1
|
Wang R, Zhao C, Guo D, Wang Y, Sun L, Liu X, Sun Y, Liu D, Guan J, Wang L, Wang B. Disarming the Pathogenicity of Methicillin-Resistant Staphylococcus aureus via Osmundacetone-Mediated Inhibition of Sortase A. Microb Biotechnol 2025; 18:e70119. [PMID: 40358044 PMCID: PMC12070378 DOI: 10.1111/1751-7915.70119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/07/2025] [Accepted: 02/13/2025] [Indexed: 05/15/2025] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major global health threat due to its resistance to multiple antibiotics, making conventional treatments ineffective. The rise in antibiotic resistance highlights the urgent need for new therapies. Sortase A (SrtA), a key virulence factor in Staphylococcus aureus (S. aureus), facilitates bacterial adhesion and infection by anchoring surface proteins to host cells, making it a promising drug target. In this study, we investigated the potential of osmundacetone (OSC), a natural compound from Osmundae Rhizoma, as an SrtA inhibitor. Using fluorescence resonance energy transfer (FRET), OSC was found to inhibit SrtA with an IC50 of 1.29 μg/mL (7.24 μM). Further in vitro assays confirmed the effectiveness of OSC in inhibiting SrtA-mediated bacterial adhesion, invasion and biofilm formation. Fluorescence quenching and molecular docking pinpointed the binding site of OSC on SrtA. In vivo, OSC improved survival rates in MRSA-infected mice and Galleria mellonella (G. mellonella) while reducing bacterial loads in infected tissues. These results suggest OSC as a promising candidate for anti-MRSA therapies.
Collapse
Affiliation(s)
- Rong Wang
- Changchun University of Chinese MedicineChangchunChina
| | - Chunhui Zhao
- Changchun University of Chinese MedicineChangchunChina
| | - Dongbin Guo
- Changchun University of Chinese MedicineChangchunChina
| | - Yueying Wang
- Changchun University of Chinese MedicineChangchunChina
| | - Luanbiao Sun
- China‐Japan Union Hospital of Jilin UniversityJilin UniversityChangchunChina
| | - Xinyao Liu
- Changchun University of Chinese MedicineChangchunChina
| | - Yun Sun
- Changchun University of Chinese MedicineChangchunChina
| | - Da Liu
- Changchun University of Chinese MedicineChangchunChina
| | - Jiyu Guan
- State Key·Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of EducationJilin University ChangchunChina
| | - Li Wang
- Changchun University of Chinese MedicineChangchunChina
| | - Bingmei Wang
- Changchun University of Chinese MedicineChangchunChina
| |
Collapse
|
2
|
Yaseen AR, Suleman M, Habib M, Arshad T, Fatima M, Arif A, Rasool HS. Development of a Novel Pan-Species Multi-Epitope Vaccine (PS-MEV) Targeting Nine Staphylococcus Species to Combat Antibiotic Resistance. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10550-1. [PMID: 40301233 DOI: 10.1007/s12602-025-10550-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2025] [Indexed: 05/01/2025]
Abstract
The increasing prevalence of antibiotic-resistant Staphylococcus species, including methicillin-resistant strains, calls for innovative approaches like a pan-species multi-epitope vaccine (PS-MEV). In this study, Sortase A (SrtA) was selected as the target protein due to its conserved role in Staphylococcus pathogenesis, and the MEV was designed to target nine Staphylococcus species. After stringent filtration of epitopes to ensure antigenicity, non-toxicity, and non-allergenicity, structural models of the MEV construct were generated using I-TASSER, AlphaFold, and RoseTTAFold. Docking analyses confirmed strong binding interactions between the MEV and TLR-3, with the AlphaFold model exhibiting the lowest binding energy of - 1284.1 kcal/mol and a center energy of - 1066.5 kcal/mol. The I-TASSER and RoseTTAFold models showed slightly higher binding energies, with lowest binding energies of - 938.5 kcal/mol and - 950.9 kcal/mol, respectively, and center energies of - 842.2 kcal/mol and - 825.4 kcal/mol. These values demonstrate consistent receptor binding across the models. Molecular dynamics (MD) simulations confirmed the stability of the interactions with the immune receptor, and immune simulations showed notable cytokine peaks, memory cell production, and a sustained T-cell response, indicating the potential for long-lasting immunity. Physicochemical profiling indicated that the vaccine construct is stable, moderately thermostable, and hydrophilic, which can enhance bioavailability and immunogenic effectiveness. This pan-species MEV presents a promising avenue in Staphylococcus vaccine development, with implications for broader applications in combating antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Allah Rakha Yaseen
- School of Biological Sciences (SBS), University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan.
| | - Muhammad Suleman
- School of Biological Sciences (SBS), University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Mahnoor Habib
- School of Biological Sciences (SBS), University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
| | - Tehreem Arshad
- Department of Pharmacology and Toxicology, University of Veterinary & Animal Sciences - UVAS, Lahore, 54000, Pakistan
| | - Muskan Fatima
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, 54000, Pakistan
| | - Ayesha Arif
- Center for Applied Molecular Biology, CAMB, University of the Punjab, Lahore, 54590, Pakistan
| | - Hafiza Sadia Rasool
- Department of Biotechnology, Lahore College for Women University, Lahore, 54000, Pakistan
| |
Collapse
|
3
|
Shlyk NP, Yurchenko EA, Leshchenko EV, Chingizova EA, Chingizov AR, Chausova VE, Kirichuk NN, Khudyakova YV, Pivkin MV, Antonov AS, Popov RS, Isaeva MP, Yurchenko AN. The secondary metabolites of the alga-derived fungus Aspergillus niveoglaucus КММ 4176 and their antimicrobial and antibiofilm activities. J Antibiot (Tokyo) 2025; 78:314-329. [PMID: 39984736 DOI: 10.1038/s41429-025-00811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/23/2025]
Abstract
Marine alga-derived fungal strain КММ 4176 was identified as Aspergillus niveoglaucus based on ITS region BenA, CaM and RPB2 gene sequence analysis. The anthraquinone derivatives emodin anthrone (1) and 4-hydroxyemodin anthrone (2), chromone derivative aloesone (3), and indole diketopiperazine alkaloid neoechinulin B (4) were isolated from the ethyl acetate extract of this fungus. In addition, UPLC MS data analysis of the KMM 4176 extract showed the presence of 17 echinulin-family alkaloids, as well as their biogenetic precursor cyclo(L-alanyl-L-tryptophyl) and a number of polyketide compounds. Emodin anthrone and 4-hydroxyemodin anthrone were found as inhibitors of biofilm formation by Staphylococcus aureus with half-maximal inhibitory concentrations (IC50) of 5.5 µM and 23.7 µM, respectively. Moreover, emodin anthrone (1) and 4-hydroxyemodin anthrone (2) inhibited staphylococcal sortase A activity with IC50 of 9.2 µM and 37.6 µM, respectively. Aloesone (3) also inhibited S. aureus biofilm formation but was less active. The first data on neoechinulin B (4) antibiofilm activity and sortase A inhibition were obtained. The positive effects of the isolated compounds on the growth of HaCaT keratinocytes infected with S. aureus were also observed.
Collapse
Affiliation(s)
- Nadezhda P Shlyk
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
- Far Eastern Federal University, Vladivostok, 690922, Russian Federation
| | - Ekaterina A Yurchenko
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Elena V Leshchenko
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Ekaterina A Chingizova
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Artur R Chingizov
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Viktoria E Chausova
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Natalya N Kirichuk
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Yuliya V Khudyakova
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Mikhail V Pivkin
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Alexandr S Antonov
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Roman S Popov
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Marina P Isaeva
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Anton N Yurchenko
- G.B. Elyakov Paсific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-letiya Vladivostoka, Vladivostok, 690022, Russian Federation.
| |
Collapse
|
4
|
Yoo JY, Sarkar A, Song HS, Bang S, Shim G, Springer C, O’Brien ME, Shin Y, Ju S, Han S, Kim SS, Menon U, Choi TG, Groer ME. Gut Microbiome Alterations, Mental Health, and Alcohol Consumption: Investigating the Gut-Brain Axis in Firefighters. Microorganisms 2025; 13:680. [PMID: 40142574 PMCID: PMC11945892 DOI: 10.3390/microorganisms13030680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/06/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
Firefighters across the world face higher risks of occupational hazards, such as exposure to chemicals, extreme heat, traumatic stressors, and intense physical demands, which can increase their vulnerability to a range of psychological and physiological difficulties. These challenges include the risk of developing chronic stress, depression, and post-traumatic stress disorder (PTSD), potentially leading to detrimental negative coping patterns such as alcohol abuse. The consequent health implications impact both short-term and long-term health and well-being. This study aimed to explore the relationship between mental health status, alcohol consumption patterns, and gut microbiome alterations in firefighters from two different regions-America and Korea. By investigating these relationships, we hope to gain insights into how repeated exposure to severe stressors impacts gut health. Healthy male firefighters (ages 21-50) and controls (matched sex, geography, and age) were recruited via flyers and snowball sampling in the United States and South Korea, resulting in 203 participants (102 firefighters and 101 controls). Firefighters reported significantly higher PTSD symptoms and depression and drank 2.3 times more alcohol than the control group. American firefighters reported more drinking than Koreans. There was a significant correlation between higher alcohol consumption and the likelihood of witnessing deaths by suicide. However, there were no correlations between alcohol consumption and PTSD symptom severity. There were associations between alcohol consumption patterns and aspects of the gut microbiome. This study highlights the mental health challenges faced by firefighters, including elevated rates of PTSD, depression, and alcohol consumption, with specific microbial imbalances linked to PTSD and alcohol use, emphasizing the role of the gut-brain axis.
Collapse
Affiliation(s)
- Ji Youn Yoo
- College of Nursing, University of Tennessee, Knoxville, TN 37996, USA; (A.S.); (M.E.G.)
| | - Anujit Sarkar
- College of Nursing, University of Tennessee, Knoxville, TN 37996, USA; (A.S.); (M.E.G.)
| | - Hyo-Sook Song
- Department of Paramedicine, Bucheon University, Bucheon 14632, Republic of Korea; (H.-S.S.); (S.B.)
| | - Sunghwan Bang
- Department of Paramedicine, Bucheon University, Bucheon 14632, Republic of Korea; (H.-S.S.); (S.B.)
| | - Gyusik Shim
- Department of Paramedicine, Korea Nazarene University, Cheonan 31172, Republic of Korea;
| | - Cary Springer
- Research Computing Support, Office of Innovative Technologies, University of Tennessee, Knoxville, TN 37996, USA;
| | - Morgan E. O’Brien
- Department of Public Health, University of Tennessee, Knoxville, TN 37996, USA;
| | - Yoonhwa Shin
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (Y.S.); (S.J.); (S.H.); (S.S.K.)
| | - Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (Y.S.); (S.J.); (S.H.); (S.S.K.)
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (Y.S.); (S.J.); (S.H.); (S.S.K.)
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (Y.S.); (S.J.); (S.H.); (S.S.K.)
| | - Usha Menon
- College of Nursing, University of South Florida, Tampa, FL 33612, USA;
- Tampa General Hospital Cancer Institute, Tampa, FL 33606, USA
| | - Tae Gyu Choi
- Department of Pathogenic Laboratory Research, Institute of Occupation and Environment, Korea Workers’ Compensation & Welfare Service, Incheon 21417, Republic of Korea;
| | - Maureen E. Groer
- College of Nursing, University of Tennessee, Knoxville, TN 37996, USA; (A.S.); (M.E.G.)
| |
Collapse
|
5
|
Chen Y, Li W, Wang L, Wang B, Suo J. Novel inhibition of Staphylococcus aureus sortase A by plantamajoside: implications for controlling multidrug-resistant infections. Appl Environ Microbiol 2025; 91:e0180424. [PMID: 39745463 PMCID: PMC11784452 DOI: 10.1128/aem.01804-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/13/2024] [Indexed: 02/01/2025] Open
Abstract
In confronting the significant challenge posed by multidrug-resistant (MDR) pathogens, particularly methicillin-resistant Staphylococcus aureus (MRSA), the development of innovative anti-infective strategies is essential. Our research focuses on sortase A (SrtA), a vital enzyme for anchoring surface proteins in S. aureus. We discovered that plantamajoside (PMS), a phenylpropanoid glycoside extracted from Plantago asiatica L. (Plantaginaceae), acts as an effective and reversible inhibitor of SrtA, with a notable IC50 value of 22.93 µg/mL. This breakthrough provides a novel approach to combat both resistance and virulence in MRSA. PMS significantly inhibits S. aureus adhesion to fibrinogen, reducing biofilm formation and hindering the anchoring of staphylococcal protein A to the cell wall. Live-dead cell assays demonstrated increased survival rates in PMS-treated MRSA-infected A549 cells. Fluorescence quenching experiments revealed a robust interaction between PMS and SrtA, with mechanistic analyses pinpointing the critical R197 amino acid residue as the target site. In vivo, PMS was highly effective in a Galleria mellonella infection model, reducing mortality rates in MRSA-infected larvae. Additionally, PMS demonstrated therapeutic efficacy in a mouse pneumonia model, improved survival rates, reduced the bacterial load in pulmonary tissues, and mitigated lung damage. These results validate PMS as a promising compound to mitigate MRSA virulence and thwart resistance by targeting SrtA. This study highlights PMS as a leading candidate for controlling MRSA infections, showing the potential of targeting specific bacterial mechanisms in the fight against MDR infections.IMPORTANCEThe increasing issue of antibiotic resistance, particularly in methicillin-resistant Staphylococcus aureus (MRSA), demands innovative solutions. Our study presents plantamajoside (PMS) as a novel inhibitor of sortase A (SrtA), a key enzyme in S. aureus pathogenicity. By targeting SrtA, PMS shows promise in curbing the ability of MRSA to adhere, invade, and form biofilms, thereby reducing its virulence without exerting selective pressure for resistance. This research is significant because it introduces a potential new strategy in the antimicrobial arsenal, aligning with the global effort to combat drug-resistant infections. This study is crucial because it identifies a natural compound that can reduce the harmful effects of MRSA, a type of bacteria that is very hard to treat owing to resistance to many antibiotics. This discovery could lead to new treatments that are less likely to cause bacteria to become resistant, which is a major win in the fight against infections that are difficult to cure.
Collapse
Affiliation(s)
- Yujia Chen
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Li
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Li Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Bingmei Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jian Suo
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Xu Y, Luan Y, Wang R, Su Z, Wang L, Liu Y, Jiang G, Wang B. Advancing treatment strategies against MRSA: unveiling the potency of tubuloside A in targeting sortase A and mitigating pathogenicity. World J Microbiol Biotechnol 2025; 41:29. [PMID: 39789193 DOI: 10.1007/s11274-024-04185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/23/2024] [Indexed: 01/30/2025]
Abstract
In addressing the formidable challenge posed by methicillin-resistant Staphylococcus aureus (MRSA), this investigation elucidates a novel therapeutic paradigm by specifically targeting the virulence factor sortase A (SrtA) utilizing Tubuloside A (TnA). SrtA plays a critical role in the pathogenicity of MRSA, primarily by anchoring surface proteins to the bacterial cell wall, which is crucial for the bacterium's ability to colonize and infect host tissues. By inhibiting SrtA, TnA offers a novel and distinct strategy compared to traditional antibiotics. TnA significantly impedes Staphylococcus aureus' adherence to fibrinogen, notably disrupting biofilm development and the integration of staphylococcal protein A (SpA) into the cell wall. Enhanced survival in MRSA-infected A549 cells treated with TnA was demonstrated by live-dead cell assays, confirming its efficacy. The interaction between TnA and SrtA, as indicated by fluorescence quenching and molecular docking studies, shows that TnA has a targeted mechanism of action. Notably, TnA exhibited significant efficacy in reducing MRSA pathogenicity, as demonstrated in a murine pneumonia model. Treatment with TnA resulted in a marked decrease in the bacterial load and improved survival in infected mice. This research highlights the potential of targeting specific bacterial virulence factors as an effective strategy against antibiotic-resistant pathogens and paves the way for the development of innovative antivirulence therapies.
Collapse
Affiliation(s)
- Yangming Xu
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
- Jilin Province People's Hospital, Changchun, China
| | - Yanhe Luan
- Surgery Center, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Rong Wang
- Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhengjie Su
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Li Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Yinghui Liu
- Jilin Province People's Hospital, Changchun, China.
| | | | - Bingmei Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China.
| |
Collapse
|
7
|
Haldiya A, Kain H, Dubey S, Punde SK, Gupta PKP, Srivastava VK, Srivastava SK, Kothari SL, Kaushik S. Investigating Sortase A inhibitory potential of herbal compounds using integrated computational and biochemical approaches. Acta Trop 2024; 260:107430. [PMID: 39413895 DOI: 10.1016/j.actatropica.2024.107430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/06/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Multi-drug resistance in bacteria is emerging as a major global health challenge, causing substantial harm in terms of mortality, morbidity, and financial strain on healthcare systems. These bacteria are constantly acquiring new virulence factors and drug-resistance mechanisms, which highlights the critical need for innovative antimicrobial medicines and identification of new therapeutic targets, such as Sortase A (EfSrtAΔN59). EfSrtAΔN59, a transpeptidase significant for the adhesion and virulence of Enterococcus faecalis (E. faecalis), presents an attractive target for disrupting biofilm formation-a key factor in persistent infections. This study investigates the inhibitory effects of two natural flavonoids- Rutin Trihydrate and Quercetin, on EfSrtAΔN59 and biofilm formation in E. faecalis. With in vitro enzymatic assays and biofilm quantification techniques, we demonstrate that both compounds significantly attenuate EfSrtAΔN59 activity, thereby hindering bacterial biofilm formation. Rutin Trihydrate and Quercetin exhibited strong binding affinities to the EfSrtAΔN59 enzyme, as confirmed by molecular docking and MD simulation studies. This was further substantiated by a notable reduction in biofilm biomass in bacterial cultures treated with these compounds. These findings highlight the potential of Rutin Trihydrate and Quercetin as promising candidates for the development of novel anti-virulence therapies aimed at mitigating E. faecalis infections, thereby offering a compelling alternative to traditional antibiotics.
Collapse
Affiliation(s)
- Akanksha Haldiya
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan 303002, India
| | - Himanshi Kain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan 303002, India
| | - Saumya Dubey
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Off Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | | | - Pramod Kumar P Gupta
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Plot 50 Sector 15 CBD Belapur, Navi Mumbai, Maharashtra 400614, India
| | | | - Sandeep Kumar Srivastava
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Off Jaipur-Ajmer Expressway, Jaipur, Rajasthan 303007, India
| | - S L Kothari
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan 303002, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan 303002, India.
| |
Collapse
|
8
|
Dewan D, Basu A, Dolai D, Pal S. Biological and Biophysical Methods for Evaluation of Inhibitors of Sortase A in Staphylococcus aureus: An Overview. Cell Biochem Funct 2024; 42:e70002. [PMID: 39470102 DOI: 10.1002/cbf.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/01/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
Staphylococcus aureus, one of the most notorious pathogens, develops antibiotic resistance by the formation of a thick layer of exopolysaccharides known as biofilms. Sortase A, a transpeptidase responsible for biofilm formation and attachment to the host surface, has emerged as an important drug target for development of anti-virulence agents. A number of sortase A inhibitors, both peptide and non-peptides are reported which involved the use of several experiments which may provide insights regarding binding affinity, specificity, safety, and efficacy of ligands. In this review, we focus on the principles, pros and cons, and the type of information obtained from biophysical (FRET assay, Microscale Thermophoresis, Surface Plasmon Resonance, CD spectroscopy etc.) and biological (cell viability assay, biofilm formation assay, CLSM, western blot analysis, in vivo characterization on mice etc.) methods for estimation of probable sortase A inhibitors, which might be helpful to the researchers who might be interested to delve into the development of sortase A inhibitors as a drug, to address the burning question of antimicrobial resistance (AMR).
Collapse
|
9
|
Bravo E, Arce M, Herrera D, Sanz M. The Effect of Xanthohumol and Thymol on Candida albicans Filamentation and Its Impact on the Structure, Size, and Cell Viability of Biofilms Developed over Implant Surfaces. Cells 2024; 13:1877. [PMID: 39594625 PMCID: PMC11593281 DOI: 10.3390/cells13221877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The aim of this in vitro study was to evaluate the effect of xanthohumol and thymol on the impact of Candida albicans on the structure, size and cell viability of subgingival biofilms formed on dental implant surfaces. The structure and microbial biomass of biofilms developed after 72 h, treated and untreated with both extracts, were compared by scanning electron microscopy (SEM) and confocal laser microscopy (CLSM). Quantitative polymerase chain reaction (qPCR) was used to quantify the number of viable and total microorganisms of each of the biofilm-forming strains in each condition. A general linear model was used to compare and validate the CLSM and qPCR results. The presence of xanthohumol and thymol during biofilm development inhibited the filamentous growth of C. albicans. The biofilm incubated with xanthohumol had significantly lower bacterial biomass and cell viability than the biofilm not exposed to the extract (p < 0.05). In contrast, these global parameters showed no differences when the biofilm was incubated with thymol. In the presence of xanthohumol, there was a decrease in counts and cell viability of Fusobacterium nucleatum, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans. Thymol treatment reduced the viability of F. nucleatum and P. gingivalis. The presence of these vegetable extracts during the development of a dynamic in vitro multispecies biofilm model inhibited the filamentous growth of C. albicans, partially reversing the effect that the fungus exerted on the structure, size and vitality of periodontopathogenic bacteria.
Collapse
Affiliation(s)
- Enrique Bravo
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Faculty of Dentistry, Complutense University, 28040 Madrid, Spain; (E.B.); (D.H.)
| | - Marion Arce
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago 8380544, Chile;
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Faculty of Dentistry, Complutense University, 28040 Madrid, Spain; (E.B.); (D.H.)
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Faculty of Dentistry, Complutense University, 28040 Madrid, Spain; (E.B.); (D.H.)
| |
Collapse
|
10
|
Shulga DA, Kudryavtsev KV. Ensemble Docking as a Tool for the Rational Design of Peptidomimetic Staphylococcus aureus Sortase A Inhibitors. Int J Mol Sci 2024; 25:11279. [PMID: 39457061 PMCID: PMC11508331 DOI: 10.3390/ijms252011279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Sortase A (SrtA) of Staphylococcus aureus has long been shown to be a relevant molecular target for antibacterial development. Moreover, the designed SrtA inhibitors act via the antivirulence mechanism, potentially causing less evolutional pressure and reduced antimicrobial resistance. However, no marketed drugs or even drug candidates have been reported until recently, despite numerous efforts in the field. SrtA has been shown to be a tough target for rational structure-based drug design (SBDD), which hampers the regular development of small-molecule inhibitors using the available arsenal of drug discovery tools. Recently, several oligopeptides resembling the sorting sequence LPxTG (Leu-Pro-Any-Thr-Gly) of the native substrates of SrtA were reported to be active in the micromolar range. Despite the good experimental design of those works, their molecular modeling parts are still not convincing enough to be used as a basis for a rational modification of peptidic inhibitors. In this work, we propose to use the ensemble docking approach, in which the relevant SrtA conformations are extracted from the molecular dynamics simulation of the LPRDA (Leu-Pro-Arg-Asp-Ala)-SrtA complex, to effectively represent the most significant and diverse target conformations. The developed protocol is shown to describe the known experimental data well and then is applied to a series of new peptidomimetic molecules resembling the active oligopeptide structures reported previously in order to prioritize structures from this work for further synthesis and activity testing. The proposed approach is compared to existing alternatives, and further directions for its development are outlined.
Collapse
Affiliation(s)
- Dmitry A. Shulga
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Konstantin V. Kudryavtsev
- Vreden National Medical Research Center of Traumatology and Orthopedics, 195427 St. Petersburg, Russia
| |
Collapse
|
11
|
Angelini P. Plant-Derived Antimicrobials and Their Crucial Role in Combating Antimicrobial Resistance. Antibiotics (Basel) 2024; 13:746. [PMID: 39200046 PMCID: PMC11350763 DOI: 10.3390/antibiotics13080746] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Antibiotic resistance emerged shortly after the discovery of the first antibiotic and has remained a critical public health issue ever since. Managing antibiotic resistance in clinical settings continues to be challenging, particularly with the rise of superbugs, or bacteria resistant to multiple antibiotics, known as multidrug-resistant (MDR) bacteria. This rapid development of resistance has compelled researchers to continuously seek new antimicrobial agents to curb resistance, despite a shrinking pipeline of new drugs. Recently, the focus of antimicrobial discovery has shifted to plants, fungi, lichens, endophytes, and various marine sources, such as seaweeds, corals, and other microorganisms, due to their promising properties. For this review, an extensive search was conducted across multiple scientific databases, including PubMed, Elsevier, ResearchGate, Scopus, and Google Scholar, encompassing publications from 1929 to 2024. This review provides a concise overview of the mechanisms employed by bacteria to develop antibiotic resistance, followed by an in-depth exploration of plant secondary metabolites as a potential solution to MDR pathogens. In recent years, the interest in plant-based medicines has surged, driven by their advantageous properties. However, additional research is essential to fully understand the mechanisms of action and verify the safety of antimicrobial phytochemicals. Future prospects for enhancing the use of plant secondary metabolites in combating antibiotic-resistant pathogens will also be discussed.
Collapse
Affiliation(s)
- Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| |
Collapse
|
12
|
Hintzen JCJ, Abujubara H, Tietze D, Tietze AA. The Complete Assessment of Small Molecule and Peptidomimetic Inhibitors of Sortase A Towards Antivirulence Treatment. Chemistry 2024; 30:e202401103. [PMID: 38716707 DOI: 10.1002/chem.202401103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Indexed: 06/20/2024]
Abstract
This review covers the most recent advances in the development of inhibitors for the bacterial enzyme sortase A (SrtA). Sortase A (SrtA) is a critical virulence factor, present ubiquitously in Gram-positive bacteria of which many are pathogenic. Sortases are key enzymes regulating bacterial adherence to host cells, by anchoring extracellular matrix-binding proteins to the bacterial outer cell wall. By targeting virulence factors, effective treatment can be achieved, without inducing antibiotic resistance to the treatment. This is a potentially more sustainable, long-term approach to treating bacterial infections, including ones that display multiple resistance to current therapeutics. There are many promising approaches available for SrtA inhibition, some of which have the potential to advance into further clinical development, with peptidomimetic and in vivo active small molecules being among the most promising. There are currently no approved drugs on the market targeting SrtA, despite its promise, adding to the relevance of this review article, as it extends to the pharmaceutical industry additionally to academic researchers.
Collapse
Affiliation(s)
- Jordi C J Hintzen
- University of Gothenburg, Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, Kemigården 4, 412 96, Göteborg, Sweden
| | - Helal Abujubara
- University of Gothenburg, Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, Kemigården 4, 412 96, Göteborg, Sweden
| | - Daniel Tietze
- University of Gothenburg, Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, Kemigården 4, 412 96, Göteborg, Sweden
| | - Alesia A Tietze
- University of Gothenburg, Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, Kemigården 4, 412 96, Göteborg, Sweden
| |
Collapse
|
13
|
Abdullahi AD, Unban K, Saenjum C, Kodchasee P, Kangwan N, Thananchai H, Shetty K, Khanongnuch C. Antibacterial activities of Miang extracts against selected pathogens and the potential of the tannin-free extracts in the growth inhibition of Streptococcus mutans. PLoS One 2024; 19:e0302717. [PMID: 38718045 PMCID: PMC11078415 DOI: 10.1371/journal.pone.0302717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Bacterial pathogens have remained a major public health concern for several decades. This study investigated the antibacterial activities of Miang extracts (at non-neutral and neutral pH) against Bacillus cereus TISTR 747, Escherichia coli ATCC 22595, Salmonella enterica serovar Typhimurium TISTR 292 and Streptococcus mutans DMST 18777. The potential of Polyvinylpolypyrrolidone (PVPP)-precipitated tannin-free Miang extracts in growth-inhibition of the cariogenic Streptococcus mutans DMST 18777 and its biofilms was also evaluated. The tannin-rich fermented extracts had the best bacterial growth inhibition against S. mutans DMST 18777 with an MIC of 0.29 and 0.72 mg/mL for nonfilamentous fungi (NFP) Miang and filamentous-fungi-processed (FFP) Miang respectively. This observed anti-streptococcal activity still remained after PVPP-mediated precipitation of bioactive tannins especially, in NFP and FFP Miang. Characterization of the PVPP-treated extracts using High performance liquid chromatography quadrupole-time of flight-mass spectrometry (HPLC-QToF-MS) analysis, also offered an insight into probable compound classes responsible for the activities. In addition, Crystal violet-staining also showed better IC50 values for NFP Miang (4.30 ± 0.66 mg/mL) and FFP Miang (12.73 ± 0.11 mg/mL) against S. mutans DMST 18777 biofilms in vitro. Homology modeling and molecular docking analysis using HPLC-MS identified ligands in tannin-free Miang supernatants, was performed against modelled S. mutans DMST 18777 sortase A enzyme. The in silico analysis suggested that the inhibition by NFP and FFP Miang might be attributed to the presence of ellagic acid, flavonoid aglycones, and glycosides. Thus, these Miang extracts could be optimized and explored as natural active pharmaceutical ingredients (NAPIs) for applications in oral hygienic products.
Collapse
Affiliation(s)
- Aliyu Dantani Abdullahi
- Interdisciplinary Program in Biotechnology, The Graduate School, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Kridsada Unban
- Faculty of Agro-Industry, Division of Food Science and Technology, School of Agro-Industry, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Chalermpong Saenjum
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Pratthana Kodchasee
- Research Center for Multidisciplinary Approaches to Miang, Multidisciplinary Research Institute (MDRI), Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Napapan Kangwan
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Hathairat Thananchai
- Faculty of Medicine, Department of Microbiology, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Kalidas Shetty
- Faculty of Agriculture, Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Chartchai Khanongnuch
- Research Center for Multidisciplinary Approaches to Miang, Multidisciplinary Research Institute (MDRI), Chiang Mai University, Muang, Chiang Mai, Thailand
- Faculty of Science, Department of Biology, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
14
|
Yue C, Yuan Z, Xu G, Guan XN, Wei B, Yao H, Yang CG, Zhang T. Structure-Guided Design, Synthesis, and Antivirulence Assessment of Covalent Staphylococcus aureus Sortase A Inhibitors. J Med Chem 2024; 67:1127-1146. [PMID: 38170998 DOI: 10.1021/acs.jmedchem.3c01615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Sortase A (SrtA) is a membrane-associated cysteine transpeptidase required for bacterial virulence regulation and anchors surface proteins to cell wall, thereby assisting biofilm formation. SrtA is targeted in antivirulence treatments against Gram-positive bacterial infections. However, the development of potent small-molecule SrtA inhibitors is constrained owing to the limited understanding of the mode of action of inhibitors in the SrtA binding pocket. Herein, we designed and synthesized a novel class of covalent SrtA inhibitors based on the binding mode detailed in the X-ray crystal structure of the ML346/Streptococcus pyogenes SrtA complex. ML346 analog Y40 exhibited 2-fold increased inhibitory activity on Staphylococcus aureus SrtA and showed superior inhibitory effects on biofilm formation in vitro. Y40 protected Galleria mellonella larvae fromS. aureusinfections in vivo while minimally attenuating staphylococcal growth in vitro. Our study indicates that the covalent SrtA inhibitor Y40 is an antivirulence agent that is effective againstS. aureusinfections.
Collapse
Affiliation(s)
- Chuan Yue
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ziqi Yuan
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guobin Xu
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiang-Na Guan
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingyan Wei
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Cai-Guang Yang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Tao Zhang
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
15
|
Chen F, Di H, Wang Y, Peng C, Chen R, Pan H, Yang CG, Liang H, Lan L. The enzyme activity of sortase A is regulated by phosphorylation in Staphylococcus aureus. Virulence 2023; 14:2171641. [PMID: 36694285 PMCID: PMC9928477 DOI: 10.1080/21505594.2023.2171641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In many Gram-positive bacteria, the transpeptidase enzyme sortase A (SrtA) anchors surface proteins to cell wall and plays a critical role in the bacterial pathogenesis. Here, we show that in Staphylococcus aureus, an important human pathogen, the SrtA is phosphorylated by serine/threonine protein kinase Stk1. S. aureus SrtA can also be phosphorylated by small-molecule phosphodonor acetyl phosphate (AcP) in vitro. We determined that various amino acid residues of S. aureus SrtA are subject to phosphorylation, primarily on its catalytic site residue cysteine-184 in the context of a bacterial cell lysate. Both Stk1 and AcP-mediated phosphorylation inhibited the enzyme activity of SrtA in vitro. Consequently, deletion of gene (i.e. stp1) encoding serine/threonine phosphatase Stp1, the corresponding phosphatase of Stk1, caused an increase in the phosphorylation level of SrtA. The stp1 deletion mutant mimicked the phenotypic traits of srtA deletion mutant (i.e. attenuated growth where either haemoglobin or haem as a sole iron source and reduced liver infections in a mouse model of systemic infection). Importantly, the phenotypic defects of the stp1 deletion mutant can be alleviated by overexpressing srtA. Taken together, our finding suggests that phosphorylation plays an important role in modulating the activity of SrtA in S. aureus.
Collapse
Affiliation(s)
- Feifei Chen
- College of Life Science, Northwest University, Xi’an, China,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Hongxia Di
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Yanhui Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Rongrong Chen
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China,University of Chinese Academy of Sciences, Beijing, China
| | - Huiwen Pan
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China,University of Chinese Academy of Sciences, Beijing, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China,University of Chinese Academy of Sciences, Beijing, China
| | - Haihua Liang
- College of Life Science, Northwest University, Xi’an, China,School of Medicine, Southern University of Science and Technology, Shenzhen, China,Haihua Liang School of Medicine Southern University of Science and Technology, Shenzhen, China
| | - Lefu Lan
- College of Life Science, Northwest University, Xi’an, China,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China,University of Chinese Academy of Sciences, Beijing, China,CONTACT Lefu Lan
| |
Collapse
|
16
|
Tian L, Wang L, Yang F, Zhou T, Jiang H. Exploring the modulatory impact of isosakuranetin on Staphylococcus aureus: Inhibition of sortase A activity and α-haemolysin expression. Virulence 2023; 14:2260675. [PMID: 37733916 PMCID: PMC10543341 DOI: 10.1080/21505594.2023.2260675] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/13/2023] [Indexed: 09/23/2023] Open
Abstract
The ubiquity of methicillin-resistant Staphylococcus aureus (MRSA) and the mounting prevalence of antibiotic resistance necessitate the identification of novel therapeutic approaches to reduce the selective pressure of antibiotics. Targeting bacterial virulence factors, such as the pivotal Sortase A (SrtA) in S. aureus for adhesion and invasion, and the salient toxin α-Hemolysin (Hla), offers a sophisticated approach to attenuate pathogenicity without bacterial elimination. Herein, we report the discovery of a flavonoid, isosakuranetin, which inhibits the activity of S. aureus SrtA. A fluorescence resonance energy transfer assay revealed that isosakuranetin exhibited a low IC50 of 21.20 μg/mL. Furthermore, isosakuranetin significantly inhibited SrtA-related virulence properties, such as bacterial adhesion to fibrinogen, biofilm formation, and invasion of A549 cells. We employed fluorescence quenching and molecular docking to determine the interactions between isosakuranetin and SrtA, revealing the key amino acid sites for binding. Importantly, isosakuranetin inhibited the haemolytic activity of S. aureus in vitro at a concentration of 32 μg/mL. Moreover, isosakuranetin effectively suppressed the transcription and expression of Hla in a dose-dependent manner and regulated the transcription of RNAIII, the upstream operator of Hla. Notably, isosakuranetin demonstrated in vivo efficacy in a mouse model of S. aureus-induced pneumonia by significantly improving survival rates and reducing lung damage. This is a valuable finding, as isosakuranetin's dual inhibitory effects on SrtA and haemolytic activity, as well as its anti-virulence activity against MRSA, make it an excellent candidate for therapeutic development.
Collapse
Affiliation(s)
- Lili Tian
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Li Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Fengying Yang
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Tiezhong Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Hong Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
17
|
Development of new spiro[1,3]dithiine-4,11'-indeno[1,2-b]quinoxaline derivatives as S. aureus Sortase A inhibitors and radiosterilization with molecular modeling simulation. Bioorg Chem 2023; 131:106307. [PMID: 36481380 DOI: 10.1016/j.bioorg.2022.106307] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/14/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
Multi-drug resistant microbes have become a severe threat to human health and arise a worldwide concern. A total of fifteen spiro-1,3-dithiinoindenoquinoxaline derivatives 2-7 were synthesized and evaluated for their biological activities against five standard and MDRB pathogens. The MIC and MBC/MFC for the most active derivatives were determined in vitro via broth microdilution assay. These derivatives showed significant activity against the tested strains with microbicidal behavior, with compound 4b as the most active compound (MIC range between 0.06 and 0.25 µg/mL for bacteria strains and MIC = 0.25 µg/mL for C. albicans). The most active spiro-1,3-dithiinoindenoquinoxaline derivatives were able to inhibit the activity of SrtA with IC50 values ranging from 22.15 ± 0.4 µM to 37.12 ± 1.4 µM. In addition, the active spiro-1,3-dithiinoindenoquinoxaline attenuated the in vitro virulence-related phenotype of SrtA by weakening the adherence of S. aureus to fibrinogen and reducing the biofilm formation. Surprisingly, compound 4b revealed potent SrtA inhibitory activity with IC50 = 22.15 µM, inhibiting the adhesion of S. aureus with 39.22 ± 0.15 % compared with untreated 9.43 ± 1.52 %, and showed a reduction in the biofilm biomass of S. aureus with 32.27 ± 0.52 %. We further investigated the effect of gamma radiation as a sterilization method on the microbial load and found that a dose of 5 kGy was sufficient to eradicate the microbial load. The quantum chemical studies exhibited that the tested derivatives have a small energy band gap (ΔE = -2.95 to -3.61 eV) and therefore exert potent bioactivity by interacting with receptors more stabilizing.
Collapse
|
18
|
Fan L, Du M, Kong L, Cai Y, Hu X. Recognition Site Modifiable Macrocycle: Synthesis, Functional Group Variation and Structural Inspection. Molecules 2023; 28:molecules28031338. [PMID: 36771008 PMCID: PMC9921963 DOI: 10.3390/molecules28031338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Traditional macrocyclic molecules encode recognition sites in their structural backbones, which limits the variation of the recognition sites and thus, would restrict the adjustment of recognition properties. Here, we report a new oligoamide-based macrocycle capable of varying the recognition functional groups by post-synthesis modification on its structural backbone. Through six steps of common reactions, the parent macrocycle (9) can be produced in gram scale with an overall yield of 31%. The post-synthesis modification of 9 to vary the recognition sites are demonstrated by producing four different macrocycles (10-13) with distinct functional groups, 2-methoxyethoxyl (10), hydroxyl (11), carboxyl (12) and amide (13), respectively. The 1H NMR study suggests that the structure of these macrocycles is consistent with our design, i.e., forming hydrogen bonding network at both rims of the macrocyclic backbone. The 1H-1H NOESY NMR study indicates the recognition functional groups are located inside the cavity of macrocycles. At last, a preliminary molecular recognition study shows 10 can recognize n-octyl-β-D-glucopyranoside (14) in chloroform.
Collapse
|
19
|
The Antimicrobial Activity of Curcumin and Xanthohumol on Bacterial Biofilms Developed over Dental Implant Surfaces. Int J Mol Sci 2023; 24:ijms24032335. [PMID: 36768657 PMCID: PMC9917338 DOI: 10.3390/ijms24032335] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
In search for natural products with antimicrobial properties for use in the prevention and treatment of peri-implantitis, the purpose of this investigation was to evaluate the antimicrobial activity of curcumin and xanthohumol, using an in vitro multi-species dynamic biofilm model including Streptococcus oralis, Actinomyces naeslundii, Veillonella parvula, Fusobacterium nucleatum, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. The antimicrobial activities of curcumin (5 mM) and xanthohumol (100 μM) extracts, and the respective controls, were evaluated with 72-h biofilms formed over dental implants by their submersion for 60 seconds. The evaluation was assessed by quantitative polymerase chain reaction (qPCR), confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). For the data analysis, comparisons were tested applying ANOVA tests with post-hoc Bonferroni corrections to evaluate the antimicrobial activity of both extracts. With qPCR, statistically significant reductions in bacterial counts were observed for curcumin and xanthohumol, when compared to the negative control. The results with CLSM and SEM were consistent with those reported with qPCR. It was concluded that both curcumin and xanthohumol have demonstrated antimicrobial activity against the six bacterial species included in the dynamic in vitro biofilm model used.
Collapse
|
20
|
Su X, Yu H, Wang X, Zhang C, Wang H, Kong X, Qu Y, Luan Y, Meng Y, Guan J, Song G, Wang L, Song W, Zhao Y. Cyanidin chloride protects mice from methicillin-resistant Staphylococcus aureus-induced pneumonia by targeting Sortase A. Virulence 2022; 13:1434-1445. [PMID: 35983964 PMCID: PMC9397467 DOI: 10.1080/21505594.2022.2112831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has been developing rapidly in recent years. It poses a severe peril to global health care, and the new strategies to against the MRSA is urgently needed. Sortase A (SrtA) regulates the anchoring of many surface proteins. Compounds repress Staphylococcus aureus (S. aureus) cysteine transpeptidase SrtA are considered adequate potent virulence inhibitors. Then, we describe the identification of an effective SrtA inhibitor, cyanidin chloride, a bioflavonoid compound isolated from various plants. It has a reversible inhibitory effect on SrtA activity at an IC50 of 21.91 μg/mL. As a SrtA inhibitor, cyanidin chloride antagonizes SrtA-related virulence phenotypes due to its breadth and specificity, including fibrinogen adhesion, A549 cell invasion, biofilm formation, and surface protein (SpA) anchoring. Subsequently, molecular docking and fluorescence quenching revealed that SrtA and cyanidin chloride had robust mutual affinity. Further mechanistic studies revealed that Arg-197, Gly-167, and Sep-116 were the key-binding sites mediating the interaction between SrtA and cyanidin chloride. Notably, a significant therapeutic effect of cyanidin chloride in vivo was also observed on the mouse pneumonia model induced by MRSA. In conclusion, our study indicates that cyanidin chloride potentially represents a new candidate SrtA inhibitor for S. aureus and potentially be developed as a new antivirulence agent.
Collapse
Affiliation(s)
- Xin Su
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hangqian Yu
- Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xingye Wang
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chi Zhang
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Heming Wang
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Xiangri Kong
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China,College of Animal Science, Jilin University, Changchun, China
| | - Yishen Qu
- Endocrinology Department, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yanhe Luan
- College of Animal Science, Jilin University, Changchun, China
| | - Ying Meng
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jiyu Guan
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Guangqi Song
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Li Wang
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China,CONTACT Li Wang
| | - Wu Song
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China,Wu Song
| | - Yicheng Zhao
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China,Yicheng Zhao
| |
Collapse
|
21
|
Shulga DA, Kudryavtsev KV. Theoretical Studies of Leu-Pro-Arg-Asp-Ala Pentapeptide (LPRDA) Binding to Sortase A of Staphylococcus aureus. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238182. [PMID: 36500275 PMCID: PMC9890316 DOI: 10.3390/molecules27238182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Sortase A (SrtA) of Staphylococcus aureus is a well-defined molecular target to combat the virulence of these clinically important bacteria. However up to now no efficient drugs or even clinical candidates are known, hence the search for such drugs is still relevant and necessary. SrtA is a complex target, so many straight-forward techniques for modeling using the structure-based drug design (SBDD) fail to produce the results they used to bring for other, simpler, targets. In this work we conduct theoretical studies of the binding/activity of Leu-Pro-Arg-Asp-Ala (LPRDA) polypeptide, which was recently shown to possess antivirulence activity against S. aureus. Our investigation was aimed at establishing a framework for the estimation of the key interactions and subsequent modification of LPRDA, targeted at non-peptide molecules, with better drug-like properties than the original polypeptide. Firstly, the available PDB structures are critically analyzed and the criteria to evaluate the quality of the ligand-SrtA complex geometry are proposed. Secondly, the docking protocol was investigated to establish its applicability to the LPRDA-SrtA complex prediction. Thirdly, the molecular dynamics studies were carried out to refine the geometries and estimate the stability of the complexes, predicted by docking. The main finding is that the previously reported partially chaotic movement of the β6/β7 and β7/β8 loops of SrtA (being the intrinsically disordered parts related to the SrtA binding site) is exaggerated when SrtA is complexed with LPRDA, which in turn reveals all the signs of the flexible and structurally disordered molecule. As a result, a wealth of plausible LPRDA-SrtA complex conformations are hard to distinguish using simple modeling means, such as docking. The use of more elaborate modeling approaches may help to model the system reliably but at the cost of computational efficiency.
Collapse
Affiliation(s)
- Dmitry A. Shulga
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
- Correspondence: (D.A.S.); (K.V.K.)
| | - Konstantin V. Kudryavtsev
- Laboratory of Molecular Pharmacology, Pirogov Russian National Research Medical University, Ostrovityanova Street 1, 117997 Moscow, Russia
- Correspondence: (D.A.S.); (K.V.K.)
| |
Collapse
|
22
|
Tian L, Wu X, Yu H, Yang F, Sun J, Zhou T, Jiang H. Isovitexin Protects Mice from Methicillin-Resistant Staphylococcus aureus-Induced Pneumonia by Targeting Sortase A. J Microbiol Biotechnol 2022; 32:1284-1291. [PMID: 36224754 PMCID: PMC9668100 DOI: 10.4014/jmb.2206.06007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/23/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
The rise of methicillin-resistant Staphylococcus aureus (MRSA) has resulted in significant morbidity and mortality, and clinical treatment of MRSA infections has become extremely difficult. Sortase A (SrtA), a virulence determinant that anchors numerous virulence-related proteins to the cell wall, is a prime druggable target against S. aureus infection due to its crucial role in the pathogenicity of S. aureus. Here, we demonstrate that isovitexin, an active ingredient derived from a variety of traditional Chinese medicines, can reversibly inhibit SrtA activity in vitro with a low dose (IC50=24.72 μg/ml). Fluorescence quenching and molecular simulations proved the interaction between isovitexin and SrtA. Subsequent point mutation experiments further confirmed that the critical amino acid positions for SrtA binding to isovitexin were Ala-92, Ile-182, and Trp-197. In addition, isovitexin treatment dramatically reduced S. aureus invasion of A549 cells. This study shows that treatment with isovitexin could alleviate pathological injury and prolong the life span of mice in an S. aureus pneumonia model. According to our research, isovitexin represents a promising lead molecule for the creation of anti-S. aureus medicines or adjuncts.
Collapse
Affiliation(s)
- Lili Tian
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, P.R. China
| | - Xinliang Wu
- Department of Pharmacy, Tianjin Baodi Hospital, Baodi Clinical College, Tianjin Medical University, Tianjin 301800, P.R. China
| | - Hangqian Yu
- College of Animal Science, Jilin University, Changchun 130062, P.R. China
| | - Fengying Yang
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, P.R. China
| | - Jian Sun
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College Agriculture, Beijing 102442, P.R. China
| | - Tiezhong Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, P.R. China,Corresponding authors T. Zhou E-mail:
| | - Hong Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, P.R. China,
H. Jiang E-mail:
| |
Collapse
|
23
|
Zhang C, Deng Y, Wang X, Shi L, Zhan B, Hou N, Liu S, Bao M, Chi G, Fang T. Alnustone inhibits Streptococcus pneumoniae virulence by targeting pneumolysin and sortase A. Fitoterapia 2022; 162:105261. [DOI: 10.1016/j.fitote.2022.105261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/04/2022]
|
24
|
Punicalagin, an Inhibitor of Sortase A, Is a Promising Therapeutic Drug to Combat Methicillin-Resistant Staphylococcus aureus Infections. Antimicrob Agents Chemother 2022; 66:e0022422. [PMID: 35652646 DOI: 10.1128/aac.00224-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial resistance (AMR) poses a major threat to human health globally. Staphylococcus aureus is recognized as a cause of disease worldwide, especially methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA). The enzyme sortase A (SrtA), present on the cell surface of S. aureus, plays a key role in bacterial virulence without affecting the bacterial viability, and SrtA-deficient S. aureus strains do not affect the growth of bacteria. Here, we found that punicalagin, a natural compound, was able to inhibit SrtA activity with a very low half maximal inhibitory concentration (IC50) value of 4.23 μg/mL, and punicalagin is a reversible inhibitor of SrtA. Moreover, punicalagin has no distinct cytotoxicity toward A549, HEK293T, or HepG2 cells at a much higher concentration than the IC50 detected by MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide] assays. In addition, punicalagin visibly attenuated the virulence-related phenotype of SrtA in vitro by decreasing adhesion of S. aureus to fibrinogen, reducing the ability of protein A (SpA) displayed on the surface of the bacteria and biofilm formation. Fluorescence quenching elucidated the interaction between punicalagin and SrtA. Molecular docking further implied that the inhibitory activity lay in the bond between punicalagin and SrtA residues LYS190, TYR187, ALA104, and GLU106. In In vivo studies, we surprisingly found that punicalagin had a more effective curative effect combined with cefotaxime when mice were infected with pneumonia caused by MRSA. Essentially, punicalagin, a therapeutic compound targeting SrtA, demonstrates great potential for combating MRSA infections.
Collapse
|
25
|
Kumar V, Murmu S, Krishnan V. Deciphering the substrate specificity of housekeeping sortase A and pilus-specific sortase C of probiotic bacterium Lactococcus lactis. Biochimie 2022; 200:140-152. [PMID: 35654243 DOI: 10.1016/j.biochi.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/25/2022] [Accepted: 05/26/2022] [Indexed: 11/02/2022]
Abstract
Several strains and species of lactic acid bacteria (LAB) are widely used in fermented foods, including dairy products and also as probiotics, because of their contribution to various health benefits in humans. Sortase enzymes decorate the bacterial cell wall with different surface proteins and pili for facilitating the interactions with host and environment for the colonization and beneficial effects. While the sortases and sortase anchored proteins from pathogens have been the prime focus of the research in the past, sortases from many non-pathogenic bacteria, including LAB strains, have attracted attention for their potential applications in vaccine delivery and other clinical interventions. Here, we report the purification and functional characterization of two sortases (housekeeping SrtA and pilus-specific SrtC) from a probiotic Lactococcus lactis. The purified sortases were found to be active against the putative LPXTG motif-based peptide substrates, albeit with differences. The in-silico analysis provides insights into the residues involved in substrate binding and specificity. Overall, this study sheds new light on the aspects of structure, substrate specificity, and function of sortases from non-pathogenic bacteria, which may have physiological ramifications as well as their applications in sortase-mediated protein bioconjugation.
Collapse
Affiliation(s)
- Vijay Kumar
- Laboratory of Structural Microbiology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, Haryana (NCR Delhi), India
| | - Sumit Murmu
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India; Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, Haryana (NCR Delhi), India
| | - Vengadesan Krishnan
- Laboratory of Structural Microbiology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, Haryana (NCR Delhi), India.
| |
Collapse
|
26
|
Ferraro NJ, Pires MM. Genetic Determinants of Surface Accessibility in Staphylococcus aureus. Bioconjug Chem 2022; 33:767-772. [PMID: 35499914 DOI: 10.1021/acs.bioconjchem.2c00173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial cell walls represent one of the most prominent targets of antibacterial agents. These agents include natural products (e.g., vancomycin) and proteins stemming from the innate immune system (e.g., peptidoglycan-recognition proteins and lysostaphin). Among bacterial pathogens that infect humans, Staphylococcus aureus (S. aureus) continues to impose a tremendous healthcare burden across the globe. S. aureus has evolved countermeasures that can directly restrict the accessibility of innate immune proteins, effectively protecting itself from threats that target key cell well components. We recently described a novel assay that directly reports on the accessibility of molecules to the peptidoglycan layer within the bacterial cell wall of S. aureus. The assay relies on site-specific chemical remodeling of the peptidoglycan with a biorthogonal handle. Here, we disclose the application of our assay to a screen of a nonredundant transposon mutant library for susceptibility of the peptidoglycan layer with the goal of identifying genes that contribute to the control of cell surface accessibility. We discovered several genes that resulted in higher accessibility levels to the peptidoglycan layer and showed that these genes modulate sensitivity to lysostaphin. These results indicate that this assay platform can be leveraged to gain further insight into the biology of bacterial cell surfaces.
Collapse
Affiliation(s)
- Noel J Ferraro
- Department of Chemistry University of Virginia Charlottesville, Virginia 22904, United States
| | - Marcos M Pires
- Department of Chemistry University of Virginia Charlottesville, Virginia 22904, United States
| |
Collapse
|
27
|
Zhang CH, Shao XX, Wang XB, Shou LL, Liu YL, Xu ZG, Guo ZY. Development of a general bioluminescent activity assay for peptide ligases. FEBS J 2022; 289:5241-5258. [PMID: 35239242 DOI: 10.1111/febs.16416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 11/28/2022]
Abstract
In recent years, some peptide ligases have been identified, such as bacterial sortases and certain plant asparaginyl or prolyl endopeptidases. Peptide ligases have wide applications in protein labelling and cyclic peptide synthesis. To characterize various known peptide ligases or identify new ones, we propose a general bioluminescent activity assay via the genetic fusion of a recognition motif of peptide ligase(s) to the C-terminus of an inactive large NanoLuc fragment (LgBiT) and the chemical introduction of a nucleophilic motif preferred by the peptide ligase(s) to the N-terminus of the low-affinity SmBiT complementation tag. After the inactive ligation version LgBiT protein was ligated with the low-affinity ligation version SmBiT tag by the expected peptide ligase(s), its luciferase activity would be restored and could be quantified sensitively according to the measured bioluminescence. In the present study, we first validated the bioluminescent activity assay using bacterial sortase A and plant-derived butelase-1. Subsequently, we screened novel peptide ligases from crude extracts of selected plants using two LgBiT-SmBiT ligation pairs. Among 80 common higher plants, we identified that five of them likely express asparaginyl endopeptidase-type peptide ligase and four of them likely express prolyl endopeptidase-type peptide ligase, suggesting that peptide ligases are not so rare in higher plants and more of them await discovery. The present bioluminescent activity assay is ultrasensitive, convenient for use, and resistant to protease interference, and thus would have wide applications for characterizing known peptide ligases or screening new ones from various sources in future studies.
Collapse
Affiliation(s)
- Cong-Hui Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiao-Xia Shao
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xin-Bo Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Li-Li Shou
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ya-Li Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zeng-Guang Xu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhan-Yun Guo
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
28
|
Rattanakiat S, Taensantia A, Jaemamporn K, Khamnuanin S, Mudjupa C, Jaruchotikamol A, Pulbutr P. Antibiofilm Formation Activity of Lupinifolin Against Methicillin-Resistant Staphylococcus aureus. Pak J Biol Sci 2022; 25:961-970. [PMID: 36591926 DOI: 10.3923/pjbs.2022.961.970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
<b>Background and Objective:</b> Biofilm formation activity of Methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) is one of the crucial factors rendering this pathogenic bacterium difficult to be eradicated. It has been reported that lupinifolin, is a major phytochemical agent isolated from <i>Derris reticulata</i> Craib. stem possesses antibacterial activity against MRSA. This study aimed to investigate the effects of lupinifolin and its combinations with some antibacterial drugs, including ampicillin, cloxacillin or vancomycin, on the biofilm formation activity of MRSA. <b>Materials and Methods:</b> The crystal violet biofilm formation assay was performed to evaluate the biofilm formation activity. <b>Results:</b> Lupinifolin produced a significant inhibitory activity against MRSA biofilm formation with the median inhibitory concentration (IC<sub>50</sub>) of 7.96±3.05 μg mL<sup>1</sup> (n = 6) at 24 hrs incubation. Lupinifolin at the concentrations of sub-MICs (1, 2, 4 and 8 μg mL<sup>1</sup>) combined with the antibacterial drugs at their sub-MICs also exhibited substantial antibiofilm formation activities. The maximal antibiofilm activity was found with the combination of lupinifolin (8 μg mL<sup>1</sup>) and vancomycin (1 μg mL<sup>1</sup>) by the percentage inhibition of 102.39±0.89 (n = 8). The antibiofilm formation activities of the combinations between lupinifolin and the antibacterial drugs at various concentrations tested were also significantly higher than those of lupinifolin alone. <b>Conclusion:</b> These results indicated that lupinifolin can potentially be developed as an antibacterial enhancer for the management of biofilm-associated bacterial infections caused by MRSA, in which the current pharmacological treatment is still limited.
Collapse
|
29
|
Selection of Promising Novel Fragment Sized S. aureus SrtA Noncovalent Inhibitors Based on QSAR and Docking Modeling Studies. Molecules 2021; 26:molecules26247677. [PMID: 34946760 PMCID: PMC8709105 DOI: 10.3390/molecules26247677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022] Open
Abstract
Sortase A (SrtA) of Staphylococcus aureus has been identified as a promising target to a new type of antivirulent drugs, and therefore, the design of lead molecules with a low nanomolar range of activity and suitable drug-like properties is important. In this work, we aimed at identifying new fragment-sized starting points to design new noncovalent S. aureus SrtA inhibitors by making use of the dedicated molecular motif, 5-arylpyrrolidine-2-carboxylate, which has been previously shown to be significant for covalent binding SrtA inhibitors. To this end, an in silico approach combining QSAR and molecular docking studies was used. The known SrtA inhibitors from the ChEMBL database with diverse scaffolds were first employed to derive descriptors and interpret their significance and correlation to activity. Then, the classification and regression QSAR models were built, which were used for rough ranking of the virtual library of the synthetically feasible compounds containing the dedicated motif. Additionally, the virtual library compounds were docked into the “activated” model of SrtA (PDB:2KID). The consensus ranking of the virtual library resulted in the most promising structures, which will be subject to further synthesis and experimental testing in order to establish new fragment-like molecules for further development into antivirulent drugs.
Collapse
|
30
|
N Vijayan A, Refaei MA, Silva RN, Tsang P, Zhang P. Detection of Sortase A and Identification of Its Inhibitors by Paramagnetic Nanoparticle-Assisted Nuclear Relaxation. Anal Chem 2021; 93:15430-15437. [PMID: 34757710 DOI: 10.1021/acs.analchem.1c03271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sortase A is a virulence factor responsible for the attachment of surface proteins to Staphylococcus aureus and other Gram-positive bacteria. Inhibitors of this enzyme are potential anti-infective agents. Herein, a new highly selective magnetic relaxation-based method for screening potential sortase A inhibitors is described. A 13-amino acid-long peptide substrate of sortase A is conjugated to SiO2-EDTA-Gd NPs. In the presence of sortase A, the LPXTG motif on the peptide strand is cleaved resulting in a shortened peptide as well as a reduced water T2 value whose magnitude is dependent on the concentration of sortase A. The detection limit is determined to be 76 pM. In contrast, the presence of sortase A inhibitors causes the T2 to remain at a higher value. The proposed method is used to characterize inhibition of sortase A by curcumin and 4-(hydroxymercuri)benzoic acid with an IC50 value of 12.9 ± 1.6 μM and 130 ± 1.76 μM, respectively. Furthermore, this method was successfully applied to detect sortase A activity in bacterial suspensions. The feasibility to screen different inhibitors in Escherichia coli and S. aureus suspensions was demonstrated. This method is fast and potentially useful to rapidly screen possible inhibitors of sortase A in bacterial suspensions, thereby aiding in the development of antibacterial agents targeting Gram-positive bacteria.
Collapse
Affiliation(s)
- Anjaly N Vijayan
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - Mary Anne Refaei
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - Rebecca N Silva
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - Pearl Tsang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| | - Peng Zhang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
31
|
Tashkandi H. Honey in wound healing: An updated review. Open Life Sci 2021; 16:1091-1100. [PMID: 34708153 PMCID: PMC8496555 DOI: 10.1515/biol-2021-0084] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 07/02/2021] [Accepted: 07/15/2021] [Indexed: 01/13/2023] Open
Abstract
Wound healing is a complex process with many interdependent pathophysiological and immunological mediators to restore the cellular integrity of damaged tissue. Cutaneous wound healing is the repair response to a multitude of pathologies induced by trauma, surgery, and burn leading to the restoration and functionality of the compromised cells. Many different methods have been employed to treat acute and chronic wounds, such as antimicrobial therapy, as most wounds are susceptible to infection from microbes and are difficult to treat. However, many antimicrobial agents have become ineffective in wound treatment due to the emergence of multiple drug-resistant bacteria, and failures in current wound treatment methods have been widely reported. For this reason, alternative therapies have been sought, one of which is the use of honey as a wound treatment agent. The use of honey has recently gained clinical popularity for possible use in wound treatment and regenerative medicine. With this high demand, a better delivery and application procedure is required, as well as research aiming at its bioactivity. Honey is a safe natural substance, effective in the inhibition of bacterial growth and the treatment of a broad range of wound types, including burns, scratches, diabetic boils (Skin abscesses associated with diabetic), malignancies, leprosy, fistulas, leg ulcers, traumatic boils, cervical and varicose ulcers, amputation, burst abdominal wounds, septic and surgical wounds, cracked nipples, and wounds in the abdominal wall. Honey comprises a wide variety of active compounds, including flavonoids, phenolic acid, organic acids, enzymes, and vitamins, that may act to improve the wound healing process. Tissue-engineered scaffolds have recently attracted a great deal of attention, and various scaffold fabrication techniques are being researched. Some incorporate honey to improve their delivery during wound treatment. Hence, the aim of this review is to summarize recent studies on the wound healing properties of honey.
Collapse
Affiliation(s)
- Hanaa Tashkandi
- Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
32
|
Bafna PS, Patil PH, Maru SK, Mutha RE. Cissus quadrangularis L: A comprehensive multidisciplinary review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114355. [PMID: 34181958 DOI: 10.1016/j.jep.2021.114355] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/09/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cissus quadrangularis L. is a perennial herb of the Vitaceae family and is utilized comprehensively as a medicinal herb in most tropical regions by various names. This herb is documented to possess a wide-ranging ethnomedicinal uses in malaria, fever, epilepsy, gout, piles, skin diseases, colic, etc. AIM OF THE REVIEW: A organized summary of the botany, traditional uses, phytochemistry, pharmacology, toxicology, available marketed formulations and filed patents were presented to explore the future therapeutic potential and scientific potential of this herb. MATERIALS AND METHODS For a review of the literature, various databases were searched, including PubMed, EMBASE, and Scopus etc. From, total 408 records of this herb, we have screened 155 articles consist of desired information and available as full text. Present manuscript is structured from comprehensive information on this herb from screened 155 records. Plant taxonomy was confirmed to the database "The Plant List". RESULTS Phytochemical assessment as a whole indicated the presence of flavonoids, triterpenoids, alkaloids, saponins, iridoids, stilbenes, vitamins, steroids, and glycosides. A toxicity study revealed that its LD50 value is above 3000 mg/kg in animals indicating its safety. A variety of pharmacological studies of aerial parts of this herb by different extracts have demonstrated analgesic, anti-inflammatory, anticonvulsant, antimicrobial, anticancer, anti-osteoporotic activity and other bone-related disorders to justify its name as Hadjod. Still, the herb has been utilized in clinical practice and several patents were filed in India and US for its antiosteoporotic property. CONCLUSION The studies on Cissus quadrangularis Linn. are extensive, but gaps still remain. The molecular mechanism, structure-activity relationship, potential synergistic and antagonistic effects of these components needs to be further elucidated. These findings suggest the need for further research on this herb for the management of several other chronic ailments.
Collapse
Affiliation(s)
- Piyush S Bafna
- H. R. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dist-Dhule, 425 405, Maharashtra, India
| | - Payal H Patil
- H. R. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dist-Dhule, 425 405, Maharashtra, India
| | - Saurabh K Maru
- School of Pharmacy and Technology Management, SVKM's NMIMS, Shirpur, Dist-Dhule, 425 405, Maharashtra, India
| | - Rakesh E Mutha
- H. R. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dist-Dhule, 425 405, Maharashtra, India.
| |
Collapse
|
33
|
Sapra R, Rajora AK, Kumar P, Maurya GP, Pant N, Haridas V. Chemical Biology of Sortase A Inhibition: A Gateway to Anti-infective Therapeutic Agents. J Med Chem 2021; 64:13097-13130. [PMID: 34516107 DOI: 10.1021/acs.jmedchem.1c00386] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus is the leading cause of hospital-acquired infections. The enzyme sortase A, present on the cell surface of S. aureus, plays a key role in bacterial virulence without affecting the bacterial viability. Inhibition of sortase A activity offers a powerful but clinically less explored therapeutic strategy, as it offers the possibility of not inducing any selective pressure on the bacteria to evolve drug-resistant strains. In this Perspective, we offer a chemical space narrative for the design of sortase A inhibitors, as delineated into three broad domains: peptidomimetics, natural products, and synthetic small molecules. This provides immense opportunities for medicinal chemists to alleviate the ever-growing crisis of antibiotic resistance.
Collapse
Affiliation(s)
- Rachit Sapra
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Amit K Rajora
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Pushpendra Kumar
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Govind P Maurya
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Nalin Pant
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - V Haridas
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| |
Collapse
|
34
|
Apostolos AJ, Ferraro NJ, Dalesandro BE, Pires MM. SaccuFlow: A High-Throughput Analysis Platform to Investigate Bacterial Cell Wall Interactions. ACS Infect Dis 2021; 7:2483-2491. [PMID: 34291914 DOI: 10.1021/acsinfecdis.1c00255] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Bacterial cell walls are formidable barriers that protect bacterial cells against external insults and oppose internal turgor pressure. While cell wall composition is variable across species, peptidoglycan is the principal component of all cell walls. Peptidoglycan is a mesh-like scaffold composed of cross-linked strands that can be heavily decorated with anchored proteins. The biosynthesis and remodeling of peptidoglycan must be tightly regulated by cells because disruption to this biomacromolecule is lethal. This essentiality is exploited by the human innate immune system in resisting colonization and by a number of clinically relevant antibiotics that target peptidoglycan biosynthesis. Evaluation of molecules or proteins that interact with peptidoglycan can be a complicated and, typically, qualitative effort. We have developed a novel assay platform (SaccuFlow) that preserves the native structure of bacterial peptidoglycan and is compatible with high-throughput flow cytometry analysis. We show that the assay is facile and versatile as demonstrated by its compatibility with sacculi from Gram-positive bacteria, Gram-negative bacteria, and mycobacteria. Finally, we highlight the utility of this assay to assess the activity of sortase A from Staphylococcus aureus against potential antivirulence agents.
Collapse
Affiliation(s)
- Alexis J. Apostolos
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Noel J. Ferraro
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Brianna E. Dalesandro
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
35
|
Wang L, Jing S, Qu H, Wang K, Jin Y, Ding Y, Yang L, Yu H, Shi Y, Li Q, Wang D. Orientin mediates protection against MRSA-induced pneumonia by inhibiting Sortase A. Virulence 2021; 12:2149-2161. [PMID: 34369293 PMCID: PMC8354611 DOI: 10.1080/21505594.2021.1962138] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Drug-resistant pathogenic Staphylococcus aureus (S. aureus) has severely threatened human health and arouses widespread concern. Sortase A (SrtA) is an essential virulence factor of S. aureus, which is responsible for the covalent anchoring of a variety of virulence-related proteins to the cell wall. SrtA has always been regarded as an ideal pharmacological target against S. aureus infections. In this research, we have determined that orientin, a natural compound isolated from various medicinal plants, can effectively inhibit the activity of SrtA with an IC50 of 50.44 ± 0.51 µM. We further demonstrated that orientin inhibited the binding of S. aureus to fibrinogen and diminished biofilm formation and the attaching of Staphylococcal protein A (SpA) to the cell wall in vitro. Using the fluorescence quenching assay, we demonstrated a direct interaction between orientin and SrtA. Further mechanistic studies revealed that the residues Glu-105, Thr-93, and Cys-184 were the key sites for the binding of SrtA to orientin. Importantly, we demonstrated that treatment with orientin attenuated S. aureus virulence of in vivo and protected mice against S. aureus-induced lethal pneumonia. These findings indicate that orientin is a potential drug to counter S. aureus infections and limit the development of drug resistance.
Collapse
Affiliation(s)
- Li Wang
- College of Animal Science, Jilin University, Changchun China
| | - Shisong Jing
- College of Animal Science, Jilin University, Changchun China
| | - Han Qu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Kai Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yajing Jin
- College of Animal Science, Jilin University, Changchun China
| | - Ying Ding
- College of Animal Science, Jilin University, Changchun China
| | - Lin Yang
- College of Animal Science, Jilin University, Changchun China
| | - Hangqian Yu
- College of Animal Science, Jilin University, Changchun China
| | - Yan Shi
- School of Pharmaceutical Science, Jilin University, Changchun China
| | - Qianxue Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Dacheng Wang
- College of Animal Science, Jilin University, Changchun China
| |
Collapse
|
36
|
Exploiting pilus-mediated bacteria-host interactions for health benefits. Mol Aspects Med 2021; 81:100998. [PMID: 34294411 DOI: 10.1016/j.mam.2021.100998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/30/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023]
Abstract
Surface pili (or fimbriae) are an important but conspicuous adaptation of several genera and species of Gram-negative and Gram-positive bacteria. These long and non-flagellar multi-subunit adhesins mediate the initial contact that a bacterium has with a host or environment, and thus have come to be regarded as a key colonization factor for virulence activity in pathogens or niche adaptation in commensals. Pili in pathogenic bacteria are well recognized for their roles in the adhesion to host cells, colonization of tissues, and establishment of infection. As an 'anti-adhesive' ploy, targeting pilus-mediated attachment for disruption has become a potentially effective alternative to using antibiotics. In this review, we give a description of the several structurally distinct bacterial pilus types thus far characterized, and as well offer details about the intricacy of their individual structure, assembly, and function. With a molecular understanding of pilus biogenesis and pilus-mediated host interactions also provided, we go on to describe some of the emerging new approaches and compounds that have been recently developed to prevent the adhesion, colonization, and infection of piliated bacterial pathogens.
Collapse
|
37
|
Nitulescu G, Margina D, Zanfirescu A, Olaru OT, Nitulescu GM. Targeting Bacterial Sortases in Search of Anti-Virulence Therapies with Low Risk of Resistance Development. Pharmaceuticals (Basel) 2021; 14:ph14050415. [PMID: 33946434 PMCID: PMC8147154 DOI: 10.3390/ph14050415] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/29/2022] Open
Abstract
Increasingly ineffective antibiotics and rapid spread of multi- and pan-resistant bacteria represent a global health threat; hence, the need of developing new antimicrobial medicines. A first step in this direction is identifying new molecular targets, such as virulence factors. Sortase A represents a virulence factor essential for the pathogenesis of Gram-positive pathogens, some of which have a high risk for human health. We present here an exhaustive collection of sortases inhibitors grouped by relevant chemical features: vinyl sulfones, 3-aryl acrylic acids and derivatives, flavonoids, naphtoquinones, anthraquinones, indoles, pyrrolomycins, isoquinoline derivatives, aryl β-aminoethyl ketones, pyrazolethiones, pyridazinones, benzisothiazolinones, 2-phenyl-benzoxazole and 2-phenyl-benzofuran derivatives, thiadiazoles, triazolothiadiazoles, 2-(2-phenylhydrazinylidene)alkanoic acids, and 1,2,4-thiadiazolidine-3,5-dione. This review focuses on highlighting their structure–activity relationships, using the half maximal inhibitory concentration (IC50), when available, as an indicator of each compound effect on a specific sortase. The information herein is useful for acquiring knowledge on diverse natural and synthetic sortases inhibitors scaffolds and for understanding the way their structural variations impact IC50. It will hopefully be the inspiration for designing novel effective and safe sortase inhibitors in order to create new anti-infective compounds and to help overcoming the current worldwide antibiotic shortage.
Collapse
|
38
|
Wang L, Li Q, Li J, Jing S, Jin Y, Yang L, Yu H, Wang D, Wang T, Wang L. Eriodictyol as a Potential Candidate Inhibitor of Sortase A Protects Mice From Methicillin-Resistant Staphylococcus aureus-Induced Pneumonia. Front Microbiol 2021; 12:635710. [PMID: 33679670 PMCID: PMC7929976 DOI: 10.3389/fmicb.2021.635710] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/27/2021] [Indexed: 12/17/2022] Open
Abstract
New anti-infective approaches are urgently needed to control multidrug-resistant (MDR) pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA). Sortase A (SrtA) is a membrane-bound cysteine transpeptidase that plays an essential role in the catalysis of covalent anchoring of surface proteins to the cell wall of Staphylococcus aureus (S. aureus). The present study reports identification of a flavonoid, eriodictyol, as a reversible inhibitor of SrtA with an IC50 of 2.229 ± 0.014 μg/mL that can be used as an innovative means to counter both resistance and virulence. The data indicated that eriodictyol inhibited the adhesion of the bacteria to fibrinogen and reduced the formation of biofilms and anchoring of staphylococcal protein A (SpA) on the cell wall. The results of fluorescence quenching experiments demonstrated a strong interaction between eriodictyol and SrtA. Subsequent mechanistic studies revealed that eriodictyol binds to SrtA by interacting with R197 amino acid residue. Importantly, eriodictyol reduced the adhesion-dependent invasion of A549 cells by S. aureus and showed a good therapeutic effect in a model of mouse pneumonia induced by S. aureus. Overall, the results indicated that eriodictyol can attenuate MRSA virulence and prevent the development of resistance by inhibiting SrtA, suggesting that eriodictyol may be a promising lead compound for the control of MRSA infections.
Collapse
Affiliation(s)
- Li Wang
- College of Animal Science, Jilin University, Changchun, China
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qianxue Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Science, Academy of Military Medical Science, Academy of Military Science, Changchun, China
| | - Jiaxin Li
- College of Animal Science, Jilin University, Changchun, China
| | - Shisong Jing
- College of Animal Science, Jilin University, Changchun, China
| | - Yajing Jin
- College of Animal Science, Jilin University, Changchun, China
| | - Lin Yang
- College of Animal Science, Jilin University, Changchun, China
| | - Hangqian Yu
- College of Animal Science, Jilin University, Changchun, China
| | - Dacheng Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Tiedong Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Lin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
39
|
Zhang P, Zou B, Liou YC, Huang C. The pathogenesis and diagnosis of sepsis post burn injury. BURNS & TRAUMA 2021; 9:tkaa047. [PMID: 33654698 PMCID: PMC7901709 DOI: 10.1093/burnst/tkaa047] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/20/2020] [Indexed: 02/05/2023]
Abstract
Burn is an under-appreciated trauma that is associated with unacceptably high morbidity and mortality. Although the survival rate after devastating burn injuries has continued to increase in previous decades due to medical advances in burn wound care, nutritional and fluid resuscitation and improved infection control practices, there are still large numbers of patients at a high risk of death. One of the most common complications of burn is sepsis, which is defined as “severe organ dysfunction attributed to host's disordered response to infection” and is the primary cause of death in burn patients. Indeed, burn injuries are accompanied by a series of events that lead to sepsis and multiple organ dysfunction syndrome, such as a hypovolaemic state, immune and inflammatory responses and metabolic changes. Therefore, clear diagnostic criteria and predictive biomarkers are especially important in the prevention and treatment of sepsis and septic shock. In this review, we focus on the pathogenesis of burn wound infection and the post-burn events leading to sepsis. Moreover, the clinical and promising biomarkers of burn sepsis will also be summarized.
Collapse
Affiliation(s)
- Pengju Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17 People's South Road, Chengdu, 610041, China
| | - Bingwen Zou
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu, 610041, China
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, No.17 People's South Road, Chengdu, 610041, China
| |
Collapse
|
40
|
Use of molecular homology model to identify inhibitors of Staphylococcus pseudintermedius sortase A. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
41
|
Parrino B, Carbone D, Cascioferro S, Pecoraro C, Giovannetti E, Deng D, Di Sarno V, Musella S, Auriemma G, Cusimano MG, Schillaci D, Cirrincione G, Diana P. 1,2,4-Oxadiazole topsentin analogs as staphylococcal biofilm inhibitors targeting the bacterial transpeptidase sortase A. Eur J Med Chem 2021; 209:112892. [PMID: 33035921 DOI: 10.1016/j.ejmech.2020.112892] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/19/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022]
Abstract
The inhibition or prevention of biofilm formation represents an emerging strategy in the war against antibiotic resistance, interfering with key players in bacterial virulence. This approach includes the inhibition of the catalytic activity of transpeptidase sortase A (Srt A), a membrane enzyme responsible for covalently attaching a wide variety of adhesive matrix molecules to the peptidoglycan cell wall in Gram-positive strains. A new series of seventeen 1,2,4-oxadiazole derivatives was efficiently synthesized and screened as potential new anti-virulence agents. The ability of inhibiting biofilm formation was evaluated against both Gram-positive and Gram-negative pathogens. Remarkably, all these compounds inhibited S. aureus and/or P. aeruginosa biofilm formation in a dose dependent manner, with 50% biofilm inhibitory concentrations (BIC50s) below 10 μM for the most active compounds. Inhibition of SrtA was validated as one of the possible mechanisms of action of these new 1,2,4-oxadiazole derivatives, in the tested Gram-positive pathogen, using a specific enzymatic assay for a recombinant S. aureus SrtA. The three most active compounds, eliciting BIC50 values for S. aureus ATCC 25923 between 0.7 and 9.7 μM, showed a good activity toward the enzyme eliciting IC50 values ranging from 2.2 to 10.4 μM.
Collapse
Affiliation(s)
- Barbara Parrino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Stella Cascioferro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Camilla Pecoraro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands; Fondazione Pisana per La Scienza, Pisa, Italy
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Veronica Di Sarno
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano, 84084, Italy
| | - Simona Musella
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano, 84084, Italy
| | - Giulia Auriemma
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano, 84084, Italy
| | - Maria Grazia Cusimano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Domenico Schillaci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Girolamo Cirrincione
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| |
Collapse
|
42
|
Park JS, Cho E, Hwang JY, Park SC, Chung B, Kwon OS, Sim CJ, Oh DC, Oh KB, Shin J. Bioactive Bis(indole) Alkaloids from a Spongosorites sp. Sponge. Mar Drugs 2020; 19:3. [PMID: 33374750 PMCID: PMC7824209 DOI: 10.3390/md19010003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/24/2022] Open
Abstract
Six new bis(indole) alkaloids (1-6) along with eight known ones of the topsentin class were isolated from a Spongosorites sp. sponge of Korea. Based on the results of combined spectroscopic analyses, the structures of spongosoritins A-D (1-4) were determined to possess a 2-methoxy-1-imidazole-5-one core connecting the indole moieties, and these were linked by a linear urea bridge for spongocarbamides A (5) and B (6). The absolute configurations of spongosoritins were assigned by electronic circular dichroism (ECD) computation. The new compounds exhibited moderate inhibition against transpeptidase sortase A and weak inhibition against human pathogenic bacteria and A549 and K562 cancer cell lines.
Collapse
Affiliation(s)
- Jae Sung Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea; (J.S.P.); (J.-Y.H.); (S.C.P.); (O.-S.K.); (D.-C.O.)
| | - Eunji Cho
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (E.C.); (B.C.)
| | - Ji-Yeon Hwang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea; (J.S.P.); (J.-Y.H.); (S.C.P.); (O.-S.K.); (D.-C.O.)
| | - Sung Chul Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea; (J.S.P.); (J.-Y.H.); (S.C.P.); (O.-S.K.); (D.-C.O.)
| | - Beomkoo Chung
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (E.C.); (B.C.)
| | - Oh-Seok Kwon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea; (J.S.P.); (J.-Y.H.); (S.C.P.); (O.-S.K.); (D.-C.O.)
| | - Chung J. Sim
- Department of Biological Sciences, College of Life Science and Nano Technology, Hannam University, 461-6 Jeonmin, Yuseong, Daejeon 305-811, Korea;
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea; (J.S.P.); (J.-Y.H.); (S.C.P.); (O.-S.K.); (D.-C.O.)
| | - Ki-Bong Oh
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (E.C.); (B.C.)
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea; (J.S.P.); (J.-Y.H.); (S.C.P.); (O.-S.K.); (D.-C.O.)
| |
Collapse
|
43
|
Role of SrtA in Pathogenicity of Staphylococcus lugdunensis. Microorganisms 2020; 8:microorganisms8121975. [PMID: 33322541 PMCID: PMC7763024 DOI: 10.3390/microorganisms8121975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Among coagulase-negative staphylococci (CoNS), Staphylococcus lugdunensis has a special position as causative agent of aggressive courses of infectious endocarditis (IE) more reminiscent of IEs caused by Staphylococcus aureus than those by CoNS. To initiate colonization and invasion, bacterial cell surface proteins are required; however, only little is known about adhesion of S. lugdunensis to biotic surfaces. Cell surface proteins containing the LPXTG anchor motif are covalently attached to the cell wall by sortases. Here, we report the functionality of Staphylococcus lugdunensis sortase A (SrtA) to link LPXTG substrates to the cell wall. To determine the role of SrtA dependent surface proteins in biofilm formation and binding eukaryotic cells, we generated SrtA-deficient mutants (ΔsrtA). These mutants formed a smaller amount of biofilm and bound less to immobilized fibronectin, fibrinogen, and vitronectin. Furthermore, SrtA absence affected the gene expression of two different adhesins on transcription level. Surprisingly, we found no decreased adherence and invasion in human cell lines, probably caused by the upregulation of further adhesins in ΔsrtA mutant strains. In conclusion, the functionality of S. lugdunensis SrtA in anchoring LPXTG substrates to the cell wall let us define it as the pathogen’s housekeeping sortase.
Collapse
|
44
|
Vlaeminck J, Raafat D, Surmann K, Timbermont L, Normann N, Sellman B, van Wamel WJB, Malhotra-Kumar S. Exploring Virulence Factors and Alternative Therapies against Staphylococcus aureus Pneumonia. Toxins (Basel) 2020; 12:toxins12110721. [PMID: 33218049 PMCID: PMC7698915 DOI: 10.3390/toxins12110721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/13/2022] Open
Abstract
Pneumonia is an acute pulmonary infection associated with high mortality and an immense financial burden on healthcare systems. Staphylococcus aureus is an opportunistic pathogen capable of inducing S. aureus pneumonia (SAP), with some lineages also showing multidrug resistance. Given the high level of antibiotic resistance, much research has been focused on targeting S. aureus virulence factors, including toxins and biofilm-associated proteins, in an attempt to develop effective SAP therapeutics. Despite several promising leads, many hurdles still remain for S. aureus vaccine research. Here, we review the state-of-the-art SAP therapeutics, highlight their pitfalls, and discuss alternative approaches of potential significance and future perspectives.
Collapse
Affiliation(s)
- Jelle Vlaeminck
- Laboratory of Medical Microbiology, Vaccine and Infectious Diseases Institute, University of Antwerp, 2610 Antwerp, Belgium; (J.V.); (L.T.)
| | - Dina Raafat
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (D.R.); (N.N.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Kristin Surmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Leen Timbermont
- Laboratory of Medical Microbiology, Vaccine and Infectious Diseases Institute, University of Antwerp, 2610 Antwerp, Belgium; (J.V.); (L.T.)
| | - Nicole Normann
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; (D.R.); (N.N.)
| | - Bret Sellman
- Microbiome Discovery, Microbial Sciences, BioPharmaceuticals R & D, AstraZeneca, Gaithersburg, MD 20878, USA;
| | - Willem J. B. van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center Rotterdam, 3015 Rotterdam, The Netherlands;
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Diseases Institute, University of Antwerp, 2610 Antwerp, Belgium; (J.V.); (L.T.)
- Correspondence: ; Tel.: +32-3-265-27-52
| |
Collapse
|
45
|
Thappeta KRV, Zhao LN, Nge CE, Crasta S, Leong CY, Ng V, Kanagasundaram Y, Fan H, Ng SB. In-Silico Identified New Natural Sortase A Inhibitors Disrupt S. aureus Biofilm Formation. Int J Mol Sci 2020; 21:ijms21228601. [PMID: 33202690 PMCID: PMC7696255 DOI: 10.3390/ijms21228601] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Sortase A (SrtA) is a membrane-associated enzyme that anchors surface-exposed proteins to the cell wall envelope of Gram-positive bacteria such as Staphylococcus aureus. As SrtA is essential for Gram-positive bacterial pathogenesis but dispensable for microbial growth or viability, SrtA is considered a favorable target for the enhancement of novel anti-infective drugs that aim to interfere with key bacterial virulence mechanisms, such as biofilm formation, without developing drug resistance. Here, we used virtual screening to search an in-house natural compound library and identified two natural compounds, N1287 (Skyrin) and N2576 ((4,5-dichloro-1H-pyrrol-2-yl)-[2,4-dihydroxy-3-(4-methyl-pentyl)-phenyl]-methanone) that inhibited the enzymatic activity of SrtA. These compounds also significantly reduced the growth of S. aureus but possessed moderate mammalian toxicity. Furthermore, S. aureus strains treated with these compounds exhibited reduction in adherence to host fibrinogen, as well as biofilm formation. Hence, these compounds may represent an anti-infective therapy without the side effects of antibiotics.
Collapse
Affiliation(s)
- Kishore Reddy Venkata Thappeta
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore; (K.R.V.T.); (C.E.N.); (S.C.); (C.Y.L.); (V.N.)
| | - Li Na Zhao
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore;
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, #3-09 Proteos, Singapore 138673, Singapore
| | - Choy Eng Nge
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore; (K.R.V.T.); (C.E.N.); (S.C.); (C.Y.L.); (V.N.)
| | - Sharon Crasta
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore; (K.R.V.T.); (C.E.N.); (S.C.); (C.Y.L.); (V.N.)
| | - Chung Yan Leong
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore; (K.R.V.T.); (C.E.N.); (S.C.); (C.Y.L.); (V.N.)
| | - Veronica Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore; (K.R.V.T.); (C.E.N.); (S.C.); (C.Y.L.); (V.N.)
| | - Yoganathan Kanagasundaram
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore; (K.R.V.T.); (C.E.N.); (S.C.); (C.Y.L.); (V.N.)
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore;
- Correspondence: (Y.K.); (H.F.); (S.B.N.); Tel.: +65-6586-9508 (Y.K.); +65-6478-8500 (H.F.); +65-6478-8513 (S.B.N.)
| | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore;
- Correspondence: (Y.K.); (H.F.); (S.B.N.); Tel.: +65-6586-9508 (Y.K.); +65-6478-8500 (H.F.); +65-6478-8513 (S.B.N.)
| | - Siew Bee Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #01-02 Nanos, Singapore 138669, Singapore; (K.R.V.T.); (C.E.N.); (S.C.); (C.Y.L.); (V.N.)
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore;
- Correspondence: (Y.K.); (H.F.); (S.B.N.); Tel.: +65-6586-9508 (Y.K.); +65-6478-8500 (H.F.); +65-6478-8513 (S.B.N.)
| |
Collapse
|
46
|
Park JS, Chung B, Lee WH, Lee J, Suh Y, Oh DC, Oh KB, Shin J. Sortase A-Inhibitory Coumarins from the Folk Medicinal Plant Poncirus trifoliata. JOURNAL OF NATURAL PRODUCTS 2020; 83:3004-3011. [PMID: 32996318 DOI: 10.1021/acs.jnatprod.0c00551] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thirteen coumarins (1-13), including five new compounds (1-5), were isolated from the folk medicinal plant Poncirus trifoliata. Combined spectroscopic analyses revealed that coumarins 1-4 are bis-isoprenylated coumarins with diverse oxidation patterns, while 5 is an enantiomeric di-isoprenylated coumarin. The absolute configurations of the stereogenic centers in the isoprenyl chains were assigned through MTPA and MPA methods, and those of the known compounds triphasiol (6) and ponciol (7) were also assigned using similar methods. These coumarins inhibited significantly Staphylococcus aureus-derived sortase A (SrtA), a transpeptidase responsible for anchoring surface proteins to the peptidoglycan cell wall in Gram-positive bacteria. The present results obtained indicated that the bioactivity and underlying mechanism of action of these coumarins are associated with the inhibition of SrtA-mediated S. aureus adhesion to eukaryotic cell matrix proteins including fibrinogen and fibronectin, thus potentially serving as SrtA inhibitors.
Collapse
Affiliation(s)
- Jae-Sung Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Republic of Korea
| | - Beomkoo Chung
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-921, Republic of Korea
| | - Won-Hee Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Republic of Korea
| | - Jayho Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-921, Republic of Korea
| | - Youngbae Suh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Republic of Korea
| | - Ki-Bong Oh
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-921, Republic of Korea
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Republic of Korea
| |
Collapse
|
47
|
Design and Synthesis of Small Molecules as Potent Staphylococcus aureus Sortase A Inhibitors. Antibiotics (Basel) 2020; 9:antibiotics9100706. [PMID: 33081148 PMCID: PMC7602840 DOI: 10.3390/antibiotics9100706] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 01/25/2023] Open
Abstract
The widespread and uncontrollable emergence of antibiotic-resistant bacteria, especially methicillin-resistant Staphylococcus aureus, has promoted a wave of efforts to discover a new generation of antibiotics that prevent or treat bacterial infections neither as bactericides nor bacteriostats. Due to its crucial role in virulence and its nonessentiality in bacterial survival, sortase A has been considered as a great target for new antibiotics. Sortase A inhibitors have emerged as promising alternative antivirulence agents against bacteria. Herein, the structural and preparative aspects of some small synthetic organic compounds that block the pathogenic action of sortase A have been described.
Collapse
|
48
|
Kumari P, Nath Y, Murty US, Ravichandiran V, Mohan U. Sortase A Mediated Bioconjugation of Common Epitopes Decreases Biofilm Formation in Staphylococcus aureus. Front Microbiol 2020; 11:1702. [PMID: 32903711 PMCID: PMC7438799 DOI: 10.3389/fmicb.2020.01702] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/29/2020] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is one of the most notorious pathogens and is frequently associated with nosocomial infections imposing serious risk to immune-compromised patients. This is in part due to its ability to colonize at the surface of indwelling medical devices and biofilm formation. Combating the biofilm formation with antibiotics has its own challenges like higher values of minimum inhibitory concentrations. Here, we describe a new approach to target biofilm formation by Gram positive bacteria. Sortase A is a transpeptidase enzyme which is responsible for tagging of around ∼22 cell surface proteins onto the outer surface. These proteins play a major role in the bacterial virulence. Sortase A recognizes its substrate through LPXTG motif. Here, we use this approach to install the synthetic peptide substrates onS. aureus. Sortase A substrate mimic, 6His-LPETG peptide was synthesized using solid phase peptide chemistry. Incorporation of the peptide on the cell surface was measured using ELISA. Effect of peptide incubation on Staphylococcus aureus biofilm was also studied. 71.1% biofilm inhibition was observed with 100 μM peptide while on silicon coated rubber latex catheter, 45.82% inhibition was observed. The present work demonstrates the inability of surface modified S. aureus to establish biofilm formation thereby presenting a novel method for attenuating its virulence.
Collapse
Affiliation(s)
- Poonam Kumari
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Yutika Nath
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | | | - Velayutham Ravichandiran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, India
| |
Collapse
|
49
|
Park SC, Chung B, Lee J, Cho E, Hwang JY, Oh DC, Shin J, Oh KB. Sortase A-Inhibitory Metabolites from a Marine-Derived Fungus Aspergillus sp. Mar Drugs 2020; 18:md18070359. [PMID: 32668629 PMCID: PMC7401278 DOI: 10.3390/md18070359] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Seven alkaloidal compounds (2-8) and one polyketide (1) were isolated from a semisolid rice culture of the marine-derived fungus Aspergillus sp. F452. Structures of the isolated compounds were elucidated based on spectroscopic data and comparisons with previously reported data. The alkaloidal compounds (2-8) displayed weak to moderate inhibitory activities against Staphylococcus aureus-derived sortase A (SrtA) without affecting cell viability. Aspermytin A (1) strongly inhibited SrtA activity, with an IC50 value of 146.0 μM, and significantly reduced bacterial adherence to fibronectin-coated surfaces. The present results indicate that the underlying mechanism of action of compound 1 is associated with the inhibition of SrtA-mediated S. aureus adhesion to fibronectin, thus potentially serving as an SrtA inhibitor.
Collapse
Affiliation(s)
- Sung Chul Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.C.P.); (J.-Y.H.); (D.-C.O.)
| | - Beomkoo Chung
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (B.C.); (J.L.); (E.C.)
| | - Jayho Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (B.C.); (J.L.); (E.C.)
| | - Eunji Cho
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (B.C.); (J.L.); (E.C.)
| | - Ji-Yeon Hwang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.C.P.); (J.-Y.H.); (D.-C.O.)
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.C.P.); (J.-Y.H.); (D.-C.O.)
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.C.P.); (J.-Y.H.); (D.-C.O.)
- Correspondence: (J.S.); (K.-B.O.); Tel.: +82-2-880-2484 (J.S.); +82-2-880-4646 (K.-B.O.)
| | - Ki-Bong Oh
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (B.C.); (J.L.); (E.C.)
- Correspondence: (J.S.); (K.-B.O.); Tel.: +82-2-880-2484 (J.S.); +82-2-880-4646 (K.-B.O.)
| |
Collapse
|
50
|
Gosschalk JE, Chang C, Sue CK, Siegel SD, Wu C, Kattke MD, Yi SW, Damoiseaux R, Jung ME, Ton-That H, Clubb RT. A Cell-based Screen in Actinomyces oris to Identify Sortase Inhibitors. Sci Rep 2020; 10:8520. [PMID: 32444661 PMCID: PMC7244523 DOI: 10.1038/s41598-020-65256-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
Sortase enzymes are attractive antivirulence drug targets that attach virulence factors to the surface of Staphylococcus aureus and other medically significant bacterial pathogens. Prior efforts to discover a useful sortase inhibitor have relied upon an in vitro activity assay in which the enzyme is removed from its native site on the bacterial surface and truncated to improve solubility. To discover inhibitors that are effective in inactivating sortases in vivo, we developed and implemented a novel cell-based screen using Actinomyces oris, a key colonizer in the development of oral biofilms. A. oris is unique because it exhibits sortase-dependent growth in cell culture, providing a robust phenotype for high throughput screening (HTS). Three molecules representing two unique scaffolds were discovered by HTS and disrupt surface protein display in intact cells and inhibit enzyme activity in vitro. This represents the first HTS for sortase inhibitors that relies on the simple metric of cellular growth and suggests that A. oris may be a useful platform for discovery efforts targeting sortase.
Collapse
Affiliation(s)
- Jason E Gosschalk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, USA
| | - Chungyu Chang
- Division of Oral Biology and Medicine, University of California, Los Angeles, USA
| | - Christopher K Sue
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, USA
| | - Sara D Siegel
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, TX, USA
| | - Chenggang Wu
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, TX, USA
| | - Michele D Kattke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, USA
| | - Sung Wook Yi
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| | - Robert Damoiseaux
- Department of Molecular and Medicinal Pharmacology, University of California, Los Angeles, USA.,California NanoSystems Institute, University of California, Los Angeles, USA
| | - Michael E Jung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA.,Molecular Biology Institute, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA
| | - Hung Ton-That
- Division of Oral Biology and Medicine, University of California, Los Angeles, USA. .,Department of Molecular and Medicinal Pharmacology, University of California, Los Angeles, USA.
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA. .,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, USA. .,Molecular Biology Institute, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA.
| |
Collapse
|