1
|
Wu X, Zhang J, Deng Z, Sun X, Zhang Y, Zhang C, Wang J, Yu X, Yang G. Bacteria-based biohybrids for remodeling adenosine-mediated immunosuppression to boost radiotherapy-triggered antitumor immune response. Biomaterials 2025; 316:123000. [PMID: 39674101 DOI: 10.1016/j.biomaterials.2024.123000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/18/2024] [Accepted: 12/04/2024] [Indexed: 12/16/2024]
Abstract
Radiotherapy (RT) can trigger immunogenic cell death (ICD) in tumor cells and release adenosine triphosphate (ATP) to activate antitumor immunity. However, the formation of immunosuppressive adenosine (ADO) mediated by ectonucleotidases including CD39 and CD73, can exacerbate the immunosuppressive effects. Herein, a radiosensitizer-based metal-organic framework (MOF) composed of bismuth (Bi) and ellagic acid (EA) was synthesized in situ on the surface of Escherichia coli Nissle 1917 (EcN) to serve as a carrier for the CD39 inhibitor sodium polyoxotungstate (POM-1). This therapeutic platform, acting as a radiosensitizer, significantly enhances cytotoxicity against tumor cells while effectively inducing ICD and releasing high concentrations of ATP. Subsequently, the released POM-1 increases the levels of pro-inflammatory extracellular ATP while preventing tumor immunosuppression caused by the accumulation of ADO. Additionally, as a natural immune adjuvant, EcN further promotes the maturation of dendritic cells (DCs) and the infiltration of cytotoxic T lymphocytes (CTLs). As a result, such treatment initiates the destruction of established tumor growth and induces strong abscopal effects, leading to a significant inhibition of tumor metastases. This strategy presents a bacterial-based biohybrid system that facilitates RT-induced ICD while simultaneously limiting the degradation of ATP into ADO, thereby achieving sustained anti-tumor immunity.
Collapse
Affiliation(s)
- Xirui Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Junjun Zhang
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, Suzhou 215004, China
| | - Zheng Deng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xianglong Sun
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yifan Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Cai Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jiadong Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xinke Yu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Guangbao Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
2
|
Guang Y, Tang M, Song Q, Huang Y, Su L, Wang J, Dai Y, Liu Z, Cheng W, Yang T. T4 DNA Polymerase-Proofread DNA Binding Identifier for Sensitive Homogeneous Immunoassays. Anal Chem 2025. [PMID: 40232383 DOI: 10.1021/acs.analchem.5c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Aptamer-based homogeneous immunoassays exhibit considerable potential in the domains of bioanalysis and biodiagnosis owing to their universality in analyzing both proteins and small molecules as well as their compatibility with nucleic acid amplification technologies. Nevertheless, the substantial signal leakage by nonspecific aptamer allostery poses a challenge to enhancing sensitivity further. Herein, we reported a T4 DNA polymerase-proofread DNA binding identifier (ReID). This strategy could harness the dual-enzymatic activity of T4 DNA polymerase to eliminate the leaked signal, thereby efficiently integrating target-induced aptamer allostery with subsequent polymerase chain reaction signal amplification. Moreover, we explored the regulation mechanism of dNTPs concentration on the dual-enzymatic activity of the T4 DNA polymerase. As a result, this strategy achieved an ultrasensitive protein detection limit of 8 fg/mL, validating the effectiveness of this proofreading approach. The universality was further confirmed by highly sensitive detection of small molecules. The exploration of ReID represents a significant advancement in the sensitivity and universality of immunoassays, even demonstrating the potential for multiple proteomic assays, offering a novel perspective for the development of high-performance homogeneous immunoassays.
Collapse
Affiliation(s)
- Yujie Guang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
- The Biobank Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Man Tang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Qitao Song
- Zybio Inc, Chongqing 400082, P. R. China
| | - Yuanyuan Huang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Long Su
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Jing Wang
- Zybio Inc, Chongqing 400082, P. R. China
| | - Yulian Dai
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Zhangling Liu
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
- The Biobank Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
- Western Institute of Digital-Intelligent Medicine, Chongqing 401329, P. R. China
| | - Tiantian Yang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
- The Biobank Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| |
Collapse
|
3
|
Liu X, Liu Y, Tian X, Xi Y, Lu M, Zou X, Chen W. A novel molecular classification system for head and neck squamous cell carcinoma: predicting treatment response and metastatic potential through multi-omics analysis. Discov Oncol 2025; 16:477. [PMID: 40192963 PMCID: PMC11977092 DOI: 10.1007/s12672-025-02257-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) demonstrates significant heterogeneity, necessitating improved molecular classification for precision treatment. METHODS We integrated single-cell and bulk RNA sequencing data from 59,376 cells across ten datasets using Scissor and scSTAR packages. Molecular subtyping was performed through ssGSEA and WGCNA analysis, with immune infiltration evaluated using CIBERSORT. We developed a machine learning-based risk prediction model using 54 algorithms. RESULTS We identified three molecular subtypes with distinct prognostic implications, showing significant survival differences across independent datasets (TCGA-HNSCC, P < 0.0001; GSE65858, P = 0.018). The C3 subtype showed enhanced immunotherapy response potential, while C2 exhibited the highest genomic alteration rate (97.06%) and TP53 mutations (80%). Macrophages emerged as key players in intercellular communication networks. Our risk prediction model demonstrated robust performance across four validation cohorts. CONCLUSION This molecular subtyping framework provides valuable insights for patient stratification and personalized therapeutic strategies in HNSCC, potentially improving clinical outcomes through precise treatment selection.
Collapse
Affiliation(s)
- XinYu Liu
- College of Stomatology, Binzhou Medical University, Yantai, 264003, Shandong, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School of Medicine, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, PR China
| | - YuJun Liu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - XuTengYue Tian
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Yue Xi
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - MiaoMiao Lu
- College of Stomatology, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Xin Zou
- Digital Diagnosis and Treatment Innovation Center for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, School of Medicine, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200011, China.
| | - WanTao Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology, School of Medicine, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, PR China.
- Shanghai Key Laboratory of Stomatology &, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, PR China.
| |
Collapse
|
4
|
Cui Z, Feng L, Rao S, Huang Z, Huang S, Liu L, Liao Y, Lan Z, Chen Q, Deng J, Wang L, Yin Y, Tan C. Adenosine Monophosphate Improves Lipolysis in Obese Mice by Reducing DNA Methylation via ADORA2A Activation by Ecto-5'-Nucleotidase (CD73). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405079. [PMID: 39976204 PMCID: PMC11984851 DOI: 10.1002/advs.202405079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/16/2024] [Indexed: 02/21/2025]
Abstract
The previous work discovers the potential of adenosine monophosphate (AMP) to alleviate obesity-related metabolic diseases, but the underlying molecular mechanisms remain incompletely understood. Here, AMP is confirmed to enhance white fat decomposition and improve abnormal glucose and lipid metabolism in mice fed with a high-fat (HF) diet. Mechanically, AMP is converted to adenosine (ADO) through ecto-5'-nucleotidase (CD73), and adenosine A2A receptor (ADORA2A) signaling activation is involved in the down-regulation of methylation in white adipose tissue, thereby reducing the hormone-sensitive lipase (HSL) methylation level and promoting HSL transcription and white fat decomposition. Moreover, the metabolic benefits of AMP are found to be partially eliminated in ADORA2A knockout mice, but re-expression of ADORA2A can reproduce the AMP-induced metabolic regulation in white fat. These findings reveal the mechanism that AMP, as the upstream of ADO, stimulates ADORA2A signaling and white fat DNA methylation to participate in the anti-obesity effect.
Collapse
Affiliation(s)
- Zhijuan Cui
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Nutrition ControlNational Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642China
| | - Li Feng
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Nutrition ControlNational Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642China
| | - Sujuan Rao
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Nutrition ControlNational Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642China
| | - Zihao Huang
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Nutrition ControlNational Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642China
| | - Shuangbo Huang
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Nutrition ControlNational Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642China
| | - Liudan Liu
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Nutrition ControlNational Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642China
| | - Yuan Liao
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Nutrition ControlNational Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642China
| | - Zheng Lan
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Nutrition ControlNational Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642China
| | - Qiling Chen
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Nutrition ControlNational Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642China
| | - Jinping Deng
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Nutrition ControlNational Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642China
| | - Leli Wang
- Key Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionChangsha410125China
| | - Yulong Yin
- Key Laboratory of Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical AgricultureChinese Academy of Sciences, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic ProcessHunan Provincial Engineering Research Center for Healthy Livestock and Poultry ProductionChangsha410125China
| | - Chengquan Tan
- State Key Laboratory of Swine and Poultry Breeding IndustryGuangdong Provincial Key Laboratory of Animal Nutrition ControlNational Engineering Research Center for Breeding Swine IndustryCollege of Animal ScienceSouth China Agricultural UniversityGuangzhou510642China
| |
Collapse
|
5
|
Zhang Z, Zhou J, Huang R, Zhuang X, Ni S. Identification of CCNB1 as a biomarker for cellular senescence in hepatocellular carcinoma: a bioinformatics and experimental validation study. Discov Oncol 2025; 16:384. [PMID: 40128499 PMCID: PMC11933616 DOI: 10.1007/s12672-025-02182-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/18/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC), originating in the liver and often asymptomatic in early stages, frequently metastasises and recures post-surgery. Currently, reliable diagnostic biomarkers and therapeutic targets for HCC are lacking. This study investigates the influence of cellular senescence on HCC, employing bioinformatics analysis and in vitro experiments to identify potential biomarkers. METHODS We integrated data from GEO microarrays (GSE14520, GSE45267 and GSE64041) to analyse differentially expressed genes (DEGs) using the R package limma. WGCNA identified gene modules highly correlated to HCC. Then, ageing-highly related differentially expressed genes (AgHDEGs) were identified. Correlation analysis, GO and KEGG functional enrichment analysis, and gene co-expression network analysis further elucidated the functions of AgHDEGs. The STRING database identified hub AgHDEGs with CCNB1 subsequently evaluated for diagnostic value using ROC curve analysis. Additionally, we explored the correlation between CCNB1 and immune cells and assessed its biological functions via GSEA. Ultimately, the conclusions from bioinformatics analysis were confirmed via in vitro experiments, complemented by molecular docking simulations of gene-drug interactions. RESULTS Eight AgHDEGs (KPNA2, CCT3, CCNB1, RACGAP1, CDKN3, FEN1, MT1X and FOXM1) were identified. PPI network analysis highlighted CCNB1 as hub AgHDEGs with ROC analysis confirming its strong diagnostic potential. Analysis of immune infiltration revealed a significant correlation between CCNB1 and M0 macrophages. Subsequent studies showed CCNB1's critical role in regulating the cell cycle. Validation experiments illustrated an upregulation of CCNB1 expression in HCC, while inhibiting CCNB1 may reduce HepG2 cell proliferation by promoting cellular senescence. Moreover, molecular docking indicated CCNB1 as a potential therapeutic target. CONCLUSION Our study underscores CCNB1's potential impact on HCC senescence and progression, suggesting its candidacy as a biomarker for HCC.
Collapse
Affiliation(s)
- Zhilan Zhang
- College of Pharmacy, Anhui Medical University, Hefei, 230000, Anhui, China
| | - Jie Zhou
- College of Pharmacy, Anhui Medical University, Hefei, 230000, Anhui, China
| | - Ruiru Huang
- College of Pharmacy, Anhui Medical University, Hefei, 230000, Anhui, China
| | - Xingxing Zhuang
- Department of Pharmacy, Chaohu Hospital of Anhui Medical University, Chaohu, 238000, Anhui, China
| | - Shoudong Ni
- College of Pharmacy, Anhui Medical University, Hefei, 230000, Anhui, China.
- Department of Pharmacy, Chaohu Hospital of Anhui Medical University, Chaohu, 238000, Anhui, China.
| |
Collapse
|
6
|
Li Y, Zhang X, Wang J, Wang K, Li B, Qiao X, He W, Cai J, Liu D, Yang LL. Leveraging adenosine triphosphate for cancer theranostics. Theranostics 2025; 15:4708-4733. [PMID: 40225571 PMCID: PMC11984400 DOI: 10.7150/thno.106291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 02/20/2025] [Indexed: 04/15/2025] Open
Abstract
Manipulation of the biochemical composition of the tumor microenvironment (TME) is a thriving research area in cancer treatment. Adenosine triphosphate (ATP), a key biochemical component, serves as an energy source for cancer cell proliferation. Notably, ATP can also act as a potent signal transducer to prime anti-tumor immune responses. There is increasing attention given to both the tumor-promoting and tumor-inhibiting roles of ATP in the context of possible new treatments for cancer. ATP levels in the TME are known to be significantly greater than in non-tumor tissues. This disparity presents an opportunity to exploit the ATP response for the delivery of anti-tumor drugs and tumor diagnosis. In this article, we provide a comprehensive overview of the existing strategies and mechanisms for ATP-based therapy and cancer diagnosis. We also discuss the current challenges in the field and propose potential areas for future research, to provide researchers with insights to further investigate the potential of ATP in cancer theranostics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jinghua Cai
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
7
|
Fang HY, Ji LM, Hong CH. An innovative glutamine metabolism-related gene signature for predicting prognosis and immune landscape in cervical cancer. Discov Oncol 2025; 16:368. [PMID: 40113615 PMCID: PMC11926318 DOI: 10.1007/s12672-025-02109-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Cervical cancer (CC) is a major global malignancy affecting women. However, the precise mechanisms underlying glutamine's role in CC remain inadequately understood. This study systematically assessed the survival outcomes, immune landscape, and drug sensitivity profiles with CC patients by analyzing genes associated with glutamine metabolism. METHODS Transcriptomic data for the samples were sourced from the TCGA, GTEx, and GEO databases. Prognostic genes were identified through univariate, multivariate, and Least Absolute Shrinkage and Selection Operator (LASSO) regression analyses. The predictive accuracy of the model was assessed through the analysis of receiver operating characteristic (ROC) curves. A comprehensive nomogram was developed and evaluated for accuracy using calibration and Decision Curve Analysis (DCA) curves. Kaplan-Meier (K-M) survival curves were employed to estimate overall survival. The relationship between risk scores and immune infiltration was analyzed through Single-sample Gene Set Enrichment Analysis (ssGSEA) and CIBERSORT. Functional enrichment analysis and the construction of miRNA and transcription factors networks were conducted to explore the potential molecular mechanisms of the signature genes. RESULTS This investigation identified four signature genes associated with glutamine metabolism, UCP2, LEPR, TFRC, and RNaseH2A. We successfully developed a prognostic model with strong predictive performance. In the training set, the AUC values for 1-, 3-, and 5-year survival were 0.702, 0.719, and 0.721, respectively. In the validation set, the AUC values for these time points were 0.715, 0.696, and 0.739, respectively. Patients categorized as low-risk had notably improved survival rates than those identified as high-risk (P < 0.05). Additionally, a nomogram that combines clinical data and risk scores offered improved clinical net benefits over a broad range of threshold probabilities. Functional enrichment analysis revealed that these signature genes are strongly linked to the regulation of the cell cycle and intracellular oxygen levels. Furthermore, the gene signature displayed a significant negative correlation with the infiltration levels of most immune cell types. CONCLUSION This novel signature demonstrates robust predictive capability for prognostic survival probabilities and immune infiltration in CC patients, providing a fresh perspective for advancing precision treatment strategies in CC.
Collapse
Affiliation(s)
- Hai-Ya Fang
- Department of Obstetrics and Gynecology, Jinhua Municipal Central Hospital, Jinhua, 321000, China
| | - Li-Mei Ji
- Department of Obstetrics and Gynecology, Jinhua Municipal Central Hospital, Jinhua, 321000, China
| | - Cui-Hua Hong
- Department of Obstetrics and Gynecology, Wenzhou Central Hospital, No.252 East Baili Road, Wenzhou, 325100, China.
| |
Collapse
|
8
|
Chi XK, Zhang HR, Gao JJ, Su J, Du YZ, Xu XL. Polydopamine-based Nanoadjuvants Promote a Positive Feedback Loop for Cancer Immunotherapy via Overcoming Photothermally Boosted T Cell Exhaustion. Biomater Res 2025; 29:0166. [PMID: 40110052 PMCID: PMC11922554 DOI: 10.34133/bmr.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/24/2025] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
Immunogenic cell death, triggered by photothermal therapy or specific chemotherapy, strives to establish a positive feedback loop in cancer immunotherapy. This loop is characterized by the rapid release of antigens and adenosine triphosphate (ATP), ultimately leading to accelerated T cell infiltration. However, this loop is hindered by T cell exhaustion caused by adenosine originating from ATP and glucose deprivation in the immunosuppressive microenvironment. To overcome this challenge, we developed a pH-low insertion peptide-functionalized mesoporous-polydopamine-based nanoadjuvant that incorporates adenosine deaminase and doxorubicin (termed as PPMAD). PPMAD aimed to overcome T cell exhaustion by reducing adenosine consumption and providing an alternative carbon source for CD8+ T cell function during glucose starvation. First, PPMAD triggered the burst release of antigens and ATP through photothermal therapy and doxorubicin-induced immunogenic cell death, culminating in the expedited infiltration of T cells. Second, adenosine deaminase depleted adenosine, reducing immunosuppressive agents and generating abundant inosine, which served as an alternative carbon source for CD8+ T cells. By implementing this "reducing suppression and broadening sources" strategy, we successfully overcome T cell exhaustion, greatly enhancing the effectiveness of cancer immunotherapy both in vitro and in vivo. Our findings highlighted the positive feedback loop between on-demand photothermal therapy, chemotherapy immunotherapy, and achieving complete tumor response.
Collapse
Affiliation(s)
- Xiao-Kai Chi
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
- College of Pharmacy, Jiamusi University, Jiamusi 154007, PR China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Hai-Rui Zhang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Jing-Jing Gao
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Jin Su
- College of Pharmacy, Jiamusi University, Jiamusi 154007, PR China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| |
Collapse
|
9
|
Nie XH, Li TZ, Peng CM. ATP ion channel-type P2X purinergic receptors as a key regulatory molecule in breast cancer progression. Pathol Res Pract 2025; 267:155844. [PMID: 39965402 DOI: 10.1016/j.prp.2025.155844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 02/20/2025]
Abstract
Studies have confirmed that ATP ion channel P2X purinergic receptors play a key role in tumor growth and metastasis. Similarly, P2X purinergic receptors can be used as a favorable regulatory molecule of breast cancer cells to participate in the progression of breast cancer. There are abundant ATP and its cleavage products in breast cancer microenvironment, which can be used as natural activators of P2X purinergic receptors. P2X purinergic receptors play a role in regulating the growth and metastasis of breast cancer cells by mediating signal transduction, growth regulation and immune cell activity in microenvironment. However, the application of P2X purinergic receptors antagonist has the pharmacological characteristics of inhibiting the progression of breast cancer cells. Among P2X purinergic receptors, there is a close relationship between P2X7 receptor and breast cancer patients. P2X purinergic receptors can be used as a biological marker for breast cancer patients. In this paper, we discuss the functional role and regulatory molecular mechanism of P2X purinergic receptors in the progression of breast cancer. The pharmacological effects of P2X purinergic receptors selective antagonist on the growth, metastasis and invasion of breast cancer cells were further discussed. Therefore, P2X purinergic receptors can be used as a key regulatory molecule of breast cancer and a pharmacological target for potential therapy.
Collapse
Affiliation(s)
- Xin-Hua Nie
- Department of Gastroenterology, The second affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Teng-Zheng Li
- Department of Gastroenterology, The second affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Cheng-Ming Peng
- Department of Gastroenterology, The second affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
10
|
Sun M, He L, Chen R, Lv M, Chen ZS, Fan Z, Zhou Y, Qin J, Du J. Rational design of peptides to overcome drug resistance by metabolic regulation. Drug Resist Updat 2025; 79:101208. [PMID: 39914188 DOI: 10.1016/j.drup.2025.101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/24/2025]
Abstract
Chemotherapy is widely used clinically, however, its efficacy is often compromised by the development of drug resistance, which arises from prolonged administration of drugs or other stimuli. One of the driven causes of drug resistance in tumors or bacterial infections is metabolic reprogramming, which alters mitochondrial metabolism, disrupts metabolic pathways and causes ion imbalance. Bioactive peptide materials, due to their biocompatibility, diverse bioactivities, customizable sequences, and ease of modification, have shown promise in overcoming drug resistance. This review provides an in-depth analysis of metabolic reprogramming and associated microenvironmental changes that contribute to drug resistance in common tumors and bacterial infections, suggesting potential therapeutic targets. Additionally, we explore peptide-based materials for regulating metabolism and their potential synergic effect with other therapies, highlighting the mechanisms by which these peptides reverse drug resistance. Finally, we discuss future perspectives and the clinical challenges in peptide-based treatments, aiming to offer insights for overcoming drug-resistant diseases.
Collapse
Affiliation(s)
- Min Sun
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Le He
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ran Chen
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Mingchen Lv
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhen Fan
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuxiao Zhou
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Jinlong Qin
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China; Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
| |
Collapse
|
11
|
Tsukihara S, Akiyama Y, Shimada S, Hatano M, Igarashi Y, Taniai T, Tanji Y, Kodera K, Yasukawa K, Umeura K, Kamachi A, Nara A, Okuno K, Tokunaga M, Katoh H, Ishikawa S, Ikegami T, Kinugasa Y, Eto K, Tanaka S. Delactylase effects of SIRT1 on a positive feedback loop involving the H19-glycolysis-histone lactylation in gastric cancer. Oncogene 2025; 44:724-738. [PMID: 39658647 DOI: 10.1038/s41388-024-03243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024]
Abstract
Histone lactylation, a novel epigenetic modification, is regulated by the lactate produced by glycolysis. Glycolysis is activated in various cancers, including gastric cancer (GC). However, the molecular mechanism and clinical impact of histone lactylation in GC remain poorly understood. Here, we demonstrate that histone H3K18 lactylation (H3K18la) is elevated in GC, correlating with a worse prognosis. SIRT1 overexpression decreases H3K18la levels, whereas SIRT1 knockdown increases H3K18la levels in GC cells. RNA-seq analysis demonstrates that lncRNA H19 is markedly downregulated in GC cells with SIRT1 overexpression and those grown under glucose free condition, which confirmed decreased H3K18la levels at its promoter region. H19 knockdown decreased the expression levels of LDHA and H3K18la, and LDHA knockdown impaired H19 and H3K18la expression, suggesting an H19/glycolysis/H3K18la-positive feedback loop. Combined treatment with low doses of the SIRT1-specific activator SRT2104 and the LDHA inhibitor oxamate exerted significant antitumor effects on GC cells, with limited adverse effects on normal gastric cells. The SIRT1-weak/H3K18la-strong signature was found to be an independent prognostic factor in patients with GC. Therefore, SIRT1 acts as a histone delactylase for H3K18, and loss of SIRT1 triggers a positive feedback loop involving H19/glycolysis/H3K18la. Targeting this pathway serves as a novel therapeutic strategy for GC treatment.
Collapse
Grants
- JP19cm0106540, JP24fk0210136, JP24fk0210102, JP24fk0210106, 24fk0210149 Japan Agency for Medical Research and Development (AMED)
- A, JP19H01055; B, JP23H02979, JP23K27670; Exploratory, JP20K21627, and JP22K19554 MEXT | Japan Society for the Promotion of Science (JSPS)
- B, JP24K02320 MEXT | Japan Society for the Promotion of Science (JSPS)
Collapse
Affiliation(s)
- Shu Tsukihara
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Megumi Hatano
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yosuke Igarashi
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomohiko Taniai
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshiaki Tanji
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Keita Kodera
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Koya Yasukawa
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kentaro Umeura
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Atsushi Kamachi
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Atsushi Nara
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keisuke Okuno
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masanori Tokunaga
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toru Ikegami
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Yusuke Kinugasa
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ken Eto
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
12
|
Lin L, Roccuzzo G, Yakymiv Y, Marchisio S, Ortolan E, Funaro A, Senetta R, Pala V, Bagot M, de Masson A, Battistella M, Guenova E, Ribero S, Quaglino P. The CD39/CD73/Adenosine and NAD/CD38/CD203a/CD73 Axis in Cutaneous T-Cell Lymphomas. Cells 2025; 14:309. [PMID: 39996780 PMCID: PMC11854806 DOI: 10.3390/cells14040309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/07/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025] Open
Abstract
Cutaneous T-cell lymphoma (CTCL), characterized by malignant T-cell proliferation primarily in the skin, includes subtypes such as mycosis fungoides (MF) and Sézary syndrome (SS). The tumor microenvironment (TME) is central to their pathogenesis, with flow cytometry and histology being the gold standards for detecting malignant T cells within the TME. Alongside emerging molecular markers, particularly clonality analysis, these tools are indispensable for accurate diagnosis and treatment planning. Of note, adenosine signaling within the TME has been shown to suppress immune responses, affecting various cell types. The expression of CD39, CD73, and CD38, enzymes involved in adenosine production, can be elevated in MF and SS, contributing to immune suppression. Conversely, the expression of CD26, part of the adenosine deaminase/CD26 complex, that degrades adenosine, is often lost by circulating tumoral cells. Flow cytometry has demonstrated increased levels of CD39 and CD73 on Sézary cells, correlating with disease progression and prognosis, while CD38 shows a variable expression, with its prognostic significance remaining under investigation. Understanding these markers' roles in the complexity of TME-mediated immune evasion mechanisms might enhance diagnostic precision and offer new therapeutic targets in CTCL.
Collapse
Affiliation(s)
- Liyun Lin
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.L.); (Y.Y.); (S.M.); (E.O.); (A.F.)
| | - Gabriele Roccuzzo
- Section of Dermatology, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.R.); (V.P.); (P.Q.)
| | - Yuliya Yakymiv
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.L.); (Y.Y.); (S.M.); (E.O.); (A.F.)
| | - Sara Marchisio
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.L.); (Y.Y.); (S.M.); (E.O.); (A.F.)
| | - Erika Ortolan
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.L.); (Y.Y.); (S.M.); (E.O.); (A.F.)
| | - Ada Funaro
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.L.); (Y.Y.); (S.M.); (E.O.); (A.F.)
| | - Rebecca Senetta
- Pathology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy;
| | - Valentina Pala
- Section of Dermatology, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.R.); (V.P.); (P.Q.)
| | - Martine Bagot
- Dermatology Department, Saint-Louis Hospital, AP-HP, Université Paris Cité, Inserm U976, 75010 Paris, France; (M.B.); (A.d.M.)
| | - Adèle de Masson
- Dermatology Department, Saint-Louis Hospital, AP-HP, Université Paris Cité, Inserm U976, 75010 Paris, France; (M.B.); (A.d.M.)
| | - Maxime Battistella
- Department of Pathology, Hôpital Saint-Louis, AP-HP, Université Paris Cité, Inserm U976, 75010 Paris, France;
| | - Emmanuella Guenova
- Department of Dermatology, Lausanne University Hospital (CHUV) and Faculty of Biology and Medicine, University of Lausanne, 1007 Lausanne, Switzerland;
- University Institute and Clinic for Immunodermatology, Medical Faculty, Johannes Kepler University, 4020 Linz, Austria
| | - Simone Ribero
- Section of Dermatology, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.R.); (V.P.); (P.Q.)
| | - Pietro Quaglino
- Section of Dermatology, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (G.R.); (V.P.); (P.Q.)
| |
Collapse
|
13
|
Zhang X, Shi C, Liu Q, Zhong Y, Zhu L, Zhao Y. Combination of adenosine blockade and ferroptosis for photo-immunotherapy of triple negative breast cancer with aptamer-modified copper sulfide. J Mater Chem B 2025; 13:2504-2519. [PMID: 39834279 DOI: 10.1039/d4tb02125h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Combination of immunotherapy and photothermal therapy (PTT) provides a promising therapeutic performance for tumors. However, it still faces negative feedback from suppressive factors such as adenosine. Herein, we developed a new nanodrug that can combine adenosine blockade and ferroptosis to promote the photoimmunotherapy of triple negative breast cancer (TNBC). The nanodrug, named CuS-PEG@Apt, was constructed via the modification of copper sulfide (CuS) nanoparticles with adenosine aptamer and PEG. CuS-PEG@Apt could be effectively enriched in the tumor site and locally generate a strong photothermal effect, directly ablating tumors and inducing immunogenic death (ICD). On the other hand, the aptamers could block the adenosine pathway to inhibit the immune suppression by adenosine, which further promoted the anti-tumor immunity. Moreover, the CuS nanoparticles could consume GSH and inhibit GPX4 to cause the ferroptosis of tumor cells. Collectively, CuS-PEG@Apt achieved potent efficacy of tumor suppression via the combination of PTT, immune activation and ferroptosis, representing an appealing platform for TNBC treatment.
Collapse
Affiliation(s)
- Xingyu Zhang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410012, China.
| | - Chengyu Shi
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410012, China.
| | - Qiao Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410012, China.
| | - Yuting Zhong
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410012, China.
| | - Lipeng Zhu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410012, China.
| | - Yuetao Zhao
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, 410012, China.
| |
Collapse
|
14
|
Chen Y, Wang K, Zhang X, Tao D, Shang Y, Wang P, Li Q, Liu Y. Prognostic model development using novel genetic signature associated with adenosine metabolism and immune status for patients with hepatocellular carcinoma. J Physiol Biochem 2025; 81:157-172. [PMID: 39546272 PMCID: PMC11958414 DOI: 10.1007/s13105-024-01061-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
The high mortality rate of hepatocellular carcinoma (HCC) is partly due to advanced diagnosis, emphasizing the need for effective predictive tools in HCC treatment. The aim of this study is to propose a novel prognostic model for HCC based on adenosine metabolizing genes and explore the potential relationship between them. Regression analysis was performed to identify differentially expressed genes associated with adenosine metabolism in HCC patients using RNA sequencing data obtained from a public database. Adenosine metabolism-related risk score (AMrisk) was derived using the least absolute shrinkage and selection operator (LASSO) Cox regression and verified using another database. Changes in adenosine metabolism in HCC were analyzed using functional enrichment analysis and multiple immune scores. The gene expression levels in patient samples were validated using quantitative reverse transcription polymerase chain reaction. Thirty adenosine metabolism-related differentially expressed genes were identified in HCC, and six genes (ADA, P2RY4, P2RY6, RPIA, SLC6A3, and VEGFA) were used to calculate the AMrisk score; the higher the risk scores, the lower the overall survival. Moreover, immune infiltration activation and immune checkpoints were considerably higher in the high-risk group. Additional in vitro experiments validated the enhanced expression of these six genes in HCC. The established predictive model demonstrated that adenosine metabolism-related genes was significantly associated with prognosis in HCC patients.
Collapse
Affiliation(s)
- Yidan Chen
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China
- School of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Kemei Wang
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Xingyun Zhang
- Department of General Medicine, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Dongying Tao
- Department of Pediatric, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Yulong Shang
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Ping Wang
- Department of Gastroenterology, Dongying People's Hospital, Dongying, China.
| | - Qiang Li
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China.
- Department of General Medicine, Xijing Hospital, Air Force Medical University, Xi'an, China.
| | - Yansheng Liu
- National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
15
|
Tasca CI, Zuccarini M, Di Iorio P, Ciruela F. Lessons from the physiological role of guanosine in neurodegeneration and cancer: Toward a multimodal mechanism of action? Purinergic Signal 2025; 21:133-148. [PMID: 39004650 PMCID: PMC11958862 DOI: 10.1007/s11302-024-10033-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Neurodegenerative diseases and brain tumours represent important health challenges due to their severe nature and debilitating consequences that require substantial medical care. Interestingly, these conditions share common physiological characteristics, namely increased glutamate, and adenosine transmission, which are often associated with cellular dysregulation and damage. Guanosine, an endogenous nucleoside, is safe and exerts neuroprotective effects in preclinical models of excitotoxicity, along with cytotoxic effects on tumour cells. However, the lack of well-defined mechanisms of action for guanosine hinders a comprehensive understanding of its physiological effects. In fact, the absence of specific receptors for guanosine impedes the development of structure-activity research programs to develop guanosine derivatives for therapeutic purposes. Alternatively, given its apparent interaction with the adenosinergic system, it is plausible that guanosine exerts its neuroprotective and anti-tumorigenic effects by modulating adenosine transmission through undisclosed mechanisms involving adenosine receptors, transporters, and purinergic metabolism. Here, several potential molecular mechanisms behind the protective actions of guanosine will be discussed. First, we explore its potential interaction with adenosine receptors (A1R and A2AR), including the A1R-A2AR heteromer. In addition, we consider the impact of guanosine on extracellular adenosine levels and the role of guanine-based purine-converting enzymes. Collectively, the diverse cellular functions of guanosine as neuroprotective and antiproliferative agent suggest a multimodal and complementary mechanism of action.
Collapse
Affiliation(s)
- Carla Inês Tasca
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
- Laboratory of Neurochemistry-4, Neuroscience Program/Biochemistry Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100, Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100, Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, 66100, Chieti, Italy
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907L'Hospitalet de Llobregat, Bellvitge, Spain
| |
Collapse
|
16
|
Rodríguez-Martínez A, Torrejón-Escribano B, Eritja N, Dorca-Arévalo J, Gabaldón C, Sévigny J, Matias-Guiu X, Martín-Satué M. Endometrial epithelial cell organoids as tools for studying the CD39 family of enzymes and for validating enzyme inhibitors. Histol Histopathol 2025; 40:171-182. [PMID: 38967084 DOI: 10.14670/hh-18-782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Extracellular adenosine triphosphate (ATP) conducts a complex dynamic system of broadly represented cell signaling. Ectonucleotidases are the enzymes with nucleotide hydrolytic ability that regulate ATP levels in physiological and pathological conditions, thus playing a key role in the so-called purinergic signaling. Altered ectonucleotidase expression has been reported in cancer, and the ectonucleoside triphosphate diphosphohydrolase (NTPDase) family of enzymes, with its best-known form NTPDase1 (CD39), is targeted in cancer immunotherapy. The tandem of enzymes CD39-CD73 is responsible for the generation of immunosuppressive adenosine in the tumor microenvironment, and inhibition strategies are of great interest. Organoids have emerged as very convenient models for the study of tumors since they are three-dimensional cultures that retain many of the features of tissue. The present study aims to contribute to improving the methodology and the molecular tools needed for the study of ectonucleotidases in healthy and disease conditions. The study, performed in an endometrial cancer cell model, could be extended to other types of tumors and pathologies in which the purinergic system is involved. We generated organoids from endometrial cancer cells overexpressing NTPDase2 (CD39L1) and NTPDase3 (CD39L3) as fusion proteins with EGFP, and we performed functional assays by adapting in situ cytochemistry protocols. This allowed us to simultaneously detect enzyme activity and protein expression and to demonstrate that organoids can be used to test ectonucleotidase inhibitors-a result that can be used to develop new cancer treatment options.
Collapse
Affiliation(s)
- Aitor Rodríguez-Martínez
- Pathology and Experimental Therapy Department, Faculty of Medicine and Health Sciences, Bellvitge Campus, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Oncobell Program, CIBERONC, Barcelona, Spain
| | - Benjamín Torrejón-Escribano
- Pathology and Experimental Therapy Department, Faculty of Medicine and Health Sciences, Bellvitge Campus, Universitat de Barcelona, Barcelona, Spain
- Scientific and Technological Centers (CCiTUB), Bellvitge Campus, Universitat de Barcelona, Barcelona, Spain
| | - Núria Eritja
- Departament de Patologia i Genètica Molecular, Hospital Universitari Arnau de Vilanova, Lleida, Spain
- Oncologic Pathology Group, Institut d'Investigació Biomèdica de Lleida (IRBLleida), CIBERONC, Universitat de Lleida, Lleida, Spain
| | - Jonatan Dorca-Arévalo
- Pathology and Experimental Therapy Department, Faculty of Medicine and Health Sciences, Bellvitge Campus, Universitat de Barcelona, Barcelona, Spain
| | - Clara Gabaldón
- Pathology and Experimental Therapy Department, Faculty of Medicine and Health Sciences, Bellvitge Campus, Universitat de Barcelona, Barcelona, Spain
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada
- Département de Microbiologie-infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Xavier Matias-Guiu
- Pathology and Experimental Therapy Department, Faculty of Medicine and Health Sciences, Bellvitge Campus, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Oncobell Program, CIBERONC, Barcelona, Spain
- Departament de Patologia i Genètica Molecular, Hospital Universitari Arnau de Vilanova, Lleida, Spain
- Oncologic Pathology Group, Institut d'Investigació Biomèdica de Lleida (IRBLleida), CIBERONC, Universitat de Lleida, Lleida, Spain
- Servei d'Anatomia Patològica, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Mireia Martín-Satué
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Oncobell Program, CIBERONC, Barcelona, Spain
- Pathology and Experimental Therapy Department, Faculty of Medicine and Health Sciences, Bellvitge Campus, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
17
|
Li L, Wang X, Deng H, Lu W, Zhou Y, Ye X, Li Y, Wang J. Discrimination of superficial lymph nodes using ultrasonography and tissue metabolomics coupled with machine learning. Front Oncol 2025; 15:1510018. [PMID: 39935832 PMCID: PMC11810734 DOI: 10.3389/fonc.2025.1510018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Introduction Diagnosing the types of malignant lymphoma could help determine the most suitable treatment, anticipate the probability of recurrence and guide long-term monitoring and follow-up care. Methods We evaluated the differences in benign, lymphoma and metastasis superficial lymph nodes using ultrasonography and tissue metabolomics. Results Our findings indicated that three ultrasonographic features, blood supply pattern, cortical echo, and cortex elasticity, hold potential in differentiating malignant lymph nodes from benign ones, and the shape and corticomedullary boundary emerged as significant indicators for distinguishing between metastatic and lymphoma groups. Metabolomics revealed the difference in metabolic profiles among lymph nodes. We observed significant increases in many amino acids, organic acids, lipids, and nucleosides in both lymphoma and metastasis groups, compared to the benign group. Specifically, the lymphoma group exhibited higher levels of nucleotides (inosine monophosphate and adenosine diphosphate) as well as glutamic acid, and the metastasis group was characterized by higher levels of carbohydrates, acylcarnitines, glycerophospholipids, and uric acid. Linear discriminant analysis coupled with these metabolites could be used for differentiating lymph nodes, achieving recognition rates ranging from 87.4% to 89.3%, outperforming ultrasonography (63.1% to 75.4%). Discussion Our findings could contribute to a better understanding of malignant lymph node development and provide novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Lu Li
- Department of Ultrasound, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xinyue Wang
- Department of Ultrasound, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Hongyan Deng
- Department of Ultrasound, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Wenjuan Lu
- Department of Ultrasound, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yasu Zhou
- Department of Ultrasound, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xinhua Ye
- Department of Ultrasound, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yong Li
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jie Wang
- Department of Radiology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Chitolina Schetinger L, de Jesus LSB, Bottari NB, Viana AR, Nauderer JN, Silveira MV, Castro M, Nass P, Caetano PA, Morsch V, Jacob-Lopes E, Queiroz Zepka L, Chitolina Schetinger MR. Microalgae-Derived Carotenoid Extract and Biomass Reduce Viability, Induce Oxidative Stress, and Modulate the Purinergic System in Two Melanoma Cell Lines. Life (Basel) 2025; 15:199. [PMID: 40003608 PMCID: PMC11856458 DOI: 10.3390/life15020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Cutaneous melanoma (CM) is an aggressive and metastatic tumor, resulting in high mortality rates. Despite significant advances in therapeutics, the available treatments still require improvements. Thus, purinergic signaling emerged as a potential pathway to cancer therapy due to its involvement in cell communication, proliferation, differentiation, and apoptosis. In addition, due to safety and acceptable clinical tolerability, carotenoids from microalgae have been investigated as adjuvants in anti-melanoma therapy. Then, this work aimed to investigate the in vitro anti-melanogenic effect of carotenoid extract (CA) and total biomass (BM) of the Scenedesmus obliquus microalgae on two cutaneous melanoma cell lines (A375 and B16F10). Cells were cultivated under ideal conditions and treated with 10, 25, 50, and 100 μM of CA or BM for 24 h. The effects of the compounds on viability, oxidant status, and purinergic signaling were verified. The IC50 cell viability results showed that CA and BM decreased B16F10 viability at 24.29 μM and 74.85 μM, respectively and decreased A375 viability at 73.93 μM and 127.80 μM, respectively. Carotenoid treatment for 24 h in B16F10 and A375 cells increased the release of reactive oxygen species compared to the control. In addition, CA and BM isolated or combined with cisplatin chemotherapy (CIS) modulated the purinergic system in B16F10 and A375 cell lines through P2X7, A2AR, CD39, and 5'-nucleotidase. They led to cell apoptosis and immunoregulation by activating A2A receptors and CD73 inhibition. The results disclose that CA and BM from Scenedesmus obliquus exhibit an anti-melanogenic effect, inhibiting melanoma cell growth.
Collapse
Affiliation(s)
- Luisa Chitolina Schetinger
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.C.S.); (P.N.); (P.A.C.); (E.J.-L.)
| | - Loren S. B. de Jesus
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.S.B.d.J.); (N.B.B.); (A.R.V.); (J.N.N.); (M.V.S.); (M.C.); (V.M.)
| | - Nathieli B. Bottari
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.S.B.d.J.); (N.B.B.); (A.R.V.); (J.N.N.); (M.V.S.); (M.C.); (V.M.)
- Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas (UFPEL), Pelotas 96010-610, Brazil
| | - Altevir R. Viana
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.S.B.d.J.); (N.B.B.); (A.R.V.); (J.N.N.); (M.V.S.); (M.C.); (V.M.)
| | - Jelson N. Nauderer
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.S.B.d.J.); (N.B.B.); (A.R.V.); (J.N.N.); (M.V.S.); (M.C.); (V.M.)
| | - Marcylene V. Silveira
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.S.B.d.J.); (N.B.B.); (A.R.V.); (J.N.N.); (M.V.S.); (M.C.); (V.M.)
| | - Milagros Castro
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.S.B.d.J.); (N.B.B.); (A.R.V.); (J.N.N.); (M.V.S.); (M.C.); (V.M.)
| | - Pricila Nass
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.C.S.); (P.N.); (P.A.C.); (E.J.-L.)
| | - Patrícia Acosta Caetano
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.C.S.); (P.N.); (P.A.C.); (E.J.-L.)
| | - Vera Morsch
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.S.B.d.J.); (N.B.B.); (A.R.V.); (J.N.N.); (M.V.S.); (M.C.); (V.M.)
| | - Eduardo Jacob-Lopes
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.C.S.); (P.N.); (P.A.C.); (E.J.-L.)
| | - Leila Queiroz Zepka
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.C.S.); (P.N.); (P.A.C.); (E.J.-L.)
| | - Maria Rosa Chitolina Schetinger
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.S.B.d.J.); (N.B.B.); (A.R.V.); (J.N.N.); (M.V.S.); (M.C.); (V.M.)
| |
Collapse
|
19
|
Biswas N, Mori T, Ragava Chetty Nagaraj NK, Xin H, Diemer T, Li P, Su Y, Piermarocchi C, Ferrara N. Adenosine diphosphate stimulates VEGF-independent choroidal endothelial cell proliferation: A potential escape from anti-VEGF therapy. Proc Natl Acad Sci U S A 2025; 122:e2418752122. [PMID: 39835893 PMCID: PMC11789014 DOI: 10.1073/pnas.2418752122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
We hypothesized that a strategy employing tissue-specific endothelial cells (EC) might facilitate the identification of tissue- or organ-specific vascular functions of ubiquitous metabolites. An unbiased approach was employed to identify water-soluble small molecules with mitogenic activity on choroidal EC. We identified adenosine diphosphate (ADP) as a candidate, following biochemical purification from mouse EL4 lymphoma extracts. ADP stimulated the growth of bovine choroidal EC (BCEC) and other bovine or human eye-derived EC. ADP induced rapid phosphorylation of extracellular signal-regulated kinase in a dose- and time-dependent manner. ADP-induced BCEC proliferation could be blocked by pretreatment with specific antagonists of the purinergic receptor P2Y1 but not with a vascular endothelial growth factor (VEGF) inhibitor, indicating that the EC mitogenic effects of ADP are not mediated by stimulation of the VEGF pathway. Intravitreal administration of ADP expanded the neovascular area in a mouse model of choroidal neovascularization. Single-cell transcriptomics from human choroidal datasets show the expression of P2RY1, but not other ADP receptors, in EC with a pattern similar to VEGFR2. Although ADP has been reported to be a growth inhibitor for vascular EC, here we describe its growth-stimulating effects for BCEC and other eye-derived EC.
Collapse
Affiliation(s)
- Nilima Biswas
- Department of Pathology, University of California San Diego, La Jolla, CA92093
| | - Tommaso Mori
- Department of Pathology, University of California San Diego, La Jolla, CA92093
| | | | - Hong Xin
- Department of Pathology, University of California San Diego, La Jolla, CA92093
| | - Tanja Diemer
- Department of Pathology, University of California San Diego, La Jolla, CA92093
| | - Pin Li
- Department of Pathology, University of California San Diego, La Jolla, CA92093
| | - Yongxuan Su
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093
| | - Carlo Piermarocchi
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI48824
| | - Napoleone Ferrara
- Department of Pathology, University of California San Diego, La Jolla, CA92093
- Department of Ophthalmology, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
20
|
Peter-Okaka U, Boison D. Neuroglia and brain energy metabolism. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:117-126. [PMID: 40122620 PMCID: PMC12011283 DOI: 10.1016/b978-0-443-19104-6.00007-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The glial control of energy homeostasis is of crucial importance for health and disease. Astrocytes in particular play a major role in controlling the equilibrium among adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), adenosine 5'-monophosphate (AMP), and adenosine. Any energy crisis leads to a drop in ATP, and the resulting increase in adenosine is an evolutionary ancient mechanism to suppress energy-consuming activities. The maintenance of brain energy homeostasis, in turn, requires the availability of energy sources, such as glucose and ketones. Astrocytes have assumed an important role in enabling efficient energy utilization by neurons. In addition, neurons are under the metabolic control of astrocytes through regulation of glutamate and GABA levels. The intricate interplay between glial brain energy metabolism and brain function can be best understood once the homeostatic system of energy metabolism is brought out of control. This has best been studied within the context of epilepsy where metabolic treatments provide unprecedented opportunities for the control of seizures that are refractory to conventional antiseizure medications. This chapter will discuss astroglial energy metabolism in the healthy brain and will use epilepsy as a model condition in which glial brain energy homeostasis is disrupted. We will conclude with an outlook on how those principles can be applied to other conditions such as Alzheimer disease.
Collapse
Affiliation(s)
- Uchenna Peter-Okaka
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
21
|
Gan M, Liu N, Li W, Chen M, Bai Z, Liu D, Liu S. Metabolic targeting of regulatory T cells in oral squamous cell carcinoma: new horizons in immunotherapy. Mol Cancer 2024; 23:273. [PMID: 39696340 DOI: 10.1186/s12943-024-02193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a prevalent oral malignancy, which poses significant health risks with a high mortality rate. Regulatory T cells (Tregs), characterized by their immunosuppressive capabilities, are intricately linked to OSCC progression and patient outcomes. The metabolic reprogramming of Tregs within the OSCC tumor microenvironment (TME) underpins their function, with key pathways such as the tryptophan-kynurenine-aryl hydrocarbon receptor, PI3K-Akt-mTOR and nucleotide metabolism significantly contributing to their suppressive activities. Targeting these metabolic pathways offers a novel therapeutic approach to reduce Treg-mediated immunosuppression and enhance anti-tumor responses. This review explores the metabolic dependencies and pathways that sustain Treg function in OSCC, highlighting key metabolic adaptations such as glycolysis, fatty acid oxidation, amino acid metabolism and PI3K-Akt-mTOR signaling pathway that enable Tregs to thrive in the challenging conditions of the TME. Additionally, the review discusses the influence of the oral microbiome on Treg metabolism and evaluates potential therapeutic strategies targeting these metabolic pathways. Despite the promising potential of these interventions, challenges such as selectivity, toxicity, tumor heterogeneity, and resistance mechanisms remain. The review concludes with perspectives on personalized medicine and integrative approaches, emphasizing the need for continued research to translate these findings into effective clinical applications for OSCC treatment.
Collapse
Affiliation(s)
- Menglai Gan
- Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang, 110002, Liaoning, China
| | - Nanshu Liu
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang, 110002, Liaoning, China
| | - Wenting Li
- Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang, 110002, Liaoning, China
| | - Mingwei Chen
- Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang, 110002, Liaoning, China
| | - Zhongyu Bai
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang, 110002, Liaoning, China
| | - Dongjuan Liu
- Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang, 110002, Liaoning, China.
| | - Sai Liu
- Department of Dental Materials, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, No. 117 Nanjing North Street, Heping District, Shenyang, 110002, Liaoning, China.
| |
Collapse
|
22
|
Liu D, Zhao J, Li L, Wang J, Wang C, Wu Y, Huang Y, Xing D, Chen W. CD73: agent development potential and its application in diabetes and atherosclerosis. Front Immunol 2024; 15:1515875. [PMID: 39735551 PMCID: PMC11672340 DOI: 10.3389/fimmu.2024.1515875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024] Open
Abstract
CD73, an important metabolic and immune escape-promoting gene, catalyzes the hydrolysis of adenosine monophosphate (AMP) to adenosine (ADO). AMP has anti-inflammatory and vascular relaxant properties, while ADO has a strong immunosuppressive effect, suggesting that CD73 has pro-inflammatory and immune escape effects. However, CD73 also decreased proinflammatory reaction, suggesting that CD73 has a positive side to the body. Indeed, CD73 plays a protective role in diabetes, while with age, CD73 changes from anti-atherosclerosis to pro-atherosclerosis. The upregulation of CD73 with agents, including AGT-5, Aire-overexpressing DCs, Aspirin, BAFFR-Fc, CD4+ peptide, ICAs, IL-2 therapies, SAgAs, sCD73, stem cells, RAD51 inhibitor, TLR9 inhibitor, and VD, decreased diabetes and atherosclerosis development. However, the downregulation of CD73 with agents, including benzothiadiazine derivatives and CD73 siRNA, reduced atherosclerosis. Notably, many CD73 agents were investigated in clinical trials. However, no agents were used to treat diabetes and atherosclerosis. Most agents were CD73 inhibitors. Only FP-1201, a CD73 agonist, was investigated in clinical trials but its further development was discontinued. In addition, many lncRNAs, circRNAs, and genes are located at the same chromosomal location as CD73. In particular, circNT5E promoted CD73 expression. circNT5E may be a promising target for agent development. This mini-review focuses on the current state of knowledge of CD73 in diabetes, atherosclerosis, and its potential role in agent development.
Collapse
Affiliation(s)
- Dan Liu
- Guangdong Provincial People’s Hospital, Zhuhai Hospital (Jinwan Central Hospital of Zhuhai), Zhuhai, Guangdong, China
| | - Jingjing Zhao
- Sleep Medicine Center, Huai’an No.3 People’s Hospital, Huaian Second Clinical College of Xuzhou Medical University, Huaian, China
| | - Ling Li
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Yudong Wu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Yucun Huang
- Guangdong Provincial People’s Hospital, Zhuhai Hospital (Jinwan Central Hospital of Zhuhai), Zhuhai, Guangdong, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong, China
| |
Collapse
|
23
|
Lee DC, Ta L, Mukherjee P, Duraj T, Domin M, Greenwood B, Karmacharya S, Narain NR, Kiebish M, Chinopoulos C, Seyfried TN. Amino Acid and Glucose Fermentation Maintain ATP Content in Mouse and Human Malignant Glioma Cells. ASN Neuro 2024; 16:2422268. [PMID: 39621724 PMCID: PMC11792161 DOI: 10.1080/17590914.2024.2422268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/22/2024] [Indexed: 02/06/2025] Open
Abstract
Energy is necessary for tumor cell viability and growth. Aerobic glucose-driven lactic acid fermentation is a common metabolic phenotype seen in most cancers including malignant gliomas. This metabolic phenotype is linked to abnormalities in mitochondrial structure and function. A luciferin-luciferase bioluminescence ATP assay was used to measure the influence of amino acids, glucose, and oxygen on ATP content and viability in mouse (VM-M3 and CT-2A) and human (U-87MG) glioma cells that differed in cell biology, genetic background, and species origin. Oxygen consumption was measured using the Resipher system. Extracellular lactate and succinate were measured as end products of the glycolysis and glutaminolysis pathways, respectively. The results showed that: (1) glutamine was a source of ATP content irrespective of oxygen. No other amino acid could replace glutamine in sustaining ATP content and viability; (2) ATP content persisted in the absence of glucose and under hypoxia, ruling out substantial contribution through either glycolysis or oxidative phosphorylation (OxPhos) under these conditions; (3) Mitochondrial complex IV inhibition showed that oxygen consumption was not an accurate measure for ATP production through OxPhos. The glutaminase inhibitor, 6-diazo-5-oxo-L-norleucine (DON), reduced ATP content and succinate export in cells grown in glutamine. The data suggests that mitochondrial substrate level phosphorylation in the glutamine-driven glutaminolysis pathway contributes to ATP content in these glioma cells. A new model is presented highlighting the synergistic interaction between the high-throughput glycolysis and glutaminolysis pathways that drive malignant glioma growth and maintain ATP content through the aerobic fermentation of both glucose and glutamine.
Collapse
Affiliation(s)
- Derek C. Lee
- Department of Biology, Boston College, Massachusetts, USA
| | - Linh Ta
- Department of Biology, Boston College, Massachusetts, USA
| | | | - Tomas Duraj
- Department of Biology, Boston College, Massachusetts, USA
| | - Marek Domin
- Mass Spectrometry Center, Chemistry Department, Boston College, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Huang S, Dong W, Lin X, Bian J. Na+/K+-ATPase: ion pump, signal transducer, or cytoprotective protein, and novel biological functions. Neural Regen Res 2024; 19:2684-2697. [PMID: 38595287 PMCID: PMC11168508 DOI: 10.4103/nrr.nrr-d-23-01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/23/2023] [Accepted: 12/09/2023] [Indexed: 04/11/2024] Open
Abstract
Na+/K+-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na+ out of and two K+ into cells. Additionally, Na+/K+-ATPase participates in Ca2+-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane. Na+/K+-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells. Therefore, it is not surprising that Na+/K+-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases. However, published studies have so far only elucidated the important roles of Na+/K+-ATPase dysfunction in disease development, and we are lacking detailed mechanisms to clarify how Na+/K+-ATPase affects cell function. Our recent studies revealed that membrane loss of Na+/K+-ATPase is a key mechanism in many neurological disorders, particularly stroke and Parkinson's disease. Stabilization of plasma membrane Na+/K+-ATPase with an antibody is a novel strategy to treat these diseases. For this reason, Na+/K+-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein, participating in signal transduction such as neuronal autophagy and apoptosis, and glial cell migration. Thus, the present review attempts to summarize the novel biological functions of Na+/K+-ATPase and Na+/K+-ATPase-related pathogenesis. The potential for novel strategies to treat Na+/K+-ATPase-related brain diseases will also be discussed.
Collapse
Affiliation(s)
- Songqiang Huang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Wanting Dong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoqian Lin
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Jinsong Bian
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
25
|
Zhang A, Fan T, Liu Y, Yu G, Li C, Jiang Z. Regulatory T cells in immune checkpoint blockade antitumor therapy. Mol Cancer 2024; 23:251. [PMID: 39516941 PMCID: PMC11545879 DOI: 10.1186/s12943-024-02156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Regulatory T cells (Tregs), an essential component of the human immune system, are a heterogeneous group of T lymphocytes with the ability to suppress immune responses and maintain immune homeostasis. Recent evidence indicates that Tregs may impair antitumor immunity and facilitate cancer progression by weakening functions of effector T cells (Teffs). Consequently, targeting Tregs to eliminate them from tumor microenvironments to improve Teffs' activity could emerge as an effective strategy for cancer immunotherapy. This review outlines the biology of Tregs, detailing their origins, classification, and crucial markers. Our focus lies on the complex role of Tregs in cancer's development, progression and treatment, particularly on their suppressive role upon antitumor responses via multiple mechanisms. We delve into Tregs' involvement in immune checkpoint blockade (ICB) therapy, their dual effect on cancer immunotherapy and their potential biomarkers for ICB therapy effectiveness. We also summarize advances in the therapies that adjust Tregs to optimize ICB therapy, which may be crucial for devising innovative cancer treatment strategies.
Collapse
Affiliation(s)
- An Zhang
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yixiao Liu
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Guanhua Yu
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zheng Jiang
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
26
|
He Y, Song T, Ning J, Wang Z, Yin Z, Jiang P, Yuan Q, Yu W, Cheng F. Lactylation in cancer: Mechanisms in tumour biology and therapeutic potentials. Clin Transl Med 2024; 14:e70070. [PMID: 39456119 PMCID: PMC11511673 DOI: 10.1002/ctm2.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Lactylation, a recently identified form of protein post-translational modification (PTM), has emerged as a key player in cancer biology. The Warburg effect, a hallmark of tumour metabolism, underscores the significance of lactylation in cancer progression. By regulating gene transcription and protein function, lactylation facilitates metabolic reprogramming, enabling tumours to adapt to nutrient limitations and sustain rapid growth. Over the past decade, extensive research has revealed the intricate regulatory network underlying lactylation in tumours. Large-scale sequencing and machine learning have confirmed the widespread occurrence of lactylation sites across the tumour proteome. Targeting lactylation enzymes or metabolic pathways has demonstrated promising anti-tumour effects, highlighting the therapeutic potential of this modification. This review comprehensively explores the mechanisms of lactylation in cancer cells and the tumour microenvironment. We expound on the application of advanced omics technologies for target identification and data modelling within the lactylation field. Additionally, we summarise existing anti-lactylation drugs and discuss their clinical implications. By providing a comprehensive overview of recent advancements, this review aims to stimulate innovative research and accelerate the translation of lactylation-based therapies into clinical practice. KEY POINTS: Lactylation significantly influences tumour metabolism and gene regulation, contributing to cancer progression. Advanced sequencing and machine learning reveal widespread lactylation sites in tumours. Targeting lactylation enzymes shows promise in enhancing anti-tumour drug efficacy and overcoming chemotherapy resistance. This review outlines the clinical implications and future research directions of lactylation in oncology.
Collapse
Affiliation(s)
- Yipeng He
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Tianbao Song
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Jinzhuo Ning
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Zefeng Wang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Zhen Yin
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Pengcheng Jiang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Qin Yuan
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Weimin Yu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Fan Cheng
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| |
Collapse
|
27
|
Xia B, Qiu L, Yue J, Si J, Zhang H. The metabolic crosstalk of cancer-associated fibroblasts and tumor cells: Recent advances and future perspectives. Biochim Biophys Acta Rev Cancer 2024; 1879:189190. [PMID: 39341468 DOI: 10.1016/j.bbcan.2024.189190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Tumor cells grow in a microenvironment with a lack of nutrients and oxygen. Cancer-associated fibroblasts (CAFs) as one major component of tumor microenvironment have strong ability to survive under stressful conditions through metabolic remodelling. Furthermore, CAFs are educated by tumor cells and help them adapt to the hostile microenvironment through their metabolic communication. By inducing catabolism, CAFs release nutrients into the microenvironment which are taken up by tumor cells to satisfy their metabolic requirements. Furthermore, CAFs can recycle toxic metabolic wastes produced by cancer cells into energetic substances, allowing cancer cells to undergo biosynthesis. Their metabolic crosstalk also enhances CAFs' pro-tumor phenotype and reshape the microenvironment facilitating tumor cells' metastasis and immune escape. In this review, we have analyzed the effect and mechanisms of metabolic crosstalk between tumor cells and CAFs. We also analyzed the future perspectives in this area from the points of CAFs heterogeneity, spatial metabonomics and patient-derived tumor organoids (PDOs). These information may deepen the knowledge of tumor metabolism regulated by CAFs and provide novel insights into the development of metabolism-based anti-cancer strategies.
Collapse
Affiliation(s)
- Bing Xia
- Department of Thoracic Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Liqing Qiu
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, 310002, China
| | - Jing Yue
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, 310002, China
| | - Jingxing Si
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Hongfang Zhang
- Hangzhou Cancer Institution, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou Cancer Hospital, 310002, China.
| |
Collapse
|
28
|
Yin L, Liu W, Zhang Z, Zhang J, Chen H, Xiong L. Hyperbaric Oxygen Attenuates Chronic Postsurgical Pain by Regulating the CD73/Adenosine/A1R Axis of the Spinal Cord in Rats. THE JOURNAL OF PAIN 2024; 25:104623. [PMID: 39002742 DOI: 10.1016/j.jpain.2024.104623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
Chronic postsurgical pain (CPSP) affects postoperative rehabilitation and quality of life in patients, but its mechanisms are still poorly understood. Hyperbaric oxygen (HBO) attenuates neuropathic pain in animal and human studies, but its efficacy for CPSP treatment and its underlying mechanism have not been elucidated. This study aimed to investigate the analgesic effect of HBO in a CPSP rat model and the role of spinal cord adenosine circulation in HBO-induced analgesia. A skin/muscle incision and retraction (SMIR) rat model was used to mimic CPSP, and HBO treatment (2.5 atmospheric absolute, 60 minutes) was administered once daily for 5 consecutive days beginning 3 days after surgery. The role of spinal cord adenosine circulation in HBO-induced analgesia was investigated using β-methylene ADP (a CD73 inhibitor), 8-cyclopentyl-1,3-dipropylxanthine (an A1R antagonist), or an intrathecal injection of adenosine. The mechanical paw withdrawal threshold was determined at different timepoints before and after surgery. The spinal cord adenosine and adenosine triphosphate (ATP) contents were analyzed using high-performance liquid chromatography, and the spinal cord expression of adenosine-1 receptor (A1R), extracellular 5'-nucleotidase (CD73), and adenosine kinase (ADK) was examined by Western blotting and immunofluorescence staining. The results showed that the mechanical paw withdrawal threshold of the ipsilateral hind paw and the adenosine content decreased, and the spinal cord expression of A1R, CD73, and ADK and ATP content increased within 14 days after surgery. HBO treatment alleviated mechanical allodynia, reduced ATP content, and increased adenosine content by activating CD73 but downregulated the spinal cord expression of A1R, CD73, and ADK. Intrathecal adenosine alleviated mechanical allodynia after SMIR and downregulated the spinal cord expression of A1R and CD73, and intrathecal β-methylene ADP or 8-cyclopentyl-1,3-dipropylxanthine attenuated the analgesic effect of HBO treatment on SMIR-induced CPSP. PERSPECTIVE: Spinal cord adenosine is involved in the occurrence and development of CPSP, and HBO treatment alleviates CPSP by regulating adenosine production/metabolism in the spinal cord. Thus, HBO may be employed for the treatment of CPSP with favorable efficacy.
Collapse
Affiliation(s)
- Lijun Yin
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Anesthesiology, Women and Children's Hospital of Ningbo University, Ningbo City, Zhejiang, China
| | - Wenwu Liu
- Department of Diving and Hyperbaric Medicine, Chinese People's Liberation Army Naval Medical Center, Shanghai, PR China
| | - Zhe Zhang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingyue Zhang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
29
|
Di Virgilio F, Vultaggio-Poma V, Tarantini M, Giuliani AL. Overview of the role of purinergic signaling and insights into its role in cancer therapy. Pharmacol Ther 2024; 262:108700. [PMID: 39111410 DOI: 10.1016/j.pharmthera.2024.108700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/05/2024] [Accepted: 07/31/2024] [Indexed: 08/30/2024]
Abstract
Innovation of cancer therapy has received a dramatic acceleration over the last fifteen years thanks to the introduction of the novel immune checkpoint inhibitors (ICI). On the other hand, the conspicuous scientific knowledge accumulated in purinergic signaling since the early seventies is finally being transferred to the clinic. Several Phase I/II clinical trials are currently underway to investigate the effect of drugs interfering with purinergic signaling as stand-alone or combination therapy in cancer. This is supporting the novel concept of "purinergic immune checkpoint" (PIC) in cancer therapy. In the present review we will address a) the basic pharmacology and cell biology of the purinergic system; b) principles of its pathophysiology in human diseases; c) implications for cell death, cell proliferation and cancer; d) novel molecular tools to investigate nucleotide homeostasis in the extracellular environment; e) recent developments in the pharmacology of P1, P2 receptors and related ecto-enzymes; f) P1 and P2 ligands as novel diagnostic tools; g) current issues in PIC-based anti-cancer therapy. This review will provide an appraisal of the current status of purinergic signaling in cancer and will help identify future avenues of development.
Collapse
Affiliation(s)
| | | | - Mario Tarantini
- Department of Medical Sciences, University of Ferrara, Italy
| | | |
Collapse
|
30
|
Mihaila RI, Gheorghe AS, Zob DL, Stanculeanu DL. The Importance of Predictive Biomarkers and Their Correlation with the Response to Immunotherapy in Solid Tumors-Impact on Clinical Practice. Biomedicines 2024; 12:2146. [PMID: 39335659 PMCID: PMC11429372 DOI: 10.3390/biomedicines12092146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Immunotherapy has changed the therapeutic approach for various solid tumors, especially lung tumors, malignant melanoma, renal and urogenital carcinomas, demonstrating significant antitumor activity, with tolerable safety profiles and durable responses. However, not all patients benefit from immunotherapy, underscoring the need for predictive biomarkers that can identify those most likely to respond to treatment. Methods: The integration of predictive biomarkers into clinical practice for immune checkpoint inhibitors (ICI) holds great promise for personalized cancer treatment. Programmed death ligand 1 (PD-L1) expression, tumor mutational burden (TMB), microsatellite instability (MSI), gene expression profiles and circulating tumor DNA (ctDNA) have shown potential in predicting ICI responses across various cancers. Results: Challenges such as standardization, validation, regulatory approval, and cost-effectiveness must be addressed to realize their full potential. Predictive biomarkers are crucial for optimizing the clinical use of ICIs in cancer therapy. Conclusions: While significant progress has been made, further research and collaboration among clinicians, researchers, and regulatory institutes are essential to overcome the challenges of clinical implementation. However, little is known about the relationship between local and systemic immune responses and the correlation with response to oncological therapies and patient survival.
Collapse
Affiliation(s)
- Raluca Ioana Mihaila
- Department of Oncology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Medical Oncology I, "Prof. Dr. Alexandru Trestioreanu", Institute of Oncology, 022328 Bucharest, Romania
| | - Adelina Silvana Gheorghe
- Department of Oncology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Medical Oncology I, "Prof. Dr. Alexandru Trestioreanu", Institute of Oncology, 022328 Bucharest, Romania
| | - Daniela Luminita Zob
- Department of Medical Oncology I, "Prof. Dr. Alexandru Trestioreanu", Institute of Oncology, 022328 Bucharest, Romania
| | - Dana Lucia Stanculeanu
- Department of Oncology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Medical Oncology I, "Prof. Dr. Alexandru Trestioreanu", Institute of Oncology, 022328 Bucharest, Romania
| |
Collapse
|
31
|
Chen TY, Chang YC, Yu CY, Sung WW. Targeting the Adenosine A2A Receptor as a Novel Therapeutic Approach for Renal Cell Carcinoma: Mechanisms and Clinical Trial Review. Pharmaceutics 2024; 16:1127. [PMID: 39339165 PMCID: PMC11434806 DOI: 10.3390/pharmaceutics16091127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Renal cell carcinoma (RCC) accounts for nearly 2% of cancers diagnosed worldwide. For metastatic RCC, targeted therapy is one of the most common treatment methods. It can include approaches that target vascular endothelial growth factor (VEGFR) or rely on immune checkpoint inhibitors or mTOR inhibitors. Adenosine A2A receptor (A2AR) is a type of widely distributed G-protein-coupled receptor (GPCR). Recently, an increasing number of studies suggest that the activation of A2AR can downregulate anti-tumor immune responses and prevent tumor growth. Currently, the data on A2AR antagonists in RCC treatment are still limited. Therefore, in this article, we further investigate the clinical trials investigating A2AR drugs in RCC. We also describe the epidemiology and current treatment of RCC, along with the physiological role of A2AR, and the types of A2AR drugs that are associated with tumor treatment.
Collapse
Affiliation(s)
- Ting-Yu Chen
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Ya-Chuan Chang
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Chia-Ying Yu
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Wen-Wei Sung
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Urology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| |
Collapse
|
32
|
Di Giulio T, Corsi M, Gagliani F, De Benedetto G, Malitesta C, Mazzei A, Barca A, Verri T, Barillaro G, Mazzotta E. Reconfigurable Optical Sensor for Metal-Ion-Mediated Label-Free Recognition of Different Biomolecular Targets. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43752-43761. [PMID: 39106976 PMCID: PMC11345716 DOI: 10.1021/acsami.4c08860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/09/2024]
Abstract
Reconfiguration of chemical sensors, intended as the capacity of the sensor to adapt to novel operational scenarios, e.g., new target analytes, is potentially game changing and would enable rapid and cost-effective reaction to dynamic changes occurring at healthcare, environmental, and industrial levels. Yet, it is still a challenge, and rare examples of sensor reconfiguration have been reported to date. Here, we report on a reconfigurable label-free optical sensor leveraging the versatile immobilization of metal ions through a chelating agent on a nanostructured porous silica (PSiO2) optical transducer for the detection of different biomolecules. First, we show the reversible grafting of different metal ions on the PSiO2 surface, namely, Ni2+, Cu2+, Zn2+, and Fe3+, which can mediate the interaction with different biomolecules and be switched under mild conditions. Then, we demonstrate reconfiguration of the sensor at two levels: 1) switching of the metal ions on the PSiO2 surface from Cu2+ to Zn2+ and testing the ability of Cu2+-functionalized and Zn2+-reconfigured devices for the sensing of the dipeptide carnosine (CAR), leveraging the well-known chelating ability of CAR toward divalent metal ions; and 2) reconfiguration of the Cu2+-functionalized PSiO2 sensor for a different target analyte, namely, the nucleotide adenosine triphosphate (ATP), switching Cu2+ with Fe3+ ions to exploit the interaction with ATP through phosphate groups. The Cu2+-functionalized and Zn2+-reconfigured sensors show effective sensing performance in CAR detection, also evaluated in tissue samples from murine brain, and so does the Fe3+-reconfigured sensor toward ATP, thus demonstrating effective reconfiguration of the sensor with the proposed surface chemistry.
Collapse
Affiliation(s)
- Tiziano Di Giulio
- Laboratorio
di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche
e Ambientali (Di.S.Te.B.A.), Università
del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Martina Corsi
- Dipartimento
di Ingegneria dell’Informazione, Università di Pisa, Via G. Caruso 16, 56122 Pisa, Italy
| | - Francesco Gagliani
- Laboratorio
di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche
e Ambientali (Di.S.Te.B.A.), Università
del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Giuseppe De Benedetto
- Laboratorio
di Spettrometria di Massa Analitica ed Isotopica, Dipartimento di
Beni Culturali, Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Cosimino Malitesta
- Laboratorio
di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche
e Ambientali (Di.S.Te.B.A.), Università
del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Aurora Mazzei
- Laboratorio
di Fisiologia Applicata, Dipartimento di Scienze e Tecnologie Biologiche
e Ambientali (Di.S.Te.B.A.), Università
del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Amilcare Barca
- Laboratorio
di Fisiologia Applicata, Dipartimento di Medicina Sperimentale (Di.Me.S), Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Tiziano Verri
- Laboratorio
di Fisiologia Applicata, Dipartimento di Scienze e Tecnologie Biologiche
e Ambientali (Di.S.Te.B.A.), Università
del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Giuseppe Barillaro
- Dipartimento
di Ingegneria dell’Informazione, Università di Pisa, Via G. Caruso 16, 56122 Pisa, Italy
| | - Elisabetta Mazzotta
- Laboratorio
di Chimica Analitica, Dipartimento di Scienze e Tecnologie Biologiche
e Ambientali (Di.S.Te.B.A.), Università
del Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
33
|
Vuerich M, Nguyen DH, Ferrari D, Longhi MS. Adenosine-mediated immune responses in inflammatory bowel disease. Front Cell Dev Biol 2024; 12:1429736. [PMID: 39188525 PMCID: PMC11345147 DOI: 10.3389/fcell.2024.1429736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/16/2024] [Indexed: 08/28/2024] Open
Abstract
Extracellular ATP and its derivates mediate a signaling pathway that might be pharmacologically targeted to treat inflammatory conditions. Extracellular adenosine, the product of ATP hydrolysis by ectonucleotidase enzymes, plays a key role in halting inflammation while promoting immune tolerance. The rate-limiting ectoenzyme ENTPD1/CD39 and the ecto-5'-nucleotidase/CD73 are the prototype members of the ectonucleotidase family, being responsible for ATP degradation into immunosuppressive adenosine. The biological effects of adenosine are mediated via adenosine receptors, a family of G protein-coupled receptors largely expressed on immune cells where they modulate innate and adaptive immune responses. Inflammatory bowel disease (IBD) is a serious inflammatory condition of the gastrointestinal tract, associated with substantial morbidity and often refractory to currently available medications. IBD is linked to altered interactions between the gut microbiota and the immune system in genetically predisposed individuals. A wealth of studies conducted in patients and animal models highlighted the role of various adenosine receptors in the modulation of chronic inflammatory diseases like IBD. In this review, we will discuss the most recent findings on adenosine-mediated immune responses in different cell types, with a focus on IBD and its most common manifestations, Crohn's disease and ulcerative colitis.
Collapse
Affiliation(s)
- Marta Vuerich
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Du Hanh Nguyen
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Davide Ferrari
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
34
|
Xu S, Ma Y, Jiang X, Wang Q, Ma W. CD39 transforming cancer therapy by modulating tumor microenvironment. Cancer Lett 2024; 597:217072. [PMID: 38885807 DOI: 10.1016/j.canlet.2024.217072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
CD39 is a pivotal enzyme in cancer, regulating immune response and tumor progression via extracellular ATP and adenosine in the tumor microenvironment (TME). Beyond its established immunoregulatory function, CD39 influences cancer cell angiogenesis and metabolism, opening new frontiers for therapeutic interventions. Current research faces gaps in understanding CD39's full impact across cancer types, with ongoing debates about its potential beyond modulating immune evasion. This review distills CD39's multifaceted roles, examining its dual actions and implications for cancer prognosis and treatment. We analyze the latest therapeutic strategies, highlighting the need for an integrated approach that combines molecular insights with TME dynamics to innovate cancer care. This synthesis underscores CD39's integral role, charting a course for precision oncology that seeks to unravel controversies and harness CD39's therapeutic promise for improved cancer outcomes.
Collapse
Affiliation(s)
- Suling Xu
- Department of Dermatology, The First Affiliated Hospital of Ningbo University School of Medicine, Ningbo, Zhejiang, 315020, China.
| | - Yuhan Ma
- Department of Dermatology, The First Affiliated Hospital of Ningbo University School of Medicine, Ningbo, Zhejiang, 315020, China.
| | - Xinyu Jiang
- Department of Dermatology, The First Affiliated Hospital of Ningbo University School of Medicine, Ningbo, Zhejiang, 315020, China.
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Wenxue Ma
- Department of Medicine, Sanford Stem Cell Institute, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
35
|
Hong CS, Menshikova EV, Whiteside TL, Jackson EK. Assessment of ATP metabolism to adenosine by ecto-nucleotidases carried by tumor-derived small extracellular vesicles. Purinergic Signal 2024:10.1007/s11302-024-10038-7. [PMID: 39066830 DOI: 10.1007/s11302-024-10038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024] Open
Abstract
Immunosuppression is a hallmark of cancer progression. Tumor-derived small extracellular vesicles (sEV), also known as TEX, produce adenosine (ADO) and can mediate tumor-induced immunosuppression.Here, the ATP pathway of ADO production (ATP → ADP → AMP → ADO) by ecto-nucleotidases carried on the sEV surface was evaluated by a method using N6-etheno-ATP (eATP) and N6-etheno-AMP (eAMP) as substrates for enzymatic activity. The "downstream" N6-etheno-purines (ePurines) were measured by high performance liquid chromatography with fluorescence detection (HPLC-FL).Human melanoma cell-derived TEX (MTEX) metabolized eATP to N6-etheno-ADP (eADP), eAMP and N6-etheno-Adenosine (eADO) more robustly than control keratinocyte cell-derived sEV (CEX); due to accelerated conversion of eATP to eADP and eADP to eAMP. MTEX and CEX similarly metabolized eAMP to eADO. Blocking of the ATP pathway with the selective CD39 inhibitor ARL67156 or pan ecto-nucleotidase inhibitor POM-1 normalized the ATP pathway but neither inhibitor completely abolished it. In contrast, inhibition of CD73 by PSB12379 or AMPCP abolished eADO formation by both MTEX and CEX, suggesting that targeting CD73 is the preferred approach to eliminating ADO produced by ecto-nucleotidases located on the sEV surface.The noninvasive, sensitive, and specific assay assessing ePurine metabolism ± ecto-nucleotidase inhibitors in TEX enables the personalized identification of ecto-nucleotidase activity primarily involved in ADO production in patients with cancer. The assay could guide precision medicine by determining which purine is the preferred target for inhibitory therapeutic interventions.
Collapse
Affiliation(s)
- Chang-Sook Hong
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- UPMC Hillman Cancer Center, UPCI Research Pavilion, Suite 1.27, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Elizabeth V Menshikova
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Theresa L Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- UPMC Hillman Cancer Center, UPCI Research Pavilion, Suite 1.27, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA.
- Departments of Immunology and Otolaryngology, Pittsburgh, PA, 15213, USA.
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
36
|
Venugopala KN, Buccioni M. Current Understanding of the Role of Adenosine Receptors in Cancer. Molecules 2024; 29:3501. [PMID: 39124905 PMCID: PMC11313767 DOI: 10.3390/molecules29153501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Cancer, a complex array of diseases, involves the unbridled proliferation and dissemination of aberrant cells in the body, forming tumors that can infiltrate neighboring tissues and metastasize to distant sites. With over 200 types, each cancer has unique attributes, risks, and treatment avenues. Therapeutic options encompass surgery, chemotherapy, radiation therapy, hormone therapy, immunotherapy, targeted therapy, or a blend of these methods. Yet, these treatments face challenges like late-stage diagnoses, tumor diversity, severe side effects, drug resistance, targeted drug delivery hurdles, and cost barriers. Despite these hurdles, advancements in cancer research, encompassing biology, genetics, and treatment, have enhanced early detection methods, treatment options, and survival rates. Adenosine receptors (ARs), including A1, A2A, A2B, and A3 subtypes, exhibit diverse roles in cancer progression, sometimes promoting or inhibiting tumor growth depending on the receptor subtype, cancer type, and tumor microenvironment. Research on AR ligands has revealed promising anticancer effects in lab studies and animal models, hinting at their potential as cancer therapeutics. Understanding the intricate signaling pathways and interactions of adenosine receptors in cancer is pivotal for crafting targeted therapies that optimize benefits while mitigating drawbacks. This review delves into each adenosine receptor subtype's distinct roles and signaling pathways in cancer, shedding light on their potential as targets for improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Katharigatta Narayanaswamy Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Michela Buccioni
- School of Pharmacy, Medicinal Chemistry Unit, ChIP, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy;
| |
Collapse
|
37
|
Brorsen LF, McKenzie JS, Pinto FE, Glud M, Hansen HS, Haedersdal M, Takats Z, Janfelt C, Lerche CM. Metabolomic profiling and accurate diagnosis of basal cell carcinoma by MALDI imaging and machine learning. Exp Dermatol 2024; 33:e15141. [PMID: 39036889 DOI: 10.1111/exd.15141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024]
Abstract
Basal cell carcinoma (BCC), the most common keratinocyte cancer, presents a substantial public health challenge due to its high prevalence. Traditional diagnostic methods, which rely on visual examination and histopathological analysis, do not include metabolomic data. This exploratory study aims to molecularly characterize BCC and diagnose tumour tissue by applying matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and machine learning (ML). BCC tumour development was induced in a mouse model and tissue sections containing BCC (n = 12) were analysed. The study design involved three phases: (i) Model training, (ii) Model validation and (iii) Metabolomic analysis. The ML algorithm was trained on MS data extracted and labelled in accordance with histopathology. An overall classification accuracy of 99.0% was reached for the labelled data. Classification of unlabelled tissue areas aligned with the evaluation of a certified Mohs surgeon for 99.9% of the total tissue area, underscoring the model's high sensitivity and specificity in identifying BCC. Tentative metabolite identifications were assigned to 189 signals of importance for the recognition of BCC, each indicating a potential tumour marker of diagnostic value. These findings demonstrate the potential for MALDI-MSI coupled with ML to characterize the metabolomic profile of BCC and to diagnose tumour tissue with high sensitivity and specificity. Further studies are needed to explore the potential of implementing integrated MS and automated analyses in the clinical setting.
Collapse
Affiliation(s)
- Lauritz F Brorsen
- Department of Dermatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - James S McKenzie
- Department of Digestion, Metabolism and Reproduction, Imperial College London, London, UK
| | - Fernanda E Pinto
- Department of Dermatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Martin Glud
- Department of Dermatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Harald S Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Merete Haedersdal
- Department of Dermatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Zoltan Takats
- Department of Digestion, Metabolism and Reproduction, Imperial College London, London, UK
| | - Christian Janfelt
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Catharina M Lerche
- Department of Dermatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Sun F, Yang Y, Jia L, Dong QQ, Hu W, Tao H, Lu C, Yang JJ. TET3 boosts hepatocyte autophagy and impairs non-alcoholic fatty liver disease by increasing ENPP1 promoter hypomethylation. Free Radic Biol Med 2024; 218:166-177. [PMID: 38582229 DOI: 10.1016/j.freeradbiomed.2024.04.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND Dysregulated ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP) family occurs in metabolic reprogramming pathological processes. Nonetheless, the epigenetic mechanisms by which ENPP family impacts NAFLD, also known as metabolic dysfunction-associated steatotic liver disease (MASLD), is poorly appreciated. METHODS We investigated the causes and consequences of ENPP1 promoter hypomethylation may boost NAFLD using NAFLD clinical samples, as well as revealed the underlying mechanisms using high-fat diet (HFD) + carbon tetrachloride (CCl4) induced mouse model of NAFLD and FFA treatment of cultured hepatocyte. RESULTS Herein, we report that the expression level of ENPP1 are increased in patients with NAFLD liver tissue and in mouse model of NAFLD. Hypomethylation of ENPP1, is associated with the perpetuation of hepatocyte autophagy and liver fibrosis in the NAFLD. ENPP1 hypomethylation is mediated by the DNA demethylase TET3 in NAFLD liver fibrosis and hepatocyte autophagy. Additionally, knockdown of TET3 methylated ENPP1 promoter, reduced the ENPP1 expression, ameliorated the experimental NAFLD. Mechanistically, TET3 epigenetically promoted ENPP1 expression via hypomethylation of the promoter. Knocking down TET3 can inhibit the hepatocyte autophagy but an overexpression of ENPP1 showing rescue effect. CONCLUSIONS We describe a novel epigenetic mechanism wherein TET3 promoted ENPP1 expression through promoter hypomethylation is a critical mediator of NAFLD. Our findings provide new insight into the development of preventative measures for NAFLD.
Collapse
Affiliation(s)
- Feng Sun
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yang Yang
- Department of General Surgery, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
| | - Lin Jia
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Qi-Qi Dong
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Chao Lu
- First Affiliated Hospital, Anhui University of Science & Technology, Huainan, 232001, China.
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
39
|
Zhao K, Wu C, Li X, Niu M, Wu D, Cui X, Zhao H. From mechanism to therapy: the journey of CD24 in cancer. Front Immunol 2024; 15:1401528. [PMID: 38881902 PMCID: PMC11176514 DOI: 10.3389/fimmu.2024.1401528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/25/2024] [Indexed: 06/18/2024] Open
Abstract
CD24 is a glycosylphosphatidylinositol-anchored protein that is expressed in a wide range of tissues and cell types. It is involved in a variety of physiological and pathological processes, including cell adhesion, migration, differentiation, and apoptosis. Additionally, CD24 has been studied extensively in the context of cancer, where it has been found to play a role in tumor growth, invasion, and metastasis. In recent years, there has been growing interest in CD24 as a potential therapeutic target for cancer treatment. This review summarizes the current knowledge of CD24, including its structure, function, and its role in cancer. Finally, we provide insights into potential clinical application of CD24 and discuss possible approaches for the development of targeted cancer therapies.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Caifeng Wu
- Department of Hand and Foot, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangjun Li
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mengchao Niu
- Department of Operation Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dan Wu
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaofeng Cui
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
40
|
Yang K, Lu R, Mei J, Cao K, Zeng T, Hua Y, Huang X, Li W, Yin Y. The war between the immune system and the tumor - using immune biomarkers as tracers. Biomark Res 2024; 12:51. [PMID: 38816871 PMCID: PMC11137916 DOI: 10.1186/s40364-024-00599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/10/2024] [Indexed: 06/01/2024] Open
Abstract
Nowadays, immunotherapy is one of the most promising anti-tumor therapeutic strategy. Specifically, immune-related targets can be used to predict the efficacy and side effects of immunotherapy and monitor the tumor immune response. In the past few decades, increasing numbers of novel immune biomarkers have been found to participate in certain links of the tumor immunity to contribute to the formation of immunosuppression and have entered clinical trials. Here, we systematically reviewed the oncogenesis and progression of cancer in the view of anti-tumor immunity, particularly in terms of tumor antigen expression (related to tumor immunogenicity) and tumor innate immunity to complement the cancer-immune cycle. From the perspective of integrated management of chronic cancer, we also appraised emerging factors affecting tumor immunity (including metabolic, microbial, and exercise-related markers). We finally summarized the clinical studies and applications based on immune biomarkers. Overall, immune biomarkers participate in promoting the development of more precise and individualized immunotherapy by predicting, monitoring, and regulating tumor immune response. Therefore, targeting immune biomarkers may lead to the development of innovative clinical applications.
Collapse
Affiliation(s)
- Kai Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Rongrong Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Jie Mei
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Kai Cao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Tianyu Zeng
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Yijia Hua
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
- Gusu School, Nanjing Medical University, Nanjing, China
| | - Xiang Huang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China.
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China.
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China.
| |
Collapse
|
41
|
Shaikh S, Basu S, Bag S, Chatterjee A, Datta S, Banerjee D, Manikantan K, Arun I, Arun P, Biswas NK, Maitra A, Mishra DK, Majumder PP, Dhar H, Mukherjee G. Uracil as a biomarker for spatial pyrimidine metabolism in the development of gingivobuccal oral squamous cell carcinoma. Sci Rep 2024; 14:11609. [PMID: 38773214 PMCID: PMC11109148 DOI: 10.1038/s41598-024-62434-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/16/2024] [Indexed: 05/23/2024] Open
Abstract
No biomarker has yet been identified that allows accurate diagnosis and prognosis of oral cancers. In this study, we investigated the presence of key metabolites in oral cancer using proton nuclear magnetic resonance (NMR) spectroscopy to identify metabolic biomarkers of gingivobuccal oral squamous cell carcinoma (GB-OSCC). NMR spectroscopy revealed that uracil was expressed in 83.09% of tumor tissues and pyrimidine metabolism was active in GB-OSCC; these results correlated well with immunohistochemistry (IHC) and RNA sequencing data. Based on further gene and protein analyses, we proposed a pathway for the production of uracil in GB-OSCC tissues. Uridinetriphosphate (UTP) is hydrolyzed to uridine diphosphate (UDP) by CD39 in the tumor microenvironment (TME). We hypothesized that UDP enters the cell with the help of the UDP-specific P2Y6 receptor for further processing by ENTPD4/5 to produce uracil. As the ATP reserves diminish, the weakened immune cells in the TME utilize pyrimidine metabolism as fuel for antitumor activity, and the same mechanism is hijacked by the tumor cells to promote their survival. Correspondingly, the differential expression of ENTPD4 and ENTPD5 in immune and tumor cells, respectively, indicatedtheir involvement in disease progression. Furthermore, higher uracil levels were detected in patients with lymph node metastasis, indicating that metastatic potential is increased in the presence of uracil. The presence of uracil and/or expression patterns of intermediate molecules in purine and pyrimidine pathways, such asCD39, CD73, and P2Y6 receptors together with ENTPD4 and ENTPD5, hold promise as biomarker(s) for oral cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Soni Shaikh
- Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, WB, 700160, India
- Tata Consultancy Services (TCS), Kolkata, WB, India
| | - Sangramjit Basu
- Tata Translational Cancer Research Centre (TTCRC), 14 MAR (E-W), New Town, Rajarhat, Kolkata, WB, 700160, India
| | - Swarnendu Bag
- Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, WB, 700160, India
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Mall Road, New Delhi, 110007, India
| | - Ankita Chatterjee
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, WB, 741251, India
| | - Sourav Datta
- Narayana Superspeciality Hospital, 120, 1, Andul Rd, Shibpur, Howrah, WB, 711103, India
- Medica Superspecialty Hospital, 127, Eastern Metropolitan Bypass, Nitai Nagar, Mukundapur, Kolkata, WB, 700099, India
| | - Devmalya Banerjee
- Narayana Superspeciality Hospital, 120, 1, Andul Rd, Shibpur, Howrah, WB, 711103, India
| | - Kapila Manikantan
- Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, WB, 700160, India
| | - Indu Arun
- Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, WB, 700160, India
| | - Pattatheyil Arun
- Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, WB, 700160, India
| | - Nidhan K Biswas
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, WB, 741251, India
| | - Arindam Maitra
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, WB, 741251, India
| | - Deepak Kumar Mishra
- Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, WB, 700160, India
| | - Partha P Majumder
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, WB, 741251, India
- John C. Martin Centre for Liver Research and Innovations, Sitala East, IILDS, Hospital Road, Rajpur Sonarpur, Kolkata, WB, 700150, India
| | - Harsh Dhar
- Narayana Superspeciality Hospital, 120, 1, Andul Rd, Shibpur, Howrah, WB, 711103, India.
- Medica Superspecialty Hospital, 127, Eastern Metropolitan Bypass, Nitai Nagar, Mukundapur, Kolkata, WB, 700099, India.
| | - Geetashree Mukherjee
- Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata, WB, 700160, India.
| |
Collapse
|
42
|
Wang L, Zhang J, Zhang W, Zheng M, Guo H, Pan X, Li W, Yang B, Ding L. The inhibitory effect of adenosine on tumor adaptive immunity and intervention strategies. Acta Pharm Sin B 2024; 14:1951-1964. [PMID: 38799637 PMCID: PMC11119508 DOI: 10.1016/j.apsb.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/02/2023] [Accepted: 11/14/2023] [Indexed: 05/29/2024] Open
Abstract
Adenosine (Ado) is significantly elevated in the tumor microenvironment (TME) compared to normal tissues. It binds to adenosine receptors (AdoRs), suppressing tumor antigen presentation and immune cell activation, thereby inhibiting tumor adaptive immunity. Ado downregulates major histocompatibility complex II (MHC II) and co-stimulatory factors on dendritic cells (DCs) and macrophages, inhibiting antigen presentation. It suppresses anti-tumor cytokine secretion and T cell activation by disrupting T cell receptor (TCR) binding and signal transduction. Ado also inhibits chemokine secretion and KCa3.1 channel activity, impeding effector T cell trafficking and infiltration into the tumor site. Furthermore, Ado diminishes T cell cytotoxicity against tumor cells by promoting immune-suppressive cytokine secretion, upregulating immune checkpoint proteins, and enhancing immune-suppressive cell activity. Reducing Ado production in the TME can significantly enhance anti-tumor immune responses and improve the efficacy of other immunotherapies. Preclinical and clinical development of inhibitors targeting Ado generation or AdoRs is underway. Therefore, this article will summarize and analyze the inhibitory effects and molecular mechanisms of Ado on tumor adaptive immunity, as well as provide an overview of the latest advancements in targeting Ado pathways in anti-tumor immune responses.
Collapse
Affiliation(s)
- Longsheng Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenxin Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingming Zheng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongjie Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Pan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen Li
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China
| | - Ling Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
| |
Collapse
|
43
|
Tsai AK, Stromnes IM. CD39 deletion in TCR-engineered T cells enhances antitumour immunity. Gut 2024; 73:716-717. [PMID: 37898545 PMCID: PMC10997453 DOI: 10.1136/gutjnl-2023-330424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023]
Affiliation(s)
- Alexander K Tsai
- Microbiology & Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ingunn M Stromnes
- Microbiology & Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
44
|
Hou DY, Zhang NY, Wang L, Lv MY, Li XP, Zhang P, Wang YZ, Shen L, Wu XH, Fu B, Guo PY, Wang ZQ, Cheng DB, Wang H, Xu W. Inducing mitochondriopathy-like damages by transformable nucleopeptide nanoparticles for targeted therapy of bladder cancer. Natl Sci Rev 2024; 11:nwae028. [PMID: 38425424 PMCID: PMC10903983 DOI: 10.1093/nsr/nwae028] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 03/02/2024] Open
Abstract
Mitochondriopathy inspired adenosine triphosphate (ATP) depletions have been recognized as a powerful way for controlling tumor growth. Nevertheless, selective sequestration or exhaustion of ATP under complex biological environments remains a prodigious challenge. Harnessing the advantages of in vivo self-assembled nanomaterials, we designed an Intracellular ATP Sequestration (IAS) system to specifically construct nanofibrous nanostructures on the surface of tumor nuclei with exposed ATP binding sites, leading to highly efficient suppression of bladder cancer by induction of mitochondriopathy-like damages. Briefly, the reported transformable nucleopeptide (NLS-FF-T) self-assembled into nuclear-targeted nanoparticles with ATP binding sites encapsulated inside under aqueous conditions. By interaction with KPNA2, the NLS-FF-T transformed into a nanofibrous-based ATP trapper on the surface of tumor nuclei, which prevented the production of intracellular energy. As a result, multiple bladder tumor cell lines (T24, EJ and RT-112) revealed that the half-maximal inhibitory concentration (IC50) of NLS-FF-T was reduced by approximately 4-fold when compared to NLS-T. Following intravenous administration, NLS-FF-T was found to be dose-dependently accumulated at the tumor site of T24 xenograft mice. More significantly, this IAS system exhibited an extremely antitumor efficacy according to the deterioration of T24 tumors and simultaneously prolonged the overall survival of T24 orthotopic xenograft mice. Together, our findings clearly demonstrated the therapeutic advantages of intracellular ATP sequestration-induced mitochondriopathy-like damages, which provides a potential treatment strategy for malignancies.
Collapse
Affiliation(s)
- Da-Yong Hou
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin 150001, China
| | - Ni-Yuan Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Lu Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin 150001, China
| | - Mei-Yu Lv
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
| | - Xiang-Peng Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin 150001, China
| | - Peng Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin 150001, China
| | - Yue-Ze Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin 150001, China
| | - Lei Shen
- School of Chemistry, Chemical Engineering & Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, Wuhan 430070, China
| | - Xiu-Hai Wu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin 150001, China
| | - Bo Fu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin 150001, China
| | - Peng-Yu Guo
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin 150001, China
| | - Zi-Qi Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin 150001, China
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, Wuhan 430070, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Wanhai Xu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin 150001, China
| |
Collapse
|
45
|
Ye C, Fu Y, Zhou X, Zhou F, Zhu X, Chen Y. Identification and validation of NAD+ metabolism-related biomarkers in patients with diabetic peripheral neuropathy. Front Endocrinol (Lausanne) 2024; 15:1309917. [PMID: 38464965 PMCID: PMC10920259 DOI: 10.3389/fendo.2024.1309917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Background The mechanism of Nicotinamide Adenine Dinucleotide (NAD+) metabolism-related genes (NMRGs) in diabetic peripheral neuropathy (DPN) is unclear. This study aimed to find new NMRGs biomarkers in DPN. Methods DPN related datasets GSE95849 and GSE185011 were acquired from the Gene Expression Omnibus (GEO) database. 51 NMRGs were collected from a previous article. To explore NMRGs expression in DPN and control samples, differential expression analysis was completed in GSE95849 to obtain differentially expressed genes (DEGs), and the intersection of DEGs and NMRGs was regarded as DE-NMRGs. Next, a protein-protein interaction (PPI) network based on DE-NMRGs was constructed and biomarkers were screened by eight algorithms. Additionally, Gene Set Enrichment Analysis (GSEA) enrichment analysis was completed, biomarker-based column line graphs were constructed, lncRNA-miRNA-mRNA and competing endogenouse (ce) RNA networks were constructed, and drug prediction was completed. Finally, biomarkers expression validation was completed in GSE95849 and GSE185011. Results 5217 DEGs were obtained from GSE95849 and 21 overlapping genes of DEGs and NMRGs were DE-NMRGs. Functional enrichment analysis revealed that DE-NMRGs were associated with glycosyl compound metabolic process. The PPI network contained 93 protein-interaction pairs and 21 nodes, with strong interactions between NMNAT1 and NAMPT, NADK and NMNAT3, ENPP3 and NUDT12 as biomarkers based on 8 algorithms. Expression validation suggested that ENPP3 and NUDT12 were upregulated in DPN samples (P < 0.05). Moreover, an alignment diagram with good diagnostic efficacy based on ENPP3 and NUDT12 were identified was constructed. GSEA suggested that ENPP3 was enriched in Toll like receptor (TLR) pathway, NUDT12 was enriched in maturity onset diabetes of the young and insulin pathway. Furthermore, 18 potential miRNAs and 36 Transcription factors (TFs) were predicted and the miRNA-mRNA-TF networks were constructed, suggesting that ENPP3 might regulate hsa-miR-34a-5p by affecting MYNN. The ceRNA network suggested that XLOC_013024 might regulate hsa-let-7b-5p by affecting NUDT12. 15 drugs were predicted, with 8 drugs affecting NUDT12 such as resveratrol, and 13 drugs affecting ENPP3 such as troglitazone. Conclusion ENPP3 and NUDT12 might play key roles in DPN, which provides reference for further research on DPN.
Collapse
Affiliation(s)
| | | | | | | | | | - Yiheng Chen
- Department of Hand and Microsurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
46
|
Song G, Zhang D, Zhu J, Wang A, Zhou X, Han TL, Zhang H. The metabolic role of the CD73/adenosine signaling pathway in HTR-8/SVneo cells: A Double-Edged Sword? Heliyon 2024; 10:e25252. [PMID: 38322906 PMCID: PMC10845923 DOI: 10.1016/j.heliyon.2024.e25252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
The ecto-5'-nucleotidase (CD73)/adenosine signaling pathway has been reported to regulate tumor epithelial-mesenchymal transition (EMT), migration and proliferation. However, little is known about the metabolic mechanisms underlying its role in trophoblast proliferation and migration. In this study, we aimed to investigate the metabolic role of the CD73/adenosine signaling pathway on the proliferation and migration of trophoblast. We found that CD73 levels were upregulated in preeclamptic placentas compared with the placentas of normotensive pregnant women. EMT and migration of HTR-8/SVneo cells were enhanced when treated with a CD73 inhibitor (100 μM) in vitro. Conversely, excessive adenosine (25 or 50 μM) suppressed trophoblast cell EMT, migration and proliferation. RNA-seq, metabolomics and seahorse findings showed that adenosine treatment resulted in increased expression of PDK1, suppression of aerobic respiration, glycolysis and amino acids synthesis, as well as increased utilization of short-chain fatty acids (SCFAs). Furthermore, the 13C-adenosine isotope tracking experiment demonstrated that adenosine served as a carbon source for the tricarboxylic acid (TCA) cycle. Our results reveal the role of adenosine in regulating trophoblast energy metabolism is like a double-edged sword - either inhibiting aerobic respiration or supplementing carbon sources into metabolic flux. CD73/adenosine signaling regulated trophoblast EMT, migration, and proliferation by modulating energy metabolism. This study indicates that CD73/adenosine signaling potentially plays a role in the occurrence of placenta-derived diseases, including preeclampsia.
Collapse
Affiliation(s)
- Guangmin Song
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Yuzhong District, Chongqing, 400016, China
- Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, 1 Yixueyuan Rd, Yuzhong District, Chongqing, 400016, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, 1 Youyi Rd, Yuzhong District, Chongqing, 400016, China
| | - Dan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Yuzhong District, Chongqing, 400016, China
- Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, 1 Yixueyuan Rd, Yuzhong District, Chongqing, 400016, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, 1 Youyi Rd, Yuzhong District, Chongqing, 400016, China
| | - Jianan Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Yuzhong District, Chongqing, 400016, China
- Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, 1 Yixueyuan Rd, Yuzhong District, Chongqing, 400016, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, 1 Youyi Rd, Yuzhong District, Chongqing, 400016, China
| | - Andi Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Yuzhong District, Chongqing, 400016, China
| | - Xiaobo Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Yuzhong District, Chongqing, 400016, China
- Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, 1 Yixueyuan Rd, Yuzhong District, Chongqing, 400016, China
| | - Ting-Li Han
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Rd, Chongqing, 400010, China
| | - Hua Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Yuzhong District, Chongqing, 400016, China
- Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, 1 Yixueyuan Rd, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
47
|
Zhang HJ, Ociepa M, Nassir M, Zheng B, Lewicki SA, Salmaso V, Baburi H, Nagel J, Mirza S, Bueschbell B, Al-Hroub H, Perzanowska O, Lin Z, Schmidt MA, Eastgate MD, Jacobson KA, Müller CE, Kowalska J, Jemielity J, Baran PS. Stereocontrolled access to thioisosteres of nucleoside di- and triphosphates. Nat Chem 2024; 16:249-258. [PMID: 37857844 PMCID: PMC11789459 DOI: 10.1038/s41557-023-01347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/15/2023] [Indexed: 10/21/2023]
Abstract
Nucleoside diphosphates and triphosphates impact nearly every aspect of biochemistry; however, the use of such compounds as tools or medicinal leads for nucleotide-dependent enzymes and receptors is hampered by their rapid in vivo metabolism. Although a successful strategy to address the instability of the monophosphate moiety in oligonucleotide therapeutics has been accomplished by their isosteric replacement with phosphorothioates, no practical methods exist to rapidly and controllably access stereopure di- and triphosphate thioisosteres of both natural and unnatural nucleosides. Here we show how a modular, reagent-based platform can enable the stereocontrolled and scalable synthesis of a library of such molecules. This operationally simple approach provides access to pure stereoisomers of nucleoside α-thiodiphosphates and α-thiotriphosphates, as well as symmetrical or unsymmetrical dinucleoside thiodiphosphates and thiotriphosphates (including RNA cap reagents). We demonstrate that ligand-receptor interactions can be dramatically influenced by P-stereochemistry, showing that such thioisosteric replacements can have profound effects on the potency and stability of lead candidates.
Collapse
Affiliation(s)
- Hai-Jun Zhang
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Michał Ociepa
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Molhm Nassir
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Bin Zheng
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Sarah A Lewicki
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Veronica Salmaso
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Helay Baburi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Jessica Nagel
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Salahuddin Mirza
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Beatriz Bueschbell
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Haneen Al-Hroub
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Olga Perzanowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Ziqin Lin
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Michael A Schmidt
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Martin D Eastgate
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany.
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland.
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Warsaw, Poland.
| | - Phil S Baran
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
48
|
Hesse J, Steckel B, Dieterich P, Aydin S, Deussen A, Schrader J. Intercellular crosstalk shapes purinergic metabolism and signaling in cancer cells. Cell Rep 2024; 43:113643. [PMID: 38175748 DOI: 10.1016/j.celrep.2023.113643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
CD73-derived adenosine suppresses anti-cancer immunity, and CD73 inhibitors are currently evaluated in several clinical trials. Here, we have assessed enzyme kinetics of all key purinergic ectoenzymes in five cancer cell lines (Hodgkin lymphoma, multiple myeloma, pancreas adenocarcinoma, urinary bladder carcinoma, and glioblastoma) under normoxia and hypoxia. We found that adenosine metabolism varied considerably between individual cancer types. All cell lines investigated exhibited high ecto-adenosine deaminase (ADA) activity, which critically influenced the kinetics of adenosine accumulation. Combining kinetics data with single-cell RNA sequencing data on myeloma and glioblastoma cancerous tissue revealed that purine metabolism is not homogeneously organized, but it differs in a cancer type-specific fashion between malignant cells, stromal cells, and immune cells. Since purine metabolism in cancerous tissue is most likely spatially heterogeneous and differs between the various cell types, diffusion distances in the microenvironment as well as ADA activity may be important variables that influence the level of bioactive adenosine.
Collapse
Affiliation(s)
- Julia Hesse
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Bodo Steckel
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Peter Dieterich
- Institute of Physiology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Siyar Aydin
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Andreas Deussen
- Institute of Physiology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jürgen Schrader
- Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
49
|
Atta A, Salem MM, El-Said KS, Mohamed TM. Mechanistic role of quercetin as inhibitor for adenosine deaminase enzyme in rheumatoid arthritis: systematic review. Cell Mol Biol Lett 2024; 29:14. [PMID: 38225555 PMCID: PMC10790468 DOI: 10.1186/s11658-024-00531-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease involving T and B lymphocytes. Autoantibodies contribute to joint deterioration and worsening symptoms. Adenosine deaminase (ADA), an enzyme in purine metabolism, influences adenosine levels and joint inflammation. Inhibiting ADA could impact RA progression. Intracellular ATP breakdown generates adenosine, which increases in hypoxic and inflammatory conditions. Lymphocytes with ADA play a role in RA. Inhibiting lymphocytic ADA activity has an immune-regulatory effect. Synovial fluid levels of ADA are closely associated with the disease's systemic activity, making it a useful parameter for evaluating joint inflammation. Flavonoids, such as quercetin (QUE), are natural substances that can inhibit ADA activity. QUE demonstrates immune-regulatory effects and restores T-cell homeostasis, making it a promising candidate for RA therapy. In this review, we will explore the impact of QUE in suppressing ADA and reducing produced the inflammation in RA, including preclinical investigations and clinical trials.
Collapse
Affiliation(s)
- Amira Atta
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Maha M Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Karim Samy El-Said
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
50
|
Cao H, Li L, Liu S, Wang Y, Liu X, Yang F, Dong W. The multifaceted role of extracellular ATP in sperm function: From spermatogenesis to fertilization. Theriogenology 2024; 214:98-106. [PMID: 37865020 DOI: 10.1016/j.theriogenology.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023]
Abstract
Extracellular adenosine 5'-triphosphate (ATP) is a vital signaling molecule involved in various physiological processes within the body. In recent years, studies have revealed its significant role in male reproduction, particularly in sperm function. This review explores the multifaceted role of extracellular ATP in sperm function, from spermatogenesis to fertilization. We discuss the impact of extracellular ATP on spermatogenesis, sperm maturation and sperm-egg fusion, highlighting the complex regulatory mechanisms and potential clinical applications in the context of male infertility. By examining the latest research, we emphasize the crucial role of extracellular ATP in sperm function and propose future research directions to further.
Collapse
Affiliation(s)
- Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shujuan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xianglin Liu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|