1
|
Gintoni I, Mastrogeorgiou M, Papakosta V, Vassiliou S, Yapijakis C. Genetic Variations Related to Angiotensin II Production and Risk for Basal Cell Carcinoma. Biochem Genet 2025; 63:917-935. [PMID: 38546913 DOI: 10.1007/s10528-024-10746-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2025]
Abstract
Basal cell carcinoma (BCC) is the most prevalent human neoplasm, with constantly increasing annual incidence. Despite its slow growth, BCC is locally invasive and, if left untreated, can cause severe complications, including metastasis and death. The renin-angiotensin system (RAS) plays a key role in electrolyte balance, atrial pressure, tissue development, homeostasis, and inflammation, but also in cancer development. After binding to its type 1 receptor (AT1R), angiotensin II (ANGII), the system's principal hormonal effector, regulates cancer pathways spanning from the formation of the initial cancer cell to the construction and nutrition of the tumor microenvironment, angiogenesis, proliferation, and metastasis. Although the role of RAS in the development of skin pathologies has not been widely researched, RAS-targeting antihypertensive medications have been shown to have a chemoprotective effect against BCC. Based on those findings, our group conducted a series of genetic association studies to investigate the association between common functional variations in key genes related to ANGII production (AGT, ACE, ACE2, AT1R, AT2R, and CMA1) and the risk of BCC occurrence. This review provides a summary of the current understanding of the ANGII involvement in BCC development. The reliable and easily assessed pool of genetic biomarkers may be used for predictive testing and prevention purposes in high-risk individuals.
Collapse
Affiliation(s)
- Iphigenia Gintoni
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, Choremion Laboratory "Hagia Sophia" Children's Hospital, Athens, Greece
- Department of Molecular Genetics, Cephalogenetics Center, Philaretou 88, Kallithea, 17675, Athens, Greece
- Department of Oral and Maxillofacial Surgery, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, Athens, Greece
| | - Michael Mastrogeorgiou
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, Choremion Laboratory "Hagia Sophia" Children's Hospital, Athens, Greece
| | - Veronica Papakosta
- Department of Oral and Maxillofacial Surgery, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, Athens, Greece
| | - Stavros Vassiliou
- Department of Oral and Maxillofacial Surgery, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, Athens, Greece
| | - Christos Yapijakis
- Unit of Orofacial Genetics, 1st Department of Pediatrics, National Kapodistrian University of Athens, University Research Institute for the Study of Genetic and Malignant Disorders in Childhood, Choremion Laboratory "Hagia Sophia" Children's Hospital, Athens, Greece.
- Department of Molecular Genetics, Cephalogenetics Center, Philaretou 88, Kallithea, 17675, Athens, Greece.
- Department of Oral and Maxillofacial Surgery, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, Athens, Greece.
| |
Collapse
|
2
|
Hanak F, Swanson JL, Felczak K, Bernstein KE, More SS, Rothwell PE. Inhibition of the angiotensin-converting enzyme N-terminal catalytic domain prevents endogenous opioid degradation in brain tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.21.634163. [PMID: 39896517 PMCID: PMC11785082 DOI: 10.1101/2025.01.21.634163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Angiotensin-converting enzyme (ACE) regulates blood pressure by cleaving angiotensin peptides in the periphery, and can also regulate endogenous opioid signaling by degrading enkephalin peptides in the brain. ACE has two catalytic domains, located in the N-terminal or C-terminal region of the protein, but little is known about the roles that these two catalytic domains play in regulating endogenous opioid degradation in brain tissue. Using acute brain slice preparations from mice of both sexes, we developed methods to study degradation of Met-enkephalin-Arg-Phe (MERF) by ACE, and investigated the role of each ACE catalytic domain in MERF degradation. Using mutant mouse lines with functional inactivation of either the N-terminal domain or the C-terminal domain, we incubated acute brain slices with exogenous MERF at a saturating concentration. The degradation MERF to produce Met-enkephalin was only reduced by N-terminal domain inactivation. Additionally, application of a selective N-terminal domain inhibitor (RXP 407) reduced degradation of both exogenously applied and endogenously released MERF, without affecting degradation of endogenously released Met-enkephalin or Leu-enkephalin. Taken together, our results suggest that the ACE N-terminal domain is the primary site of MERF degradation in brain tissue, and that N-terminal domain inhibition is sufficient to reduce degradation of this specific endogenous opioid peptide. Our results have exciting implications for the development of novel pharmacotherapies that target the endogenous opioid system to treat psychiatric and neurological disorders.
Collapse
|
3
|
Mancl JM, Wu X, Zhao M, Tang WJ. Dimerization and dynamics of angiotensin-I converting enzyme revealed by cryoEM and MD simulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632263. [PMID: 39868314 PMCID: PMC11760429 DOI: 10.1101/2025.01.09.632263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Angiotensin-I converting enzyme (ACE) regulates the levels of disparate bioactive peptides, notably converting angiotensin-I to angiotensin-II and degrading amyloid beta. ACE is a heavily glycosylated dimer, containing 4 analogous catalytic sites, and exists in membrane bound and soluble (sACE) forms. ACE inhibition is a frontline, FDA-approved, therapy for cardiovascular diseases yet is associated with significant side effects, including higher rates of lung cancer. To date, structural studies have been confined to individual domains or partially denatured cryoEM structures. Here we report the cryoEM structure of the full-length, glycosylated, sACE dimer. We resolved four structural states at 2.99 to 3.65 Å resolution which are primarily differentiated by varying degrees of solvent accessibility to the active sites and reveal the full dimerization interface. We also employed all-atom molecular dynamics (MD) simulations and heterogeneity analysis in cryoSPARC, cryoDRGN, and RECOVAR to elucidate the conformational dynamics of sACE and identify key regions mediating conformational change. We identify differences in the mechanisms governing the conformational dynamics of individual domains that have implications for the design of domain-specific sACE modulators.
Collapse
Affiliation(s)
- Jordan M Mancl
- Ben-May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States
| | - Xiaoyang Wu
- Ben-May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States
| | - Minglei Zhao
- Department of Biochemistry and Molecular Biology, The University of Chicago, Illinois, United States
| | - Wei-Jen Tang
- Ben-May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States
| |
Collapse
|
4
|
Al Musaimi O. FDA's stamp of approval: Unveiling peptide breakthroughs in cardiovascular diseases, ACE, HIV, CNS, and beyond. J Pept Sci 2024; 30:e3627. [PMID: 38885943 DOI: 10.1002/psc.3627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
Peptides exhibit significant specificity and effective interaction with therapeutic targets, positioning themselves as key players in the global pharmaceutical market. They offer potential treatments for a wide range of diseases, including those that pose significant challenges. Notably, the peptide trofinetide (Daybue) marked a groundbreaking achievement by providing the first-ever cure for Rett syndrome, and several peptides have secured FDA approval as first-in-class medications. Furthermore, peptides are expanding their presence in areas traditionally dominated by either small or large molecules. A noteworthy example is the FDA approval of motixafortide (Aphexda) as the first peptide-based chemokine antagonist. Here, the focus will be on the analysis of FDA-approved peptides, particularly those targeting cardiovascular diseases, human immunodeficiency, central nervous system diseases, and various other intriguing classes addressing conditions such as osteoporosis, thrombocytopenia, Cushing's disease, and hypoglycemia, among others. The review will explore the chemical structures of the peptides, their indications and modes of action, the developmental trajectory, and potential adverse effects.
Collapse
Affiliation(s)
- Othman Al Musaimi
- School of Pharmacy, Newcastle upon Tyne, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
5
|
Kryukova OV, Islanov IO, Zaklyazminskaya EV, Korostin DO, Belova VA, Cheranev VV, Repinskaia ZA, Tonevitskaya SA, Petukhov PA, Dudek SM, Kost OA, Rebrikov DV, Danilov SM. Effects of Angiotensin-I-Converting Enzyme (ACE) Mutations Associated with Alzheimer's Disease on Blood ACE Phenotype. Biomedicines 2024; 12:2410. [PMID: 39457722 PMCID: PMC11504702 DOI: 10.3390/biomedicines12102410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUNDS Our recent analysis of 1200+ existing missense ACE mutations revealed that 400+ mutations are damaging and led us to hypothesize that carriers of heterozygous loss-of-function (LoF) ACE mutations (which result in low ACE levels) could be at risk for the development of late-onset Alzheimer's disease (AD). METHODS Here, we quantified blood ACE levels in EDTA plasma from 41 subjects with 10 different heterozygous ACE mutations, as well as 33 controls, and estimated the effect of these mutations on ACE phenotype using a set of mAbs to ACE and two ACE substrates. RESULTS We found that relatively frequent (~1%) AD-associated ACE mutations in the N domain of ACE, Y215C, and G325R are truly damaging and likely transport-deficient, with the ACE levels in plasma at only ~50% of controls. Another AD-associated ACE mutation, R1250Q, in the cytoplasmic tail, did not cause a decrease in ACE and likely did not affect surface ACE expression. We have also developed a method to identify patients with anti-catalytic mutations in the N domain. These mutations may result in reduced degradation of amyloid beta peptide Aβ42, an important component for amyloid deposition. Consequently, these could pose a risk factor for the development of AD. CONCLUSIONS Therefore, a systematic analysis of blood ACE levels in patients with all ACE mutations has the potential to identify individuals at an increased risk of late-onset AD. These individuals may benefit from future preventive or therapeutic interventions involving a combination of chemical and pharmacological chaperones, as well as proteasome inhibitors, aiming to enhance ACE protein traffic. This approach has been previously demonstrated in our cell model of the transport-deficient ACE mutation Q1069R.
Collapse
Affiliation(s)
- Olga V. Kryukova
- Faculty of Chemistry, M.V. Lomonosov Moscow University, 119991 Moscow, Russia; (O.V.K.); (O.A.K.)
| | - Igor O. Islanov
- Medical Genetics Department, Petrovsky National Research Centre of Surgery, 117418 Moscow, Russia; (I.O.I.); (E.V.Z.)
| | - Elena V. Zaklyazminskaya
- Medical Genetics Department, Petrovsky National Research Centre of Surgery, 117418 Moscow, Russia; (I.O.I.); (E.V.Z.)
| | - Dmitry O. Korostin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.O.K.); (V.A.B.); (V.V.C.); (Z.A.R.); (D.V.R.)
| | - Vera A. Belova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.O.K.); (V.A.B.); (V.V.C.); (Z.A.R.); (D.V.R.)
| | - Valery V. Cheranev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.O.K.); (V.A.B.); (V.V.C.); (Z.A.R.); (D.V.R.)
| | - Zhanna A. Repinskaia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.O.K.); (V.A.B.); (V.V.C.); (Z.A.R.); (D.V.R.)
| | - Svetlana A. Tonevitskaya
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, 117418 Moscow, Russia;
| | - Pavel A. Petukhov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL 60612, USA;
| | - Steven M. Dudek
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois, Chicago, IL 60612, USA;
| | - Olga A. Kost
- Faculty of Chemistry, M.V. Lomonosov Moscow University, 119991 Moscow, Russia; (O.V.K.); (O.A.K.)
| | - Denis V. Rebrikov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (D.O.K.); (V.A.B.); (V.V.C.); (Z.A.R.); (D.V.R.)
| | - Sergei M. Danilov
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois, Chicago, IL 60612, USA;
| |
Collapse
|
6
|
Tran DC, Do MD, Le LHG, Thai TT, Hoang SV, Truong BQ. Relationship between the AGT M235T genetic variant and the characteristics and prognosis of coronary atherosclerosis in patients with acute myocardial infarction. Mol Biol Rep 2024; 51:1072. [PMID: 39425811 DOI: 10.1007/s11033-024-09986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Along with environmental components, genetic factors play an essential role in the pathophysiology and progression of acute myocardial infarction (AMI). There is limited and conflicting data on the influence of the AGT M235T genetic variant on coronary atherosclerosis and death in AMI patients. METHODS We carried out a prospective cohort study among 504 Vietnamese AMI patients selected between January 2020 and May 2021. All patients underwent invasive coronary angiography, had AGT M235T genetic variant genotyped using the polymerase chain reaction method, and were followed up for 12-month all-cause mortality. RESULTS The proportions of the MM, MT, and TT genotypes were 0.4%, 20.8%, and 78.8%, respectively. There was no significant difference between the TT genotype and the MM + MT genotype groups regarding the position and number of stenosed coronary artery branches and the Gensini score. The AGT M235T genetic variant did not affect 12-month mortality (hazard ratio of TT vs. MM + MT: 1.185; 95% confidence interval: 0.596-2.354; P = 0.629). Subgroup analyses by age, sex, hypertension, diabetes mellitus, dyslipidemia, obesity, smoking, and angiotensin-converting enzyme inhibitor or angiotensin II receptor blocker therapy also did not reveal an association between the AGT M235T variant and all-cause mortality. CONCLUSION In summary, the AGT M235T genetic variant was not found to be associated with coronary atherosclerosis characteristics and 12-month mortality in Vietnamese patients with AMI. Further multicenter studies with larger sample sizes and extended follow-up periods are needed to investigate this issue.
Collapse
Affiliation(s)
- Duy Cong Tran
- Department of Internal Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, 217 Hong Bang, District 5, Ho Chi Minh City, 700000, Vietnam
- University Medical Center Ho Chi Minh City, 215 Hong Bang, District 5, Ho Chi Minh City, 700000, Vietnam
- Department of Cardiology, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Minh Duc Do
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, 217 Hong Bang, District 5, Ho Chi Minh City, 700000, Vietnam.
| | - Linh Hoang Gia Le
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, 217 Hong Bang, District 5, Ho Chi Minh City, 700000, Vietnam
| | - Truc Thanh Thai
- Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Sy Van Hoang
- Department of Internal Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, 217 Hong Bang, District 5, Ho Chi Minh City, 700000, Vietnam
- Department of Cardiology, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Binh Quang Truong
- Department of Internal Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, 217 Hong Bang, District 5, Ho Chi Minh City, 700000, Vietnam.
- University Medical Center Ho Chi Minh City, 215 Hong Bang, District 5, Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
7
|
Mahmood NMS, Mahmud AM, Maulood IM. The vascular influence of melatonin on endothelial response to angiotensin II in diabetic rat aorta. J Bioenerg Biomembr 2024; 56:531-542. [PMID: 39083188 DOI: 10.1007/s10863-024-10032-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/17/2024] [Indexed: 10/06/2024]
Abstract
The current study explored melatonin (MEL) and its receptors, including MEL type 1 receptor (MT1) receptor and MEL type 2 receptor (MT2), along with the angiotensin-converting enzyme 2 (ACE2), influence on vascular responses to angiotensin II (Ang II) in rat aortic segments of normal and diabetic rats. The isolated aortic segments were exposed to MEL, the MEL agonist; ramelteon (RAM), the MEL antagonist; luzindole (LUZ), and an ACE2 inhibitor (S, S)-2-(1-Carboxy-2-(3-(3,5-dichlorobenzyl)-3 H-imidazol-4-yl)-ethylamino)-4-methylpentanoic acid,) on Ang II-induced contractions in non-diabetic normal endothelium (non-DM E+), non-diabetic removed endothelium (non-DM E-), and streptozotocin-induced diabetic endothelium-intact (STZ-induced DM E+) rat aortic segments, as well as their combination in STZ-induced DM E + segments, were also included. The current results showed that MEL and RAM shifted Ang II dose-response curve (DRC) to the right side in non-DM E + and non-DM E- aorta but not in STZ-induced DM E + aorta. However, ACE2 inhibition abolished Ang II degradation only in STZ-induced DM E + segments, not in non-DM E + segments. Additionally, the combinations of MEL-LUZ and RAM-ACE2 inhibitor caused a rightward shift in Ang II response in STZ-induced DM E + segments, while the MEL-LUZ combination decreased Ang II DRC. The findings suggest that the effects of MEL and ACE2 inhibitor on Ang II responses depend on the condition of the endothelium and the distribution of the MEL receptors.
Collapse
Affiliation(s)
- Nazar M Shareef Mahmood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq.
| | - Almas Mr Mahmud
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Ismail M Maulood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
8
|
Li X, Ding H, Feng G, Huang Y. Role of angiotensin converting enzyme in pathogenesis associated with immunity in cardiovascular diseases. Life Sci 2024; 352:122903. [PMID: 38986897 DOI: 10.1016/j.lfs.2024.122903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/18/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Angiotensin converting enzyme (ACE) is not only a critical component in the renin-angiotensin system (RAS), but also suggested as an important mediator for immune response and activity, such as immune cell mobilization, metabolism, biogenesis of immunoregulatory molecules, etc. The chronic duration of cardiovascular diseases (CVD) has been increasingly considered to be triggered by uncontrolled pathologic immune reactions from myeloid cells and lymphocytes. Considering the potential anti-inflammatory effect of the traditional antihypertensive ACE inhibitor (ACEi), we attempt to elucidate whether ACE and its catalytically relevant substances as well as signaling pathways play a role in the immunity-related pathogenesis of common CVD, such as arterial hypertension, atherosclerosis and arrythmias. ACEi was also reported to benefit the prognoses of COVID-19-positive patients with CVD, and COVID-19 disease with preexisting CVD or subsequent cardiovascular damage is featured by a significant influx of immune cells and proinflammatory molecules, suggesting that ACE may also participate in COVID-19 induced cardiovascular injury, because COVID-19 disease basically triggers an overactive pathologic immune response. Hopefully, the ACE inhibition and manipulation of those associated bioactive signals could supplement the current medicinal management of various CVD and bring greater benefit to patients' cardiovascular health.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Huasheng Ding
- Department of Emergency, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Gaoke Feng
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Yan Huang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Acharya K, Gregory K, Sturrock E. Advances in the structural basis for angiotensin-1 converting enzyme (ACE) inhibitors. Biosci Rep 2024; 44:BSR20240130. [PMID: 39046229 PMCID: PMC11300679 DOI: 10.1042/bsr20240130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/25/2024] Open
Abstract
Human somatic angiotensin-converting enzyme (ACE) is a key zinc metallopeptidase that plays a pivotal role in the renin-angiotensin-aldosterone system (RAAS) by regulating blood pressure and electrolyte balance. Inhibition of ACE is a cornerstone in the management of hypertension, cardiovascular diseases, and renal disorders. Recent advances in structural biology techniques have provided invaluable insights into the molecular mechanisms underlying ACE inhibition, facilitating the design and development of more effective therapeutic agents. This review focuses on the latest advancements in elucidating the structural basis for ACE inhibition. High-resolution crystallographic studies of minimally glycosylated individual domains of ACE have revealed intricate molecular details of the ACE catalytic N- and C-domains, and their detailed interactions with clinically relevant and newly designed domain-specific inhibitors. In addition, the recently elucidated structure of the glycosylated form of full-length ACE by cryo-electron microscopy (cryo-EM) has shed light on the mechanism of ACE dimerization and revealed continuous conformational changes which occur prior to ligand binding. In addition to these experimental techniques, computational approaches have also played a pivotal role in elucidating the structural basis for ACE inhibition. Molecular dynamics simulations and computational docking studies have provided atomic details of inhibitor binding kinetics and energetics, facilitating the rational design of novel ACE inhibitors with improved potency and selectivity. Furthermore, computational analysis of the motions observed by cryo-EM allowed the identification of allosteric binding sites on ACE. This affords new opportunities for the development of next-generation allosteric inhibitors with enhanced pharmacological properties. Overall, the insights highlighted in this review could enable the rational design of novel ACE inhibitors with improved efficacy and safety profiles, ultimately leading to better therapeutic outcomes for patients with hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- K. Ravi Acharya
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Kyle S. Gregory
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Edward D. Sturrock
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, Cape Town, Republic of South Africa
| |
Collapse
|
10
|
Żukowska J, Moss SJ, Subramanian V, Acharya KR. Molecular basis of selective amyloid-β degrading enzymes in Alzheimer's disease. FEBS J 2024; 291:2999-3029. [PMID: 37622248 DOI: 10.1111/febs.16939] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
The accumulation of the small 42-residue long peptide amyloid-β (Aβ) has been proposed as a major trigger for the development of Alzheimer's disease (AD). Within the brain, the concentration of Aβ peptide is tightly controlled through production and clearance mechanisms. Substantial experimental evidence now shows that reduced levels of Aβ clearance are present in individuals living with AD. This accumulation of Aβ can lead to the formation of large aggregated amyloid plaques-one of two detectable hallmarks of the disease. Aβ-degrading enzymes (ADEs) are major players in the clearance of Aβ. Stimulating ADE activity or expression, in order to compensate for the decreased clearance in the AD phenotype, provides a promising therapeutic target. It has been reported in mice that upregulation of ADEs can reduce the levels of Aβ peptide and amyloid plaques-in some cases, this led to improved cognitive function. Among several known ADEs, neprilysin (NEP), endothelin-converting enzyme-1 (ECE-1), insulin degrading enzyme (IDE) and angiotensin-1 converting enzyme (ACE) from the zinc metalloprotease family have been identified as important. These ADEs have the capacity to digest soluble Aβ which, in turn, cannot form the toxic oligomeric species. While they are known for their amyloid degradation, they exhibit complexity through promiscuous nature and a broad range of substrates that they can degrade. This review highlights current structural and functional understanding of these key ADEs, giving some insight into the molecular interactions that leads to the hydrolysis of peptide substrates, the crucial tasks performed by them and the potential for therapeutic use in the future.
Collapse
|
11
|
Oosthuizen D, Ganief TA, Bernstein KE, Sturrock ED. Proteomic Analysis of Human Macrophages Overexpressing Angiotensin-Converting Enzyme. Int J Mol Sci 2024; 25:7055. [PMID: 39000163 PMCID: PMC11240931 DOI: 10.3390/ijms25137055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Angiotensin converting enzyme (ACE) exerts strong modulation of myeloid cell function independently of its cardiovascular arm. The success of the ACE-overexpressing murine macrophage model, ACE 10/10, in treating microbial infections and cancer opens a new avenue into whether ACE overexpression in human macrophages shares these benefits. Additionally, as ACE inhibitors are a widely used antihypertensive medication, their impact on ACE expressing immune cells is of interest and currently understudied. In the present study, we utilized mass spectrometry to characterize and assess global proteomic changes in an ACE-overexpressing human THP-1 cell line. Additionally, proteomic changes and cellular uptake following treatment with an ACE C-domain selective inhibitor, lisinopril-tryptophan, were also assessed. ACE activity was significantly reduced following inhibitor treatment, despite limited uptake within the cell, and both RNA processing and immune pathways were significantly dysregulated with treatment. Also present were upregulated energy and TCA cycle proteins and dysregulated cytokine and interleukin signaling proteins with ACE overexpression. A novel, functionally enriched immune pathway that appeared both with ACE overexpression and inhibitor treatment was neutrophil degranulation. ACE overexpression within human macrophages showed similarities with ACE 10/10 murine macrophages, paving the way for mechanistic studies aimed at understanding the altered immune function.
Collapse
Affiliation(s)
- Delia Oosthuizen
- Division of Chemical, Systems and Synthetic Biology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Tariq A. Ganief
- Division of Chemical, Systems and Synthetic Biology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Kenneth E. Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Edward D. Sturrock
- Division of Chemical, Systems and Synthetic Biology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| |
Collapse
|
12
|
Lopes Júnior CA, Mendes MKDA, Sousa MDS, Vieira EC, Andrade TDA, de Jesus JR. Exploring metalloproteins found in the secretion of venomous species: Biological role and therapeutical applications. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:539-562. [PMID: 38960485 DOI: 10.1016/bs.apcsb.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Several species during evolution suffered random mutations in response to various environmental factors, which resulted in the formation of venom in phylogenetically distant species. The composition of the venom of most species is poorly known. Snake venom is well characterized while most species have poorly known composition. In contrast, snake venoms are well characterized which proteins and peptides are the main active and most abundant constituents. 42 protein families have been identified, including metalloproteins known as metalloproteinases. These macromolecules are enzymes with zinc in their active site derived from the disintegrin A and metalloproteinase (ADAM) cellular family and are categorized into three classes (PI, PII and PIII) according to their domain organization. The snake venom metalloproteinases (SVMP) are cytotoxic, neurotoxic, myotoxic and/or hematotoxic with a crucial role in the defense and restraint of prey. In this scenario envenoming represents a danger to human health and has been considered a neglected disease worldwide, particularly in tropical and subtropical countries. Nevertheless, recently advances in "omics" technologies have demonstrated interesting biological activities of SVMPs such as antimicrobial, anticancer, against cardiovascular diseases and nervous system disorders. Metalloproteins have the therapeutic potential to be converted into drugs as other components of the venom have undergone this process (e.g., captopril, tirefiban and eptifibatide). So, this chapter is focused on the metalloproteins found in the secretions of venomous species, highlight some aspects such as structure, biological activity, pharmacological therapeutic potential and on.
Collapse
Affiliation(s)
- Cícero Alves Lopes Júnior
- Grupo de Estudo em Bioanalítica (GEBIO), Department of Chemistry, Federal University of Piauí-UFPI, Teresina, Piauí, Brazil.
| | | | - Michely da Silva Sousa
- Grupo de Estudo em Bioanalítica (GEBIO), Department of Chemistry, Federal University of Piauí-UFPI, Teresina, Piauí, Brazil
| | - Edivan Carvalho Vieira
- Grupo de Estudo em Bioanalítica (GEBIO), Department of Chemistry, Federal University of Piauí-UFPI, Teresina, Piauí, Brazil
| | | | - Jemmyson Romário de Jesus
- Research Laboratory in Bionanomaterials, LPbio, Department of Chemistry, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
13
|
Bernstein KE, Cao D, Shibata T, Saito S, Bernstein EA, Nishi E, Yamashita M, Tourtellotte WG, Zhao TV, Khan Z. Classical and nonclassical effects of angiotensin-converting enzyme: How increased ACE enhances myeloid immune function. J Biol Chem 2024; 300:107388. [PMID: 38763333 PMCID: PMC11208953 DOI: 10.1016/j.jbc.2024.107388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/21/2024] Open
Abstract
As part of the classical renin-angiotensin system, the peptidase angiotensin-converting enzyme (ACE) makes angiotensin II which has myriad effects on systemic cardiovascular function, inflammation, and cellular proliferation. Less well known is that macrophages and neutrophils make ACE in response to immune activation which has marked effects on myeloid cell function independent of angiotensin II. Here, we discuss both classical (angiotensin) and nonclassical functions of ACE and highlight mice called ACE 10/10 in which genetic manipulation increases ACE expression by macrophages and makes these mice much more resistant to models of tumors, infection, atherosclerosis, and Alzheimer's disease. In another model called NeuACE mice, neutrophils make increased ACE and these mice are much more resistant to infection. In contrast, ACE inhibitors reduce neutrophil killing of bacteria in mice and humans. Increased expression of ACE induces a marked increase in macrophage oxidative metabolism, particularly mitochondrial oxidation of lipids, secondary to increased peroxisome proliferator-activated receptor α expression, and results in increased myeloid cell ATP. ACE present in sperm has a similar metabolic effect, and the lack of ACE activity in these cells reduces both sperm motility and fertilization capacity. These nonclassical effects of ACE are not due to the actions of angiotensin II but to an unknown molecule, probably a peptide, that triggers a profound change in myeloid cell metabolism and function. Purifying and characterizing this peptide could offer a new treatment for several diseases and prove potentially lucrative.
Collapse
Affiliation(s)
- Kenneth E Bernstein
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| | - DuoYao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tomohiro Shibata
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ellen A Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Erika Nishi
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Physiology, São Paulo School of Medicine, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Michifumi Yamashita
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Warren G Tourtellotte
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tuantuan V Zhao
- Research Oncology, Gilead Sciences, Foster City, California, USA
| | - Zakir Khan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA; Institute for Myeloma & Bone Cancer Research, West Hollywood, California, USA
| |
Collapse
|
14
|
Wei M, Yu Q, Li E, Zhao Y, Sun C, Li H, Liu Z, Ji G. Ace Deficiency Induces Intestinal Inflammation in Zebrafish. Int J Mol Sci 2024; 25:5598. [PMID: 38891786 PMCID: PMC11172040 DOI: 10.3390/ijms25115598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a nonspecific chronic inflammatory disease resulting from an immune disorder in the intestine that is prone to relapse and incurable. The understanding of the pathogenesis of IBD remains unclear. In this study, we found that ace (angiotensin-converting enzyme), expressed abundantly in the intestine, plays an important role in IBD. The deletion of ace in zebrafish caused intestinal inflammation with increased expression of the inflammatory marker genes interleukin 1 beta (il1b), matrix metallopeptidase 9 (mmp9), myeloid-specific peroxidase (mpx), leukocyte cell-derived chemotaxin-2-like (lect2l), and chemokine (C-X-C motif) ligand 8b (cxcl8b). Moreover, the secretion of mucus in the ace-/- mutants was significantly higher than that in the wild-type zebrafish, validating the phenotype of intestinal inflammation. This was further confirmed by the IBD model constructed using dextran sodium sulfate (DSS), in which the mutant zebrafish had a higher susceptibility to enteritis. Our study reveals the role of ace in intestinal homeostasis, providing a new target for potential therapeutic interventions.
Collapse
Affiliation(s)
- Mingxia Wei
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (Q.Y.)
| | - Qinqing Yu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (Q.Y.)
| | - Enguang Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (Q.Y.)
| | - Yibing Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (Q.Y.)
| | - Chen Sun
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (Q.Y.)
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Hongyan Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (Q.Y.)
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Zhenhui Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (Q.Y.)
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Guangdong Ji
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (Q.Y.)
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
15
|
Enyedi EE, Petukhov PA, Kozuch AJ, Dudek SM, Toth A, Fagyas M, Danilov SM. ACE Phenotyping in Human Blood and Tissues: Revelation of ACE Outliers and Sex Differences in ACE Sialylation. Biomedicines 2024; 12:940. [PMID: 38790902 PMCID: PMC11117852 DOI: 10.3390/biomedicines12050940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Angiotensin-converting enzyme (ACE) metabolizes a number of important peptides participating in blood pressure regulation and vascular remodeling. Elevated ACE expression in tissues (which is generally reflected by blood ACE levels) is associated with an increased risk of cardiovascular diseases. Elevated blood ACE is also a marker for granulomatous diseases. Decreased blood ACE activity is becoming a new risk factor for Alzheimer's disease. We applied our novel approach-ACE phenotyping-to characterize pairs of tissues (lung, heart, lymph nodes) and serum ACE in 50 patients. ACE phenotyping includes (1) measurement of ACE activity with two substrates (ZPHL and HHL); (2) calculation of the ratio of hydrolysis of these substrates (ZPHL/HHL ratio); (3) determination of ACE immunoreactive protein levels using mAbs to ACE; and (4) ACE conformation with a set of mAbs to ACE. The ACE phenotyping approach in screening format with special attention to outliers, combined with analysis of sequencing data, allowed us to identify patient with a unique ACE phenotype related to decreased ability of inhibition of ACE activity by albumin, likely due to competition with high CCL18 in this patient for binding to ACE. We also confirmed recently discovered gender differences in sialylation of some glycosylation sites of ACE. ACE phenotyping is a promising new approach for the identification of ACE phenotype outliers with potential clinical significance, making it useful for screening in a personalized medicine approach.
Collapse
Affiliation(s)
- Enikő E. Enyedi
- Division of Clinical Physiology, Department of Cardiology, University of Debrecen, 22 Moricz Zs., 4032 Debrecen, Hungary (A.T.)
- Kálmán Laki Doctoral School of Biomedical and Clinical Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Pavel A. Petukhov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Ave., Chicago, IL 60612, USA;
| | - Alexander J. Kozuch
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, CSB 915, MC 719, 840 S. Wood Ave., Chicago, IL 60612, USA; (A.J.K.); (S.M.D.)
| | - Steven M. Dudek
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, CSB 915, MC 719, 840 S. Wood Ave., Chicago, IL 60612, USA; (A.J.K.); (S.M.D.)
| | - Attila Toth
- Division of Clinical Physiology, Department of Cardiology, University of Debrecen, 22 Moricz Zs., 4032 Debrecen, Hungary (A.T.)
| | - Miklós Fagyas
- Division of Clinical Physiology, Department of Cardiology, University of Debrecen, 22 Moricz Zs., 4032 Debrecen, Hungary (A.T.)
| | - Sergei M. Danilov
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, CSB 915, MC 719, 840 S. Wood Ave., Chicago, IL 60612, USA; (A.J.K.); (S.M.D.)
| |
Collapse
|
16
|
Schuck B, Brenk R. On the hunt for metalloenzyme inhibitors: Investigating the presence of metal-coordinating compounds in screening libraries and chemical spaces. Arch Pharm (Weinheim) 2024; 357:e2300648. [PMID: 38279543 DOI: 10.1002/ardp.202300648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/28/2024]
Abstract
Metalloenzymes play vital roles in various biological processes, requiring the search for inhibitors to develop treatment options for diverse diseases. While compound library screening is a conventional approach, the exploration of virtual chemical spaces housing trillions of compounds has emerged as an alternative strategy. In this study, we investigated the suitability of selected screening libraries and chemical spaces for discovering inhibitors of metalloenzymes featuring common ions (Mg2+, Mn2+, and Zn2+). First, metal-coordinating groups from ligands interacting with ions in the Protein Data Bank were extracted. Subsequently, the prevalence of these groups in two focused screening libraries (Life Chemicals' chelator library, comprising 6,428 compounds, and Otava's chelator fragment library, with 1,784 fragments) as well as two chemical spaces (GalaXi and REAL space, containing billions of virtual products) was investigated. In total, 1,223 metal-coordinating groups were identified, with about a quarter of these groups found within the examined libraries and spaces. Our results indicate that these can serve as valuable starting points for drug discovery targeting metalloenzymes. In addition, this study suggests ways to improve libraries and spaces for better success in finding potential inhibitors for metalloenzymes.
Collapse
Affiliation(s)
- Bruna Schuck
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ruth Brenk
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| |
Collapse
|
17
|
Mahmood NMS, Mahmud AM, Maulood IM. The roles of angiotensin-converting enzyme 2 inhibitor, melatonin and its agonist on angiotensin II reactivity in intact and denuded rat aortic rings. J Recept Signal Transduct Res 2024; 44:35-40. [PMID: 38666646 DOI: 10.1080/10799893.2024.2345907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND The pineal product melatonin (MEL) modulates blood vessels through G protein-coupled receptors (GPCRs) called melatonin type 1 receptor (MT1R) and melatonin type 2 receptor (MT2R), in that order. The renin-angiotensin system (RAS), which breaks down angiotensin II (Ang II) to create Ang 1-7, is thought to be mostly controlled by angiotensin-converting enzyme-2 (ACE2). AIM The current work examines the involvement of ACE2 inhibitor, MEL, and ramelteon (RAM) in the vascular response to Ang II activities in the endothelial denuded (E-) and intact (E+) rat isolated thoracic aortic rings. METHOD The isometric tension was measured to evaluate the vascular Ang II contractility using dose response curve (DRC). RESULTS MEL and RAM caused a rightward shift of Ang II in endothelium E + and endothelium E- aorta. CONCLUSION According to the current study, the distribution of MEL receptors and the endothelium's condition are related to the vasomodulatory effect of MEL and ACE2 on Ang II attenuation. These physiological interactions can control vascular tone and increase Ang II reactivity denude endothelial layaer.
Collapse
Affiliation(s)
| | - Almas Mr Mahmud
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Ismail M Maulood
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| |
Collapse
|
18
|
Danilov SM, Adzhubei IA, Kozuch AJ, Petukhov PA, Popova IA, Choudhury A, Sengupta D, Dudek SM. Carriers of Heterozygous Loss-of-Function ACE Mutations Are at Risk for Alzheimer's Disease. Biomedicines 2024; 12:162. [PMID: 38255267 PMCID: PMC10813023 DOI: 10.3390/biomedicines12010162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
We hypothesized that subjects with heterozygous loss-of-function (LoF) ACE mutations are at risk for Alzheimer's disease because amyloid Aβ42, a primary component of the protein aggregates that accumulate in the brains of AD patients, is cleaved by ACE (angiotensin I-converting enzyme). Thus, decreased ACE activity in the brain, either due to genetic mutation or the effects of ACE inhibitors, could be a risk factor for AD. To explore this hypothesis in the current study, existing SNP databases were analyzed for LoF ACE mutations using four predicting tools, including PolyPhen-2, and compared with the topology of known ACE mutations already associated with AD. The combined frequency of >400 of these LoF-damaging ACE mutations in the general population is quite significant-up to 5%-comparable to the frequency of AD in the population > 70 y.o., which indicates that the contribution of low ACE in the development of AD could be under appreciated. Our analysis suggests several mechanisms by which ACE mutations may be associated with Alzheimer's disease. Systematic analysis of blood ACE levels in patients with all ACE mutations is likely to have clinical significance because available sequencing data will help detect persons with increased risk of late-onset Alzheimer's disease. Patients with transport-deficient ACE mutations (about 20% of damaging ACE mutations) may benefit from preventive or therapeutic treatment with a combination of chemical and pharmacological (e.g., centrally acting ACE inhibitors) chaperones and proteosome inhibitors to restore impaired surface ACE expression, as was shown previously by our group for another transport-deficient ACE mutation-Q1069R.
Collapse
Affiliation(s)
- Sergei M. Danilov
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois Chicago, Chicago, IL 60612, USA; (A.J.K.); (S.M.D.)
| | - Ivan A. Adzhubei
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA;
| | - Alexander J. Kozuch
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois Chicago, Chicago, IL 60612, USA; (A.J.K.); (S.M.D.)
| | - Pavel A. Petukhov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Isolda A. Popova
- Toxicology Research Laboratory, University of Illinois Chicago, IL 60612, USA;
| | - Ananyo Choudhury
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg 2193, South Africa; (A.C.); (D.S.)
| | - Dhriti Sengupta
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg 2193, South Africa; (A.C.); (D.S.)
| | - Steven M. Dudek
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois Chicago, Chicago, IL 60612, USA; (A.J.K.); (S.M.D.)
| |
Collapse
|
19
|
Gregory KS, Cozier GE, Schwager SLU, Sturrock ED, Acharya KR. Structural insights into the inhibitory mechanism of angiotensin-I-converting enzyme by the lactotripeptides IPP and VPP. FEBS Lett 2024; 598:242-251. [PMID: 37904282 PMCID: PMC10952540 DOI: 10.1002/1873-3468.14768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 11/01/2023]
Abstract
Human somatic angiotensin-1-converting enzyme (sACE) is composed of a catalytic N-(nACE) and C-domain (cACE) of similar size with different substrate specificities. It is involved in the regulation of blood pressure by converting angiotensin I to the vasoconstrictor angiotensin II and has been a major focus in the development of therapeutics for hypertension. Bioactive peptides from various sources, including milk, have been identified as natural ACE inhibitors. We report the structural basis for the role of two lacototripeptides, Val-Pro-Pro and Ile-Pro-Pro, in domain-specific inhibition of ACE using X-ray crystallography and kinetic analysis. The lactotripeptides have preference for nACE due to altered polar interactions distal to the catalytic zinc ion. Elucidating the mechanism of binding and domain selectivity of these peptides also provides important insights into the functional roles of ACE.
Collapse
Affiliation(s)
| | | | - Sylva L. U. Schwager
- Department of Integrative Biomedical SciencesInstitute of Infectious Disease and Molecular Medicine, University of Cape TownSouth Africa
| | - Edward D. Sturrock
- Department of Integrative Biomedical SciencesInstitute of Infectious Disease and Molecular Medicine, University of Cape TownSouth Africa
| | | |
Collapse
|
20
|
Bozza A, Bernardi M, Catanzaro D, Chieregato K, Merlo A, Astori G. Enalaprilat and losartan decrease erythroid precursors frequency in cells from patients with polycythemia vera. Hematology 2023; 28:2182056. [PMID: 36856520 DOI: 10.1080/16078454.2023.2182056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
OBJECTIVE Polycythemia Vera (PV) is a myeloproliferative neoplasm characterized by the overproduction of red blood cells. First-line therapies are directed at lowering hematocrit levels. After the discovery of a mutation in the Janus kinase 2 (JAK2V617F), JAK2 inhibitors have been tested as second-line therapies. Despite these approaches, there is still the need for a major comprehension of the mechanisms involved in PV erythrocytosis and of more effective therapies. Angiotensin-converting enzyme (ACE) stimulates hematopoietic precursors proliferation and erythroid differentiation. We thus hypothesized that ACE inhibition could help in controlling erythrocytosis in PV. METHODS We assessed the clonogenic potential by colony-forming unit (CFU) assay of mononuclear cells isolated from PV JAK2 positive or JAK2 negative patients with erythrocytosis treated with enalaprilat or losartan. RESULTS Treatment with drugs led to a decrease of erythroid precursor frequency both in the presence and absence of JAK2 mutation, with a high extent in JAK2 positive cells and without affecting other types of precursors. No dose-dependent effect was observed. CONCLUSIONS Our results demonstrate that ACE inhibition reduces erythroid precursor frequency, confirming the involvement of ACE in erythrocytosis despite the presence of JAK2 mutation and encouraging the hypothesis that ACE inhibitors and AT1R antagonists could help in directly managing erythrocytosis in PV.
Collapse
Affiliation(s)
- Angela Bozza
- Advanced Cellular Therapy Laboratory, Haematology Unit, San Bortolo Hospital, Vicenza, Italy
| | - Martina Bernardi
- Advanced Cellular Therapy Laboratory, Haematology Unit, San Bortolo Hospital, Vicenza, Italy
| | - Daniela Catanzaro
- Advanced Cellular Therapy Laboratory, Haematology Unit, San Bortolo Hospital, Vicenza, Italy
| | - Katia Chieregato
- Advanced Cellular Therapy Laboratory, Haematology Unit, San Bortolo Hospital, Vicenza, Italy
| | - Anna Merlo
- Advanced Cellular Therapy Laboratory, Haematology Unit, San Bortolo Hospital, Vicenza, Italy
| | - Giuseppe Astori
- Advanced Cellular Therapy Laboratory, Haematology Unit, San Bortolo Hospital, Vicenza, Italy
| |
Collapse
|
21
|
Vydyam P, Choi JY, Gihaz S, Chand M, Gewirtz M, Thekkiniath J, Lonardi S, Gennaro JC, Ben Mamoun C. Babesia BdFE1 esterase is required for the anti-parasitic activity of the ACE inhibitor fosinopril. J Biol Chem 2023; 299:105313. [PMID: 37797695 PMCID: PMC10663679 DOI: 10.1016/j.jbc.2023.105313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023] Open
Abstract
Effective and safe therapies for the treatment of diseases caused by intraerythrocytic parasites are impeded by the rapid emergence of drug resistance and the lack of novel drug targets. One such disease is human babesiosis, which is a rapidly emerging tick-borne illness caused by Babesia parasites. In this study, we identified fosinopril, a phosphonate-containing, FDA-approved angiotensin converting enzyme (ACE) inhibitor commonly used as a prodrug for hypertension and heart failure, as a potent inhibitor of Babesia duncani parasite development within human erythrocytes. Cell biological and mass spectrometry analyses revealed that the conversion of fosinopril to its active diacid molecule, fosinoprilat, is essential for its antiparasitic activity. We show that this conversion is mediated by a parasite-encoded esterase, BdFE1, which is highly conserved among apicomplexan parasites. Parasites carrying the L238H mutation in the active site of BdFE1 failed to convert the prodrug to its active moiety and became resistant to the drug. Our data set the stage for the development of this class of drugs for the therapy of vector-borne parasitic diseases.
Collapse
Affiliation(s)
- Pratap Vydyam
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jae-Yeon Choi
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shalev Gihaz
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Meenal Chand
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Meital Gewirtz
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jose Thekkiniath
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Stefano Lonardi
- Department of Computer Science and Engineering, University of California, Riverside, California, USA
| | - Joseph C Gennaro
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Choukri Ben Mamoun
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
22
|
Messadi E. Snake Venom Components as Therapeutic Drugs in Ischemic Heart Disease. Biomolecules 2023; 13:1539. [PMID: 37892221 PMCID: PMC10605524 DOI: 10.3390/biom13101539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Ischemic heart disease (IHD), especially myocardial infarction (MI), is a leading cause of death worldwide. Although coronary reperfusion is the most straightforward treatment for limiting the MI size, it has nevertheless been shown to exacerbate ischemic myocardial injury. Therefore, identifying and developing therapeutic strategies to treat IHD is a major medical challenge. Snake venoms contain biologically active proteins and peptides that are of major interest for pharmacological applications in the cardiovascular system (CVS). This has led to their use for the development and design of new drugs, such as the first-in-class angiotensin-converting enzyme inhibitor captopril, developed from a peptide present in Bothrops jararaca snake venom. This review discusses the potential usefulness of snake venom toxins for developing effective treatments against IHD and related diseases such as hypertension and atherosclerosis. It describes their biological effects at the molecular scale, their mechanisms of action according to their different pharmacological properties, as well as their subsequent molecular pathways and therapeutic targets. The molecules reported here have either been approved for human medical use and are currently available on the drug market or are still in the clinical or preclinical developmental stages. The information summarized here may be useful in providing insights into the development of future snake venom-derived drugs.
Collapse
Affiliation(s)
- Erij Messadi
- Plateforme de Physiologie et Physiopathologie Cardiovasculaires (P2C), Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1068, Tunisia
| |
Collapse
|
23
|
Zheng SY, Du X, Dong JZ. Re-evaluating serum angiotensin-converting enzyme in sarcoidosis. Front Immunol 2023; 14:950095. [PMID: 37868968 PMCID: PMC10586325 DOI: 10.3389/fimmu.2023.950095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/25/2023] [Indexed: 10/24/2023] Open
Abstract
Sarcoidosis is a systemic inflammatory disease of unknown etiology, which mainly affects the lungs and lymph nodes, as well as extrapulmonary organs. Its incidence, and prevalence rate, and disease course largely vary with regions and populations globally. The clinical manifestations of sarcoidosis depend on the affected organs and the degree of severity, and the diagnosis is mainly based on serum biomarkers, radiographic, magnetic resonance, or positron emission tomography imaging, and pathological biopsy. Noncaseating granulomas composing T cells, macrophages, epithelioid cells, and giant cells, were observed in a pathological biopsy, which was the characteristic pathological manifestation of sarcoidosis. Angiotensin-converting enzyme (ACE) was first found in the renin-angiotensin-aldosterone system. Its main function is to convert angiotensin I (Ang I) into Ang II, which plays an important role in regulating blood pressure. Also, an ACE insertion/deletion polymorphism exists in the human genome, which is involved in the occurrence and development of many diseases, including hypertension, heart failure, and sarcoidosis. The serum ACE level, most commonly used as a biomarker in diagnosing sarcoidosis, in patients with sarcoidosis increases. because of epithelioid cells and giant cells of sarcoid granuloma expressing ACE. Thus, it serves as the most commonly used biomarker in the diagnosis of sarcoidosis and also aids in analyzing its therapeutic effect and prognosis in patients with sarcoidosis.
Collapse
Affiliation(s)
- Shi-yue Zheng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xin Du
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jian-zeng Dong
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
24
|
Villapol S, Janatpour ZC, Affram KO, Symes AJ. The Renin Angiotensin System as a Therapeutic Target in Traumatic Brain Injury. Neurotherapeutics 2023; 20:1565-1591. [PMID: 37759139 PMCID: PMC10684482 DOI: 10.1007/s13311-023-01435-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a major public health problem, with limited pharmacological options available beyond symptomatic relief. The renin angiotensin system (RAS) is primarily known as a systemic endocrine regulatory system, with major roles controlling blood pressure and fluid homeostasis. Drugs that target the RAS are used to treat hypertension, heart failure and kidney disorders. They have now been used chronically by millions of people and have a favorable safety profile. In addition to the systemic RAS, it is now appreciated that many different organ systems, including the brain, have their own local RAS. The major ligand of the classic RAS, Angiotensin II (Ang II) acts predominantly through the Ang II Type 1 receptor (AT1R), leading to vasoconstriction, inflammation, and heightened oxidative stress. These processes can exacerbate brain injuries. Ang II receptor blockers (ARBs) are AT1R antagonists. They have been shown in several preclinical studies to enhance recovery from TBI in rodents through improvements in molecular, cellular and behavioral correlates of injury. ARBs are now under consideration for clinical trials in TBI. Several different RAS peptides that signal through receptors distinct from the AT1R, are also potential therapeutic targets for TBI. The counter regulatory RAS pathway has actions that oppose those stimulated by AT1R signaling. This alternative pathway has many beneficial effects on cells in the central nervous system, bringing about vasodilation, and having anti-inflammatory and anti-oxidative stress actions. Stimulation of this pathway also has potential therapeutic value for the treatment of TBI. This comprehensive review will provide an overview of the various components of the RAS, with a focus on their direct relevance to TBI pathology. It will explore different therapeutic agents that modulate this system and assess their potential efficacy in treating TBI patients.
Collapse
Affiliation(s)
- Sonia Villapol
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
| | - Zachary C Janatpour
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Kwame O Affram
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Aviva J Symes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
25
|
Bertoldi G, Caputo I, Calò L, Rossitto G. Lymphatic vessels and the renin-angiotensin-system. Am J Physiol Heart Circ Physiol 2023; 325:H837-H855. [PMID: 37565265 DOI: 10.1152/ajpheart.00023.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
The lymphatic system is an integral part of the circulatory system and plays an important role in the fluid homeostasis of the human body. Accumulating evidence has recently suggested the involvement of lymphatic dysfunction in the pathogenesis of cardio-reno-vascular (CRV) disease. However, how the sophisticated contractile machinery of lymphatic vessels is modulated and, possibly impaired in CRV disease, remains largely unknown. In particular, little attention has been paid to the effect of the renin-angiotensin-system (RAS) on lymphatics, despite the high concentration of RAS mediators that these tissue-draining vessels are exposed to and the established role of the RAS in the development of classic microvascular dysfunction and overt CRV disease. We herein review recent studies linking RAS to lymphatic function and/or plasticity and further highlight RAS-specific signaling pathways, previously shown to drive adverse arterial remodeling and CRV organ damage that have potential for direct modulation of the lymphatic system.
Collapse
Affiliation(s)
- Giovanni Bertoldi
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
- Nephrology Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Ilaria Caputo
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Lorenzo Calò
- Nephrology Unit, DIMED, Università degli Studi di Padova, Padova, Italy
| | - Giacomo Rossitto
- Emergency and Hypertension Unit, DIMED, Università degli Studi di Padova, Padova, Italy
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
26
|
Cao D, Saito S. Editorial: Role of angiotensin-converting enzyme in myeloid immune functions. Front Physiol 2023; 14:1297995. [PMID: 37841317 PMCID: PMC10569411 DOI: 10.3389/fphys.2023.1297995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023] Open
Affiliation(s)
- DuoYao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | | |
Collapse
|
27
|
Ladas P, Porfyridis I, Tryfonos C, Ioannou A, Adamide T, Christodoulou C, Richter J. Aetiology of Community-Acquired Pneumonia and the Role of Genetic Host Factors in Hospitalized Patients in Cyprus. Microorganisms 2023; 11:2051. [PMID: 37630611 PMCID: PMC10458012 DOI: 10.3390/microorganisms11082051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Community-acquired pneumonia (CAP) remains the leading cause of hospitalization among infectious disease in Europe, and a major cause of morbidity and mortality. In order to determine and characterize the aetiology of CAP in hospitalized adults in Cyprus, respiratory and blood samples were obtained from hospitalized patients with CAP, and analyzed using Multiplex Real-Time PCR/RT-PCR, and ID/AMR enrichment panel (RPIP) analysis. Probe-based allelic discrimination was used to investigate genetic host factors in patients. The aetiology could be established in 87% of patients. The most prevalent viral pathogens detected were influenza A, SARS-CoV-2, and human rhinovirus. The most common bacterial pathogens detected were Streptococcus pneumoniae, Staphylococcus aureus, and Haemophilus influenzae. Antimicrobial resistance genes were identified in 23 patients. S. aureus was the most common AMR correlated strain in our study. A positive correlation was detected between bacterial infections and the NOS3 rs1799983 G allele and the FCGR2A rs1801274 G allele. A positive correlation was also detected between the TNF-α rs1800629 A allele and sepsis, while a negative correlation was detected with the ACE rs1799752 insertion genotype and the severity of pneumonia. In conclusion, the targeted NGS panel approach applied provides highly sensitive, comprehensive pathogen detection, in combination with antimicrobial resistance AMR insights that can guide treatment choices. In addition, several host factors have been identified that impact the disease progression and outcome.
Collapse
Affiliation(s)
- Petros Ladas
- Molecular Virology Department, Cyprus Institute of Neurology and Genetics, Iroon Avenue 6, 2371 Egkomi, Nicosia, Cyprus; (P.L.); (C.T.); (C.C.)
| | - Ilias Porfyridis
- Pulmonary Department, Nicosia General Hospital, Lemesou 215, 2029 Strovolos, Nicosia, Cyprus; (I.P.); (A.I.); (T.A.)
| | - Christina Tryfonos
- Molecular Virology Department, Cyprus Institute of Neurology and Genetics, Iroon Avenue 6, 2371 Egkomi, Nicosia, Cyprus; (P.L.); (C.T.); (C.C.)
| | - Anna Ioannou
- Pulmonary Department, Nicosia General Hospital, Lemesou 215, 2029 Strovolos, Nicosia, Cyprus; (I.P.); (A.I.); (T.A.)
| | - Tonia Adamide
- Pulmonary Department, Nicosia General Hospital, Lemesou 215, 2029 Strovolos, Nicosia, Cyprus; (I.P.); (A.I.); (T.A.)
| | - Christina Christodoulou
- Molecular Virology Department, Cyprus Institute of Neurology and Genetics, Iroon Avenue 6, 2371 Egkomi, Nicosia, Cyprus; (P.L.); (C.T.); (C.C.)
| | - Jan Richter
- Molecular Virology Department, Cyprus Institute of Neurology and Genetics, Iroon Avenue 6, 2371 Egkomi, Nicosia, Cyprus; (P.L.); (C.T.); (C.C.)
| |
Collapse
|
28
|
Ali MY, Jannat S, Chang MS. Discovery of Potent Angiotensin-Converting Enzyme Inhibitors in Pomegranate as a Treatment for Hypertension. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37384918 DOI: 10.1021/acs.jafc.3c02115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Pomegranate (Punica granatum L.) is associated with numerous health benefits due to its high levels of antioxidant polyphenolic substances. Since pomegranate extract has been shown to inhibit angiotensin-converting enzyme (ACE), the potential inhibitory effect of most of its main constituents against ACE is unknown. Therefore, we tested the activities of 24 major compounds, the majority of which significantly inhibited ACE. Notably, pedunculagin, punicalin, and gallagic acid were the most effective ACE inhibitors with IC50 values of 0.91, 1.12, and 1.77 μM, respectively. As demonstrated in molecular docking studies, compounds block ACE by forming multiple hydrogen bonds and hydrophobic interactions with catalytic residues and zinc ions in ACE's C- and N-domains, consequently inhibiting ACE's catalytic activity. Also, the most active pedunculagin stimulated nitric oxide (NO) production, activated the endothelial nitric oxide synthase enzyme (eNOS), and significantly increased eNOS protein expression levels up to 5.3-fold in EA.hy926 cells. Furthermore, pedunculagin increased in cellular calcium (Ca2+) concentration promoted eNOS enzyme activation and reduced the production of reactive oxygen species (ROS). In addition, the active compounds improved glucose uptake in insulin-resistant C2C12 skeletal muscle cells in a dose-dependent manner. The results of these computational, in vitro, and cellular experiments provide further evidence to the traditional medicine that involves using pomegranates to treat cardiovascular diseases like hypertension.
Collapse
Affiliation(s)
- Md Yousof Ali
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Susoma Jannat
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Mun Seog Chang
- Department of Prescriptionology, College of Korean Medicine, Kyung Hee University, 26 Kyunghee dae-ro, Seoul 02447, Korea
- Qgenetics, Seoul Bio Cooperation Center 504, 23 Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
29
|
Molinaro C, Scalise M, Leo I, Salerno L, Sabatino J, Salerno N, De Rosa S, Torella D, Cianflone E, Marino F. Polarizing Macrophage Functional Phenotype to Foster Cardiac Regeneration. Int J Mol Sci 2023; 24:10747. [PMID: 37445929 DOI: 10.3390/ijms241310747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
There is an increasing interest in understanding the connection between the immune and cardiovascular systems, which are highly integrated and communicate through finely regulated cross-talking mechanisms. Recent evidence has demonstrated that the immune system does indeed have a key role in the response to cardiac injury and in cardiac regeneration. Among the immune cells, macrophages appear to have a prominent role in this context, with different subtypes described so far that each have a specific influence on cardiac remodeling and repair. Similarly, there are significant differences in how the innate and adaptive immune systems affect the response to cardiac damage. Understanding all these mechanisms may have relevant clinical implications. Several studies have already demonstrated that stem cell-based therapies support myocardial repair. However, the exact role that cardiac macrophages and their modulation may have in this setting is still unclear. The current need to decipher the dual role of immunity in boosting both heart injury and repair is due, at least for a significant part, to unresolved questions related to the complexity of cardiac macrophage phenotypes. The aim of this review is to provide an overview on the role of the immune system, and of macrophages in particular, in the response to cardiac injury and to outline, through the modulation of the immune response, potential novel therapeutic strategies for cardiac regeneration.
Collapse
Affiliation(s)
- Claudia Molinaro
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Jolanda Sabatino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Nadia Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy
| | - Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| |
Collapse
|
30
|
Danziger R, Fuchs DT, Koronyo Y, Rentsendorj A, Sheyn J, Hayden EY, Teplow DB, Black KL, Fuchs S, Bernstein KE, Koronyo-Hamaoui M. The effects of enhancing angiotensin converting enzyme in myelomonocytes on ameliorating Alzheimer's-related disease and preserving cognition. Front Physiol 2023; 14:1179315. [PMID: 37427403 PMCID: PMC10326285 DOI: 10.3389/fphys.2023.1179315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
This review examines the role of angiotensin-converting enzyme (ACE) in the context of Alzheimer's disease (AD) and its potential therapeutic value. ACE is known to degrade the neurotoxic 42-residue long alloform of amyloid β-protein (Aβ42), a peptide strongly associated with AD. Previous studies in mice, demonstrated that targeted overexpression of ACE in CD115+ myelomonocytic cells (ACE10 models) improved their immune responses to effectively reduce viral and bacterial infection, tumor growth, and atherosclerotic plaque. We further demonstrated that introducing ACE10 myelomonocytes (microglia and peripheral monocytes) into the double transgenic APPSWE/PS1ΔE9 murine model of AD (AD+ mice), diminished neuropathology and enhanced the cognitive functions. These beneficial effects were dependent on ACE catalytic activity and vanished when ACE was pharmacologically blocked. Moreover, we revealed that the therapeutic effects in AD+ mice can be achieved by enhancing ACE expression in bone marrow (BM)-derived CD115+ monocytes alone, without targeting central nervous system (CNS) resident microglia. Following blood enrichment with CD115+ ACE10-monocytes versus wild-type (WT) monocytes, AD+ mice had reduced cerebral vascular and parenchymal Aβ burden, limited microgliosis and astrogliosis, as well as improved synaptic and cognitive preservation. CD115+ ACE10-versus WT-monocyte-derived macrophages (Mo/MΦ) were recruited in higher numbers to the brains of AD+ mice, homing to Aβ plaque lesions and exhibiting a highly Aβ-phagocytic and anti-inflammatory phenotype (reduced TNFα/iNOS and increased MMP-9/IGF-1). Moreover, BM-derived ACE10-Mo/MΦ cultures had enhanced capability to phagocytose Aβ42 fibrils, prion-rod-like, and soluble oligomeric forms that was associated with elongated cell morphology and expression of surface scavenger receptors (i.e., CD36, Scara-1). This review explores the emerging evidence behind the role of ACE in AD, the neuroprotective properties of monocytes overexpressing ACE and the therapeutic potential for exploiting this natural mechanism for ameliorating AD pathogenesis.
Collapse
Affiliation(s)
- Ron Danziger
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical center, Los Angeles, CA, United States
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical center, Los Angeles, CA, United States
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical center, Los Angeles, CA, United States
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical center, Los Angeles, CA, United States
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical center, Los Angeles, CA, United States
| | - Eric Y. Hayden
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer’s Disease Research at UCLA, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, United States
| | - David B. Teplow
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer’s Disease Research at UCLA, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, United States
| | - Keith L. Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical center, Los Angeles, CA, United States
| | - Sebastien Fuchs
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Kenneth E. Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical center, Los Angeles, CA, United States
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
31
|
Kozuch AJ, Petukhov PA, Fagyas M, Popova IA, Lindeblad MO, Bobkov AP, Kamalov AA, Toth A, Dudek SM, Danilov SM. Urinary ACE Phenotyping as a Research and Diagnostic Tool: Identification of Sex-Dependent ACE Immunoreactivity. Biomedicines 2023; 11:953. [PMID: 36979933 PMCID: PMC10045976 DOI: 10.3390/biomedicines11030953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Angiotensin-converting enzyme (ACE) is highly expressed in renal proximal tubules, but ACE activity/levels in the urine are at least 100-fold lower than in the blood. Decreased proximal tubular ACE has been associated with renal tubular damage in both animal models and clinical studies. Because ACE is shed into urine primarily from proximal tubule epithelial cells, its urinary ACE measurement may be useful as an index of tubular damage. OBJECTIVE AND METHODOLOGY We applied our novel approach-ACE phenotyping-to characterize urinary ACE in volunteer subjects. ACE phenotyping includes (1) determination of ACE activity using two substrates (ZPHL and HHL); (2) calculation of the ratio of hydrolysis of the two substrates (ZPHL/HHL ratio); (3) quantification of ACE immunoreactive protein levels; and (4) fine mapping of local ACE conformation with mAbs to ACE. PRINCIPAL FINDINGS In normal volunteers, urinary ACE activity was 140-fold less than in corresponding plasma/serum samples and did not differ between males and females. However, urinary ACE immunoreactivity (normalized binding of 25 mAbs to different epitopes) was strongly sex-dependent for the several mAbs tested, an observation likely explained by differences in tissue ACE glycosylation/sialylation between males and females. Urinary ACE phenotyping also allowed the identification of ACE outliers. In addition, daily variability of urinary ACE has potential utility as a feedback marker for dieting individuals pursuing weight loss. CONCLUSIONS/SIGNIFICANCE Urinary ACE phenotyping is a promising new approach with potential clinical significance to advance precision medicine screening techniques.
Collapse
Affiliation(s)
- Alexander J. Kozuch
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, CSB 915, MC 719, 840 S. Wood Ave., Chicago, IL 60612, USA
| | - Pavel A. Petukhov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, 833 S Wood St, Chicago, IL 60612, USA
| | - Miklos Fagyas
- Division of Clinical Physiology, Department of Cardiology, University of Debrecen, Nagyerdei krt. 94, 4032 Debrecen, Hungary
| | - Isolda A. Popova
- Toxicology Research Laboratory, University of Illinois at Chicago, 840 S. Wood Ave., Chicago, IL 60612, USA
| | - Matthew O. Lindeblad
- Toxicology Research Laboratory, University of Illinois at Chicago, 840 S. Wood Ave., Chicago, IL 60612, USA
| | | | | | - Attila Toth
- Division of Clinical Physiology, Department of Cardiology, University of Debrecen, Nagyerdei krt. 94, 4032 Debrecen, Hungary
| | - Steven M. Dudek
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, CSB 915, MC 719, 840 S. Wood Ave., Chicago, IL 60612, USA
| | - Sergei M. Danilov
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, CSB 915, MC 719, 840 S. Wood Ave., Chicago, IL 60612, USA
- Medical Center, Moscow University, Moscow 119435, Russia
| |
Collapse
|
32
|
Suhail H, Peng H, Xu J, Sabbah HN, Matrougui K, Liao TD, Ortiz PA, Bernstein KE, Rhaleb NE. Knockout of ACE-N facilitates improved cardiac function after myocardial infarction. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 3:100024. [PMID: 36778784 PMCID: PMC9910327 DOI: 10.1016/j.jmccpl.2022.100024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Angiotensin-converting enzyme (ACE) hydrolyzes N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) into inactive fragments through its N-terminal site (ACE-N). We previously showed that Ac-SDKP mediates ACE inhibitors' cardiac effects. Whether increased bioavailability of endogenous Ac-SDKP caused by knocking out ACE-N also improves cardiac function in myocardial infarction (MI)-induced heart failure (HF) is unknown. Wild-type (WT) and ACE-N knockout (ACE-NKO) mice were subjected to MI by ligating the left anterior descending artery and treated with vehicle or Ac-SDKP (1.6 mg/kg/day, s.c.) for 5 weeks, after which echocardiography was performed and left ventricles (LV) were harvested for histology and molecular biology studies. ACE-NKO mice showed increased plasma Ac-SDKP concentrations in both sham and MI group compared to WT. Exogenous Ac-SDKP further increased its circulating concentrations in WT and ACE-NKO. Shortening (SF) and ejection (EF) fractions were significantly decreased in both WT and ACE-NKO mice post-MI, but ACE-NKO mice exhibited significantly lesser decrease. Exogenous Ac-SDKP ameliorated cardiac function post-MI only in WT but failed to show any additive improvement in ACE-NKO mice. Sarcoendoplasmic reticulum calcium transport ATPase (SERCA2), a marker of cardiac function and calcium homeostasis, was significantly decreased in WT post-MI but rescued with Ac-SDKP, whereas ACE-NKO mice displayed less loss of SERCA2 expression. Our study demonstrates that gene deletion of ACE-N resulted in improved LV cardiac function in mice post-MI, which is likely mediated by increased circulating Ac-SDKP and minimally reduced expression of SERCA2. Thus, future development of specific and selective inhibitors for ACE-N could represent a novel approach to increase endogenous Ac-SDKP toward protecting the heart from post-MI remodeling.
Collapse
Affiliation(s)
- Hamid Suhail
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Hongmei Peng
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Jiang Xu
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
- Division of Cardiovascular Medicine, Department of
Internal Medicine, Henry Ford Health, Detroit, MI 48202, USA
| | - Hani N. Sabbah
- Division of Cardiovascular Medicine, Department of
Internal Medicine, Henry Ford Health, Detroit, MI 48202, USA
| | - Khalid Matrougui
- Department of Physiology Sciences, Eastern Virginia
Medical School, Norfolk, VA 23501, USA
| | - Tang-Dong Liao
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Pablo A. Ortiz
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University, Detroit,
MI 48201, USA
| | - Kenneth E. Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical
Center, Los Angeles, CA, USA
| | - Nour-Eddine Rhaleb
- Department of Internal Medicine, Hypertension and Vascular
Research Division, Henry Ford Hospital, Detroit, MI 48202, USA
- Department of Physiology, Wayne State University, Detroit,
MI 48201, USA
| |
Collapse
|
33
|
Danilov SM, Jain MS, A. Petukhov P, Kurilova OV, Ilinsky VV, Trakhtman PE, Dadali EL, Samokhodskaya LM, Kamalov AA, Kost OA. Blood ACE Phenotyping for Personalized Medicine: Revelation of Patients with Conformationally Altered ACE. Biomedicines 2023; 11:biomedicines11020534. [PMID: 36831070 PMCID: PMC9953529 DOI: 10.3390/biomedicines11020534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Background: The angiotensin-converting enzyme (ACE) metabolizes a number of important peptides participating in blood pressure regulation and vascular remodeling. Elevated blood ACE is a marker for granulomatous diseases and elevated ACE expression in tissues is associated with increased risk of cardiovascular diseases. Objective and Methodology: We applied a novel approach -ACE phenotyping-to find a reason for conformationally impaired ACE in the blood of one particular donor. Similar conformationally altered ACEs were detected previously in 2-4% of the healthy population and in up to 20% of patients with uremia, and were characterized by significant increase in the rate of angiotensin I hydrolysis. Principal findings: This donor has (1) significantly increased level of endogenous ACE inhibitor in plasma with MW less than 1000; (2) increased activity toward angiotensin I; (3) M71V mutation in ABCG2 (membrane transporter for more than 200 compounds, including bilirubin). We hypothesize that this patient may also have the decreased level of free bilirubin in plasma, which normally binds to the N domain of ACE. Analysis of the local conformation of ACE in plasma of patients with Gilbert and Crigler-Najjar syndromes allowed us to speculate that binding of mAbs 1G12 and 6A12 to plasma ACE could be a natural sensor for estimation of free bilirubin level in plasma. Totally, 235 human plasma/sera samples were screened for conformational changes in soluble ACE. Conclusions/Significance: ACE phenotyping of plasma samples allows us to identify individuals with conformationally altered ACE. This type of screening has clinical significance because this conformationally altered ACE could not only result in the enhancement of the level of angiotensin II but could also serve as an indicator of free bilirubin levels.
Collapse
Affiliation(s)
- Sergei M. Danilov
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois, Chicago, IL 60607, USA
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ 85721, USA
- Medical Center, Lomonosov Moscow State University, 119992 Moscow, Russia
- Correspondence:
| | - Mark S. Jain
- Medical Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Pavel A. Petukhov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL 60612, USA
| | - Olga V. Kurilova
- Medical Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | | | - Pavel E. Trakhtman
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia
| | | | | | - Armais A. Kamalov
- Medical Center, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Olga A. Kost
- Chemistry Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
34
|
Bueno V, Frasca D. Mini-review: Angiotensin- converting enzyme 1 (ACE1) and the impact for diseases such as Alzheimer's disease, sarcopenia, cancer, and COVID-19. FRONTIERS IN AGING 2023; 4:1117502. [PMID: 36756193 PMCID: PMC9899811 DOI: 10.3389/fragi.2023.1117502] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023]
Abstract
Ageing has been associated with comorbidities, systemic low-grade of inflammation, and immunosenescence. Hypertension is the most common morbidity and anti-hypertensives are used for more than 50%. Angiotensin-converting enzyme 1 inhibitors (ACEi) and angiotensin II receptor blockers (ARB) control blood pressure but also seem to play a role in comorbidities such as Alzheimer's disease, sarcopenia and cancer. The impact of anti-hypertensives in comorbidities is due to the expression of renin-angiotensin system (RAS) in several tissues and body fluids. Angiotensin-converting enzyme 1 (ACE1) has been linked to oxidative stress, metabolism, and inflammation. The levels and activity of ACE1 are under genetic control and polymorphisms have been correlated with susceptibility to Alzheimer's disease. In addition, some results found that ACEi and ARB users present delayed cognitive decline and reduced risk of dementia. Regarding to sarcopenia, RAS has been linked to the catabolic and anabolic pathways for muscle mass maintenance. In some studies, older adults using ACEi were highly benefited by exercise training. In cancer, RAS and its products have been shown to play a role since their inhibition in animal models modulates tumor microenvironment and improves the delivery of chemotherapy drugs. Clinically, the incidence of colorectal cancer is reduced in patients using ACEi and ARB. During the pandemic COVID-19 it was found that ACE2 receptor plays a role in the entry of SARS-CoV-2 into the host cell. ACE1 genotypes have been linked to an increased risk for COVID-19 and severe disease. In some studies COVID-19 patients taking ARB or ACEi presented better outcome.
Collapse
Affiliation(s)
- Valquiria Bueno
- Department of Microbiology Immunology and Parasitology, UNIFESP Federal University of São Paulo, São Paulo, Brazil
| | - Daniela Frasca
- Department of Immunology, University of Miami, Miami, FL, United States
| |
Collapse
|
35
|
Stanković M, Đorđević V, Tomović A, Nagorni-Obradović L, Petrović-Stanojević N, Kovač M, Radojković D. Interactions of the eNOS and ACE genes and cigarette smoking in chronic obstructive pulmonary disease. J Med Biochem 2023; 42:94-104. [PMID: 36819141 PMCID: PMC9920871 DOI: 10.5937/jomb0-34017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a complex disorder with unexplained heritability. Interactions of genetic and environmental factors are thought to be crucial in COPD. So, we aim to examine interactions of the endothelial nitric oxide synthase (eNOS) and angiotensin converting enzyme (ACE) genes and cigarette smoking in COPD. Methods The eNOS G 894T and ACE ID variants were analyzed in 122 COPD patients and 200 controls from Serbia. The effect of the variants on COPD was assessed by logistic regression. Interactions between eNOS, ACE and cigarette smoking in COPD were evaluated using a case-control model. Interaction between the genes was analyzed in silico. Results No effect of the eNOS G 894T and ACE ID variants on COPD was found in our study. Gene-gene interaction between the eN OS T T and A CE D was identified (p=0.033) in COPD. The interaction is realized within the complex network of biochemical pathways. Gene-environment interactions between the eNOS T and cigarette smoking (p=0.013), and the ACE II and cigarette smoking (p=0.009) were detected in COPD in our study. Conclusions This is the first research to reveal interactions of the eNOS and ACE genes and cigarette smoking in COPD progressing our understanding of COPD heritability and contributing to the development of appropriate treatments.
Collapse
Affiliation(s)
- Marija Stanković
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade
| | - Valentina Đorđević
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade
| | - Andrija Tomović
- Novartis Pharma Services Inc. Representative Office, Sofia, Bulgaria
| | | | | | - Mirjana Kovač
- University of Belgrade, Faculty of Medicine, Belgrade
| | - Dragica Radojković
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade
| |
Collapse
|
36
|
Bueno V, Destro PH, Teixeira D, Frasca D. Angiotensin Converting Enzyme 1 Expression in the Leukocytes of Adults Aged 64 to 67 Years. JMIRX MED 2023; 4:e45220. [PMID: 37725526 PMCID: PMC10414256 DOI: 10.2196/45220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 09/21/2023]
Abstract
The renin angiotensin system is composed of several enzymes and substrates on which angiotensin converting enzyme (ACE) 1 and renin act to produce angiotensin II. ACE1 and its substrates control blood pressure, affect cardiovascular and renal function, hematopoiesis, reproduction, and immunity. The increased expression of ACE1 has been observed in human monocytes during congestive heart failure and abdominal aortic aneurysm. Moreover, T lymphocytes from individuals with hypertension presented increased expression of ACE1 after in vitro stimulation with angiotensin II (ATII) with the highest ACE1 expression observed in individuals with hypertension with low-grade inflammation. Our group and others have shown that aging is associated with comorbidities, chronic inflammation, and immunosenescence, but there is a lack of data about ACE1 expression on immune cells during the aging process. Therefore, our aim was to evaluate the levels of ACE1 expression in nonlymphoid cells compared to lymphoid that in cells in association with the immunosenescence profile in adults older than 60 years. Cryopreserved peripheral blood mononuclear cells obtained from blood samples were used. Cells were stained with monoclonal antibodies and evaluated via flow cytometry. We found that ACE1 was expressed in 56.9% of nonlymphocytes and in more than 90% of lymphocytes (all phenotypes). All donors exhibited characteristics of immunosenescence, as evaluated by low frequencies of naïve CD4+ and CD8+ T cells, high frequencies of effector memory re-expressing CD45RA CD8+ T cells, and double-negative memory B cells. These findings, in addition to the increased C-reactive protein levels, are intriguing questions for the study of ACE1, inflammaging, immunosenescence, and perspectives for drug development or repurposing (Reviewed by the Plan P #PeerRef Community).
Collapse
Affiliation(s)
- Valquiria Bueno
- Division of Immunology, Department of Microbiology Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Pedro Henrique Destro
- Division of Immunology, Department of Microbiology Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Daniela Teixeira
- Division of Immunology, Department of Microbiology Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Daniela Frasca
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
37
|
Peptide inhibitors of angiotensin-I converting enzyme based on angiotensin (1–7) with selectivity for the C-terminal domain. Bioorg Chem 2022; 129:106204. [DOI: 10.1016/j.bioorg.2022.106204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/18/2022]
|
38
|
Cozier GE, Newby EC, Schwager SLU, Isaac RE, Sturrock ED, Acharya KR. Structural basis for the inhibition of human angiotensin-1 converting enzyme by fosinoprilat. FEBS J 2022; 289:6659-6671. [PMID: 35653492 PMCID: PMC9796954 DOI: 10.1111/febs.16543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 01/07/2023]
Abstract
Human angiotensin I-converting enzyme (ACE) has two isoforms, somatic ACE (sACE) and testis ACE (tACE). The functions of sACE are widespread, with its involvement in blood pressure regulation most extensively studied. sACE is composed of an N-domain (nACE) and a C-domain (cACE), both catalytically active but have significant structural differences, resulting in different substrate specificities. Even though ACE inhibitors are used clinically, they need much improvement because of serious side effects seen in patients (~ 25-30%) with long-term treatment due to nonselective inhibition of nACE and cACE. Investigation into the distinguishing structural features of each domain is therefore of vital importance for the development of domain-specific inhibitors with minimal side effects. Here, we report kinetic data and high-resolution crystal structures of both nACE (1.75 Å) and cACE (1.85 Å) in complex with fosinoprilat, a clinically used inhibitor. These structures allowed detailed analysis of the molecular features conferring domain selectivity by fosinoprilat. Particularly, altered hydrophobic interactions were observed to be a contributing factor. These experimental data contribute to improved understanding of the structural features that dictate ACE inhibitor domain selectivity, allowing further progress towards designing novel 2nd-generation domain-specific potent ACE inhibitors suitable for clinical administration, with a variety of potential future therapeutic benefits. DATABASE: The atomic coordinates and structure factors for nACE-fosinoprilat and cACE-fosinoprilat structures have been deposited with codes 7Z6Z and 7Z70, respectively, in the RCSB Protein Data Bank, www.pdb.org.
Collapse
Affiliation(s)
| | - Emma C. Newby
- Department of Biology and BiochemistryUniversity of BathUK
| | - Sylva L. U. Schwager
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownSouth Africa
| | | | - Edward D. Sturrock
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownSouth Africa
| | | |
Collapse
|
39
|
Zheng W, Tian E, Liu Z, Zhou C, Yang P, Tian K, Liao W, Li J, Ren C. Small molecule angiotensin converting enzyme inhibitors: A medicinal chemistry perspective. Front Pharmacol 2022; 13:968104. [PMID: 36386190 PMCID: PMC9664202 DOI: 10.3389/fphar.2022.968104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/17/2022] [Indexed: 10/07/2023] Open
Abstract
Angiotensin-converting enzyme (ACE), a zinc metalloprotein, is a central component of the renin-angiotensin system (RAS). It degrades bradykinin and other vasoactive peptides. Angiotensin-converting-enzyme inhibitors (ACE inhibitors, ACEIs) decrease the formation of angiotensin II and increase the level of bradykinin, thus relaxing blood vessels as well as reducing blood volume, lowering blood pressure and reducing oxygen consumption by the heart, which can be used to prevent and treat cardiovascular diseases and kidney diseases. Nevertheless, ACEIs are associated with a range of adverse effects such as renal insufficiency, which limits their use. In recent years, researchers have attempted to reduce the adverse effects of ACEIs by improving the selectivity of ACEIs for structural domains based on conformational relationships, and have developed a series of novel ACEIs. In this review, we have summarized the research advances of ACE inhibitors, focusing on the development sources, design strategies and analysis of structure-activity relationships and the biological activities of ACE inhibitors.
Collapse
Affiliation(s)
- Wenyue Zheng
- Departments of Obstetrics & Gynecology and Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Health Management Center, West China Second University Hospital, Chengdu, China
| | - Erkang Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhen Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changhan Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pei Yang
- Departments of Obstetrics & Gynecology and Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Health Management Center, West China Second University Hospital, Chengdu, China
| | - Keyue Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Juan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People’s Hospital, Chengdu, China
| |
Collapse
|
40
|
Abdou MM, Dong D, O’Neill PM, Amigues E, Matziari M. Design, Synthesis, and Study of a Novel RXPA380- Proline Hybrid ( RXPA380-P) as an Antihypertensive Agent. ACS OMEGA 2022; 7:35035-35043. [PMID: 36211060 PMCID: PMC9535653 DOI: 10.1021/acsomega.2c03813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/02/2022] [Indexed: 06/12/2023]
Abstract
In drug discovery, molecular modification over the lead molecule is often crucial for the development of a drug. Herein, we report the molecular hybridization design of a novel RXPA380-proline hybrid via linking the parent compound, phosphinic peptide RXPA380, with a proline analogue. The presented synthetic route is straightforward and produces the desired product RXPA380-P in moderate yield. The C- and N-domain constructs of the angiotensin-converting enzyme of RXPA380-P appeared to be poor inhibitors of ACE as compared to the parent compound RXPA380.
Collapse
Affiliation(s)
- Moaz M. Abdou
- Egyptian
Petroleum Research Institute, Nasr City, P.O. Cairo 11727, Egypt
| | - Dewen Dong
- Changchun
Institute of Applied Chemistry, Chinese
Academy of Sciences, Changchun 130022, China
| | - Paul M. O’Neill
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Eric Amigues
- Department
of Chemistry, Xi’an Jiaotong Liverpool
University, Suzhou 215123, PR China
| | - Magdalini Matziari
- Department
of Chemistry, Xi’an Jiaotong Liverpool
University, Suzhou 215123, PR China
| |
Collapse
|
41
|
Saito S, Tatsumoto N, Cao DY, Nosaka N, Nishi H, Leal DN, Bernstein E, Shimada K, Arditi M, Bernstein KE, Yamashita M. Overexpressed angiotensin-converting enzyme in neutrophils suppresses glomerular damage in crescentic glomerulonephritis. Am J Physiol Renal Physiol 2022; 323:F411-F424. [PMID: 35979968 PMCID: PMC9484997 DOI: 10.1152/ajprenal.00067.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/22/2022] [Accepted: 08/13/2022] [Indexed: 11/22/2022] Open
Abstract
While angiotensin-converting enzyme (ACE) regulates blood pressure by producing angiotensin II as part of the renin-angiotensin system, we recently reported that elevated ACE in neutrophils promotes an effective immune response and increases resistance to infection. Here, we investigate if such neutrophils protect against renal injury in immune complex (IC)-mediated crescentic glomerulonephritis (GN) through complement. Nephrotoxic serum nephritis (NTN) was induced in wild-type and NeuACE mice that overexpress ACE in neutrophils. Glomerular injury of NTN in NeuACE mice was attenuated with much less proteinuria, milder histological injury, and reduced IC deposits, but presented with more glomerular neutrophils in the early stage of the disease. There were no significant defects in T and B cell functions in NeuACE mice. NeuACE neutrophils exhibited enhanced IC uptake with elevated surface expression of FcγRII/III and complement receptor CR1/2. IC uptake in neutrophils was enhanced by NeuACE serum containing elevated complement C3b. Given no significant complement activation by ACE, this suggests that neutrophil ACE indirectly preactivates C3 and that the C3b-CR1/2 axis and elevated FcγRII/III play a central role in IC elimination by neutrophils, resulting in reduced glomerular injury. The present study identified a novel renoprotective role of ACE in glomerulonephritis; elevated neutrophilic ACE promotes elimination of locally formed ICs in glomeruli via C3b-CR1/2 and FcγRII/III, ameliorating glomerular injury.NEW & NOTEWORTHY We studied immune complex (IC)-mediated crescentic glomerulonephritis in NeuACE mice that overexpress ACE only in neutrophils. Such mice show no significant defects in humoral immunity but strongly resist nephrotoxic serum nephritis (less proteinuria, milder histological damage, reduced IC deposits, and more glomerular neutrophils). NeuACE neutrophils enhanced IC uptake via increased surface expression of CR1/2 and FcgRII/III, as well as elevated serum complement C3b. These results suggest neutrophil ACE as a novel approach to reducing glomerulonephritis.
Collapse
Affiliation(s)
- Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Narihito Tatsumoto
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Duo-Yao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Nobuyuki Nosaka
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California
| | - Hiroshi Nishi
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Daniel N Leal
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ellen Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kenichi Shimada
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Moshe Arditi
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kenneth E Bernstein
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Michifumi Yamashita
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
42
|
Danilov SM, Kurilova OV, Sinitsyn VE, Kamalov AA, Garcia JGN, Dudek SM. Predictive potential of ACE phenotyping in extrapulmonary sarcoidosis. Respir Res 2022; 23:211. [PMID: 35996109 PMCID: PMC9396819 DOI: 10.1186/s12931-022-02145-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/15/2022] [Indexed: 01/08/2023] Open
Abstract
Elevated ACE expression in tissues (reflected by blood ACE levels) is associated with increased risk of cardiovascular diseases and is also a marker for granulomatous diseases. We developed a new approach for characterization of ACE status in the blood—ACE phenotyping and established normal values of ACE levels 50–150% of control pooled plasma. ACE phenotyping was performed in citrated plasma of 120 patients with known interstitial lung diseases. In the 1st set of 100 patients we found 22 patients with ACE levels > 150%; ACE phenotyping also objectively identified the presence of ACE inhibitors in the plasma of 15 patients. After excluding these patients and patient with ACE mutation that increases ACE shedding, 17 patients were identified as a suspicious for systemic sarcoidosis based on elevation of blood ACE (> 150% of mean). A new parameter that we have established–ACE immunoreactivity (with mAb 9B9)—allowed us to detect 22 patients with decreased values (< 80%) of this parameter, which may indicate the presence of ACE in the blood that originates from macrophages/dendritic cells of granulomas. In the remaining 20 patients, this new parameter (mAbs binding/activity ratio) was calculated using 3 mAbs (9B9, 3A5 and i1A8—having overlapping epitopes), and 8 patients were identified as having decreases in this parameter, thus increasing dramatically the sensitivity for detection of patients with systemic sarcoidosis. Whole body PET scan confirmed extrapulmonary granulomas in some patients with lower immunoreactivity towards anti-ACE mAbs. ACE phenotyping has novel potential to noninvasively detect patients with systemic sarcoidosis.
Collapse
Affiliation(s)
- Sergei M Danilov
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, CSB 915, MC 719, 840 S. Wood Ave., Chicago, IL, 60612, USA. .,Medical Center, Moscow University, Moscow, Russia. .,University of Arizona Health Sciences, Tucson, AZ, USA.
| | | | | | | | | | - Steven M Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, CSB 915, MC 719, 840 S. Wood Ave., Chicago, IL, 60612, USA
| |
Collapse
|
43
|
Exploring the Impact of ACE Inhibition in Immunity and Disease. J Renin Angiotensin Aldosterone Syst 2022; 2022:9028969. [PMID: 36016727 PMCID: PMC9371878 DOI: 10.1155/2022/9028969] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) is a zinc-dependent dipeptidyl carboxypeptidase and is crucial in the renin-angiotensin-aldosterone system (RAAS) but also implicated in immune regulation. Intrinsic ACE has been detected in several immune cell populations, including macrophages and neutrophils, where its overexpression results in enhanced bactericidal and antitumour responses, independent of angiotensin II. With roles in antigen presentation and inflammation, the impact of ACE inhibitors must be explored to understand how ACE inhibition may impact our ability to clear infections or malignancy, particularly in the wake of the coronavirus (SARS-CoV2) pandemic and as antibiotic resistance grows. Patients using ACE inhibitors may be more at risk of postsurgical complications as ACE inhibition in human neutrophils results in decreased ROS and phagocytosis whilst angiotensin receptor blockers (ARBs) have no effect. In contrast, ACE is also elevated in certain autoimmune diseases such as rheumatoid arthritis and lupus, and its inhibition benefits patient outcome where inflammatory immune cells are overactive. Although the ACE autoimmune landscape is changing, some studies have conflicting results and require further input. This review seeks to highlight the need for further research covering ACE inhibitor therapeutics and their potential role in improving autoimmune conditions, cancer, or how they may contribute to immunocompromise during infection and neurodegenerative diseases. Understanding ACE inhibition in immune cells is a developing field that will alter how ACE inhibitors are designed in future and aid in developing therapeutic interventions.
Collapse
|
44
|
Sontag F, Suvakov S, Garovic VD. Soluble urinary somatic angiotensin converting enzyme is overexpressed in patients with preeclampsia: a potential new marker for the disease? Hypertens Pregnancy 2022; 41:190-197. [PMID: 35997304 PMCID: PMC9771896 DOI: 10.1080/10641955.2022.2115060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 08/15/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The aim of this study was to identify and quantify urinary Angiotensin-Converting-Enzyme (ACE) in hypertensive disorders of pregnancy. METHODS Urine samples were analyzed by Western blot. Patients were classified into: normotensive pregnancy (N); preeclampsia and superimposed preeclampsia (PE+SPE); and gestational hypertension (GH). RESULTS Somatic ACE protein expression was higher in PE+SPE compared to N and GH. There was a positive correlation between ACE and urinary protein to creatinine ratio, systolic and diastolic blood pressures. CONCLUSION These results indicate ACE overexpression in the urine of preeclamptic patients and suggest that it may be a new marker for the disease.
Collapse
Affiliation(s)
- Fernando Sontag
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, MN USA
- Postgraduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS Brazil
- Postgraduate Program in Translational Medicine, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Sonja Suvakov
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, MN USA
| | - Vesna D Garovic
- Division of Nephrology & Hypertension, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
45
|
Lubbe L, Sewell BT, Woodward JD, Sturrock ED. Cryo-EM reveals mechanisms of angiotensin I-converting enzyme allostery and dimerization. EMBO J 2022; 41:e110550. [PMID: 35818993 PMCID: PMC9379546 DOI: 10.15252/embj.2021110550] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/21/2022] [Accepted: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
Hypertension (high blood pressure) is a major risk factor for cardiovascular disease, which is the leading cause of death worldwide. The somatic isoform of angiotensin I‐converting enzyme (sACE) plays a critical role in blood pressure regulation, and ACE inhibitors are thus widely used to treat hypertension and cardiovascular disease. Our current understanding of sACE structure, dynamics, function, and inhibition has been limited because truncated, minimally glycosylated forms of sACE are typically used for X‐ray crystallography and molecular dynamics simulations. Here, we report the first cryo‐EM structures of full‐length, glycosylated, soluble sACE (sACES1211). Both monomeric and dimeric forms of the highly flexible apo enzyme were reconstructed from a single dataset. The N‐ and C‐terminal domains of monomeric sACES1211 were resolved at 3.7 and 4.1 Å, respectively, while the interacting N‐terminal domains responsible for dimer formation were resolved at 3.8 Å. Mechanisms are proposed for intradomain hinging, cooperativity, and homodimerization. Furthermore, the observation that both domains were in the open conformation has implications for the design of sACE modulators.
Collapse
Affiliation(s)
- Lizelle Lubbe
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Bryan Trevor Sewell
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Electron Microscope Unit, University of Cape Town, Cape Town, South Africa
| | - Jeremy D Woodward
- Electron Microscope Unit, University of Cape Town, Cape Town, South Africa
| | - Edward D Sturrock
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
46
|
Lin H, Geurts F, Hassler L, Batlle D, Mirabito Colafella KM, Denton KM, Zhuo JL, Li XC, Ramkumar N, Koizumi M, Matsusaka T, Nishiyama A, Hoogduijn MJ, Hoorn EJ, Danser AHJ. Kidney Angiotensin in Cardiovascular Disease: Formation and Drug Targeting. Pharmacol Rev 2022; 74:462-505. [PMID: 35710133 PMCID: PMC9553117 DOI: 10.1124/pharmrev.120.000236] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The concept of local formation of angiotensin II in the kidney has changed over the last 10-15 years. Local synthesis of angiotensinogen in the proximal tubule has been proposed, combined with prorenin synthesis in the collecting duct. Binding of prorenin via the so-called (pro)renin receptor has been introduced, as well as megalin-mediated uptake of filtered plasma-derived renin-angiotensin system (RAS) components. Moreover, angiotensin metabolites other than angiotensin II [notably angiotensin-(1-7)] exist, and angiotensins exert their effects via three different receptors, of which angiotensin II type 2 and Mas receptors are considered renoprotective, possibly in a sex-specific manner, whereas angiotensin II type 1 (AT1) receptors are believed to be deleterious. Additionally, internalized angiotensin II may stimulate intracellular receptors. Angiotensin-converting enzyme 2 (ACE2) not only generates angiotensin-(1-7) but also acts as coronavirus receptor. Multiple, if not all, cardiovascular diseases involve the kidney RAS, with renal AT1 receptors often being claimed to exert a crucial role. Urinary RAS component levels, depending on filtration, reabsorption, and local release, are believed to reflect renal RAS activity. Finally, both existing drugs (RAS inhibitors, cyclooxygenase inhibitors) and novel drugs (angiotensin receptor/neprilysin inhibitors, sodium-glucose cotransporter-2 inhibitors, soluble ACE2) affect renal angiotensin formation, thereby displaying cardiovascular efficacy. Particular in the case of the latter three, an important question is to what degree they induce renoprotection (e.g., in a renal RAS-dependent manner). This review provides a unifying view, explaining not only how kidney angiotensin formation occurs and how it is affected by drugs but also why drugs are renoprotective when altering the renal RAS. SIGNIFICANCE STATEMENT: Angiotensin formation in the kidney is widely accepted but little understood, and multiple, often contrasting concepts have been put forward over the last two decades. This paper offers a unifying view, simultaneously explaining how existing and novel drugs exert renoprotection by interfering with kidney angiotensin formation.
Collapse
Affiliation(s)
- Hui Lin
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Frank Geurts
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Luise Hassler
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Daniel Batlle
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Katrina M Mirabito Colafella
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Kate M Denton
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Jia L Zhuo
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Xiao C Li
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Nirupama Ramkumar
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Masahiro Koizumi
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Taiji Matsusaka
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Akira Nishiyama
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Martin J Hoogduijn
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Ewout J Hoorn
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| |
Collapse
|
47
|
Boginskaya I, Safiullin R, Tikhomirova V, Kryukova O, Nechaeva N, Bulaeva N, Golukhova E, Ryzhikov I, Kost O, Afanasev K, Kurochkin I. Human Angiotensin I-Converting Enzyme Produced by Different Cells: Classification of the SERS Spectra with Linear Discriminant Analysis. Biomedicines 2022; 10:biomedicines10061389. [PMID: 35740411 PMCID: PMC9219671 DOI: 10.3390/biomedicines10061389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Angiotensin I-converting enzyme (ACE) is a peptidase widely presented in human tissues and biological fluids. ACE is a glycoprotein containing 17 potential N-glycosylation sites which can be glycosylated in different ways due to post-translational modification of the protein in different cells. For the first time, surface-enhanced Raman scattering (SERS) spectra of human ACE from lungs, mainly produced by endothelial cells, ACE from heart, produced by endothelial heart cells and miofibroblasts, and ACE from seminal fluid, produced by epithelial cells, have been compared with full assignment. The ability to separate ACEs’ SERS spectra was demonstrated using the linear discriminant analysis (LDA) method with high accuracy. The intervals in the spectra with maximum contributions of the spectral features were determined and their contribution to the spectrum of each separate ACE was evaluated. Near 25 spectral features forming three intervals were enough for successful separation of the spectra of different ACEs. However, more spectral information could be obtained from analysis of 50 spectral features. Band assignment showed that several features did not correlate with band assignments to amino acids or peptides, which indicated the carbohydrate contribution to the final spectra. Analysis of SERS spectra could be beneficial for the detection of tissue-specific ACEs.
Collapse
Affiliation(s)
- Irina Boginskaya
- Institute for Theoretical and Applied Electromagnetics RAS, 125412 Moscow, Russia; (R.S.); (I.R.); (K.A.)
- Bakulev Scientific Center for Cardiovascular Surgery, Cardiology Department, 121552 Moscow, Russia; (N.B.); (E.G.)
- Correspondence:
| | - Robert Safiullin
- Institute for Theoretical and Applied Electromagnetics RAS, 125412 Moscow, Russia; (R.S.); (I.R.); (K.A.)
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Victoria Tikhomirova
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (V.T.); (O.K.); (O.K.); (I.K.)
| | - Olga Kryukova
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (V.T.); (O.K.); (O.K.); (I.K.)
| | - Natalia Nechaeva
- Emanuel Institute of Biochemical Physics RAS, 119334 Moscow, Russia;
| | - Naida Bulaeva
- Bakulev Scientific Center for Cardiovascular Surgery, Cardiology Department, 121552 Moscow, Russia; (N.B.); (E.G.)
| | - Elena Golukhova
- Bakulev Scientific Center for Cardiovascular Surgery, Cardiology Department, 121552 Moscow, Russia; (N.B.); (E.G.)
| | - Ilya Ryzhikov
- Institute for Theoretical and Applied Electromagnetics RAS, 125412 Moscow, Russia; (R.S.); (I.R.); (K.A.)
- FMN Laboratory, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Olga Kost
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (V.T.); (O.K.); (O.K.); (I.K.)
| | - Konstantin Afanasev
- Institute for Theoretical and Applied Electromagnetics RAS, 125412 Moscow, Russia; (R.S.); (I.R.); (K.A.)
| | - Ilya Kurochkin
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (V.T.); (O.K.); (O.K.); (I.K.)
- Emanuel Institute of Biochemical Physics RAS, 119334 Moscow, Russia;
| |
Collapse
|
48
|
Cao D, Veiras L, Ahmed F, Shibata T, Bernstein EA, Okwan-Duodu D, Giani JF, Khan Z, Bernstein KE. The non-cardiovascular actions of ACE. Peptides 2022; 152:170769. [PMID: 35182689 PMCID: PMC10405936 DOI: 10.1016/j.peptides.2022.170769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/24/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022]
Abstract
Angiotensin converting enzyme (ACE) is well known for its role producing the vasoconstrictor angiotensin II and ACE inhibitors are commonly used for treating hypertension and cardiovascular disease. However, ACE has many different substrates besides angiotensin I and plays a role in many different physiologic processes. Here, we discuss the role of ACE in the immune response. Several studies in mice indicate that increased expression of ACE by macrophages or neutrophils enhances the ability of these cells to respond to immune challenges such as infection, neoplasm, Alzheimer's disease, and atherosclerosis. Increased expression of ACE induces increased oxidative metabolism with an increase in cell content of ATP. In contrast, ACE inhibitors have the opposite effect, and in both humans and mice, administration of ACE inhibitors reduces the ability of neutrophils to kill bacteria. Understanding how ACE affects the immune response may provide a means to increase immunity in a variety of chronic conditions now not treated through immune manipulation.
Collapse
Affiliation(s)
- DuoYao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles CA 90048, USA
| | - Luciana Veiras
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles CA 90048, USA
| | - Faizan Ahmed
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles CA 90048, USA
| | - Tomohiro Shibata
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles CA 90048, USA
| | - Ellen A Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles CA 90048, USA
| | - Derick Okwan-Duodu
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles CA 90048, USA; Department of Pathology, Cedars-Sinai Medical Center, Los Angeles CA 90048, USA
| | - Jorge F Giani
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles CA 90048, USA
| | - Zakir Khan
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles CA 90048, USA
| | - Kenneth E Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles CA 90048, USA; Department of Pathology, Cedars-Sinai Medical Center, Los Angeles CA 90048, USA
| |
Collapse
|
49
|
Vincent KM, Alrajhi A, Lazier J, Bonin B, Lawrence S, Weiler G, Armour CM. Expanding the clinical spectrum of autosomal-recessive renal tubular dysgenesis: Two siblings with neonatal survival and review of the literature. Mol Genet Genomic Med 2022; 10:e1920. [PMID: 35286024 PMCID: PMC9034669 DOI: 10.1002/mgg3.1920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 01/23/2023] Open
Abstract
Background Autosomal‐recessive renal tubular dysgenesis (AR‐RTD) is a rare genetic disorder caused by defects in the renin‐angiotensin system that manifests as fetal anuria leading to oligohydramnios and Potter sequence. Although the most common outcome is neonatal death from renal failure, pulmonary hypoplasia, and/or refractory arterial hypotension; several cases have been reported that describe survival past the neonatal period. Methods Herein, we report the first family with biallelic ACE variants and more than one affected child surviving past the neonatal period, as well as provide a review of the previously reported 18 cases with better outcomes. Results While both siblings with identical compound heterozygous ACE variants have received different treatments, neither required renal replacement therapy. We show that both vasopressin and fludrocortisone in the neonatal period may provide survival advantages, though outcomes may also be dependent on the type of gene variant, as well as other factors. Conclusion While AR‐RTD is most often a lethal disease in the neonatal period, it is not universally so. A better understanding of the factors affecting survival will help to guide prognostication and medical decision‐making.
Collapse
Affiliation(s)
- Krista M Vincent
- Department of Medical Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada.,University of Ottawa, Ottawa, Ontario, Canada
| | - Afrah Alrajhi
- University of Ottawa, Ottawa, Ontario, Canada.,Department of Obstetrics and Gynecology, Ottawa General Hospital, Ottawa, Ontario, Canada
| | - Joanna Lazier
- Department of Medical Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada.,University of Ottawa, Ottawa, Ontario, Canada
| | - Brigitte Bonin
- University of Ottawa, Ottawa, Ontario, Canada.,Department of Obstetrics and Gynecology, Ottawa General Hospital, Ottawa, Ontario, Canada
| | - Sarah Lawrence
- Division of Endocrinology and Metabolism, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Gabrielle Weiler
- University of Ottawa, Ottawa, Ontario, Canada.,Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Christine M Armour
- Department of Medical Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada.,Prenatal Screening Ontario (PSO), Better Outcomes Registry & Network (BORN) Ontario, Ottawa, Ontario, Canada.,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
50
|
Shukla P, Chopada K, Sakure A, Hati S. Current Trends and Applications of Food-derived Antihypertensive
Peptides for the Management of Cardiovascular Disease. Protein Pept Lett 2022; 29:408-428. [DOI: 10.2174/0929866529666220106100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/26/2021] [Accepted: 11/20/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Food derived Antihypertensive peptides is considered as a natural supplement for controlling the hypertension. Food protein not only serve as a macronutrient but also act as raw material for biosynthesis of physiologically active peptides. Food sources like milk and milk products, animal protein such as meat, chicken, fish, eggs and plant derived proteins from soy, rice, wheat, mushroom, pumpkins contain high amount of antihypertensive peptides. The food derived antihypertensive peptides has ability to supress the action of rennin and Angiotesin converting enzyme (ACE) which is mainly involved in regulation of blood pressure by RAS. The biosynthesis of endothelial nitric oxide synthase is also improved by ACE inhibitory peptides which increase the production of nitric oxide in vascular walls and encourage vasodilation. Interaction between the angiotensin II and its receptor is also inhibited by the peptides which help to reduce hypertension. This review will explore the novel sources and applications of food derived peptides for the management of hypertension.
Collapse
Affiliation(s)
- Pratik Shukla
- Department of Dairy Microbiology, SMC College of Dairy Science, Anand Agricultural University, Anand- 388110,
Gujarat, India
| | - Keval Chopada
- Department of Dairy Microbiology, SMC College of Dairy Science, Anand Agricultural University, Anand- 388110,
Gujarat, India
| | - Amar Sakure
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand- 388110, Gujarat,
India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Anand Agricultural University, Anand- 388110,
Gujarat, India
| |
Collapse
|