine Pharmacokinetics and Antidepressant Behavioral Effects of (2 ,6)- and (5 R)-Methyl-(2 R,6 R)-hydroxynorketamines. ACS Chem Neurosci 2022; 13:510-523. [PMID: 35113535 PMCID: PMC9926475 DOI: 10.1021/acschemneuro.1c00761] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
(R,S)-Ketamine is rapidly metabolized to form a range of metabolites in vivo, including 12 unique hydroxynorketamines (HNKs) that are distinguished by a cyclohexyl ring hydroxylation at the 4, 5, or 6 position. While both (2R,6R)- and (2S,6S)-HNK readily penetrate the brain and exert rapid antidepressant-like actions in preclinical tests following peripheral administration, the pharmacokinetic profiles and pharmacodynamic actions of 10 other HNKs have not been examined. We assessed the pharmacokinetic profiles of all 12 HNKs in the plasma and brains of male and female mice and compared the relative potencies of four (2,6)-HNKs to induce antidepressant-relevant behavioral effects in the forced swim test in male mice. While all HNKs were readily brain-penetrable following intraperitoneal injection, there were robust differences in peak plasma and brain concentrations and exposures. Forced swim test immobility rank order of potency, from most to least potent, was (2R,6S)-, (2S,6R)-, (2R,6R)-, and (2S,6S)-HNK. We hypothesized that distinct structure-activity relationships and the resulting potency of each metabolite are linked to unique substitution patterns and resultant conformation of the six-membered cyclohexanone ring system. To explore this, we synthesized (5R)-methyl-(2R,6R)-HNK, which incorporates a methyl substitution on the cyclohexanone ring. (5R)-Methyl-(2R,6R)-HNK exhibited similar antidepressant-like potency to (2R,6S)-HNK. These results suggest that conformation of the cyclohexanone ring system in the (2,6)-HNKs is an important factor underlying potency and that additional engineering of this structural feature may improve the development of a new generation of HNKs. Such HNKs may represent novel drug candidates for the treatment of depression.
Collapse
Affiliation(s)
- Jaclyn N. Highland
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore MD 21201, USA
- Program in Toxicology, University of Maryland School of Medicine, Baltimore MD 21201, USA
| | - Patrick J. Morris
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville MD 20850, USA
| | - Kylie M. Konrath
- Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville MD 20850, USA
| | - Lace M. Riggs
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore MD 21201, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore MD 21201, USA
| | - Natalie R. Hagen
- Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville MD 20850, USA
| | - Panos Zanos
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore MD 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore MD 21201, USA
- Current address: Department of Psychology, University of Cyprus, Nicosia 1678, Cyprus
| | - Chris F. Powels
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore MD 21201, USA
| | - Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore MD 21224, USA
| | - Craig J. Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville MD 20850, USA
| | - Amy Q. Wang
- Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville MD 20850, USA
| | - Todd D. Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore MD 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore MD 21201, USA
- Veterans Affairs Maryland Health Care System, Baltimore MD 21201, USA
| |
Collapse
|