1
|
Zheng Q, Wang D, Lin R, Xu W. Pyroptosis, ferroptosis, and autophagy in spinal cord injury: regulatory mechanisms and therapeutic targets. Neural Regen Res 2025; 20:2787-2806. [PMID: 39101602 PMCID: PMC11826477 DOI: 10.4103/nrr.nrr-d-24-00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/24/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Regulated cell death is a form of cell death that is actively controlled by biomolecules. Several studies have shown that regulated cell death plays a key role after spinal cord injury. Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords. Autophagy, a complex form of cell death that is interconnected with various regulated cell death mechanisms, has garnered significant attention in the study of spinal cord injury. This injury triggers not only cell death but also cellular survival responses. Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis, ferroptosis, and autophagy. Therefore, this review aims to comprehensively examine the mechanisms underlying regulated cell deaths, the signaling pathways that modulate these mechanisms, and the potential therapeutic targets for spinal cord injury. Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury. Moreover, a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.
Collapse
Affiliation(s)
- Qingcong Zheng
- Department of Spinal Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Du Wang
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
| | - Rongjie Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Weihong Xu
- Department of Spinal Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
2
|
Long Z, Ge C, Zhao Y, Liu Y, Zeng Q, Tang Q, Dong Z, He G. Enhanced autophagic clearance of amyloid-β via histone deacetylase 6-mediated V-ATPase assembly and lysosomal acidification protects against Alzheimer's disease in vitro and in vivo. Neural Regen Res 2025; 20:2633-2644. [PMID: 38993141 PMCID: PMC11801289 DOI: 10.4103/nrr.nrr-d-23-01633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/05/2024] [Accepted: 03/29/2024] [Indexed: 07/13/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202509000-00025/figure1/v/2024-11-05T132919Z/r/image-tiff Recent studies have suggested that abnormal acidification of lysosomes induces autophagic accumulation of amyloid-β in neurons, which is a key step in senile plaque formation. Therefore, restoring normal lysosomal function and rebalancing lysosomal acidification in neurons in the brain may be a new treatment strategy for Alzheimer's disease. Microtubule acetylation/deacetylation plays a central role in lysosomal acidification. Here, we show that inhibiting the classic microtubule deacetylase histone deacetylase 6 with an histone deacetylase 6 shRNA or thehistone deacetylase 6 inhibitor valproic acid promoted lysosomal reacidification by modulating V-ATPase assembly in Alzheimer's disease. Furthermore, we found that treatment with valproic acid markedly enhanced autophagy, promoted clearance of amyloid-β aggregates, and ameliorated cognitive deficits in a mouse model of Alzheimer's disease. Our findings demonstrate a previously unknown neuroprotective mechanism in Alzheimer's disease, in which histone deacetylase 6 inhibition by valproic acid increases V-ATPase assembly and lysosomal acidification.
Collapse
Affiliation(s)
- Zhimin Long
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Chuanhua Ge
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Yueyang Zhao
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Yuanjie Liu
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Qinghua Zeng
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Qing Tang
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Zhifang Dong
- Pediatric Research Institute, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Guiqiong He
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Hu Q, Wang S, Zhang W, Qu J, Liu GH. Unraveling brain aging through the lens of oral microbiota. Neural Regen Res 2025; 20:1930-1943. [PMID: 38993126 PMCID: PMC11691463 DOI: 10.4103/nrr.nrr-d-23-01761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/22/2023] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
The oral cavity is a complex physiological community encompassing a wide range of microorganisms. Dysbiosis of oral microbiota can lead to various oral infectious diseases, such as periodontitis and tooth decay, and even affect systemic health, including brain aging and neurodegenerative diseases. Recent studies have highlighted how oral microbes might be involved in brain aging and neurodegeneration, indicating potential avenues for intervention strategies. In this review, we summarize clinical evidence demonstrating a link between oral microbes/oral infectious diseases and brain aging/neurodegenerative diseases, and dissect potential mechanisms by which oral microbes contribute to brain aging and neurodegeneration. We also highlight advances in therapeutic development grounded in the realm of oral microbes, with the goal of advancing brain health and promoting healthy aging.
Collapse
Affiliation(s)
- Qinchao Hu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
| | - Jing Qu
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
4
|
Tang C, Wang J, Ge M, Fu L, Huang J, Yadav H, Shi J, Feng S, Wu F. DSS-induced colitis exacerbates Alzheimer's pathology via neutrophil elastase and cathepsin B activation. Int Immunopharmacol 2025; 155:114666. [PMID: 40228423 DOI: 10.1016/j.intimp.2025.114666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Alzheimer's disease (AD), the leading cause of dementia, is characterized by amyloid plaques and neuroinflammation, which collectively result in cognitive decline. Peripheral inflammation, particularly intestinal inflammation, has been implicated in exacerbating AD pathology via the gut-brain axis. This study investigated the effects of dextran sulfate sodium (DSS)-induced colitis on amyloid-beta (Aβ) pathology, synaptic integrity, and cognitive function in 5xFAD mice, and explored the roles of neutrophil elastase (NE) and Cathepsin B in these processes. DSS-induced colitis significantly worsened Aβ pathology, evidenced by increased Aβ plaque deposition and elevated soluble Aβ1-42 levels in the brain of 5xFAD mice. The inflammatory state triggered extensive neutrophil infiltration and elevated NE levels in the hippocampus, which were closely associated with Cathepsin B activation. This enzymatic cascade is associated with synaptic damage and cognitive deficits. Treatment with the NE inhibitor Sivelestat effectively suppressed NE-mediated Cathepsin B activation, reduced Aβ pathology, restored dendritic spine density, and improved cognitive performance. Additionally, the Cathepsin B inhibitor CA-074 methyl ester (CA-074Me) mitigated the adverse effects of DSS-induced colitis, further emphasizing the role of Cathepsin B in mediating inflammation-driven AD pathology. These findings reveal that the NE-Cathepsin B axis links peripheral inflammation to exacerbated Aβ pathology, synaptic damage, and cognitive impairment, underscoring the potential of targeting NE and Cathepsin B as therapeutic strategies for inflammation-driven AD progression.
Collapse
Affiliation(s)
- Chong Tang
- Department of General Surgery, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong, China; Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226019, Jiangsu, China
| | - Jing Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226019, Jiangsu, China
| | - Minglei Ge
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226019, Jiangsu, China
| | - Li Fu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226019, Jiangsu, China
| | - Jiayue Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226019, Jiangsu, China
| | - Hanshika Yadav
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226019, Jiangsu, China
| | - Jianhua Shi
- Institute for translational neuroscience, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Shichun Feng
- Department of General Surgery, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong, China.
| | - Feng Wu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226019, Jiangsu, China.
| |
Collapse
|
5
|
Mohanty A, Kumari A, Kumar S L, Kumar A, Birajdar P, Beniwal R, Athar M, Kumar P K, Rao HBDP. Cathepsin B Regulates Ovarian Reserve Quality and Quantity via Mitophagy by Modulating IGF1R Turnover. Aging Cell 2025:e70066. [PMID: 40294065 DOI: 10.1111/acel.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 03/03/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
The quality and quantity of the ovarian reserve are meticulously regulated through various cell death pathways to guarantee the availability of high-quality oocytes for fertilization. While apoptosis is recognized for contributing to maintaining ovarian reserve, the involvement of other cell death pathways remains unclear. Employing chemical genetics and proteomics, this study reveals the crucial involvement of Cathepsin B in maintaining the ovarian reserve. Results indicate that apoptosis and autophagy play pivotal roles, and inhibiting these pathways significantly increases follicle numbers. Proteomics reveals a dynamic shift from apoptosis to autophagy during follicular development, with Cathepsin B emerging as a key player in this transition. Inhibiting Cathepsin B not only mimics the augmented oocyte reserve observed with autophagy inhibition but also upregulated IGF1R and AKT-mTOR pathways without compromising fertility in pre- and postpubertal mice. Further, IGF1R inhibition partially compromised the protective effects of Cathepsin B inhibition on oocyte reserves, suggesting their interdependence. This association is further supported by the finding that Cathepsin B can degrade IGF1R in vitro. Moreover, the increased IGF1R levels enhance the oocyte mitochondrial membrane potential via transcriptional regulation of mitochondrial biogenesis and mitophagy genes. Remarkably, this Cathepsin B-dependent ovarian reserve maintenance mechanism is conserved in higher-order vertebrates. Cumulatively, our study sheds valuable light on the intricate interplay of autophagy, Cathepsin B, and growth factors in ovarian reserve maintenance, offering potential therapeutic strategies to delay ovarian aging and preserve fertility.
Collapse
Affiliation(s)
- Aradhana Mohanty
- BRIC-National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Graduate Studies, Regional Center for Biotechnology, Faridabad, India
| | - Anjali Kumari
- BRIC-National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Graduate Studies, Regional Center for Biotechnology, Faridabad, India
| | - Lava Kumar S
- BRIC-National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Graduate Studies, Regional Center for Biotechnology, Faridabad, India
| | - Ajith Kumar
- BRIC-National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Graduate Studies, Regional Center for Biotechnology, Faridabad, India
| | - Pravin Birajdar
- BRIC-National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Graduate Studies, Regional Center for Biotechnology, Faridabad, India
| | - Rohit Beniwal
- BRIC-National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Graduate Studies, Regional Center for Biotechnology, Faridabad, India
| | - Mohd Athar
- BRIC-National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Graduate Studies, Regional Center for Biotechnology, Faridabad, India
| | - Kiran Kumar P
- BRIC-National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| | - H B D Prasada Rao
- BRIC-National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| |
Collapse
|
6
|
Podvin S, Florio J, Spencer B, Mante M, Guzman E, Arias C, Mosier C, Phan VV, Yoon MC, Almaliti J, O’Donoghue AJ, Gerwick WH, Rissman RA, Hook V. Activation of Cytosolic Cathepsin B Activity in the Brain by Traumatic Brain Injury and Inhibition by the Neutral pH Selective Inhibitor Probe Z-Arg-Lys-AOMK. ACS Chem Neurosci 2025; 16:1297-1308. [PMID: 40130579 PMCID: PMC11969537 DOI: 10.1021/acschemneuro.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/30/2025] [Accepted: 03/11/2025] [Indexed: 03/26/2025] Open
Abstract
Cathepsin B has been shown to contribute to deficits in traumatic brain injury (TBI), an important risk factor for Alzheimer's disease (AD). Cathepsin B is elevated in TBI and AD patients, as well as in animal models of these conditions. Knockout of the cathepsin B gene results in amelioration of TBI-induced motor dysfunction and improvement of AD memory deficit in mice. The mechanism of cathepsin B pathogenesis in these brain disorders has been hypothesized to involve its translocation to the cytosol from its normal lysosomal location. This study, therefore, evaluated brain cytosolic cathepsin B activity in the controlled cortical impact (CCI) mouse model of TBI. CCI-TBI resulted in motor deficits demonstrated by the rotarod assay, brain tissue lesions, and disorganization of the hippocampus. Significantly, CCI-TBI increased cytosolic cathepsin B activity in the brain cortex in the ipsilateral brain hemisphere that received the CCI-TBI injury, with a concomitant decrease in the lysosomal fraction. Cathepsin B activity was monitored using the substrate Z-Nle-Lys-Arg-AMC which specifically detects cathepsin B activity but not other cysteine proteases. The normal lysosomal distribution of cathepsin B was observed by its discrete localization in brain cortical cells. CCI-TBI resulted in a more diffuse cellular distribution of cathepsin B consistent with translocation to the cytosol. Further studies utilized the novel neutral pH-selective inhibitor, Z-Arg-Lys-AOMK, that specifically inhibits cathepsin B at neutral pH 7.2 of the cytosol but not at acidic pH 4.6 of lysosomes. Daily administration of Z-Arg-Lys-AOMK (ip), beginning 1 day before CCI-TBI, resulted in the reduction of the increased cytosolic cathepsin B activity induced by CCI-TBI. The inhibitor also reduced cathepsin B activities in homogenates of the brain cortex and hippocampus which were increased by CCI-TBI. Furthermore, the Z-Arg-Lys-AOMK inhibitor resulted in the reduction of motor function deficit resulting from CCI-TBI. These findings demonstrate the activation of cytosolic cathepsin B activity in CCI-TBI mouse brain injury.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Jazmin Florio
- Department
of Physiology and Neuroscience, USC Alzheimer’s
Therapeutic Research Institute, 9880 Mesa Rim Road, San Diego, California 92121, United States
| | - Brian Spencer
- Department
of Physiology and Neuroscience, USC Alzheimer’s
Therapeutic Research Institute, 9880 Mesa Rim Road, San Diego, California 92121, United States
| | - Michael Mante
- Department
of Physiology and Neuroscience, USC Alzheimer’s
Therapeutic Research Institute, 9880 Mesa Rim Road, San Diego, California 92121, United States
| | - Estefani Guzman
- Department
of Physiology and Neuroscience, USC Alzheimer’s
Therapeutic Research Institute, 9880 Mesa Rim Road, San Diego, California 92121, United States
| | - Carlos Arias
- Department
of Physiology and Neuroscience, USC Alzheimer’s
Therapeutic Research Institute, 9880 Mesa Rim Road, San Diego, California 92121, United States
| | - Charles Mosier
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Von V. Phan
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, California 92093, United States
| | - Michael C. Yoon
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Jehad Almaliti
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
- Department
Pharmaceutical Sciences, College of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Anthony J. O’Donoghue
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - William H. Gerwick
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Robert A. Rissman
- Department
of Physiology and Neuroscience, USC Alzheimer’s
Therapeutic Research Institute, 9880 Mesa Rim Road, San Diego, California 92121, United States
| | - Vivian Hook
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Department
of Neurosciences and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
7
|
Pourteymour S, Majhi RK, Norheim FA, Drevon CA. Exercise Delays Brain Ageing Through Muscle-Brain Crosstalk. Cell Prolif 2025:e70026. [PMID: 40125692 DOI: 10.1111/cpr.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025] Open
Abstract
Ageing is often accompanied by cognitive decline and an increased risk of dementia. Exercise is a powerful tool for slowing brain ageing and enhancing cognitive function, as well as alleviating depression, improving sleep, and promoting overall well-being. The connection between exercise and healthy brain ageing is particularly intriguing, with exercise-induced pathways playing key roles. This review explores the link between exercise and brain health, focusing on how skeletal muscle influences the brain through muscle-brain crosstalk. We examine the interaction between the brain with well-known myokines, including brain-derived neurotrophic factor, macrophage colony-stimulating factor, vascular endothelial growth factor and cathepsin B. Neuroinflammation accumulates in the ageing brain and leads to cognitive decline, impaired motor skills and increased susceptibility to neurodegenerative diseases. Finally, we examine the evidence on the effects of exercise on neuronal myelination in the central nervous system, a crucial factor in maintaining brain health throughout the lifespan.
Collapse
Affiliation(s)
- Shirin Pourteymour
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rakesh Kumar Majhi
- Tissue Restoration Lab, Department of Biological Sciences and Bioengineering, Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, India
- Center of Excellence in Cancer, Gangwal School of Medical Science and Technology, Indian Institute of Technology Kanpur, Kanpur, India
| | - Frode A Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Vitas Ltd, Oslo, Norway
| |
Collapse
|
8
|
Viana GM, Pan X, Fan S, Xu T, Wyatt A, Pshezhetsky AV. Cathepsin B inhibition blocks amyloidogenesis in the mouse models of neurological lysosomal diseases MPS IIIC and sialidosis. Mol Ther Methods Clin Dev 2025; 33:101432. [PMID: 40092638 PMCID: PMC11910108 DOI: 10.1016/j.omtm.2025.101432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025]
Abstract
Neuronal accumulation of amyloid aggregates is a hallmark of brain pathology in neurological lysosomal storage diseases (LSDs), including mucopolysaccharidoses (MPS); however, the molecular mechanism underlying this pathology has not been understood. We demonstrate that elevated lysosomal cathepsin B (CTSB) levels and CTSB leakage to the cytoplasm triggers amyloidogenesis in two neurological LSDs. CTSB levels were elevated 3- to 5-fold in the cortices of mouse models of MPS IIIC (Hgsnat-Geo and Hgsnat P304L ) and sialidosis (Neu1 ΔEx3 ), as well as in cortical samples of MPS I, IIIA, IIIC, and IIID patients. CTSB was found in the cytoplasm of pyramidal layer IV-V cortical neurons containing thioflavin-S+, β-amyloid+ aggregates consistent with a pro-senile phenotype. In contrast, CTSB-deficient MPS IIIC (Hgsnat P304L /Ctsb -/- ) mice as well as Hgsnat P304L and Neu1 ΔEx3 mice chronically treated with irreversible brain-penetrable CTSB inhibitor E64 showed a drastic reduction in neuronal thioflavin-S+/APP+ deposits. Neurons of Hgsnat P304L /Ctsb -/- mice and E64-treated Hgsnat P304L mice also showed reduced levels of P62+, LC3+ puncta, GM2 ganglioside, and misfolded subunit C of mitochondrial ATP synthase, consistent with restored autophagy. E64 treatment also rescued hyperactivity and reduced anxiety in Hgsnat P304L mice, implying that CTSB may become a novel pharmacological target for MPS III and similar LSDs.
Collapse
Affiliation(s)
- Gustavo M Viana
- Division of Medical Genetics, Centre Hospitalier Universitaire (CHU) Ste-Justine Research Centre, Montreal, QC H3A 0C7, Canada
| | - Xuefang Pan
- Division of Medical Genetics, Centre Hospitalier Universitaire (CHU) Ste-Justine Research Centre, Montreal, QC H3A 0C7, Canada
| | - Shuxian Fan
- Division of Medical Genetics, Centre Hospitalier Universitaire (CHU) Ste-Justine Research Centre, Montreal, QC H3A 0C7, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3T 1C5, Canada
| | - TianMeng Xu
- Division of Medical Genetics, Centre Hospitalier Universitaire (CHU) Ste-Justine Research Centre, Montreal, QC H3A 0C7, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3T 1C5, Canada
| | - Alexandra Wyatt
- Division of Medical Genetics, Centre Hospitalier Universitaire (CHU) Ste-Justine Research Centre, Montreal, QC H3A 0C7, Canada
| | - Alexey V Pshezhetsky
- Division of Medical Genetics, Centre Hospitalier Universitaire (CHU) Ste-Justine Research Centre, Montreal, QC H3A 0C7, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
9
|
Zhao Y, Zhuang Y, Shi J, Fan H, Lv Q, Guo X. Cathepsin B induces kidney diseases through different types of programmed cell death. Front Immunol 2025; 16:1535313. [PMID: 40129990 PMCID: PMC11930809 DOI: 10.3389/fimmu.2025.1535313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
Cathepsin B (CTSB), a key cysteine protease, plays essential roles in physiological and pathological processes. As research progresses, interest in how CTSB triggers different types of programmed cell death (PCD) to induce the onset and development of diseases is increasing. Several recent studies suggest that different types of PCD mediated by CTSB play key roles in kidney diseases. In this review, we outline the fundamental mechanisms by which CTSB triggers different types of PCD in several kidney diseases and discuss the function of CTSB in various segments of the kidney. Moreover, we explore the possibilities and prospects of using CTSB as a therapeutic target for kidney diseases.
Collapse
Affiliation(s)
- Yunlong Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yong Zhuang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Jie Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Qi Lv
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Xiaoqin Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Key Laboratory for Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| |
Collapse
|
10
|
Li J, Liu T, Xian M, Zhou K, Wei J. The Power of Exercise: Unlocking the Biological Mysteries of Peripheral-Central Crosstalk in Parkinson's Disease. J Adv Res 2025:S2090-1232(25)00143-2. [PMID: 40049515 DOI: 10.1016/j.jare.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/06/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Exercise is a widely recognized non-pharmacological treatment for Parkinson's Disease (PD). The bidirectional regulation between the brain and peripheral organs has emerged as a promising area of research, with the mechanisms by which exercise impacts PD closely linked to the interplay between peripheral signals and the central nervous system. AIM OF REVIEW This review aims to summarize the mechanisms by which exercise influences peripheral-central crosstalk to improve PD, discuss the molecular processes mediating these interactions, elucidate the pathways through which exercise may modulate PD pathophysiology, and identify directions for future research. KEY SCIENTIFIC CONCEPTS OF REVIEW This review examines how exercise-induced cytokine release promotes neuroprotection in PD. It discusses how exercise can stimulate cytokine secretion through various pathways, including the gut-brain, muscle-brain, liver-brain, adipose-brain, and bone-brain axes, thereby alleviating PD symptoms. Additionally, the potential contributions of the heart-brain, lung-brain, and spleen-brain axes, as well as multi-axis crosstalk-such as the brain-gut-muscle and brain-gut-bone axes-are explored in the context of exercise therapy. The study highlights the need for further research into peripheral-central crosstalk and outlines future directions to address challenges in clinical PD therapy.
Collapse
Affiliation(s)
- Jingwen Li
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng, Henan, 475004, China
| | - Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Meiyan Xian
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ke Zhou
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng, Henan, 475004, China.
| | - Jianshe Wei
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng, Henan, 475004, China; Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
11
|
Jiang M, Ge Z, Yin S, Liu Y, Gao H, Lu L, Wang H, Li C, Ni J, Pan Y, Lin L. Cathepsin B Modulates Alzheimer's Disease Pathology Through SAPK/JNK Signals Following Administration of Porphyromonas gingivalis-Derived Outer Membrane Vesicles. J Clin Periodontol 2025; 52:434-456. [PMID: 39726227 DOI: 10.1111/jcpe.14109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/29/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
AIM Porphyromonas gingivalis , a consensus periodontal pathogen, is thought to be involved in Alzheimer's disease (AD) progression, and P. gingivalis -derived outer membrane vesicles (PgOMVs) are a key toxic factor in inducing AD pathology. This study aimed to clarify the regulatory mechanism underlying the PgOMV-induced AD-like phenotype. MATERIALS AND METHODS We intraperitoneally injected PgOMVs into the periphery of wild-type and CatB knockout mice for 4 or 8 weeks to assess the effect of CatB on PgOMV-induced AD pathology. Mice were evaluated for cognitive change, tau phosphorylation, microglial activation, neuroinflammation and synapse loss. Microglial and primary neuron culture were prepared to verify the in vivo results. RESULTS CatB deficiency significantly alleviated PgOMV-induced cognitive dysfunction, microglia-mediated neuroinflammation, tau hyperphosphorylation and synapse loss. Subsequent transcriptomic analysis, immunofluorescence and immunoblotting suggested that CatB modulates microglia-mediated neuroinflammation through stress-activated protein kinases (SAPK)/Jun amino-terminal kinases (JNK) signals after administration of PgOMVs, which in turn regulates neuronal tau phosphorylation and synapse loss in a SAPK/JNK-dependent manner. CONCLUSION Our study unveils a previously unknown role of CatB in regulating PgOMV-induced AD pathology.
Collapse
Affiliation(s)
- Muzhou Jiang
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Ziming Ge
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Shoucheng Yin
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yanqing Liu
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Hanyu Gao
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Lijie Lu
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Hongyan Wang
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Chen Li
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yaping Pan
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Li Lin
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
12
|
Sulatsky MI, Stepanenko OV, Stepanenko OV, Mikhailova EV, Sulatskaya AI. Cathepsin B prevents cell death by fragmentation and destruction of pathological amyloid fibrils. Cell Death Discov 2025; 11:61. [PMID: 39955315 PMCID: PMC11830053 DOI: 10.1038/s41420-025-02343-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/09/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
Amyloid fibrils cause organ and tissue dysfunction in numerous severe diseases. Despite the prevalence and severity of amyloidoses, there is still no effective and safe anti-amyloid therapy. This study investigates the impact of cysteine protease cathepsin B (CTSB) on amyloids associated with Alzheimer's and Parkinson's diseases, hemodialysis, and lysozyme amyloidosis. We analyzed the effect of CTSB on the size, structure, and proteotoxicity of amyloid fibrils formed from alpha-synuclein, abeta peptide (1-42), insulin, and lysozyme using a combination of spectroscopic, microscopic, electrophoretic, and colorimetric methods. Our comprehensive research revealed a dual effect of CTSB on amyloid fibrils. Firstly, CTSB induced amyloid fragmentation while preserving their ordered morphology, and, secondly, it "loosened" the tertiary structure of amyloids and reduced the regularity of the secondary structure. This dual mechanism of action was universal across fibrils associated with different pathologies, although the disruption efficacy and predominant type of degradation products depended on the amyloids' structure, size, and clustering. Notably, CTSB-induced irreversible degradation significantly reduced the toxicity for immortalized and primary cell lines of low-clustered fibrils, such as alpha-synuclein amyloids associated with Parkinson's disease. These findings enhance our understanding of how endogenous CTSB may regulate amyloid content at the molecular level in different neuropathologies. In addition, our results suggest the potential of CTSB as a component of anti-amyloid drugs in combination with agents that enhance the accessibility of proteolytic sites within amyloid clots and reduce these clusters stability.
Collapse
Affiliation(s)
- Maksim I Sulatsky
- Laboratory of cell morphology, Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia
| | - Olesya V Stepanenko
- Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia
| | - Olga V Stepanenko
- Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia
| | - Ekaterina V Mikhailova
- Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia
| | - Anna I Sulatskaya
- Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
13
|
Ma CS, Liu YX, Han B, Bai M, Li DL, Meng SC, Zhang LY, Duan MY, He MT. Long-Term Exposure to Tire-Derived 6-PPD Quinone Causes Neurotoxicity and Neuroinflammation via Inhibition of HTR2A in C57BL/6 Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1542-1552. [PMID: 39810414 DOI: 10.1021/acs.est.4c09276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ), a novel contaminant derived from tire wear, has raised concerns due to its potential neurotoxicity, yet its long-term effects on mammalian neurological health remain poorly understood. This study investigates the neurotoxic and neuroinflammatory impacts of prolonged 6-PPDQ exposure using male C57BL/6 mice. Behavioral assessments revealed significant cognitive deficits, while biochemical analyses demonstrated increased levels of reactive oxygen species, apoptosis, and blood-brain barrier (BBB) disruption. Elevated pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) and activation of microglial cells were observed, indicating a robust neuroinflammatory response. Network pharmacology and molecular docking identified serotonin receptor HTR2A as a key target through which 6-PPDQ mediates its toxic effects. Activation of HTR2A by the agonist DOI (2,5-dimethoxy-4-iodoamphetamine) mitigated these effects, suggesting a potential therapeutic strategy. These findings provide the first evidence of 6-PPDQ-induced neurotoxicity in mammals, underscoring the need for preventive measures to protect neurological health.
Collapse
Affiliation(s)
- Chang-Sheng Ma
- School of Basic Medical Sciences, Shandong Second Medical University, 7166 Baotong West Street, Weicheng District, Weifang, Shandong 261053, China
- Affiliated Hospital of Shandong Second Medical University, 2428 Yuhe Road, Kuiwen District, Weifang, Shandong 261053, China
| | - Yu-Xi Liu
- School of Basic Medical Sciences, Shandong Second Medical University, 7166 Baotong West Street, Weicheng District, Weifang, Shandong 261053, China
- Affiliated Hospital of Shandong Second Medical University, 2428 Yuhe Road, Kuiwen District, Weifang, Shandong 261053, China
| | - Bo Han
- School of Basic Medical Sciences, Shandong Second Medical University, 7166 Baotong West Street, Weicheng District, Weifang, Shandong 261053, China
- Affiliated Hospital of Shandong Second Medical University, 2428 Yuhe Road, Kuiwen District, Weifang, Shandong 261053, China
| | - Min Bai
- School of Basic Medical Sciences, Shandong Second Medical University, 7166 Baotong West Street, Weicheng District, Weifang, Shandong 261053, China
- Affiliated Hospital of Shandong Second Medical University, 2428 Yuhe Road, Kuiwen District, Weifang, Shandong 261053, China
| | - Dong-Lun Li
- School of Basic Medical Sciences, Shandong Second Medical University, 7166 Baotong West Street, Weicheng District, Weifang, Shandong 261053, China
- Affiliated Hospital of Shandong Second Medical University, 2428 Yuhe Road, Kuiwen District, Weifang, Shandong 261053, China
| | - Shu-Chen Meng
- School of Basic Medical Sciences, Shandong Second Medical University, 7166 Baotong West Street, Weicheng District, Weifang, Shandong 261053, China
- Affiliated Hospital of Shandong Second Medical University, 2428 Yuhe Road, Kuiwen District, Weifang, Shandong 261053, China
| | - Li-Ying Zhang
- School of Basic Medical Sciences, Shandong Second Medical University, 7166 Baotong West Street, Weicheng District, Weifang, Shandong 261053, China
- Affiliated Hospital of Shandong Second Medical University, 2428 Yuhe Road, Kuiwen District, Weifang, Shandong 261053, China
| | - Meng-Yuan Duan
- School of Basic Medical Sciences, Shandong Second Medical University, 7166 Baotong West Street, Weicheng District, Weifang, Shandong 261053, China
- Affiliated Hospital of Shandong Second Medical University, 2428 Yuhe Road, Kuiwen District, Weifang, Shandong 261053, China
| | - Mao-Tao He
- School of Basic Medical Sciences, Shandong Second Medical University, 7166 Baotong West Street, Weicheng District, Weifang, Shandong 261053, China
- Affiliated Hospital of Shandong Second Medical University, 2428 Yuhe Road, Kuiwen District, Weifang, Shandong 261053, China
| |
Collapse
|
14
|
Lalmanach G, Rigoux B, David A, Tahri-Joutey M, Lecaille F, Marchand-Adam S, Saidi A. Human cystatin C in fibrotic diseases. Clin Chim Acta 2025; 565:120016. [PMID: 39461496 DOI: 10.1016/j.cca.2024.120016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
Human cystatin C (hCC), which has a pervasive distribution within body fluids and is ubiquitously expressed by numerous cells and tissues, is a highly potent extracellular inhibitor of cysteine proteases. Besides measurement of serum creatinine, which is the most widely used technique for appraising glomerular filtration rate (GFR), hCC has emerged as a relevant GFR biomarker, because its quantification in serum is less sensitive to interferences with factors such as age, muscle mass or diet. Moreover, there are growing body of evidence that hCC overexpression and/or oversecretion, which is primarily driven by TGF-β1, occur during fibrogenesis (cardiac, liver, oral, and lung fibrosis). Even though molecular mechanisms and signaling pathways governing the regulation of hCC remain to be deciphered more acutely, current data sustain that hCC expression relates to myofibrogenesis and that hCC could be a specific and valuable biomarker of fibrotic disease.
Collapse
Affiliation(s)
- Gilles Lalmanach
- University of Tours, Tours, France; INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Enzymes and Their Pharmacological Targeting in Lung Diseases", Tours, France.
| | - Baptiste Rigoux
- University of Tours, Tours, France; INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Enzymes and Their Pharmacological Targeting in Lung Diseases", Tours, France
| | - Alexis David
- University of Tours, Tours, France; INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Enzymes and Their Pharmacological Targeting in Lung Diseases", Tours, France
| | - Mounia Tahri-Joutey
- University of Tours, Tours, France; INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Enzymes and Their Pharmacological Targeting in Lung Diseases", Tours, France
| | - Fabien Lecaille
- University of Tours, Tours, France; INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Enzymes and Their Pharmacological Targeting in Lung Diseases", Tours, France
| | - Sylvain Marchand-Adam
- University of Tours, Tours, France; INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Enzymes and Their Pharmacological Targeting in Lung Diseases", Tours, France; The University Hospital Center of Tours (CHRU Tours), Pulmonology Department, Tours, France
| | - Ahlame Saidi
- University of Tours, Tours, France; INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Enzymes and Their Pharmacological Targeting in Lung Diseases", Tours, France
| |
Collapse
|
15
|
Hu Z, Yang J, Zhang S, Li M, Zuo C, Mao C, Zhang Z, Tang M, Shi C, Xu Y. AAV mediated carboxyl terminus of Hsp70 interacting protein overexpression mitigates the cognitive and pathological phenotypes of APP/PS1 mice. Neural Regen Res 2025; 20:253-264. [PMID: 38767490 PMCID: PMC11246129 DOI: 10.4103/nrr.nrr-d-23-01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/27/2023] [Accepted: 01/02/2024] [Indexed: 05/22/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202501000-00033/figure1/v/2024-05-14T021156Z/r/image-tiff The E3 ubiquitin ligase, carboxyl terminus of heat shock protein 70 (Hsp70) interacting protein (CHIP), also functions as a co-chaperone and plays a crucial role in the protein quality control system. In this study, we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer's disease. We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain. CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests, reduced amyloid-β plaques, and decreased the expression of both amyloid-β and phosphorylated tau. CHIP also alleviated the concentration of microglia and astrocytes around plaques. In APP/PS1 mice of a younger age, CHIP overexpression promoted an increase in ADAM10 expression and inhibited β-site APP cleaving enzyme 1, insulin degrading enzyme, and neprilysin expression. Levels of HSP70 and HSP40, which have functional relevance to CHIP, were also increased. Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated, which may also reflect a potential mechanism for the neuroprotective effect of CHIP. Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice. Indeed, overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Chunyan Zuo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhongxian Zhang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Mibo Tang
- Department of Gerontology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
16
|
Ma Y, Xu D, Gan Y, Chen Z, Chen Y, Han X. Adverse outcome pathway of Alzheimer's disease-like changes resulting from autophagy flux blockade after MC-LR exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125322. [PMID: 39549990 DOI: 10.1016/j.envpol.2024.125322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024]
Abstract
Microcystins (MCs) pollution is a worldwide environmental issue concerning about human health. Microcystin-leucine-arginine (MC-LR), the most common type of MCs produced by cyanobacteria, could enter the brain and bring about damage to the nervous system. Up to date, it is not clear about the mechanism of MC-LR-induced neurotoxicity. Amyloid-β (Aβ) deposits are hallmark of Alzheimer's disease (AD). In this study, we revealed that MC-LR exposure at environment-related doses (1, 7.5, 15 μg/L) could promote Aβ accumulation in mouse brain. Mechanically, we firstly found that Aβ accumulation is closely associated with abnormal Aβ degradation due to autophagy flux blockade and lysosome dysfunctions in neurons after MC-LR exposure. Moreover, an adverse outcome pathway (AOP) framework oriented to neurotoxicity of MC-LR was conducted in this study. MC-LR inhibited the activity of protein phosphatase 2A (PP2A) in neurons, which is regarded as a molecular initiating event (MIE). In addition, the abnormalities in autophagy were observed after MC-LR exposure. The hindered autophagosome-lysosome fusion and disrupted lysosomal function were key events (KEs) after MC-LR exposure, which contributed to proteostasis dysregulation, ultimately leading to Aβ abnormal degradation and learning deficits as adverse outcomes (AO) of neurotoxicity. This study provided novel information about MC-LR neurotoxicity and new insights into understanding the mechanisms underlying the environmental chemicals-induced neurodegeneration diseases, which has deep implications for public health.
Collapse
Affiliation(s)
- Yuhan Ma
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Dihui Xu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yibin Gan
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Zining Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yabing Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Xiaodong Han
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
17
|
Zhao K, Sun Y, Zhong S, Luo JL. The multifaceted roles of cathepsins in immune and inflammatory responses: implications for cancer therapy, autoimmune diseases, and infectious diseases. Biomark Res 2024; 12:165. [PMID: 39736788 DOI: 10.1186/s40364-024-00711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/19/2024] [Indexed: 01/01/2025] Open
Abstract
The cathepsin family comprises lysosomal proteases that play essential roles in various physiological processes, including protein degradation, antigen presentation, apoptosis, and tissue remodeling. Dysregulation of cathepsin activity has been linked to a variety of pathological conditions, such as cancer, autoimmune diseases, and neurodegenerative disorders. Understanding the functions of cathepsins is crucial for gaining insights into their roles in both health and disease, as well as for developing targeted therapeutic approaches. Emerging research underscores the significant involvement of cathepsins in immune cells, particularly T cells, macrophages, dendritic cells, and neutrophils, as well as their contribution to immune-related diseases. In this review, we systematically examine the impact of cathepsins on the immune system and their mechanistic roles in cancer, infectious diseases, autoimmune and neurodegenerative disorders, with the goal of identifying novel therapeutic strategies for these conditions.
Collapse
Affiliation(s)
- Kexin Zhao
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hengyang, Hunan, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hengyang, Hunan, 421001, China
| | - Yangqing Sun
- Department of Oncology, Hunan Provincial People's Hospital, Changsha, Hunan, 410005, China
| | - Shangwei Zhong
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hengyang, Hunan, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hengyang, Hunan, 421001, China
| | - Jun-Li Luo
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hengyang, Hunan, 421001, China.
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hengyang, Hunan, 421001, China.
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, USC, Hengyang, Hunan, 410008, China.
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, USC, Hengyang, Hunan, 421001, China.
| |
Collapse
|
18
|
Du Y, Yang L, Wang X, Jiang N, Zhou Y, Chen R, Li H. Proteome Profiling of Experimental Autoimmune Encephalomyelitis Mouse Model and the Effect of a SUMO E1 Inhibitor. J Proteome Res 2024; 23:5312-5325. [PMID: 39568369 DOI: 10.1021/acs.jproteome.4c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Multiple sclerosis (MS) is one of the most common neurodegenerative diseases, causing demyelination and inflammation in the central nervous system. The pathology of MS has been extensively studied using the experimental autoimmune encephalomyelitis (EAE) mouse model. However, the molecular mechanisms are still largely unclear and require further investigation. In this study, we carried out quantitative proteomic analysis of the brain and spinal cord tissues in mice induced with EAE using a data-independent acquisition strategy and identified 744 differentially regulated proteins in the brain and 741 in the spinal cord. The changed proteins were highly related with phagocytosis, lysosomal enzymes, inflammasome activation, complements, and synaptic loss processes. Moreover, gene set enrichment analysis revealed the elevation of the SUMOylation process in EAE with the increase of SUMOylation-related enzymes and modification targets. Furthermore, to test the possibility of treating MS by targeting SUMOylation, we explored the application of a selective SUMO E1 inhibitor, TAK-981. Intriguingly, TAK-981 suppressed the global SUMOylation level in the brain and significantly alleviated the symptoms of EAE in mice. Our findings contribute to a better understanding of MS pathology, reveal the important role of SUMOylation in disease progression, and demonstrate the potential of the SUMO E1 inhibitor as a novel treatment for MS.
Collapse
Affiliation(s)
- Yingdong Du
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Linlin Yang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xiaoxiao Wang
- General Surgery Department, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Na Jiang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Yanting Zhou
- General Surgery Department, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Hongyan Li
- General Surgery Department, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
19
|
Zhou Y, Dong W, Wang L, Ren S, Wei W, Wu G. Cystatin C Attenuates Perihematomal Secondary Brain Injury by Inhibiting the Cathepsin B/NLRP3 Signaling Pathway in a Rat Model of Intracerebral Hemorrhage. Mol Neurobiol 2024; 61:9646-9662. [PMID: 38676809 DOI: 10.1007/s12035-024-04195-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Secondary brain injury (SBI) is a noticeable contributor to the high mortality and morbidity rates associated with intracerebral hemorrhage (ICH), and effective treatment options remain limited. Cystatin C (CysC) emerges as a novel candidate for SBI intervention. The therapeutic effects and underlying mechanisms of CysC in mitigating SBI following ICH were explored in the current research. An in vivo ICH rat model was established by injecting autologous blood into the right caudate nucleus. Western blotting (WB) was utilized to assess the levels of CysC, cathepsin B (CTSB), and the NLRP3 inflammasome. Subsequently, the ICH rat model was treated with exogenous CysC supplementation or CysC knockdown plasmids. Various parameters, including Evans blue (EB) extravasation, brain water content, and neurological function in rats, were examined. RT-qPCR and WB were employed to determine the expression levels of CTSB and the NLRP3 inflammasome. The co-expression of CTSB, CysC, and NLRP3 inflammasome with GFAP, NeuN, and Iba1 was assessed through double-labeled immunofluorescence. The interaction between CysC and CTSB was investigated using double-labeled immunofluorescence and co-immunoprecipitation. The findings revealed an elevation of CysC expression level, particularly at 24 h after ICH. Exogenous CysC supplementation alleviated severe brain edema, neurological deficit scores, and EB extravasation induced by ICH. Conversely, CysC knockdown produced opposite effects. The expression levels of CTSB and the NLRP3 inflammasome were significantly risen following ICH, and exogenous CysC supplement attenuated their expression levels. Double-labeled immunofluorescence illustrated that CysC, CTSB, and the NLRP3 inflammasome were predominantly expressed in microglial cells, and the interaction between CysC and CTSB was evidenced. CysC exhibited potential in ameliorating SBI following ICH via effectively suppressing the activation of the NLRP3 inflammasome mediated by CTSB specifically in microglial cells. These findings underscore the prospective therapeutic efficacy of CysC in the treatment of ICH-induced complications.
Collapse
Affiliation(s)
- Yongfang Zhou
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Wentao Dong
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Likun Wang
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Siying Ren
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Weiqing Wei
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Guofeng Wu
- Department of Emergency, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
20
|
Badenetti L, Yu SH, Colonna MB, Hull R, Bethard JR, Ball L, Flanagan-Steet H, Steet R. Multi-omic analysis of a mucolipidosis II neuronal cell model uncovers involvement of pathways related to neurodegeneration and drug metabolism. Mol Genet Metab 2024; 143:108596. [PMID: 39461112 PMCID: PMC11569414 DOI: 10.1016/j.ymgme.2024.108596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Defining the molecular consequences of lysosomal dysfunction in neuronal cell types remains an area of investigation that is needed to understand many underappreciated phenotypes associated with lysosomal disorders. Here we characterize GNPTAB-knockout DAOY medulloblastoma cells using different genetic and proteomic approaches, with a focus on how altered gene expression and cell surface abundance of glycoproteins may explain emerging neurological issues in individuals with GNPTAB-related disorders, including mucolipidosis II (ML II) and mucolipidosis IIIα/β (ML IIIα/β). The two knockout clones characterized demonstrated all the biochemical hallmarks of this disease, including loss of intracellular glycosidase activity due to impaired mannose 6-phosphate-dependent lysosomal sorting, lysosomal cholesterol accumulation, and increased markers of autophagic dysfunction. RNA sequencing identified altered transcript abundance of several neuronal markers and genes involved in drug metabolism and transport, and neurodegeneration-related pathways. Using selective exo-enzymatic labeling (SEEL) coupled with proteomics to profile cell surface glycoproteins, we demonstrated altered abundance of several glycoproteins in the knockout cells. Most striking was increased abundance of the amyloid precursor protein and apolipoprotein B, indicating that loss of GNPTAB function in these cells corresponds with elevation in proteins associated with neurodegeneration. The implication of these findings on lysosomal disease pathogenesis and the emerging neurological manifestations of GNPTAB-related disorders is discussed.
Collapse
Affiliation(s)
- Lorenzo Badenetti
- Greenwood Genetic Center, Greenwood, SC 29646, United States of America
| | - Seok-Ho Yu
- Greenwood Genetic Center, Greenwood, SC 29646, United States of America
| | - Maxwell B Colonna
- Greenwood Genetic Center, Greenwood, SC 29646, United States of America
| | - Rony Hull
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425, United States of America
| | - Jennifer R Bethard
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425, United States of America
| | - Lauren Ball
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425, United States of America
| | | | - Richard Steet
- Greenwood Genetic Center, Greenwood, SC 29646, United States of America.
| |
Collapse
|
21
|
Siddiqui AA, Merquiol E, Bruck-Haimson R, Hirbawi J, Boocholez H, Cohen I, Yan Y, Dong MQ, Blum G, Cohen E. Cathepsin B promotes Aβ proteotoxicity by modulating aging regulating mechanisms. Nat Commun 2024; 15:8564. [PMID: 39362844 PMCID: PMC11450018 DOI: 10.1038/s41467-024-52540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/10/2024] [Indexed: 10/05/2024] Open
Abstract
While the activities of certain proteases promote proteostasis and prevent neurodegeneration-associated phenotypes, the protease cathepsin B (CTSB) enhances proteotoxicity in Alzheimer's disease (AD) model mice, and its levels are elevated in brains of AD patients. How CTSB exacerbates the toxicity of the AD-causing Amyloid β (Aβ) peptide is controversial. Using an activity-based probe, aging-altering interventions and the nematode C. elegans, we discovered that the CTSB CPR-6 promotes Aβ proteotoxicity but mitigates the toxicity of polyQ stretches. While the knockdown of cpr-6 does not affect lifespan, it alleviates Aβ toxicity by reducing the expression of swsn-3 and elevating the level of the protein SMK-1, both involved in the regulation of aging. These observations unveil a mechanism by which CTSB aggravates Aβ-mediated toxicity, indicate that it plays opposing roles in the face of distinct proteotoxic insults and highlight the importance of tailoring specific remedies for distinct neurodegenerative disorders.
Collapse
Affiliation(s)
- Atif Ahmed Siddiqui
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada (IMRIC) The Hebrew University, Jerusalem, 9112001, Israel
| | - Emmanuelle Merquiol
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, 9112001, Israel
| | - Reut Bruck-Haimson
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada (IMRIC) The Hebrew University, Jerusalem, 9112001, Israel
| | - Joud Hirbawi
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada (IMRIC) The Hebrew University, Jerusalem, 9112001, Israel
| | - Hana Boocholez
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada (IMRIC) The Hebrew University, Jerusalem, 9112001, Israel
| | - Irit Cohen
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada (IMRIC) The Hebrew University, Jerusalem, 9112001, Israel
| | - Yonghong Yan
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Meng Qiu Dong
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Galia Blum
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, 9112001, Israel.
| | - Ehud Cohen
- Department of Biochemistry and Molecular Biology, the Institute for Medical Research Israel-Canada (IMRIC) The Hebrew University, Jerusalem, 9112001, Israel.
| |
Collapse
|
22
|
Gomez‐Cardona E, Dehkordi MH, Van Baar K, Vitkauskaite A, Julien O, Fearnhead HO. An atlas of caspase cleavage events in differentiating muscle cells. Protein Sci 2024; 33:e5156. [PMID: 39180494 PMCID: PMC11344277 DOI: 10.1002/pro.5156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/02/2024] [Accepted: 08/11/2024] [Indexed: 08/26/2024]
Abstract
Executioner caspases, such as caspase-3, are known to induce apoptosis, but in other contexts, they can control very different fates, including cell differentiation and neuronal plasticity. While hundreds of caspase substrates are known to be specifically targeted during cell death, we know very little about how caspase activity brings about non-apoptotic fates. Here, we report the first proteome identification of cleavage events in C2C12 cells undergoing myogenic differentiation and its comparison to undifferentiated or dying C2C12 cells. These data have identified new caspase substrates, including caspase substrates specifically associated with differentiation, and show that caspases are regulating proteins involved in myogenesis in myotubes, several days after caspase-3 initiated differentiation. Cytoskeletal proteins emerged as a major group of non-apoptotic caspase substrates. We also identified proteins with well-established roles in muscle differentiation as substrates cleaved in differentiating cells.
Collapse
Affiliation(s)
- Erik Gomez‐Cardona
- Department of Biochemistry, Faculty of Medicine and DentistryUniversity of AlbertaAlbertaCanada
| | - Mahshid H. Dehkordi
- Pharmacology and Therapeutics, School of MedicineUniversity of GalwayGalwayIreland
| | - Kolden Van Baar
- Department of Biochemistry, Faculty of Medicine and DentistryUniversity of AlbertaAlbertaCanada
| | - Aiste Vitkauskaite
- Pharmacology and Therapeutics, School of MedicineUniversity of GalwayGalwayIreland
| | - Olivier Julien
- Department of Biochemistry, Faculty of Medicine and DentistryUniversity of AlbertaAlbertaCanada
| | - Howard O. Fearnhead
- Pharmacology and Therapeutics, School of MedicineUniversity of GalwayGalwayIreland
| |
Collapse
|
23
|
Pitkänen M, Matilainen O. Milk Fat Globule Membrane-Containing Protein Powder Promotes Fitness in Caenorhabditis elegans. Nutrients 2024; 16:2290. [PMID: 39064733 PMCID: PMC11280102 DOI: 10.3390/nu16142290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Milk-derived peptides and milk fat globule membrane (MFGM) have gained interest as health-promoting food ingredients. However, the mechanisms by which these nutraceuticals modulate the function of biological systems often remain unclear. We utilized Caenorhabditis elegans to elucidate how MFGM-containing protein powder (MProPow), previously used in a clinical trial, affect the physiology of this model organism. Our results demonstrate that MProPow does not affect lifespan but promotes the fitness of the animals. Surprisingly, gene expression analysis revealed that MProPow decreases the expression of genes functioning on innate immunity, which also translates into reduced survival on pathogenic bacteria. One of the innate immunity-associated genes showing reduced expression upon MProPow supplementation is cpr-3, the homolog of human cathepsin B. Interestingly, knockdown of cpr-3 enhances fitness, but not in MProPow-treated animals, suggesting that MProPow contributes to fitness by downregulating the expression of this gene. In summary, this research highlights the value of C. elegans in testing the biological activity of food supplements and nutraceuticals. Furthermore, this study should encourage investigations into whether milk-derived peptides and MFGM mediate their beneficial effects through the modulation of cathepsin B expression in humans.
Collapse
Affiliation(s)
| | - Olli Matilainen
- The Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland;
| |
Collapse
|
24
|
Debette S, Caro I, Western D, Namba S, Sun N, Kawaguchi S, He Y, Fujita M, Roshchupkin G, D'Aoust T, Duperron MG, Sargurupremraj M, Tsuchida A, Koido M, Ahmadi M, Yang C, Timsina J, Ibanez L, Matsuda K, Suzuki Y, Oda Y, Kanai A, Jandaghi P, Munter HM, Auld D, Astafeva I, Puerta R, Rotter J, Psaty B, Bis J, Longstreth W, Couffinhal T, Garcia-Gonzalez P, Pytel V, Marquié M, Cano A, Boada M, Joliot M, Lathrop M, Le Grand Q, Launer L, Wardlaw J, Heiman M, Ruiz A, Matthews P, Seshadri S, Fornage M, Adams H, Mishra A, Trégouët DA, Okada Y, Kellis M, De Jager P, Tzourio C, Kamatani Y, Matsuda F, Cruchaga C. Proteogenomics in cerebrospinal fluid and plasma reveals new biological fingerprint of cerebral small vessel disease. RESEARCH SQUARE 2024:rs.3.rs-4535534. [PMID: 39011113 PMCID: PMC11247936 DOI: 10.21203/rs.3.rs-4535534/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Cerebral small vessel disease (cSVD) is a leading cause of stroke and dementia with no specific mechanism-based treatment. We used Mendelian randomization to combine a unique cerebrospinal fluid (CSF) and plasma pQTL resource with the latest European-ancestry GWAS of MRI-markers of cSVD (white matter hyperintensities, perivascular spaces). We describe a new biological fingerprint of 49 protein-cSVD associations, predominantly in the CSF. We implemented a multipronged follow-up, across fluids, platforms, and ancestries (Europeans and East-Asian), including testing associations of direct plasma protein measurements with MRI-cSVD. We highlight 16 proteins robustly associated in both CSF and plasma, with 24/4 proteins identified in CSF/plasma only. cSVD-proteins were enriched in extracellular matrix and immune response pathways, and in genes enriched in microglia and specific microglial states (integration with single-nucleus RNA sequencing). Immune-related proteins were associated with MRI-cSVD already at age twenty. Half of cSVD-proteins were associated with stroke, dementia, or both, and seven cSVD-proteins are targets for known drugs (used for other indications in directions compatible with beneficial therapeutic effects. This first cSVD proteogenomic signature opens new avenues for biomarker and therapeutic developments.
Collapse
Affiliation(s)
| | | | - Daniel Western
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Na Sun
- MIT Computer Science and Artificial Intelligence Laboratory; Broad Institute of MIT and Harvard
| | | | - Yunye He
- Graduate School of Frontier Sciences, The University of Tokyo
| | | | | | - Tim D'Aoust
- Bordeaux Population Health, Inserm U1219, University of Bordeaux
| | | | - Murali Sargurupremraj
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, F-33000 Bordeaux, France; Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases Unive
| | | | - Masaru Koido
- Graduate School of Frontier Sciences, The University of Tokyo
| | | | | | - Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Koichi Matsuda
- Department of Computational Biology and Medical Sciences, Graduate school of Frontier Sciences, The University of Tokyo
| | | | - Yoshiya Oda
- Graduate School of Medicine, The University of Tokyo
| | | | | | | | - Dan Auld
- Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University
| | - Iana Astafeva
- Bordeaux Population Health, Inserm U1219, University of Bordeaux; Institute of Neurodegenerative Diseases
| | | | - Jerome Rotter
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center
| | | | | | | | - Thierry Couffinhal
- University of Bordeaux, The clinical unit of Exploration, Prevention and Care Center for Atherosclerosis (CEPTA), CHUB, Inserm U1034
| | | | - Vanesa Pytel
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III
| | | | | | | | | | - Mark Lathrop
- Department of Human Genetics, McGill University, 1205 Dr Penfield Avenue, Montreal, QC, H3A 1B1, Canada
| | - Quentin Le Grand
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219
| | - Lenore Launer
- National Institute on Aging, National Institutes of Health
| | | | | | - Agustin Ruiz
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center; Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya;CIBERN
| | - Paul Matthews
- UK Dementia Research Institute Centre at Imperial College London
| | | | - Myriam Fornage
- 1. Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center 2. Human Genetics Center, Department of Epidemiology, School of Public Health
| | - Hieab Adams
- Department of Human Genetics, Radboud University Medical Center; Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez
| | | | | | - Yukinori Okada
- Department of Genome Informatics, Graduate School of Medicine, The Univ. of Tokyo; Department of Statistical Genetics, Osaka Univ. Graduate School of Medicine; Laboratory for Systems Genetic, RIKEN
| | | | | | | | | | | | | |
Collapse
|
25
|
Chang Y, Lan F, Zhang Y, Ma S. Crispr-Based Editing of Human Pluripotent Stem Cells for Disease Modeling. Stem Cell Rev Rep 2024; 20:1151-1161. [PMID: 38564139 DOI: 10.1007/s12015-024-10713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
The CRISPR system, as an effective genome editing technology, has been extensively utilized for the construction of disease models in human pluripotent stem cells. Establishment of a gene mutant or knockout stem cell line typically relies on Cas nuclease-generated double-stranded DNA breaks and exogenous templates, which can produce uncontrollable editing byproducts and toxicity. The recently developed adenine base editors (ABE) have greatly facilitated related research by introducing A/T > G/C mutations in the coding regions or splitting sites (AG-GT) of genes, enabling mutant gene knock-in or knock-out without introducing DNA breaks. In this study, we edit the AG bases in exons anterior to achieve gene knockout via the ABE8e-SpRY, which recognizes most expanded protospacer adjacent motif to target the genome. Except for gene-knockout, ABE8e-SpRY can also efficiently establish disease-related A/T-to-G/C variation cell lines by targeting coding sequences. The method we generated is simple and time-saving, and it only takes two weeks to obtain the desired cell line. This protocol provides operating instructions step-by-step for constructing knockout and point mutation cell lines.
Collapse
Affiliation(s)
- Yun Chang
- Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, 100037, China
| | - Feng Lan
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen Key Laboratory of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
| | - Yongshuai Zhang
- Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, 100037, China.
| | - Shuhong Ma
- Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, 100037, China
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen Key Laboratory of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
26
|
Vashisth C, Kaushik T, Vashisth N, Raghav N. Cinnamaldehyde hydrazone derivatives as potential cathepsin B inhibitors: parallel in-vitro investigation in liver and cerebrospinal fluid. Int J Biol Macromol 2024; 272:132684. [PMID: 38810845 DOI: 10.1016/j.ijbiomac.2024.132684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
The emergence of cathepsins as a potential target for anticancer drugs has led to extensive research in the development of their inhibitors. In the present study, we designed, synthesized, and characterized several cinnamaldehyde schiff bases employing diverse hydrazines, as potential cathepsin B inhibitors. The parallel studies on cathepsin B isolated from liver and cerebrospinal fluid unveiled the significance of the synthesized compounds as cathepsin B inhibitors at nanomolar concentrations. The compound, 7 exhibited the highest inhibition of 83.48 % and 82.96 % with an IC50 value of 0.06 nM and 0.09 nM for liver and cerebrospinal fluid respectively. The inhibitory potential of synthesized compounds has been extremely effective in comparison to previous reports. With the help of molecular docking studies using iGEMDOCK software, we found that the active site -CH2SH group is involved in the case of α-N-benzoyl-D, l-arginine-b-naphthylamide (BANA), curcumin 2, 3, 6, and 7. For toxicity prediction, ADMET studies were conducted and the synthesized compounds emerged to be non-toxic. The results obtained from the in vitro studies were supported with in silico studies. The synthesized cinnamaldehyde schiff bases can be considered promising drug candidates in conditions with elevated cathepsin B levels.
Collapse
Affiliation(s)
- Chanchal Vashisth
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Tushar Kaushik
- Lala Lajpat Rai Memorial Medical College (LLRM), Meerut, Uttar Pradesh 250004, India
| | - Naman Vashisth
- Mahatma Gandhi Memorial Medical College, Indore, Madhya Pradesh 452001, India
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana 136119, India.
| |
Collapse
|
27
|
Liu K, Aierken A, Liu M, Parhat N, Kong W, Yin X, Liu G, Yu D, Hong J, Ni J, Quan Z, Liu X, Ji S, Mao J, Peng W, Chen C, Yan Y, Qing H. The decreased astrocyte-microglia interaction reflects the early characteristics of Alzheimer's disease. iScience 2024; 27:109281. [PMID: 38455972 PMCID: PMC10918213 DOI: 10.1016/j.isci.2024.109281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease often associated with olfactory dysfunction. Aβ is a typical AD hall marker, but Aβ-induced molecular alterations in olfactory memory remain unclear. In this study, we used a 5xFAD mouse model to investigate Aβ-induced olfactory changes. Results showed that 4-month-old 5xFAD have olfactory memory impairment accompanied by piriform cortex neuron activity decline and no sound or working memory impairment. In addition, synapse and glia functional alteration is consistent across different ages at the proteomic level. Microglia and astrocyte specific proteins showed strong interactions in the conserved co-expression network module. Moreover, this interaction declines only in mild cognitive impairment patients in human postmortem brain proteomic data. This suggests that astrocytes-microglia interaction may play a leading role in the early stage of Aβ-induced olfactory memory impairment, and the decreasing of their synergy may accelerate the neurodegeneration.
Collapse
Affiliation(s)
- Kefu Liu
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410083, Hunan, China
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Ailikemu Aierken
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410083, Hunan, China
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Mengyao Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Nazakat Parhat
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Wei Kong
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xingyu Yin
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410083, Hunan, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Ding Yu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Jie Hong
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoyun Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Simei Ji
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Jian Mao
- Zhengzhou Tobacco Research Institute of China National Tobacco Company, Zhengzhou 450001, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan 410011, China
| | - Chao Chen
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410083, Hunan, China
| | - Yan Yan
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| |
Collapse
|
28
|
Fatmi MK, Wang H, Slotabec L, Wen C, Seale B, Zhao B, Li J. Single-Cell RNA-seq reveals transcriptomic modulation of Alzheimer's disease by activated protein C. Aging (Albany NY) 2024; 16:3137-3159. [PMID: 38385967 PMCID: PMC10929801 DOI: 10.18632/aging.205624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/09/2024] [Indexed: 02/23/2024]
Abstract
Single-Cell RNA sequencing reveals changes in cell population in Alzheimer's disease (AD) model 5xFAD (5x Familial AD mutation) versus wild type (WT) mice. The returned sequencing data was processed through the 10x Genomics CellRanger platform to perform alignment and form corresponding matrix to perform bioinformatic analysis. Alterations in glial cells occurred in 5xFAD versus WT, especially increases in microglia proliferation were profound in 5xFAD. Differential expression testing of glial cells in 5xFAD versus WT revealed gene regulation. Globally, the critical genes implicated in AD progression are upregulated such as Apoe, Ctsb, Trem2, and Tyrobp. Using this differential expression data, GO term enrichment was completed to observe possible biological processes impacted by AD progression. Utilizing anti-inflammatory and cyto-protective recombinant Activated Protein C (APC), we uncover inflammatory processes to be downregulated by APC treatment in addition to recuperation of nervous system processes. Moreover, animal studies demonstrated that administration of recombinant APC significantly attenuated Aβ burden and improved cognitive function of 5xFAD mice. The downregulation of highly expressed AD biomarkers in 5xFAD could provide insight into the mechanisms by which APC administration benefits AD.
Collapse
Affiliation(s)
- Mohammad Kasim Fatmi
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Hao Wang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Lily Slotabec
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Changhong Wen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Blaise Seale
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Bi Zhao
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - Ji Li
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
29
|
Hamed R, Merquiol E, Zlotver I, Blum G, Eyal S, Ekstein D. Challenges in Batch-to-Bed Translation Involving Inflammation-Targeting Compounds in Chronic Epilepsy: The Case of Cathepsin Activity-Based Probes. ACS OMEGA 2024; 9:6965-6975. [PMID: 38371846 PMCID: PMC10870404 DOI: 10.1021/acsomega.3c08759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 02/20/2024]
Abstract
Our goal was to test the feasibility of a new theranostic strategy in chronic epilepsy by targeting cathepsin function using novel cathepsin activity-based probes (ABPs). We assessed the biodistribution of fluorescent cathepsin ABPs in vivo, in vitro, and ex vivo, in rodents with pilocarpine-induced chronic epilepsy and naïve controls, in human epileptic tissue, and in the myeloid cell lines RAW 264.7 (monocytes) and BV2 (microglia). Distribution and localization of ABPs were studied by fluorescence scanning, immunoblotting, microscopy, and cross-section staining in anesthetized animals, in their harvested organs, in brain tissue slices, and in vitro. Blood-brain-barrier (BBB) efflux transport was evaluated in transporter-overexpressing MDCK cells and using an ATPase activation assay. Although the in vivo biodistribution of ABPs to both naïve and epileptic hippocampi was negligible, ex vivo ABPs bound cathepsins preferentially within epileptogenic brain tissue and colocalized with neuronal but not myeloid cell markers. Thus, our cathepsin ABPs are less likely to be of major clinical value in the diagnosis of chronic epilepsy, but they may prove to be of value in intraoperative settings and in CNS conditions with leakier BBB or higher cathepsin activity, such as status epilepticus.
Collapse
Affiliation(s)
- Roa’a Hamed
- Institute
for Drug Research, School of Pharmacy, The
Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Emmanuelle Merquiol
- Institute
for Drug Research, School of Pharmacy, The
Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Ivan Zlotver
- Institute
for Drug Research, School of Pharmacy, The
Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Galia Blum
- Institute
for Drug Research, School of Pharmacy, The
Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Sara Eyal
- Institute
for Drug Research, School of Pharmacy, The
Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Dana Ekstein
- Department
of Neurology, the Agnes Ginges Center for Human Neurogenetics, Hadassah Medical Center, Jerusalem 9112001, Israel
- Faculty
of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
30
|
He Z, Zhang H, Li X, Shen L, Li N, Cheng S, Liu Q. Comparative proteomic analysis of cerebral cortex revealed neuroprotective mechanism of esculentoside A on Alzheimer's disease. Eur J Pharmacol 2024; 964:176226. [PMID: 38128868 DOI: 10.1016/j.ejphar.2023.176226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/09/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
Esculentoside A (EsA), isolated from phytolacca esculenta, is a saponin showing neuroprotective effect in the mouse models of Alzheimer's disease (AD). To investigate its action target and underlying mechanism, this study used the proteomics technique of isobaric tags for relative and absolute quantification (iTRAQ) to analyze the differentially expressed proteins (DEPs) in the cerebral cortex of EsA-treated and untreated triple-transgenic 3 × Tg-AD model mice. Proteomic comparison revealed 250, 436, and 903 DEPs in three group pairs, i.e. AD/Wild-type (WT), AD+5 mg/kg EsA/AD, AD+10 mg/kg EsA/AD, respectively. Among them 28 DEPs were commonly shared by three group pairs, and 25 of them showed reversed expression levels in the diseased group under the treatment of both doses of EsA. Bioinformatics analysis revealed that these DEPs were mainly linked to metabolism, synapses, apoptosis, learning and memory. EsA treatment restored the expression of these proteins, including amyloid precursor protein (APP), cathepsin B (Cstb), 4-aminobutyrate aminotransferase (Abat), 3-phosphoinositide-dependent protein kinase-1 (PDK1), carnitine palmitoyltransferase1 (Cpt1) and synaptotagmin 17 (Syt17), thereby ameliorated the spatial learning and memory of AD mice. Collectively, this study reveals for the first time the profound effect of EsA on the cerebral cortex of AD mice, which might be a potential therapeutic agent for the treatment of AD.
Collapse
Affiliation(s)
- Zhijun He
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Huajie Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xiaoqian Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, China
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, China.
| |
Collapse
|
31
|
Chen J, Chen JS, Li S, Zhang F, Deng J, Zeng LH, Tan J. Amyloid Precursor Protein: A Regulatory Hub in Alzheimer's Disease. Aging Dis 2024; 15:201-225. [PMID: 37307834 PMCID: PMC10796103 DOI: 10.14336/ad.2023.0308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/08/2023] [Indexed: 06/14/2023] Open
Abstract
Decades of research have demonstrated an incontrovertible role of amyloid-β (Aβ) in the etiology of Alzheimer's disease (AD). However, the overemphasis on the pathological impacts of Aβ may obscure the role of its metabolic precursor, amyloid precursor protein (APP), as a significant hub in the occurrence and progression of AD. The complicated enzymatic processing, ubiquitous receptor-like properties, and abundant expression of APP in the brain, as well as its close links with systemic metabolism, mitochondrial function and neuroinflammation, imply that APP plays multifaceted roles in AD. In this review, we briefly describe the evolutionarily conserved biological characteristics of APP, including its structure, functions and enzymatic processing. We also discuss the possible involvement of APP and its enzymatic metabolites in AD, both detrimental and beneficial. Finally, we describe pharmacological agents or genetic approaches with the capability to reduce APP expression or inhibit its cellular internalization, which can ameliorate multiple aspects of AD pathologies and halt disease progression. These approaches provide a basis for further drug development to combat this terrible disease.
Collapse
Affiliation(s)
- Jiang Chen
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Jun-Sheng Chen
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Song Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Fengning Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Jie Deng
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| | - Jun Tan
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
| |
Collapse
|
32
|
Guo R, Ma X, Xu H, Ma Y, Zhang R, Liu X, Lu B, Zhang J, Han Y. In silico prediction and a systematic toxicology-based in vivo investigation uncovering the mechanism of aquatic toxicity caused by beta-lactam antibiotics. CHEMOSPHERE 2024; 349:140884. [PMID: 38065262 DOI: 10.1016/j.chemosphere.2023.140884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/18/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
Recently, beta-lactam antibiotics have gained attention as significant contributors to public health and environmental issues due to their potential toxicity. Our study employed machine learning to develop a model for assessing the aquatic toxicity of beta-lactam antibiotics on zebrafish. Notably, aztreonam (AZT), a synthetic monobactam and a subclass of beta-lactam antibiotics, demonstrated developmental effects in zebrafish embryos comparable to cephalosporins, indicating a potential for toxicity. Using a systems toxicology-based approach, we identified apoptosis and metabolic disorders as the primary pathways affected by AZT and its impurity F exposure. During the administration of monobactams, we noted that ctsbb, nos2a, and dgat2, genes associated with apoptosis and the metabolic pathway, exhibited significant differential expression. Molecular docking studies were conducted to ascertain the binding affinity between monobactam compounds and their potential targets-Ctsbb, Nos2a, and Dgat2. Furthermore, our research revealed that monobactams influence pre-mRNA alternative splicing, resulting in disruptions in the expression of genes involved in hair cells, brain, spinal cord, and fin regeneration (e.g., krt4, krt5, krt17, cyt1). Notably, we observed a correlation between the levels of rpl3 and rps7 genes, both important ribosomal proteins, and the detected alternative splicing events. Overall, this study enhances our understanding of the toxicity of beta-lactam antibiotics in zebrafish by demonstrating the developmental effects of monobactams and uncovering the underlying mechanisms at the molecular level. It also identifies potential targets for further investigation into the mechanisms of toxicity and provides valuable insights for early assessment of biological toxicity associated with antibiotic pollutants.
Collapse
Affiliation(s)
- Ruixian Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Xinyan Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Huibo Xu
- University of Science and Technology of China, Hefei, 230031, China
| | - Yuanyuan Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Rui Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xinyan Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Binan Lu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
| | - Jingpu Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Ying Han
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
33
|
Zhu Q, Gao Z, Peng J, Liu C, Wang X, Li S, Zhang H. Lycopene Alleviates Chronic Stress-Induced Hippocampal Microglial Pyroptosis by Inhibiting the Cathepsin B/NLRP3 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20034-20046. [PMID: 38054647 DOI: 10.1021/acs.jafc.3c02749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Lycopene (LYC) exerts a strong neuroprotective and antipyroptotic effects. This study explored the effects and mechanisms of LYC on chronic stress-induced hippocampal microglial damage and depression-like behaviors. The caspase-1 inhibitor VX-765 attenuated chronic restrain stress (CRS)-induced hippocampal microglial pyroptosis and depression-like behaviors. Moreover, the alleviation of CRS-induced hippocampal microglial pyroptosis and depression-like behaviors by LYC was associated with the cathepsin B/NLRP3 pathway. In vitro, the caspase-1 inhibitor Z-YVAD-FMK alleviated pyroptosis in highly aggressively proliferating immortalized (HAPI) cells. Additionally, the alleviation of corticosterone-induced HAPI cell damage and pyroptosis by LYC was associated with the cathepsin B/NLRP3 pathway. Furthermore, the cathepsin B agonist pazopanib promoted HAPI cell pyroptosis, whereas LYC inhibited pazopanib-induced pyroptosis via the cathepsin B/NLRP3 pathway. Similarly, Z-YVAD-FMK inhibited pazopanib-induced HAPI cell pyroptosis. These results suggest that LYC alleviates chronic stress-induced hippocampal microglial pyroptosis via the cathepsin B/NLRP3 pathway inhibition. This study provides a new strategy for treating chronic stress encephalopathy.
Collapse
Affiliation(s)
- Qiuxiang Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Zhicheng Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Jinghui Peng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Chang Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Xiaoyue Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| | - Haiyang Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, People's Republic of China
| |
Collapse
|
34
|
Zhang M, Mi N, Ying Z, Lin X, Jin Y. Advances in the prevention and treatment of Alzheimer's disease based on oral bacteria. Front Psychiatry 2023; 14:1291455. [PMID: 38156323 PMCID: PMC10754487 DOI: 10.3389/fpsyt.2023.1291455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
With the global population undergoing demographic shift towards aging, the prevalence of Alzheimer's disease (AD), a prominent neurodegenerative disorder that primarily afflicts individuals aged 65 and above, has increased across various geographical regions. This phenomenon is accompanied by a concomitant decline in immune functionality and oral hygiene capacity among the elderly, precipitating compromised oral functionality and an augmented burden of dental plaque. Accordingly, oral afflictions, including dental caries and periodontal disease, manifest with frequency among the geriatric population worldwide. Recent scientific investigations have unveiled the potential role of oral bacteria in instigating both local and systemic chronic inflammation, thereby delineating a putative nexus between oral health and the genesis and progression of AD. They further proposed the oral microbiome as a potentially modifiable risk factor in AD development, although the precise pathological mechanisms and degree of association have yet to be fully elucidated. This review summarizes current research on the relationship between oral bacteria and AD, describing the epidemiological and pathological mechanisms that may potentially link them. The purpose is to enrich early diagnostic approaches by incorporating emerging biomarkers, offering novel insights for clinicians in the early detection of AD. Additionally, it explores the potential of vaccination strategies and guidance for clinical pharmacotherapy. It proposes the development of maintenance measures specifically targeting oral health in older adults and advocates for guiding elderly patients in adopting healthy lifestyle habits, ultimately aiming to indirectly mitigate the progression of AD while promoting oral health in the elderly.
Collapse
Affiliation(s)
| | | | | | | | - Ying Jin
- Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
35
|
Zeng X, Cheung SKK, Shi M, Or PMY, Li Z, Liu JYH, Ho WLH, Liu T, Lu K, Rudd JA, Wang Y, Chan AM. Astrocyte-specific knockout of YKL-40/Chi3l1 reduces Aβ burden and restores memory functions in 5xFAD mice. J Neuroinflammation 2023; 20:290. [PMID: 38042775 PMCID: PMC10693711 DOI: 10.1186/s12974-023-02970-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023] Open
Abstract
Glial cell-mediated neuroinflammation and neuronal attrition are highly correlated with cognitive impairment in Alzheimer's disease. YKL-40 is a secreted astrocytic glycoprotein that serves as a diagnostic biomarker of Alzheimer's disease. High levels of YKL-40 are associated with either advanced Alzheimer's disease or the normal aging process. However, the functional role of YKL-40 in Alzheimer's disease development has not been firmly established. In a 5xFAD mouse model of Alzheimer's disease, we observed increased YKL-40 expression in the cerebrospinal fluid of 7-month-old mice and was correlated with activated astrocytes. In primary astrocytes, Aβ1-42 upregulated YKL-40 in a dose-dependent manner and was correlated with PI3-K signaling pathway activation. Furthermore, primary neurons treated with YKL-40 and/or Aβ1-42 resulted in significant synaptic degeneration, reduced dendritic complexity, and impaired electrical parameters. More importantly, astrocyte-specific knockout of YKL-40 over a period of 7 days in symptomatic 5xFAD mice could effectively reduce amyloid plaque deposition in multiple brain regions. This was also associated with attenuated glial activation, reduced neuronal attrition, and restored memory function. These biological phenotypes could be explained by enhanced uptake of Aβ1-42 peptides, increased rate of Aβ1-42 degradation and acidification of lysosomal compartment in YKL-40 knockout astrocytes. Our results provide new insights into the role of YKL-40 in Alzheimer's disease pathogenesis and demonstrate the potential of targeting this soluble biomarker to alleviate cognitive defects in symptomatic Alzheimer's disease patients.
Collapse
Affiliation(s)
- Xiaoyan Zeng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China
| | - Stanley K K Cheung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Mengqi Shi
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - Penelope M Y Or
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China
| | - Zhining Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China
| | - Julia Y H Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China
| | - Wayne L H Ho
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China
| | - Tian Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China
| | - Kun Lu
- School of Life Science and Technology, Weifang Medical University, Shandong, China
| | - John A Rudd
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China
| | - Yubing Wang
- School of Life Science and Technology, Weifang Medical University, Shandong, China.
| | - Andrew M Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Room G03, Lo Kwee-Seong Integrated Biomedical Sciences Building, Hong Kong SAR, China.
| |
Collapse
|
36
|
Cai Y, Yu Z, Yang X, Luo W, Hu E, Li T, Zhu W, Wang Y, Tang T, Luo J. Integrative transcriptomic and network pharmacology analysis reveals the neuroprotective role of BYHWD through enhancing autophagy by inhibiting Ctsb in intracerebral hemorrhage mice. Chin Med 2023; 18:150. [PMID: 37957754 PMCID: PMC10642062 DOI: 10.1186/s13020-023-00852-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND In this study, we aimed to combine transcriptomic and network pharmacology to explore the crucial mRNAs and specific regulatory molecules of Buyang Huanwu Decoction (BYHWD) in intracerebral hemorrhage (ICH) treatment. METHODS C57BL/6 mice were randomly divided into three groups: sham, ICH, and BYHWD. BYHWD (43.29 g/kg) was administered once a day for 7 days. An equal volume of double-distilled water was used as a control. Behavioural and histopathological experiments were conducted to confirm the neuroprotective effects of BYHWD. Brain tissues were collected for transcriptomic detection. Bioinformatics analysis were performed to illustrate the target gene functions. Network pharmacology was used to predict potential targets for BYHWD. Next, transcriptomic assays were combined with network pharmacology to identify the potential differentially expressed mRNAs. Immunofluorescence staining, real-time polymerase chain reaction, western blotting, and transmission electron microscopy were performed to elucidate the underlying mechanisms. RESULTS BYHWD intervention in ICH reduced neurological deficits. Network pharmacology analysis identified 203 potential therapeutic targets for ICH, whereas transcriptomic assay revealed 109 differentially expressed mRNAs post-ICH. Among these, cathepsin B, ATP binding cassette subfamily B member 1, toll-like receptor 4, chemokine (C-C motif) ligand 12, and baculoviral IAP repeat-containing 5 were identified as potential target mRNAs through the integration of transcriptomics and network pharmacology approaches. Bioinformatics analysis suggested that the beneficial effects of BYHWD in ICH may be associated with apoptosis, animal autophagy signal pathways, and PI3K-Akt and mTOR biological processes. Furthermore, BYHWD intervention decreased Ctsb expression levels and increased autophagy levels in ICH. CONCLUSIONS Animal experiments in combination with bioinformatics analysis confirmed that BYHWD plays a neuroprotective role in ICH by regulating Ctsb to enhance autophagy.
Collapse
Affiliation(s)
- Yiqing Cai
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Zhe Yu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xueping Yang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Weikang Luo
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - En Hu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Teng Li
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Wenxin Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Tao Tang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jiekun Luo
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Regional Center for Neurological Diseases, Xiangya Hospital, Central South University Jiangxi, Nanchang, 330000, Jiangxi, People's Republic of China.
| |
Collapse
|
37
|
Stoka V, Vasiljeva O, Nakanishi H, Turk V. The Role of Cysteine Protease Cathepsins B, H, C, and X/Z in Neurodegenerative Diseases and Cancer. Int J Mol Sci 2023; 24:15613. [PMID: 37958596 PMCID: PMC10650516 DOI: 10.3390/ijms242115613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Papain-like cysteine proteases are composed of 11 human cysteine cathepsins, originally located in the lysosomes. They exhibit broad specificity and act as endopeptidases and/or exopeptidases. Among them, only cathepsins B, H, C, and X/Z exhibit exopeptidase activity. Recently, cysteine cathepsins have been found to be present outside the lysosomes and often participate in various pathological processes. Hence, they have been considered key signalling molecules. Their potentially hazardous proteolytic activities are tightly regulated. This review aims to discuss recent advances in understanding the structural aspects of these four cathepsins, mechanisms of their zymogen activation, regulation of their activities, and functional aspects of these enzymes in neurodegeneration and cancer. Neurodegenerative effects have been evaluated, particularly in Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and neuropsychiatric disorders. Cysteine cathepsins also participate in tumour progression and metastasis through the overexpression and secretion of proteases, which trigger extracellular matrix degradation. To our knowledge, this is the first review to provide an in-depth analysis regarding the roles of cysteine cathepsins B, H, C, and X in neurodegenerative diseases and cancer. Further advances in understanding the functions of cysteine cathepsins in these conditions will result in the development of novel, targeted therapeutic strategies.
Collapse
Affiliation(s)
- Veronika Stoka
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, SI-1000 Ljubljana, Slovenia
| | - Olga Vasiljeva
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- CytomX Therapeutics, Inc., South San Francisco, CA 94080, USA
| | - Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan;
| | - Vito Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
38
|
Cefis M, Chaney R, Wirtz J, Méloux A, Quirié A, Leger C, Prigent-Tessier A, Garnier P. Molecular mechanisms underlying physical exercise-induced brain BDNF overproduction. Front Mol Neurosci 2023; 16:1275924. [PMID: 37868812 PMCID: PMC10585026 DOI: 10.3389/fnmol.2023.1275924] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Accumulating evidence supports that physical exercise (EX) is the most effective non-pharmacological strategy to improve brain health. EX prevents cognitive decline associated with age and decreases the risk of developing neurodegenerative diseases and psychiatric disorders. These positive effects of EX can be attributed to an increase in neurogenesis and neuroplastic processes, leading to learning and memory improvement. At the molecular level, there is a solid consensus to involve the neurotrophin brain-derived neurotrophic factor (BDNF) as the crucial molecule for positive EX effects on the brain. However, even though EX incontestably leads to beneficial processes through BDNF expression, cellular sources and molecular mechanisms underlying EX-induced cerebral BDNF overproduction are still being elucidated. In this context, the present review offers a summary of the different molecular mechanisms involved in brain's response to EX, with a specific focus on BDNF. It aims to provide a cohesive overview of the three main mechanisms leading to EX-induced brain BDNF production: the neuronal-dependent overexpression, the elevation of cerebral blood flow (hemodynamic hypothesis), and the exerkine signaling emanating from peripheral tissues (humoral response). By shedding light on these intricate pathways, this review seeks to contribute to the ongoing elucidation of the relationship between EX and cerebral BDNF expression, offering valuable insights into the potential therapeutic implications for brain health enhancement.
Collapse
Affiliation(s)
- Marina Cefis
- Département des Sciences de l’Activité Physique, Faculté des Sciences, Université du Québec à Montréal, Montreal, QC, Canada
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Remi Chaney
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Julien Wirtz
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Alexandre Méloux
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Aurore Quirié
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Clémence Leger
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Anne Prigent-Tessier
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Philippe Garnier
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
- Département Génie Biologique, Institut Universitaire de Technologie, Dijon, France
| |
Collapse
|
39
|
Huang B, Chen K, Li Y. Aerobic exercise, an effective prevention and treatment for mild cognitive impairment. Front Aging Neurosci 2023; 15:1194559. [PMID: 37614470 PMCID: PMC10442561 DOI: 10.3389/fnagi.2023.1194559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
Aerobic exercise has emerged as a promising intervention for mild cognitive impairment (MCI), a precursor to dementia. The therapeutic benefits of aerobic exercise are multifaceted, encompassing both clinical and molecular domains. Clinically, aerobic exercise has been shown to mitigate hypertension and type 2 diabetes mellitus, conditions that significantly elevate the risk of MCI. Moreover, it stimulates the release of nitric oxide, enhancing arterial elasticity and reducing blood pressure. At a molecular level, it is hypothesized that aerobic exercise modulates the activation of microglia and astrocytes, cells crucial to brain inflammation and neurogenesis, respectively. It has also been suggested that aerobic exercise promotes the release of exercise factors such as irisin, cathepsin B, CLU, and GPLD1, which could enhance synaptic plasticity and neuroprotection. Consequently, regular aerobic exercise could potentially prevent or reduce the likelihood of MCI development in elderly individuals. These molecular mechanisms, however, are hypotheses that require further validation. The mechanisms of action are intricate, and further research is needed to elucidate the precise molecular underpinnings and to develop targeted therapeutics for MCI.
Collapse
Affiliation(s)
- Baiqing Huang
- Sports Institute, Yunnan Minzu University, Kunming, China
| | - Kang Chen
- Tianjin Key Lab of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin, China
| | - Ying Li
- Sports Institute, Yunnan Minzu University, Kunming, China
| |
Collapse
|
40
|
Yoon M, Phan V, Podvin S, Mosier C, O’Donoghue AJ, Hook V. Distinct Cleavage Properties of Cathepsin B Compared to Cysteine Cathepsins Enable the Design and Validation of a Specific Substrate for Cathepsin B over a Broad pH Range. Biochemistry 2023; 62:2289-2300. [PMID: 37459182 PMCID: PMC10399199 DOI: 10.1021/acs.biochem.3c00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/11/2023] [Indexed: 08/02/2023]
Abstract
The biological and pathological functions of cathepsin B occur in acidic lysosomes and at the neutral pH of cytosol, nuclei, and extracellular locations. Importantly, cathepsin B displays different substrate cleavage properties at acidic pH compared to neutral pH conditions. It is, therefore, desirable to develop specific substrates for cathepsin B that measure its activity over broad pH ranges. Current substrates used to monitor cathepsin B activity consist of Z-Phe-Arg-AMC and Z-Arg-Arg-AMC, but they lack specificity since they are cleaved by other cysteine cathepsins. Furthermore, Z-Arg-Arg-AMC monitors cathepsin B activity at neutral pH and displays minimal activity at acidic pH. Therefore, the purpose of this study was to design and validate specific fluorogenic peptide substrates that can monitor cathepsin B activity over a broad pH range from acidic to neutral pH conditions. In-depth cleavage properties of cathepsin B were compared to those of the cysteine cathepsins K, L, S, V, and X via multiplex substrate profiling by mass spectrometry at pH 4.6 and pH 7.2. Analysis of the cleavage preferences predicted the tripeptide Z-Nle-Lys-Arg-AMC as a preferred substrate for cathepsin B. Significantly, Z-Nle-Lys-Arg-AMC displayed the advantageous properties of measuring high cathepsin B specific activity over acidic to neutral pHs and was specifically cleaved by cathepsin B over the other cysteine cathepsins. Z-Nle-Lys-Arg-AMC specifically monitored cathepsin B activity in neuronal and glial cells which were consistent with relative abundances of cathepsin B protein. These findings validate Z-Nle-Lys-Arg-AMC as a novel substrate that specifically monitors cathepsin B activity over a broad pH range.
Collapse
Affiliation(s)
- Michael
C. Yoon
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, La Jolla, San Diego, California 92093, United States
| | - Von Phan
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, La Jolla, San Diego, California 92093, United States
| | - Sonia Podvin
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
| | - Charles Mosier
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
| | - Anthony J. O’Donoghue
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
| | - Vivian Hook
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, La Jolla, San Diego, California 92093, United States
- Department
of Neurosciences and Department of Pharmacology, School of Medicine, University of California, La Jolla, San Diego, California 92093, United States
| |
Collapse
|
41
|
Hirose H, Nakata E, Zhang Z, Shibano Y, Maekawa M, Morii T, Futaki S. Macropinoscope: Real-Time Simultaneous Tracking of pH and Cathepsin B Activity in Individual Macropinosomes. Anal Chem 2023. [PMID: 37468434 DOI: 10.1021/acs.analchem.3c01645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
A fluorescent sensor that allows simultaneous analysis of environmental factors in a limited cellular space is useful for understanding precise molecular interactions in live cells and their biological responses. Macropinocytosis is a ubiquitous endocytic pathway for massive uptake of extracellular fluids, resulting in the formation of macropinosomes. Although macropinocytosis may impact intracellular delivery and cancer proliferation, information on the intracellular behaviors of macropinosomes is limited. Here, we aimed to develop a macropinoscope, a sensor that simultaneously detects pH and cathepsin B activity in individual macropinosomes. A macropinosome-specific marker, dextran (70 kDa), was employed as a platform, onto which fluorescein, Oregon Green, and tetramethylrhodamine were loaded for ratiometric pH sensing and imaging. A cathepsin-B-cleavable peptide sequence bearing sulfo-Cy5 and the quencher BHQ-3 was also mounted; cleavage of the sequence was detected as an increase in sulfo-Cy5 fluorescence. A steep decrease in pH was observed 5-10 min after macropinosome formation, which was accompanied by an immediate increase in cathepsin B activity. Our design concept will lead to the development of other macropinoscopes for the simultaneous detection of other parameters in individual macropinosomes.
Collapse
Affiliation(s)
- Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Eiji Nakata
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Zhengxiao Zhang
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yuya Shibano
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masashi Maekawa
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato, Tokyo 105-8512, Japan
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
42
|
Egorova VS, Kolesova EP, Lopus M, Yan N, Parodi A, Zamyatnin AA. Smart Delivery Systems Responsive to Cathepsin B Activity for Cancer Treatment. Pharmaceutics 2023; 15:1848. [PMID: 37514035 PMCID: PMC10386206 DOI: 10.3390/pharmaceutics15071848] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Cathepsin B is a lysosomal cysteine protease, contributing to vital cellular homeostatic processes including protein turnover, macroautophagy of damaged organelles, antigen presentation, and in the extracellular space, it takes part in tissue remodeling, prohormone processing, and activation. However, aberrant overexpression of cathepsin B and its enzymatic activity is associated with different pathological conditions, including cancer. Cathepsin B overexpression in tumor tissues makes this enzyme an important target for smart delivery systems, responsive to the activity of this enzyme. The generation of technologies which therapeutic effect is activated as a result of cathepsin B cleavage provides an opportunity for tumor-targeted therapy and controlled drug release. In this review, we summarized different technologies designed to improve current cancer treatments responsive to the activity of this enzyme that were shown to play a key role in disease progression and response to the treatment.
Collapse
Affiliation(s)
- Vera S Egorova
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Ekaterina P Kolesova
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai Kalina Campus, Vidyanagari, Mumbai 400098, India
| | - Neng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Alessandro Parodi
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, Sochi 354340, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Andrey A Zamyatnin
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, Sochi 354340, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
43
|
Li L, Li F, Bai X, Jia H, Wang C, Li P, Zhang Q, Guan S, Peng R, Zhang S, Dong JF, Zhang J, Xu X. Circulating extracellular vesicles from patients with traumatic brain injury induce cerebrovascular endothelial dysfunction. Pharmacol Res 2023; 192:106791. [PMID: 37156450 DOI: 10.1016/j.phrs.2023.106791] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Endothelial dysfunction is a key proponent of pathophysiological process of traumatic brain injury (TBI). We previously demonstrated that extracellular vesicles (EVs) released from injured brains led to endothelial barrier disruption and vascular leakage. However, the molecular mechanisms of this EV-induced endothelial dysfunction (endotheliopathy) remain unclear. Here, we enriched plasma EVs from TBI patients (TEVs), and detected high mobility group box 1 (HMGB1) exposure to 50.33 ± 10.17% of TEVs and the number of HMGB1+TEVs correlated with injury severity. We then investigated for the first time the impact of TEVs on endothelial function using adoptive transfer models. We found that TEVs induced dysfunction of cultured human umbilical vein endothelial cells and mediated endothelial dysfunction in both normal and TBI mice, which were propagated through the HMGB1-activated receptor for advanced glycation end products (RAGE)/Cathepsin B signaling, and the resultant NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation and canonical caspase-1/gasdermin D (GSDMD)-dependent pyroptosis. Finally, von Willebrand factor (VWF) was detected on the surface of 77.01 ± 7.51% of HMGB1+TEVs. The TEV-mediated endotheliopathy was reversed by a polyclonal VWF antibody, indicating that VWF might serve a coupling factor that tethered TEVs to ECs, thus facilitating HMGB1-induced endotheliopathy. These results suggest that circulating EVs isolated from patients with TBI alone are sufficient to induce endothelial dysfunction and contribute to secondary brain injury that are dependent on immunologically active HMGB1 exposed on their surface. This finding provided new insight for the development of potential therapeutic targets and diagnostic biomarkers for TBI.
Collapse
Affiliation(s)
- Lei Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; Tianjin Neurological Institute; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China
| | - Fanjian Li
- Tianjin Neurological Institute; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China
| | - Xuesong Bai
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China
| | - Haoran Jia
- Tianjin Neurological Institute; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China
| | - Cong Wang
- Tianjin Neurological Institute; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China
| | - Peng Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; Department of Neurosurgery, Beijing Fengtai You'anmen Hospital, 199 You'anmen Outer Street, Beijing, China
| | - Qiaoling Zhang
- Tianjin Neurological Institute; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China
| | - Siyu Guan
- Tianjin Neurological Institute; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China
| | - Ruilong Peng
- Tianjin Neurological Institute; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China
| | - Shu Zhang
- Tianjin Neurological Institute; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China
| | - Jing-Fei Dong
- Bloodworks Research Institute and Division of Hematology, Department of Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Jianning Zhang
- Tianjin Neurological Institute; Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, China.
| | - Xin Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China.
| |
Collapse
|
44
|
Xie Z, Zhao M, Yan C, Kong W, Lan F, Zhao S, Yang Q, Bai Z, Qing H, Ni J. Cathepsin B in programmed cell death machinery: mechanisms of execution and regulatory pathways. Cell Death Dis 2023; 14:255. [PMID: 37031185 PMCID: PMC10082344 DOI: 10.1038/s41419-023-05786-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/10/2023]
Abstract
Cathepsin B (CatB), a cysteine protease, is primarily localized within subcellular endosomal and lysosomal compartments. It is involved in the turnover of intracellular and extracellular proteins. Interest is growing in CatB due to its diverse roles in physiological and pathological processes. In functional defective tissues, programmed cell death (PCD) is one of the regulable fundamental mechanisms mediated by CatB, including apoptosis, pyroptosis, ferroptosis, necroptosis, and autophagic cell death. However, CatB-mediated PCD is responsible for disease progression under pathological conditions. In this review, we provide an overview of the critical roles and regulatory pathways of CatB in different types of PCD, and discuss the possibility of CatB as an attractive target in multiple diseases. We also summarize current gaps in the understanding of the involvement of CatB in PCD to highlight future avenues for research.
Collapse
Affiliation(s)
- Zhen Xie
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, 100081, Beijing, China
| | - Mengyuan Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, 100081, Beijing, China
| | - Chengxiang Yan
- Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan'an University, Yan'an, 716000, China
| | - Wei Kong
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, 100081, Beijing, China
| | - Fei Lan
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, 100081, Beijing, China
| | - Shuxuan Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, 100081, Beijing, China
| | - Qinghu Yang
- Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan'an University, Yan'an, 716000, China
| | - Zhantao Bai
- Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan'an University, Yan'an, 716000, China.
- Yan'an Key Laboratory for Neural Immuno-Tumor and Stem Cell and Engineering and Technological Research Center for Natural Peptide Drugs, Yan'an, 716000, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, 100081, Beijing, China.
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, 100081, Beijing, China.
| |
Collapse
|
45
|
Masi M, Biundo F, Fiou A, Racchi M, Pascale A, Buoso E. The Labyrinthine Landscape of APP Processing: State of the Art and Possible Novel Soluble APP-Related Molecular Players in Traumatic Brain Injury and Neurodegeneration. Int J Mol Sci 2023; 24:ijms24076639. [PMID: 37047617 PMCID: PMC10095589 DOI: 10.3390/ijms24076639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Amyloid Precursor Protein (APP) and its cleavage processes have been widely investigated in the past, in particular in the context of Alzheimer’s Disease (AD). Evidence of an increased expression of APP and its amyloidogenic-related cleavage enzymes, β-secretase 1 (BACE1) and γ-secretase, at the hit axon terminals following Traumatic Brain Injury (TBI), firstly suggested a correlation between TBI and AD. Indeed, mild and severe TBI have been recognised as influential risk factors for different neurodegenerative diseases, including AD. In the present work, we describe the state of the art of APP proteolytic processing, underlining the different roles of its cleavage fragments in both physiological and pathological contexts. Considering the neuroprotective role of the soluble APP alpha (sAPPα) fragment, we hypothesised that sAPPα could modulate the expression of genes of interest for AD and TBI. Hence, we present preliminary experiments addressing sAPPα-mediated regulation of BACE1, Isthmin 2 (ISM2), Tetraspanin-3 (TSPAN3) and the Vascular Endothelial Growth Factor (VEGFA), each discussed from a biological and pharmacological point of view in AD and TBI. We finally propose a neuroprotective interaction network, in which the Receptor for Activated C Kinase 1 (RACK1) and the signalling cascade of PKCβII/nELAV/VEGF play hub roles, suggesting that vasculogenic-targeting therapies could be a feasible approach for vascular-related brain injuries typical of AD and TBI.
Collapse
Affiliation(s)
- Mirco Masi
- Computational and Chemical Biology, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - André Fiou
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Erica Buoso
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
46
|
Peng J, Gao C, Chen X, Wang T, Luo C, Zhang M, Chen X, Tao L. Ruxolitinib, a promising therapeutic candidate for traumatic brain injury through maintaining the homeostasis of cathepsin B. Exp Neurol 2023; 363:114347. [PMID: 36813222 DOI: 10.1016/j.expneurol.2023.114347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 02/22/2023]
Abstract
Traumatic brain injury (TBI) is one of the main causes of death and disability in the world. Owing to the heterogeneity and complexity of TBI pathogenesis, there is still no specific drug. Our previous studies have proved the neuroprotective effect of Ruxolitinib (Ruxo) on TBI, but further are needed to explore the potent mechanisms and potential translational application. Compelling evidence indicates that Cathepsin B (CTSB) plays an important role in TBI. However, the relationships between Ruxo and CTSB upon TBI remain non-elucidated. In this study, we established a mouse model of moderate TBI to clarify it. The neurological deficit in the behavioral test was alleviated when Ruxo administrated at 6 h post-TBI. Additionally, Ruxo significantly reduced the lesion volume. As for the pathological process of acute phase, Ruxo remarkably reduced the expression of proteins associated with cell demise, neuroinflammation, and neurodegeneration. Then the expression and location of CTSB were detected respectively. We found that the expression of CTSB exhibits a transient decrease and then persistent increase following TBI. The distribution of CTSB, mainly located at NeuN-positive neurons was unchanged. Importantly, the dysregulation of CTSB expression was reversed with the treatment of Ruxo. The timepoint was chosen when CTSB decreased, to further analyze its change in the extracted organelles; and Ruxo maintained the homeostasis of it in sub-cellular. In summary, our results demonstrate that Ruxo plays neuroprotection through maintaining the homeostasis of CTSB, and will be a promising therapeutic candidate for TBI in clinic.
Collapse
Affiliation(s)
- Jianhang Peng
- Department of Forensic Medicine, School of Basic Medicine and Biological Science, Suzhou Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, Jiangsu, China
| | - Cheng Gao
- Department of Forensic Medicine, School of Basic Medicine and Biological Science, Suzhou Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, Jiangsu, China
| | - Xueshi Chen
- Department of Forensic Medicine, School of Basic Medicine and Biological Science, Suzhou Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, Jiangsu, China
| | - Tao Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Science, Suzhou Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, Jiangsu, China
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological Science, Suzhou Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, Jiangsu, China
| | - Mingyang Zhang
- Department of Forensic Medicine, School of Basic Medicine and Biological Science, Suzhou Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, Jiangsu, China
| | - Xiping Chen
- Department of Forensic Medicine, School of Basic Medicine and Biological Science, Suzhou Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, Jiangsu, China
| | - Luyang Tao
- Department of Forensic Medicine, School of Basic Medicine and Biological Science, Suzhou Medical School of Soochow University, 178 East Ganjiang Road, Suzhou 215213, Jiangsu, China.
| |
Collapse
|
47
|
Baisgaard AE, Koldby KM, Kristensen TN, Nyegaard M, Rohde PD. Functionally Validating Evolutionary Conserved Risk Genes for Parkinson's Disease in Drosophila melanogaster. INSECTS 2023; 14:168. [PMID: 36835737 PMCID: PMC9958964 DOI: 10.3390/insects14020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Parkinson's disease (PD) is a heterogeneous and complex neurodegenerative disorder and large-scale genetic studies have identified >130 genes associated with PD. Although genomic studies have been decisive for our understanding of the genetic contributions underlying PD, these associations remain as statistical associations. Lack of functional validation limits the biological interpretation; however, it is labour extensive, expensive, and time consuming. Therefore, the ideal biological system for functionally validating genetic findings must be simple. The study aim was to assess systematically evolutionary conserved PD-associated genes using Drosophila melanogaster. From a literature review, a total of 136 genes have found to be associated with PD in GWAS studies, of which 11 are strongly evolutionary conserved between Homo sapiens and D. melanogaster. By ubiquitous gene expression knockdown of the PD-genes in D. melanogaster, the flies' escape response was investigated by assessing their negative geotaxis response, a phenotype that has previously been used to investigate PD in D. melanogaster. Gene expression knockdown was successful in 9/11 lines, and phenotypic consequences were observed in 8/9 lines. The results provide evidence that genetically modifying expression levels of PD genes in D. melanogaster caused reduced climbing ability of the flies, potentially supporting their role in dysfunctional locomotion, a hallmark of PD.
Collapse
Affiliation(s)
- Amalie Elton Baisgaard
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | | | | | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | - Palle Duun Rohde
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|
48
|
Development of a Laser Microdissection-Coupled Quantitative Shotgun Lipidomic Method to Uncover Spatial Heterogeneity. Cells 2023; 12:cells12030428. [PMID: 36766770 PMCID: PMC9913738 DOI: 10.3390/cells12030428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Lipid metabolic disturbances are associated with several diseases, such as type 2 diabetes or malignancy. In the last two decades, high-performance mass spectrometry-based lipidomics has emerged as a valuable tool in various fields of biology. However, the evaluation of macroscopic tissue homogenates leaves often undiscovered the differences arising from micron-scale heterogeneity. Therefore, in this work, we developed a novel laser microdissection-coupled shotgun lipidomic platform, which combines quantitative and broad-range lipidome analysis with reasonable spatial resolution. The multistep approach involves the preparation of successive cryosections from tissue samples, cross-referencing of native and stained images, laser microdissection of regions of interest, in situ lipid extraction, and quantitative shotgun lipidomics. We used mouse liver and kidney as well as a 2D cell culture model to validate the novel workflow in terms of extraction efficiency, reproducibility, and linearity of quantification. We established that the limit of dissectible sample area corresponds to about ten cells while maintaining good lipidome coverage. We demonstrate the performance of the method in recognizing tissue heterogeneity on the example of a mouse hippocampus. By providing topological mapping of lipid metabolism, the novel platform might help to uncover region-specific lipidomic alterations in complex samples, including tumors.
Collapse
|
49
|
Zhang Z, Pi R, Jiang Y, Ahmad M, Luo H, Luo J, Yang J, Sun B. Cathepsin B mediates the lysosomal-mitochondrial apoptosis pathway in arsenic-induced microglial cell injury. Hum Exp Toxicol 2023; 42:9603271231172724. [PMID: 37154515 DOI: 10.1177/09603271231172724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Arsenic is a prevalent environmental pollutant that targets the nervous system of living beings. Recent studies indicated that microglial injury could contribute to neuroinflammation and is associated with neuronal damage. Nevertheless, the neurotoxic mechanism underlying the arsenic-induced microglial injury requires additional research. This study explores whether cathepsin B promotes microglia cell damage caused by NaAsO2. Through CCK-8 assay and Annexin V-FITC and PI staining, we discovered that NaAsO2 induced apoptosis in BV2 cells (a microglia cell line). NaAsO2 was verified to increase mitochondrial membrane permeabilization (MMP) and promote the generation of reactive oxygen species (ROS) through JC-1 staining and DCFDA assay, respectively. Mechanically, NaAsO2 was indicated to increase the expression of cathepsin B, which could stimulate pro-apoptotic molecule Bid into the activated form, tBid, and increase lysosomal membrane permeabilization by Immunofluorescence and Western blot assessment. Subsequently, apoptotic signaling downstream of increased mitochondrial membrane permeabilization was activated, promoting caspase activation and microglial apoptosis. Cathepsin B inhibitor CA074-Me could mitigate the damage of microglial. In general, we found that NaAsO2 induced microglia apoptosis and depended on the role of the cathepsin B-mediated lysosomal-mitochondrial apoptosis pathway. Our findings provided new insight into NaAsO2-induced neurological damage.
Collapse
Affiliation(s)
- Zheyu Zhang
- College of Basic Medical, Guizhou Medical University, Guiyang, China
| | - Ruozheng Pi
- College of Basic Medical, Guizhou Medical University, Guiyang, China
| | - Yuheng Jiang
- College of Basic Medical, Guizhou Medical University, Guiyang, China
| | - Mashaal Ahmad
- College of Basic Medical, Guizhou Medical University, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Jieya Luo
- College of Basic Medical, Guizhou Medical University, Guiyang, China
| | - Jie Yang
- College of Basic Medical, Guizhou Medical University, Guiyang, China
| | - Baofei Sun
- College of Basic Medical, Guizhou Medical University, Guiyang, China
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
50
|
Hook G, Kindy M, Hook V. Cathepsin B Deficiency Improves Memory Deficits and Reduces Amyloid-β in hAβPP Mouse Models Representing the Major Sporadic Alzheimer's Disease Condition. J Alzheimers Dis 2023; 93:33-46. [PMID: 36970896 PMCID: PMC10185432 DOI: 10.3233/jad-221005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2023] [Indexed: 05/09/2023]
Abstract
The lysosomal cysteine protease cathepsin B (CTSB) has been suggested as a biomarker for Alzheimer's disease (AD) because elevated serum CTSB in AD patients has been found to correlate with cognitive dysfunction. Furthermore, CTSB gene knockout (KO) in non-transgenic and transgenic AD animal models showed that elimination of CTSB improved memory deficits. However, conflicting CTSB KO results on amyloid-β (Aβ) pathology in transgenic AD models have been reported. The conflict is resolved here as likely being due to the different hAβPP transgenes used in the different AD mouse models. CTSB gene KO reduced wild-type (Wt) β-secretase activity, brain Aβ, pyroglutamate-Aβ, amyloid plaque, and memory deficits in models that used cDNA transgenes expressing hAβPP isoform 695. But in models that used mutated mini transgenes expressing hAβPP isoforms 751 and 770, CTSB KO had no effect on Wt β-secretase activity and slightly increased brain Aβ. All models expressed the AβPP transgenes in neurons. These conflicting results in Wt β-secretase activity models can be explained by hAβPP isoform specific cellular expression, proteolysis, and subcellular processing. CTSB KO had no effect on Swedish mutant (Swe) β-secretase activity in hAβPP695 and hAβPP751/770 models. Different proteolytic sensitivities for hAβPP with Wt versus Swe β-secretase site sequences may explain the different CTSB β-secretase effects in hAβPP695 models. But since the vast majority of sporadic AD patients have Wt β-secretase activity, the CTSB effects on Swe β-secretase activity are of little importance to the general AD population. As neurons naturally produce and process hAβPP isoform 695 and not the 751 and 770 isoforms, only the hAβPP695 Wt models mimic the natural neuronal hAβPP processing and Aβ production occurring in most AD patients. Significantly, these CTSB KO findings in the hAβPP695 Wt models demonstrate that CTSB participates in memory deficits and production of pyroglutamate-Aβ (pyroglu-Aβ), which provide rationale for future investigation of CTSB inhibitors in AD therapeutics development.
Collapse
Affiliation(s)
- Gregory Hook
- American Life Science Pharmaceuticals, La Jolla, CA, USA
| | - Mark Kindy
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, USA
- James A Haley VAMC, Research Service, Tampa, FL, USA
| | - Vivian Hook
- Department of Neuroscience, Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|