1
|
Kim M, Kim J, Tripathi SK, Aswar VR, Gaikwad V, Song J, Kim M, Yu J, Chang TS, Jeong LS. Steric influence of 4'-position substituents and C2-Hexynyl group on A 3AR antagonism in truncated 4'-Thioadenosine derivatives. Bioorg Chem 2025; 159:108359. [PMID: 40101576 DOI: 10.1016/j.bioorg.2025.108359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
A3 adenosine receptor (A3AR) has attracted significant interest due to its therapeutic potential in inflammation, neurodegenerative disorders, and cancer. This study investigates the structure-activity relationships (SAR) of truncated 4'-thioadenosine derivatives with modifications at the 4'- and C2-positions. Alkyl substituents of varying sizes (methyl, ethyl, isopropyl) were introduced at the 4'-position to evaluate steric effects, while C2-propynyl and hexynyl groups were incorporated to explore binding enhancement. The 4'-ethyl derivatives exhibit potent A3AR antagonistic effects, compared to the 4'-methyl series which exhibits partial agonist activity. C2-hexynyl substitution significantly enhanced binding affinity and antagonistic properties. In contrast, 4'-isopropyl derivatives lacked measurable binding, highlighting steric constraints at 4'-position. Docking studies revealed that none of the compounds formed interactions with Thr94, a residue critical for agonistic activity. This lack of interaction likely explains their observed antagonistic behavior, with the 4'-alkyl and C2-hexynyl substitutions appearing to play a significant role in this effect. This work underscores the role of steric bulk at the 4'-position and hydrophobic modifications at the C2-position in modulating A3AR activity, providing valuable insights for designing selective A3AR antagonists.
Collapse
Affiliation(s)
- Minjae Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jina Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sushil K Tripathi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Vikas R Aswar
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Vidyasagar Gaikwad
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiyoon Song
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Meehyein Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Jinha Yu
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Tong-Shin Chang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Future Medicine Co., Ltd, 54 Changup-ro, Sujeong-gu, Seongnam, Gyeonggi-do 13449, Republic of Korea.
| |
Collapse
|
2
|
Liu YL, Zhang Q, Li BQ, Zhang D, Chui RH, Zhang LL, Zhang Q, Ma LY. Progress in the study of anti-Alzheimer's disease activity of pyrimidine-containing bioactive molecules. Eur J Med Chem 2025; 285:117199. [PMID: 39799720 DOI: 10.1016/j.ejmech.2024.117199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 01/15/2025]
Abstract
Pyrimidines are aromatic, heterocyclic organic compounds characterized by a six-membered ring that contains four carbon atoms and two nitrogen atoms. They have been reported to exhibit a variety of biological activities such as antifungal, antiviral, and anti-Parkinsonian effects. Recently, there has been an increased focus on their potential anti-Alzheimer's properties. Several pyrimidine-based drugs and their analogs are currently undergoing various phases of clinical trials, indicating pyrimidine as a promising chemical structure for drug development. Notably, modifications to the pyrimidine structure significantly influence their activity against Alzheimer's disease. For instance, the introduction of heteroatoms into the pyrimidine ring or alternations in the length of the linkage region have been shown to enhance therapeutic efficacy. This review provides a comprehensive overview of pyrimidine derivatives as potential therapeutics for Alzheimer's disease, with a focus on structure-activity relationship (SAR) studies, design strategies, and binding mechanisms. These insights could pave the way for the development of more effective anti-Alzheimer's medications.
Collapse
Affiliation(s)
- Yu-Lin Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Qian Zhang
- Jining First People's Hospital, Jining, 272000, PR China
| | - Bing-Qian Li
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Di Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Rui-Hao Chui
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Lin-Lin Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Qi Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450002, PR China.
| | - Li-Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; China Meheco Topfond Pharmaceutical Co., Key Laboratory of Cardio-cerebrovascular Drug, Zhumadian, 463000, PR China.
| |
Collapse
|
3
|
Parichatikanond W, Duangrat R, Nuamnaichati N, Mangmool S. Role of A 1 adenosine receptor in cardiovascular diseases: Bridging molecular mechanisms with therapeutic opportunities. Exp Mol Pathol 2025; 141:104952. [PMID: 39879680 DOI: 10.1016/j.yexmp.2025.104952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
Adenosine serves as a critical homeostatic regulator, exerting influence over physiological and pathological conditions in the cardiovascular system. During cellular stress, increased extracellular adenosine levels have been implicated in conferring cardioprotective effects through the activation of adenosine receptors with the A1 adenosine receptor subtype showing the highest expression in the heart. A1 adenosine receptor stimulation inhibits adenylyl cyclase activity via heterotrimeric Gi proteins, leading to the activation of distinct downstream effectors involved in cardiovascular homeostasis. While the comprehensive characterization of the pharmacological functions and intracellular signaling pathways associated with the A1 adenosine receptor subtype is still ongoing, this receptor is widely recognized as a crucial pharmacological target for the treatment of various states of cardiovascular diseases (CVDs). In this review, we focus on elucidating signal transduction of A1 adenosine receptor, particularly Gi protein-dependent and -independent pathways, and their relevance to cardiovascular protective effects as well as pathological consequences during cellular and tissue stresses in the cardiovascular system. Additionally, we provide comprehensive updates and detailed insights into a range of A1 adenosine receptor agonists and antagonists, detailing their development and evaluation through preclinical and clinical studies with a specific focus on their potential for the management of CVDs, especially heart diseases.
Collapse
Affiliation(s)
| | - Ratchanee Duangrat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Narawat Nuamnaichati
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Supachoke Mangmool
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
4
|
López-Cano M, Scortichini M, Tosh DK, Salmaso V, Ko T, Salort G, Filgaira I, Soler C, Trauner D, Hernando J, Jacobson KA, Ciruela F. Photoswitchable Diazocine Derivative for Adenosine A 3 Receptor Activation in Psoriasis. J Am Chem Soc 2025; 147:874-879. [PMID: 39680577 PMCID: PMC11726555 DOI: 10.1021/jacs.4c13558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
Incorporating photoisomerizable moieties within drugs offers the possibility of rapid and reversible light-dependent switching between active and inactive configurations. Here, we developed a photoswitchable adenosine A3 receptor (A3R) agonist that confers optical control on this G protein-coupled receptor through noninvasive topical skin irradiation in an animal model of psoriasis. This was achieved by covalently bonding an adenosine-5'-methyluronamide moiety to a diazocine photochrome, whose singular photoswitching properties facilitated repeated interconversion between a thermally stable, biologically inactive Z agonist form and a photoinduced, pharmacologically active E configuration. As a result, our photoswitchable agonist allowed the precise modulation of A3R function both in vitro and in vivo, which led to a clear light-controlled pharmacotherapeutic effect on mouse skin lesions. This breakthrough not only demonstrates the potential of diazocine photoswitches for in vivo photopharmacology but also paves the way for the development of new strategies for skin-related diseases that require localized and temporally controlled drug action.
Collapse
Affiliation(s)
- Marc López-Cano
- Pharmacology
Unit, Department of Pathology and Experimental Therapeutics, Faculty
of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L′Hospitalet de Llobregat 08907, Spain
- Neuropharmacology
and Pain Group, Neuroscience Program, Bellvitge
Biomedical Research Institute, L′Hospitalet de Llobregat 08907, Spain
| | - Mirko Scortichini
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Dilip K. Tosh
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Veronica Salmaso
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Tongil Ko
- Department
of Chemistry, University of Pennsylvania
College of Arts and Sciences, Philadelphia, Pennsylvania 19104, United States
| | - Glòria Salort
- Pharmacology
Unit, Department of Pathology and Experimental Therapeutics, Faculty
of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L′Hospitalet de Llobregat 08907, Spain
- Neuropharmacology
and Pain Group, Neuroscience Program, Bellvitge
Biomedical Research Institute, L′Hospitalet de Llobregat 08907, Spain
| | - Ingrid Filgaira
- Immunology
Unit, Department of Pathology and Experimental Therapeutics, Faculty
of Medicine and Health Sciences, University
of Barcelona, L′Hospitalet
de Llobregat 08907, Spain
- Immunity,
Inflammation and Cancer Group, Oncology Program, Bellvitge Biomedical Research Institute, L′Hospitalet de Llobregat 08907, Spain
| | - Concepció Soler
- Immunology
Unit, Department of Pathology and Experimental Therapeutics, Faculty
of Medicine and Health Sciences, University
of Barcelona, L′Hospitalet
de Llobregat 08907, Spain
- Immunity,
Inflammation and Cancer Group, Oncology Program, Bellvitge Biomedical Research Institute, L′Hospitalet de Llobregat 08907, Spain
| | - Dirk Trauner
- Department
of Chemistry, University of Pennsylvania
College of Arts and Sciences, Philadelphia, Pennsylvania 19104, United States
- Department
of Chemistry, New York University, New York City, New York 10003, United States
| | - Jordi Hernando
- Department
of Chemistry, Autonomous University of Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Kenneth A. Jacobson
- Molecular
Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Francisco Ciruela
- Pharmacology
Unit, Department of Pathology and Experimental Therapeutics, Faculty
of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L′Hospitalet de Llobregat 08907, Spain
- Neuropharmacology
and Pain Group, Neuroscience Program, Bellvitge
Biomedical Research Institute, L′Hospitalet de Llobregat 08907, Spain
| |
Collapse
|
5
|
Cellai I, Filippi S, Comeglio P, Guarnieri G, Acciai G, Cancedda C, Cipriani S, Maseroli E, Rastrelli G, Morelli A, Maggi M, Vignozzi L. Adenosine relaxes vagina smooth muscle through the cyclic guanosine monophosphate- and cyclic guanosine monophosphate-dependent pathways. J Sex Med 2025; 22:14-25. [PMID: 39611580 DOI: 10.1093/jsxmed/qdae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/10/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND In males, adenosine (ADO) is known to relax penile smooth muscles, although its role in the vagina is not yet fully elucidated. AIM This study investigated the effect of ADO on vagina smooth muscle activity, using a validated female Sprague-Dawley rat model. METHODS Contractility studies, using noradrenaline-precontracted vaginal strips, tested the effects of ADORA1/3 antagonists and ADORA2A/2B antagonists and agonists. Increasing doses of ADO were tested after in vivo or in vitro treatment with Nω-nitro-L-arginine-methyl-ester hydrochloride (L-NAME) or with guanylate or adenylate cyclase inhibitors. Immunopositivity for ADORA2A and ADORA2B was assessed, and messenger RNA (mRNA) analysis was performed. Cyclic ADO monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) were quantified both in rat vagina smooth muscle cells (rvSMCs) and in vaginal tissues with increasing doses of ADO. OUTCOMES Demonstrating ADO's role in the relaxing/contractile mechanism in distal vagina smooth muscle. RESULTS All ADO receptors mRNAs were expressed in vaginal tissue, with a prevalent content of ADORA2B. A high expression of genes regulating ADO catabolism (ADK) and de novo synthesis (NT5E) was found. In vaginal strips, ADO induced relaxation with IC50 = 144.7 μM and a flat pseudo-Hill coefficient value = -0.42, indicating an activity on heterogeneous receptors. Blocking ADORA1/3 shifted ADO response to the left and with a steeper slope. ADORA2A/2B agonists showed a higher potency than ADO in inducing relaxation. Immunolocalization confirmed the presence of ADORA2A/2B in vaginal musculature, in the blood vessels endothelium, and in the epithelium. ADO stimulation of vagina tissues induced a significant increase in cAMP and cGMP contents. Experiments on rvSMCs confirmed that ADO time- and dose-dependently stimulated cAMP production in these cells. However, ADORA2A/2B antagonists, although reducing the ADO-induced relaxation, did not completely block it. A similar inhibition was obtained by blocking adenylate cyclase. Overall, these findings suggest that ADO relaxation involves other pathways, eg, nitric oxide (NO)/cGMP. Accordingly, blocking NO formation through L-NAME substantially blunted ADO responsiveness, as it does the block of cGMP formation through 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one. Simultaneous incubation with cGMP and cAMP blockers completely inhibited ADO responsiveness. CLINICAL TRANSLATION The study highlights ADO's role in regulating vaginal smooth muscle activity, suggesting its potential effect on the vagina. STRENGTHS AND LIMITATIONS This is the first study on ADO in the vagina, although the results are preliminary and limited to the rat model. CONCLUSION These results show that ADO acts as a vaginal relaxing modulator through selective activation of receptors involving not only cAMP but also cGMP.
Collapse
Affiliation(s)
- Ilaria Cellai
- Andrology and Gender Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Sandra Filippi
- Interdepartmental Laboratory of Functional and Cellular Pharmacology of Reproduction, Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, 50139, Italy
| | - Paolo Comeglio
- Andrology and Gender Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Giulia Guarnieri
- Section of Human Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, 50134, Italy
| | - Gabriele Acciai
- Andrology and Gender Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
- Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Chiara Cancedda
- Andrology and Gender Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Sarah Cipriani
- Andrology and Gender Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Elisa Maseroli
- Andrology and Gender Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Giulia Rastrelli
- Andrology and Gender Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Annamaria Morelli
- Section of Human Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, 50134, Italy
| | - Mario Maggi
- Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
- I.N.B.B. (Istituto Nazionale Biostrutture e Biosistemi), Rome, 00136, Italy
| | - Linda Vignozzi
- Andrology and Gender Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
- I.N.B.B. (Istituto Nazionale Biostrutture e Biosistemi), Rome, 00136, Italy
| |
Collapse
|
6
|
Kim M, Naik SD, Jarhad DB, Aswar VR, Tripathi SK, Aslam MA, Huh JY, Jeong LS. Stereochemical influence of 4'-methyl substitutions on truncated 4'-thioadenosine derivatives: Impact on A 3 adenosine receptor binding and antagonism. Bioorg Chem 2024; 153:107901. [PMID: 39447347 DOI: 10.1016/j.bioorg.2024.107901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Herein, we investigated the stereochemical effects of 4'-methyl substitution on A3 adenosine receptor (A3AR) ligands by synthesizing and evaluating a series of truncated 4'-thioadenosine derivatives featuring 4'-α-methyl, 4'-β-methyl, and 4',4'-dimethyl substitutions. We successfully synthesized these derivatives, using the stereoselective addition of an organometallic reagent, KSAc-mediated sulfur cyclization, and Vorbrüggen condensation. Binding assays demonstrated that the 4'-β-methyl substitution conferred the highest affinity for A3AR, with compound 1 h exhibiting a Ki = 3.5 nM, followed by the 4',4'-dimethyl and 4'-α-methyl substitutions. Notably, despite the absence of the 5'-OH group, compound 1 h unexpectedly displayed partial agonism. Computational docking studies indicated that compound 1 h, the β-methyl derivative, adopted a South conformation and maintained strong interactions within the receptor, including a critical interaction with Thr94, a residue known to be notable for agonistic effects. Conversely, compound 2 h, the α-methyl derivative, also adopted a South conformation but resulted in a flattened structure that hindered interactions with Thr94 and Asn250. The dimethyl derivative 3 h exhibited steric clashes with Thr94, contributing to a reduction in binding affinity. However, the docking results for 3 h indicated a North conformation, suggesting that the change in sugar conformation due to the additional 4'-methyl group altered the angle between the α-methyl group and the sugar plane, enabling binding despite the increased steric bulk. These findings suggest that not only do the substituents and their stereochemistry influence receptor-ligand interactions, but the conformation and the resulting spatial orientation of the substituents also play a crucial role in modulating receptor-ligand interaction. This stereochemical insight offers a valuable framework for the design of new, selective, and potent A3AR ligands, potentially facilitating the development of novel therapeutics for A3AR-related diseases such as glaucoma, inflammation, and cancer.
Collapse
Affiliation(s)
- Minjae Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Siddhi D Naik
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Government College of Arts Science and Commerce, Khandola Marcela, Goa, India
| | - Dnyandev B Jarhad
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Vikas R Aswar
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Sushil Kumar Tripathi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Muhammad Arif Aslam
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Joo Young Huh
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Future Medicine Co., Ltd, 54 Changup-ro, Sujeong-gu, Seongnam, Gyeonggi-do 13449, Republic of Korea.
| |
Collapse
|
7
|
Kaldjob-Heinrich L, Nuciforo S, Lemke S, Stahl A, Czemmel S, Babaei S, Blukacz L, Meier MA, Zhang Y, Schürch CM, Gonzalez-Menendez I, Woelffing P, Malek NP, Scheble V, Nahnsen S, Claassen M, Templin M, Bösmüller H, Heim MH, Dauch D, Bitzer M. Adenosine Receptor 3 in Liver Cancer: Expression Variability, Epigenetic Modulation, and Enhanced Histone Deacetylase Inhibitor Effects. GASTRO HEP ADVANCES 2024; 4:100590. [PMID: 39911497 PMCID: PMC11795062 DOI: 10.1016/j.gastha.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/13/2024] [Indexed: 02/07/2025]
Abstract
Background and Aims Primary liver cancer, including hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), has low response rates to existing treatments, highlighting the urgent need for novel treatment options. Adenosine A3 receptor (ADORA3) signaling has emerged as a potential target. Namodenoson, an ADORA3 agonist, has shown promise in early clinical trials for HCC. However, further data are required to clarify ADORA3 expression patterns in liver cancer, mechanisms of action, and the potential for combination therapies to inform patient selection for future clinical trials. Methods Patient-derived tissue microarrays and RNA-sequencing were employed to investigate ADORA3 expression. Cellular responses to ADORA3 stimulation and combination treatments were studied in HCC and CCA cell lines and patient-derived organoids (PDOs). Genome-wide RNA-Seq analysis, mRNA analysis, and DigiWest protein profiling were performed. Results Tissue microarray analysis revealed higher ADORA3 expression in nonmalignant samples and a subset of tumors with weak or absent ADORA3 expression. This was supported by RNA sequencing data from The Cancer Genome Atlas and needle biopsy samples. Cell lines and PDOs exhibited antiproliferative effects with the ADORA3 agonist Namodenoson, confirmed by receptor dependency tests with specific antagonists and siRNA experiments. Genome-wide RNA-Seq analysis suggested chromatin remodeling events after ADORA3 stimulation. mRNA expression and DigiWest profiling identified downregulation of histone deacetylases and histone H3 modifications. Combination treatments with different ADORA3 agonists and histone deacetylase inhibitors significantly enhanced antiproliferative effects in almost all selected combinations, supported by investigations in PDOs. Conclusion ADORA3 expression varies considerably in HCC or CCA, ranging from high to absent receptor detection. This observation might help to identify patients for clinical studies. Additionally, Namodenoson's epigenetic modulating activity suggests epigenetic drugs as promising candidates for combination treatment.
Collapse
Affiliation(s)
| | - Sandro Nuciforo
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
- Clinic of Gastroenterology and Hepatology, Clarunis University Center for Gastrointestinal and Liver Diseases Basel, Basel, Switzerland
| | - Steffen Lemke
- Quantitative Biology Center (QBiC), Eberhard-Karls University, Tuebingen, Germany
- M3-Research Center for Malignome, Metabolome and Microbiome, Eberhard-Karls University, Tuebingen, Germany
| | - Aaron Stahl
- NMI, Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Stefan Czemmel
- Quantitative Biology Center (QBiC), Eberhard-Karls University, Tuebingen, Germany
- M3-Research Center for Malignome, Metabolome and Microbiome, Eberhard-Karls University, Tuebingen, Germany
| | - Sepideh Babaei
- Department Internal Medicine I, Eberhard-Karls University, Tuebingen, Germany
- M3-Research Center for Malignome, Metabolome and Microbiome, Eberhard-Karls University, Tuebingen, Germany
| | - Lauriane Blukacz
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - Marie-Anne Meier
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
- Clinic of Gastroenterology and Hepatology, Clarunis University Center for Gastrointestinal and Liver Diseases Basel, Basel, Switzerland
| | - Yizheng Zhang
- Department of Pathology and Neuropathology, Eberhard Karls University, Tübingen, Germany
| | - Christian M. Schürch
- Department of Pathology and Neuropathology, Eberhard Karls University, Tübingen, Germany
- iFIT Cluster of Excellence EXC 2180 ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard-Karls University, Tuebingen, Germany
| | - Irene Gonzalez-Menendez
- Department of Pathology and Neuropathology, Eberhard Karls University, Tübingen, Germany
- iFIT Cluster of Excellence EXC 2180 ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard-Karls University, Tuebingen, Germany
| | - Pascal Woelffing
- iFIT Cluster of Excellence EXC 2180 ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard-Karls University, Tuebingen, Germany
- Department of Medical Oncology and Pneumology, Eberhard-Karls University, Tuebingen, Germany
| | - Nisar P. Malek
- Department Internal Medicine I, Eberhard-Karls University, Tuebingen, Germany
- M3-Research Center for Malignome, Metabolome and Microbiome, Eberhard-Karls University, Tuebingen, Germany
- iFIT Cluster of Excellence EXC 2180 ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard-Karls University, Tuebingen, Germany
- Center for Personalized Medicine, Eberhard-Karls University, Tuebingen, Germany
| | - Veit Scheble
- Department Internal Medicine I, Eberhard-Karls University, Tuebingen, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), Eberhard-Karls University, Tuebingen, Germany
- M3-Research Center for Malignome, Metabolome and Microbiome, Eberhard-Karls University, Tuebingen, Germany
| | - Manfred Claassen
- Department Internal Medicine I, Eberhard-Karls University, Tuebingen, Germany
- M3-Research Center for Malignome, Metabolome and Microbiome, Eberhard-Karls University, Tuebingen, Germany
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- Machine Learning in Science, Excellence Cluster Machine Learning, University of Tübingen, Tübingen, Germany
| | - Markus Templin
- NMI, Natural and Medical Sciences Institute at the University of Tuebingen, Reutlingen, Germany
| | - Hans Bösmüller
- Department of Pathology and Neuropathology, Eberhard Karls University, Tübingen, Germany
| | - Markus H. Heim
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland
- Clinic of Gastroenterology and Hepatology, Clarunis University Center for Gastrointestinal and Liver Diseases Basel, Basel, Switzerland
| | - Daniel Dauch
- iFIT Cluster of Excellence EXC 2180 ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard-Karls University, Tuebingen, Germany
- Department of Medical Oncology and Pneumology, Eberhard-Karls University, Tuebingen, Germany
| | - Michael Bitzer
- Department Internal Medicine I, Eberhard-Karls University, Tuebingen, Germany
- M3-Research Center for Malignome, Metabolome and Microbiome, Eberhard-Karls University, Tuebingen, Germany
- iFIT Cluster of Excellence EXC 2180 ‘Image-Guided and Functionally Instructed Tumor Therapies’, Eberhard-Karls University, Tuebingen, Germany
- Center for Personalized Medicine, Eberhard-Karls University, Tuebingen, Germany
| |
Collapse
|
8
|
Ming Y, Gong Y, Fu X, Ouyang X, Peng Y, Pu W. Small-molecule-based targeted therapy in liver cancer. Mol Ther 2024; 32:3260-3287. [PMID: 39113358 PMCID: PMC11489561 DOI: 10.1016/j.ymthe.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/13/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Liver cancer is one of the most prevalent malignant tumors worldwide. According to the Barcelona Clinic Liver Cancer staging criteria, clinical guidelines provide tutorials to clinical management of liver cancer at their individual stages. However, most patients diagnosed with liver cancer are at advanced stage; therefore, many researchers conduct investigations on targeted therapy, aiming to improve the overall survival of these patients. To date, small-molecule-based targeted therapies are highly recommended (first line: sorafenib and lenvatinib; second line: regorafenib and cabozantinib) by current the clinical guidelines of the American Society of Clinical Oncology, European Society for Medical Oncology, and National Comprehensive Cancer Network. Herein, we summarize the small-molecule-based targeted therapies in liver cancer, including the approved and preclinical therapies as well as the therapies under clinical trials, and introduce their history of discovery, clinical trials, indications, and molecular mechanisms. For drug resistance, the revealed mechanisms of action and the combination therapies are also discussed. In fact, the known small-molecule-based therapies still have limited clinical benefits to liver cancer patients. Therefore, we analyze the current status and give our ideas for the urgent issues and future directions in this field, suggesting clues for novel techniques in liver cancer treatment.
Collapse
Affiliation(s)
- Yue Ming
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuewen Fu
- Jinhua Huanke Environmental Technology Co., Ltd., Jinhua 321000, China
| | - Xinyu Ouyang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China.
| | - Wenchen Pu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
9
|
Gao ZG, Chen W, Gao RR, Li J, Tosh DK, Hanover JA, Jacobson KA. Genetic and functional modulation by agonist MRS5698 and allosteric enhancer LUF6000 at the native A 3 adenosine receptor in HL-60 cells. Purinergic Signal 2024; 20:559-570. [PMID: 38416332 PMCID: PMC11377395 DOI: 10.1007/s11302-024-09992-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
The A3 adenosine receptor (AR) is an important inflammatory and immunological target. However, the underlying mechanisms are not fully understood. Here, we report the gene regulation in HL-60 cells treated acutely with highly selective A3AR agonist MRS5698, positive allosteric modulator (PAM) LUF6000, or both. Both pro- and anti-inflammatory genes, such as IL-1a, IL-1β, and NFκBIZ, are significantly upregulated. During our observations, LUF6000 alone produced a lesser effect, while the MRS5698 + LUF6000 group demonstrated generally greater effects than MRS5698 alone, consistent with allosteric enhancement. The number of genes up- and down-regulated are similar. Pathway analysis highlighted the critical involvement of signaling molecules, including IL-6 and IL-17. Important upstream regulators include IL-1a, IL-1β, TNF-α, NF-κB, etc. PPAR, which modulates eicosanoid metabolism, was highly downregulated by the A3AR agonist. Considering previous pharmacological results and mathematical modeling, LUF6000's small enhancement of genetic upregulation suggested that MRS5698 is a nearly full agonist, which we demonstrated in both cAMP and calcium assays. The smaller effect of LUF6000 on MRS5698 in comparison to its effect on Cl-IB-MECA was shown in both HL-60 cells endogenously expressing the human (h) A3AR and in recombinant hA3AR-expressing CHO cells, consistent with its HL-60 cell genetic regulation patterns. In summary, by using both selective agonists and PAM, we identified genes that are closely relevant to immunity and inflammation to be regulated by A3AR in differentiated HL-60 cells, a cell model of neutrophil function. In addition, we demonstrated the previously uncharacterized allosteric signaling-enhancing effect of LUF6000 in cells endogenously expressing the hA3AR.
Collapse
Affiliation(s)
- Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000, Rockville Pike, Bethesda, MD, 20892, USA.
| | - Weiping Chen
- Genomics Core, NIDDK, National Institutes of Health, 9000, Rockville Pike, Bethesda, MD, 20892, USA
| | - Ray R Gao
- Genomics Core, NIDDK, National Institutes of Health, 9000, Rockville Pike, Bethesda, MD, 20892, USA
| | - Jonathan Li
- Genomics Core, NIDDK, National Institutes of Health, 9000, Rockville Pike, Bethesda, MD, 20892, USA
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000, Rockville Pike, Bethesda, MD, 20892, USA
| | - John A Hanover
- Genomics Core, NIDDK, National Institutes of Health, 9000, Rockville Pike, Bethesda, MD, 20892, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000, Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Huang X, Lan Z, Hu Z. Role and mechanisms of mast cells in brain disorders. Front Immunol 2024; 15:1445867. [PMID: 39253085 PMCID: PMC11381262 DOI: 10.3389/fimmu.2024.1445867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
Mast cells serve as crucial effector cells within the innate immune system and are predominantly localized in the skin, airways, gastrointestinal tract, urinary and reproductive tracts, as well as in the brain. Under physiological conditions, brain-resident mast cells secrete a diverse array of neuro-regulatory mediators to actively participate in neuroprotection. Meanwhile, as the primary source of molecules causing brain inflammation, mast cells also function as the "first responders" in brain injury. They interact with neuroglial cells and neurons to facilitate the release of numerous inflammatory mediators, proteases, and reactive oxygen species. This process initiates and amplifies immune-inflammatory responses in the brain, thereby contributing to the regulation of neuroinflammation and blood-brain barrier permeability. This article provides a comprehensive overview of the potential mechanisms through which mast cells in the brain may modulate neuroprotection and their pathological implications in various neurological disorders. It is our contention that the inhibition of mast cell activation in brain disorders could represent a novel avenue for therapeutic breakthroughs.
Collapse
Affiliation(s)
- Xuanyu Huang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ziwei Lan
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Huang X, Chorianopoulou A, Kalkounou P, Georgiou M, Pousias A, Davies A, Pearce A, Harris M, Lambrinidis G, Marakos P, Pouli N, Kolocouris A, Lougiakis N, Ladds G. Hit-to-Lead Optimization of Heterocyclic Carbonyloxycarboximidamides as Selective Antagonists at Human Adenosine A3 Receptor. J Med Chem 2024; 67:13117-13146. [PMID: 39073853 PMCID: PMC11320584 DOI: 10.1021/acs.jmedchem.4c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Antagonism of the human adenosine A3 receptor (hA3R) has potential therapeutic application. Alchemical relative binding free energy calculations of K18 and K32 suggested that the combination of a 3-(2,6-dichlorophenyl)-isoxazolyl group with 2-pyridinyl at the ends of a carbonyloxycarboximidamide group should improve hA3R affinity. Of the 25 new analogues synthesized, 37 and 74 showed improved hA3R affinity compared to K18 (and K32). This was further improved through the addition of a bromine group to the 2-pyridinyl at the 5-position, generating compound 39. Alchemical relative binding free energy calculations, mutagenesis studies and MD simulations supported the compounds' binding pattern while suggesting that the bromine of 39 inserts deep into the hA3R orthosteric pocket, so highlighting the importance of rigidification of the carbonyloxycarboximidamide moiety. MD simulations highlighted the importance of rigidification of the carbonyloxycarboximidamide, while suggesting that the bromine of 39 inserts deep into the hA3R orthosteric pocket, which was supported through mutagenesis studies 39 also selectively antagonized endogenously expressed hA3R in nonsmall cell lung carcinoma cells, while pharmacokinetic studies indicated low toxicity enabling in vivo evaluation. We therefore suggest that 39 has potential for further development as a high-affinity hA3R antagonist.
Collapse
Affiliation(s)
- Xianglin Huang
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K.
| | - Anna Chorianopoulou
- Laboratory
of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department
of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou 15771, Athens, Greece
| | - Panagoula Kalkounou
- Laboratory
of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department
of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou 15771, Athens, Greece
| | - Maria Georgiou
- Laboratory
of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department
of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou 15771, Athens, Greece
| | - Athanasios Pousias
- Laboratory
of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department
of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou 15771, Athens, Greece
| | - Amy Davies
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K.
| | - Abigail Pearce
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K.
| | - Matthew Harris
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K.
| | - George Lambrinidis
- Laboratory
of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department
of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou 15771, Athens, Greece
| | - Panagiotis Marakos
- Laboratory
of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department
of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou 15771, Athens, Greece
| | - Nicole Pouli
- Laboratory
of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department
of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou 15771, Athens, Greece
| | - Antonios Kolocouris
- Laboratory
of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department
of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou 15771, Athens, Greece
| | - Nikolaos Lougiakis
- Laboratory
of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department
of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou 15771, Athens, Greece
| | - Graham Ladds
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K.
| |
Collapse
|
12
|
Venugopala KN, Buccioni M. Current Understanding of the Role of Adenosine Receptors in Cancer. Molecules 2024; 29:3501. [PMID: 39124905 PMCID: PMC11313767 DOI: 10.3390/molecules29153501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Cancer, a complex array of diseases, involves the unbridled proliferation and dissemination of aberrant cells in the body, forming tumors that can infiltrate neighboring tissues and metastasize to distant sites. With over 200 types, each cancer has unique attributes, risks, and treatment avenues. Therapeutic options encompass surgery, chemotherapy, radiation therapy, hormone therapy, immunotherapy, targeted therapy, or a blend of these methods. Yet, these treatments face challenges like late-stage diagnoses, tumor diversity, severe side effects, drug resistance, targeted drug delivery hurdles, and cost barriers. Despite these hurdles, advancements in cancer research, encompassing biology, genetics, and treatment, have enhanced early detection methods, treatment options, and survival rates. Adenosine receptors (ARs), including A1, A2A, A2B, and A3 subtypes, exhibit diverse roles in cancer progression, sometimes promoting or inhibiting tumor growth depending on the receptor subtype, cancer type, and tumor microenvironment. Research on AR ligands has revealed promising anticancer effects in lab studies and animal models, hinting at their potential as cancer therapeutics. Understanding the intricate signaling pathways and interactions of adenosine receptors in cancer is pivotal for crafting targeted therapies that optimize benefits while mitigating drawbacks. This review delves into each adenosine receptor subtype's distinct roles and signaling pathways in cancer, shedding light on their potential as targets for improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Katharigatta Narayanaswamy Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Michela Buccioni
- School of Pharmacy, Medicinal Chemistry Unit, ChIP, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy;
| |
Collapse
|
13
|
Ehlen QT, Mirsky NA, Slavin BV, Parra M, Nayak VV, Cronstein B, Witek L, Coelho PG. Translational Experimental Basis of Indirect Adenosine Receptor Agonist Stimulation for Bone Regeneration: A Review. Int J Mol Sci 2024; 25:6104. [PMID: 38892291 PMCID: PMC11172580 DOI: 10.3390/ijms25116104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Bone regeneration remains a significant clinical challenge, often necessitating surgical approaches when healing bone defects and fracture nonunions. Within this context, the modulation of adenosine signaling pathways has emerged as a promising therapeutic option, encouraging osteoblast activation and tempering osteoclast differentiation. A literature review of the PubMed database with relevant keywords was conducted. The search criteria involved in vitro or in vivo models, with clear methodological descriptions. Only studies that included the use of indirect adenosine agonists, looking at the effects of bone regeneration, were considered relevant according to the eligibility criteria. A total of 29 articles were identified which met the inclusion and exclusion criteria, and they were reviewed to highlight the preclinical translation of adenosine agonists. While preclinical studies demonstrate the therapeutic potential of adenosine signaling in bone regeneration, its clinical application remains unrealized, underscoring the need for further clinical trials. To date, only large, preclinical animal models using indirect adenosine agonists have been successful in stimulating bone regeneration. The adenosine receptors (A1, A2A, A2B, and A3) stimulate various pathways, inducing different cellular responses. Specifically, indirect adenosine agonists act to increase the extracellular concentration of adenosine, subsequently agonizing the respective adenosine receptors. The agonism of each receptor is dependent on its expression on the cell surface, the extracellular concentration of adenosine, and its affinity for adenosine. This comprehensive review analyzed the multitude of indirect agonists currently being studied preclinically for bone regeneration, discussing the mechanisms of each agonist, their cellular responses in vitro, and their effects on bone formation in vivo.
Collapse
Affiliation(s)
- Quinn T. Ehlen
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | - Blaire V. Slavin
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Marcelo Parra
- Center of Excellence in Morphological and Surgical Studies (CEMyQ), Faculty of Medicine, Universidad de la Frontera, Temuco 4811230, Chile
- Department of Comprehensive Adult Dentistry, Faculty of Dentistry, Universidad de la Frontera, Temuco 4811230, Chile
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Bruce Cronstein
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
14
|
Xu JP, Ouyang QW, Shao MJ, Ke H, Du H, Xu SC, Yang Q, Cui YR, Qu F. Manual acupuncture ameliorates inflammatory pain by upregulating adenosine A 3 receptor in complete Freund's adjuvant-induced arthritis rats. Int Immunopharmacol 2024; 133:112095. [PMID: 38678668 DOI: 10.1016/j.intimp.2024.112095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Adenosine A3 receptor (A3R) exerts analgesic, anti-inflammatory, and anti-nociceptive effects. In this study, we determined the analgesic mechanism of manual acupuncture (MA) in rats with complete Freund's adjuvant (CFA)-induced arthritis and explored whether MA ameliorates inflammation in these rats by upregulating A3R. METHODS Sixty Sprague Dawley (SD) rats were randomly divided into the following groups: Control, CFA, CFA + MA, CFA + sham MA, CFA + MA + DMSO, CFA + MA + IB-MECA, and CFA + MA + Reversine groups. The arthritis rat model was induced by injecting CFA into the left ankle joints. Thereafter, the rats were subjected to MA (ST36 acupoint) for 3 days. The clinical indicators paw withdrawal latency (PWL), paw withdrawal threshold (PWT), and open field test (OFT) were used to determine the analgesic effect of MA. In addition, to explore the effect of A3R on inflammation after subjecting arthritis rats to MA, IB-MECA (A3R agonist) and Reversine (A3R antagonist) were injected into ST36 before MA. RESULTS MA ameliorated the pathological symptoms of CFA-induced arthritis, including the pain indicators PWL and PWT, number of rearing, total ambulatory distance, and activity trajectory. Furthermore, after MA, the mRNA and protein expression of A3R was upregulated in CFA-induced arthritis rats. In contrast, the protein levels of TNF-α, IL-1β, Rap1, and p-p65 were downregulated after MA. Interestingly, the A3R agonist and antagonist further downregulated and upregulated inflammatory cytokine expression, respectively, after MA. Furthermore, the A3R antagonist increased the degree of ankle swelling after MA. CONCLUSION MA can alleviate inflammatory pain by inhibiting the NF-κB signaling pathway via upregulating A3R expression of the superficial fascia of the ST36 acupoint site in CFA-induced arthritis rats.
Collapse
Affiliation(s)
- Jing-Ping Xu
- Department of Physiology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Qian-Wen Ouyang
- Nanchang People's Hospital, Jiangxi Province Key Laboratory for Breast Diseases, Nanchang, Jiangxi 334000, China
| | - Mei-Juan Shao
- Department of Pharmacology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Hong Ke
- Department of Physiology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Hong Du
- Department of Pharmacology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Shang-Cheng Xu
- Department of Pharmacology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Qian Yang
- Department of Pharmacology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Yan-Ru Cui
- Department of Physiology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China.
| | - Fei Qu
- Department of Pharmacology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China.
| |
Collapse
|
15
|
Chen L, Lei X, Mahnke K. Adenosine and Its Receptors in the Pathogenesis and Treatment of Inflammatory Skin Diseases. Int J Mol Sci 2024; 25:5810. [PMID: 38891997 PMCID: PMC11172165 DOI: 10.3390/ijms25115810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Inflammatory skin diseases highlight inflammation as a central driver of skin pathologies, involving a multiplicity of mediators and cell types, including immune and non-immune cells. Adenosine, a ubiquitous endogenous immune modulator, generated from adenosine triphosphate (ATP), acts via four G protein-coupled receptors (A1, A2A, A2B, and A3). Given the widespread expression of those receptors and their regulatory effects on multiple immune signaling pathways, targeting adenosine receptors emerges as a compelling strategy for anti-inflammatory intervention. Animal models of psoriasis, contact hypersensitivity (CHS), and other dermatitis have elucidated the involvement of adenosine receptors in the pathogenesis of these conditions. Targeting adenosine receptors is effective in attenuating inflammation and remodeling the epidermal structure, potentially showing synergistic effects with fewer adverse effects when combined with conventional therapies. What is noteworthy are the promising outcomes observed with A2A agonists in animal models and ongoing clinical trials investigating A3 agonists, underscoring a potential therapeutic approach for the management of inflammatory skin disorders.
Collapse
Affiliation(s)
| | | | - Karsten Mahnke
- Department of Dermatology, University Hospital Heidelberg, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany; (L.C.)
| |
Collapse
|
16
|
Duangrat R, Parichatikanond W, Chanmahasathien W, Mangmool S. Adenosine A 3 Receptor: From Molecular Signaling to Therapeutic Strategies for Heart Diseases. Int J Mol Sci 2024; 25:5763. [PMID: 38891948 PMCID: PMC11171512 DOI: 10.3390/ijms25115763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Cardiovascular diseases (CVDs), particularly heart failure, are major contributors to early mortality globally. Heart failure poses a significant public health problem, with persistently poor long-term outcomes and an overall unsatisfactory prognosis for patients. Conventionally, treatments for heart failure have focused on lowering blood pressure; however, the development of more potent therapies targeting hemodynamic parameters presents challenges, including tolerability and safety risks, which could potentially restrict their clinical effectiveness. Adenosine has emerged as a key mediator in CVDs, acting as a retaliatory metabolite produced during cellular stress via ATP metabolism, and works as a signaling molecule regulating various physiological processes. Adenosine functions by interacting with different adenosine receptor (AR) subtypes expressed in cardiac cells, including A1AR, A2AAR, A2BAR, and A3AR. In addition to A1AR, A3AR has a multifaceted role in the cardiovascular system, since its activation contributes to reducing the damage to the heart in various pathological states, particularly ischemic heart disease, heart failure, and hypertension, although its role is not as well documented compared to other AR subtypes. Research on A3AR signaling has focused on identifying the intricate molecular mechanisms involved in CVDs through various pathways, including Gi or Gq protein-dependent signaling, ATP-sensitive potassium channels, MAPKs, and G protein-independent signaling. Several A3AR-specific agonists, such as piclidenoson and namodenoson, exert cardioprotective impacts during ischemia in the diverse animal models of heart disease. Thus, modulating A3ARs serves as a potential therapeutic approach, fueling considerable interest in developing compounds that target A3ARs as potential treatments for heart diseases.
Collapse
Affiliation(s)
- Ratchanee Duangrat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | | | - Wisinee Chanmahasathien
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Supachoke Mangmool
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
17
|
Lu Y, Cao Y, Tang X, Hu N, Wang Z, Xu P, Hua Z, Wang Y, Su Y, Guo Y. Deep learning-assisted mass spectrometry imaging for preliminary screening and pre-classification of psychoactive substances. Talanta 2024; 272:125757. [PMID: 38368831 DOI: 10.1016/j.talanta.2024.125757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Currently, it is of great urgency to develop a rapid pre-classification and screening method for suspected drugs as the constantly springing up of new psychoactive substances. In most researches, psychoactive substances classification approaches depended on the similar chemical structures and pharmacological action with known drugs. Such approaches could not face the complicated circumstance of emerging new psychoactive substances. Herein, mass spectrometry imaging and convolutional neural networks (CNN) were used for preliminary screening and pre-classification of suspected psychoactive substances. Mass spectrometry imaging was performed simultaneously on two brain slices as one was from blank group and another one was from psychoactive substance-induced group. Then, fused neurotransmitter variation mass spectrometry images (Nv-MSIs) reflecting the difference of neurotransmitters between two slices were achieved through two homemade programs. A CNN model was developed to classify the Nv-MSIs. Compared with traditional classification methods, CNN achieved better estimation accuracy and required minimal data preprocessing. Also, the specific region on Nv-MSIs and weight of each neurotransmitter that affected the classification most could be unraveled by CNN. Finally, the method was successfully applied to assist the identification of a new psychoactive substance seized recently. This sample was identified as cannabinoids, which greatly promoted the screening process.
Collapse
Affiliation(s)
- Yingjie Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China; Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yuqi Cao
- Technical Centre, Shanghai Tobacco (Group) Corp., Shanghai, 200082, China
| | - Xiaohang Tang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Na Hu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Zhengyong Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Peng Xu
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, 100193, China
| | - Zhendong Hua
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, 100193, China
| | - Youmei Wang
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, 100193, China.
| | - Yue Su
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| |
Collapse
|
18
|
Franco RJDS. The Adenosine System as a Target in the Search for a New Class of Antihypertensives. Arq Bras Cardiol 2024; 121:e20240129. [PMID: 38716971 PMCID: PMC11081398 DOI: 10.36660/abc.20240129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 05/12/2024] Open
Affiliation(s)
- Roberto Jorge da Silva Franco
- Universidade Estadual Paulista Júlio de Mesquita Filho Campus de BotucatuFaculdade de MedicinaBotucatuSPBrasilUniversidade Estadual Paulista Júlio de Mesquita Filho Campus de Botucatu Faculdade de Medicina, Botucatu, SP – Brasil
| |
Collapse
|
19
|
Yang H, Zhang Z, Zhao K, Zhang Y, Yin X, Zhu G, Wang Z, Yan X, Li X, He T, Wang K. Targeting the adenosine signaling pathway in macrophages for cancer immunotherapy. Hum Immunol 2024; 85:110774. [PMID: 38521664 DOI: 10.1016/j.humimm.2024.110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
One of the ways in which macrophages support tumorigenic growth is by producing adenosine, which acts to dampen antitumor immune responses and is generated by both tumor and immune cells in the tumor microenvironment (TME). Two cell surface expressed molecules, CD73 and CD39, boost catalytic adenosine triphosphate, leading to further increased adenosine synthesis, under hypoxic circumstances in the TME. There are four receptors (A1, A2A, A2B, and A3) expressed on macrophages that allow adenosine to perform its immunomodulatory effect. Researchers have shown that adenosine signaling is a key factor in tumor progression and an attractive therapeutic target for treating cancer. Several antagonistic adenosine-targeting biological therapies that decrease the suppressive action of tumor-associated macrophages have been produced and explored to transform this result from basic research into a therapeutic advantage. Here, we'll review the newest findings from studies of pharmacological compounds that target adenosine receptors, and their potential therapeutic value based on blocking the suppressive action of macrophages in tumors.
Collapse
Affiliation(s)
- Han Yang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Zongliang Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Kai Zhao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Yulian Zhang
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Xinbao Yin
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Guanqun Zhu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Zhenlin Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Xuechuan Yan
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Xueyu Li
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China
| | - Tianzhen He
- Nantong University, Institute of Special Environmental Medicine, Nantong, China.
| | - Ke Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong, China.
| |
Collapse
|
20
|
Cai H, Guo S, Xu Y, Sun J, Li J, Xia Z, Jiang Y, Xie X, Xu HE. Cryo-EM structures of adenosine receptor A 3AR bound to selective agonists. Nat Commun 2024; 15:3252. [PMID: 38627384 PMCID: PMC11021478 DOI: 10.1038/s41467-024-47207-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
The adenosine A3 receptor (A3AR), a key member of the G protein-coupled receptor family, is a promising therapeutic target for inflammatory and cancerous conditions. The selective A3AR agonists, CF101 and CF102, are clinically significant, yet their recognition mechanisms remained elusive. Here we report the cryogenic electron microscopy structures of the full-length human A3AR bound to CF101 and CF102 with heterotrimeric Gi protein in complex at 3.3-3.2 Å resolution. These agonists reside in the orthosteric pocket, forming conserved interactions via their adenine moieties, while their 3-iodobenzyl groups exhibit distinct orientations. Functional assays reveal the critical role of extracellular loop 3 in A3AR's ligand selectivity and receptor activation. Key mutations, including His3.37, Ser5.42, and Ser6.52, in a unique sub-pocket of A3AR, significantly impact receptor activation. Comparative analysis with the inactive A2AAR structure highlights a conserved receptor activation mechanism. Our findings provide comprehensive insights into the molecular recognition and signaling of A3AR, paving the way for designing subtype-selective adenosine receptor ligands.
Collapse
Affiliation(s)
- Hongmin Cai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Shimeng Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Youwei Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jun Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junrui Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhikan Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yi Jiang
- Lingang Laboratory, Shanghai, China
| | - Xin Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research, Institute for Drug Discovery, Yantai, China.
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
21
|
Mahdizadeh M, Heydari N, Shafiei A, Akbari H, Jafari SM. Adenosine receptors in breast cancer. Mol Biol Rep 2024; 51:464. [PMID: 38551734 DOI: 10.1007/s11033-024-09382-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/26/2024] [Indexed: 04/02/2024]
Abstract
Adenosine receptors are important in the normal physiological function of cells and the pathogenesis of various cancer cells, including breast cancer cells. The activity of adenosine receptors in cancer cells is related to cell proliferation, angiogenesis, metastasis, immune system evasion, and interference with apoptosis. Considering the different roles of adenosine receptors in cancer cells, we intend to investigate the function of adenosine receptors and their biological pathways in breast cancer to improve understanding of therapeutically relevant signaling pathways.
Collapse
Affiliation(s)
- Mahsa Mahdizadeh
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Biochemistry and Biophysics, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Nadia Heydari
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Biochemistry and Biophysics, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Afsaneh Shafiei
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Biochemistry and Biophysics, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hamideh Akbari
- Clinical Research Development Unit, Sayad Shirazi Hospital, Golestan University of Medical Science, Gorgan, Iran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
- Department of Biochemistry and Biophysics, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
22
|
Cherchi F, Venturini M, Magni G, Scortichini M, Jacobson KA, Pugliese AM, Coppi E. Covalently Binding Adenosine A 3 Receptor Agonist ICBM Irreversibly Reduces Voltage-Gated Ca 2+ Currents in Dorsal Root Ganglion Neurons. Purinergic Signal 2024; 20:35-45. [PMID: 36918461 PMCID: PMC10828244 DOI: 10.1007/s11302-023-09929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Interest has been focused in recent years on the analgesic effects exerted by adenosine and its receptors, A1, A2A, A2B, and A3 adenosine receptor (AR) subtypes, in different in vivo models of chronic pain. In particular, it was demonstrated that selective A3AR agonists reduced pro-nociceptive N-type Ca2+ channels in dorsal root ganglion (DRG) neurons isolated from rats and, by this mechanism, inhibit post inflammatory visceral hypersensitivity. In the present study, we investigate the effect of a previously reported irreversibly binding A3AR agonist, ICBM, on Ca2+ currents (ICa) in rat DRG neurons. Present data demonstrate that ICBM, an isothiocyanate derivative designed for covalent binding to the receptor, concentration-dependently inhibits ICa. This effect is irreversible, since it persists after drug removal, differently from the prototypical A3AR agonist, Cl-IB-MECA. ICBM pre-exposure inhibits the effect of a subsequent Cl-IB-MECA application. Thus, covalent A3AR agonists such as ICBM may represent an innovative, beneficial, and longer-lasting strategy to achieve efficacious chronic pain control versus commonly used, reversible, A3AR agonists. However, the possible limitations of this drug and other covalent drugs may be, for example, a characteristic adverse effect profile, suggesting that more pre-clinical studies are needed.
Collapse
Affiliation(s)
- Federica Cherchi
- Department of Neuroscience, Drug Research and Child Health, University of Florence, Viale Gaetano Pieraccini 6, 50139, PsychologyFlorence, Italy.
| | - Martina Venturini
- Department of Neuroscience, Drug Research and Child Health, University of Florence, Viale Gaetano Pieraccini 6, 50139, PsychologyFlorence, Italy
| | - Giada Magni
- Istituto Di Fisica Applicata "Nello Carrara," Consiglio Nazionale Delle Ricerche, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy
| | - Mirko Scortichini
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kenneth A Jacobson
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anna Maria Pugliese
- Department of Neuroscience, Drug Research and Child Health, University of Florence, Viale Gaetano Pieraccini 6, 50139, PsychologyFlorence, Italy
| | - Elisabetta Coppi
- Department of Neuroscience, Drug Research and Child Health, University of Florence, Viale Gaetano Pieraccini 6, 50139, PsychologyFlorence, Italy
| |
Collapse
|
23
|
Arendt-Nielsen L, Klitgaard H, Hansen SN. Bridging the translational gap: adenosine as a modulator of neuropathic pain in preclinical models and humans. Scand J Pain 2024; 24:sjpain-2023-0048. [PMID: 38070164 DOI: 10.1515/sjpain-2023-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/22/2023] [Indexed: 12/22/2023]
Abstract
OBJECTIVES This review aims to analyse the published data on preclinical and human experimental and clinical adenosine modulation for pain management. We summarise the translatability of the adenosine pathway for further drug development and aim to reveal subgroups of pain patients that could benefit from targeting the pathway. CONTENT Chronic pain patients suffer from inadequate treatment options and drug development is generally impaired by the low translatability of preclinical pain models. Therefore, validating the predictability of drug targets is of high importance. Modulation of the endogenous neurotransmitter adenosine gained significant traction in the early 2000s but the drug development efforts were later abandoned. With the emergence of new drug modalities, there is a renewed interest in adenosine modulation in pain management. In both preclinical, human experimental and clinical research, enhancing adenosine signalling through the adenosine receptors, has shown therapeutic promise. A special focus has been on the A1 and A3 receptors both of which have shown great promise and predictive validity in neuropathic pain conditions. SUMMARY Adenosine modulation shows predictive validity across preclinical, human experimental and clinical investigations. The most compelling evidence is in the field of neuropathic pain, where adenosine has been found to alleviate hyperexcitability and has the potential to be disease-modifying. OUTLOOK Adenosine modulation show therapeutic potential in neuropathic pain if selective and safe drugs can be developed. New drug modalities such as RNA therapeutics and cell therapies may provide new options.
Collapse
Affiliation(s)
- Lars Arendt-Nielsen
- Department of Health Science and Technology, Center for Neuroplasticity and Pain, CNAP, School of Medicine, Aalborg University, Gistrup, Denmark
- Department of Gastroenterology & Hepatology, Mech-Sense, Clinical Institute, Aalborg University Hospital, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Clinical Institute, Aalborg University Hospital, Aalborg, Denmark
| | | | | |
Collapse
|
24
|
Federico S, Persico M, Trevisan L, Biasinutto C, Bolcato G, Salmaso V, Da Ros T, Gianferrara T, Prencipe F, Kachler S, Klotz KN, Pacor S, Moro S, Spalluto G. [1,2,4]Triazolo[1,5-c]pyrimidines as Tools to Investigate A 3 Adenosine Receptors in Cancer Cell Lines. ChemMedChem 2023; 18:e202300299. [PMID: 37675643 DOI: 10.1002/cmdc.202300299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/07/2023]
Abstract
The A3 adenosine receptor is an interesting target whose role in cancer is controversial. In this work, a structural investigation at the 2-position of the [1,2,4]triazolo[1,5-c]pyrimidine nucleus was performed, finding new potent and selective A3 adenosine receptor antagonists such as the ethyl 2-(4-methoxyphenyl)-5-(methylamino)-[1,2,4]triazolo[1,5-c]pyrimidine-8-carboxylate (20, DZ123) that showed a Ki value of 0.47 nM and an exceptional selectivity profile over the other adenosine receptor subtypes. Computational studies were performed to rationalize the affinity and the selectivity profile of the tested compounds at the A3 adenosine receptor and the A1 and A2A adenosine receptors. Compound 20 was tested on both A3 adenosine receptor positive cell lines (CHO-A3 AR transfected, THP1 and HCT16) and on A3 negative cancer cell lines, showing no effect in the latter and a pro-proliferative effect at a low concentration in the former. These interesting results pave the way to further investigation on both the mechanism involved and potential therapeutic applications.
Collapse
Affiliation(s)
- Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Margherita Persico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Letizia Trevisan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Chiara Biasinutto
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127, Trieste, Italy
| | - Giovanni Bolcato
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Padova, Italy
| | - Veronica Salmaso
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Padova, Italy
| | - Tatiana Da Ros
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Teresa Gianferrara
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Filippo Prencipe
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Sonja Kachler
- Rudolf-Virchow-Zentrum -, Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Karl-Norbert Klotz
- Institut für Pharmakologie und Toxikologie, University of Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany
| | - Sabrina Pacor
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127, Trieste, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Padova, Italy
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| |
Collapse
|
25
|
Itzhak I, Bareket-Samish A, Fishman P. Namodenoson Inhibits the Growth of Pancreatic Carcinoma via Deregulation of the Wnt/β-catenin, NF-κB, and RAS Signaling Pathways. Biomolecules 2023; 13:1584. [PMID: 38002266 PMCID: PMC10669398 DOI: 10.3390/biom13111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Namodenoson, an A3 adenosine receptor (A3AR) agonist, is currently being used in a phase III trial in advanced liver cancer. We examined the anti-growth effect of namodenoson on pancreatic carcinoma cells and investigated the molecular mechanism involved. BxPC-3 pancreatic carcinoma cells were cultured with namodenoson (5-20 nM for 24 h at 37 °C), and the Presto Blue assay was used to monitor cell growth. Western blot analyses were performed on BxPC-3 cells (20 nM namodenoson for 24 h at 37 °C) to evaluate the expression levels of cell growth regulatory proteins. In vivo studies involved the subcutaneous inoculation of BxPC-3 cells into nude mice, randomizing the mice into namodenoson (10 μg/kg twice daily for 35 days) vs. control, and monitoring tumor size twice weekly. Treatment with namodenoson was associated with the significant dose-dependent inhibition of BxPC-3 cell growth, which was mitigated by the A3AR antagonist MRS1523. Western blot analyses showed that namodenoson treatment modulated the expression of NF-κB, as well as proteins in the Wnt/β-catenin and the RAS signaling pathways, leading to the upregulation of apoptotic proteins (Bad, Bax). In vivo studies also showed the significant inhibition of pancreatic carcinoma tumor growth with namodenoson. In conclusion, our findings support the continued development of namodenoson as a treatment for pancreatic cancer.
Collapse
|
26
|
Pottie E, Suresh RR, Jacobson KA, Stove CP. Assay-Dependent Inverse Agonism at the A 3 Adenosine Receptor: When Neutral Is Not Neutral. ACS Pharmacol Transl Sci 2023; 6:1266-1274. [PMID: 37705594 PMCID: PMC10496142 DOI: 10.1021/acsptsci.3c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 09/15/2023]
Abstract
The A3 adenosine receptor (A3AR) is implicated in a variety of (patho)physiological conditions. While most research has focused on agonists and antagonists, inverse agonism at A3AR has been scarcely studied. Therefore, this study aimed at exploring inverse agonism, using two previously engineered cell lines (hA3ARLgBiT-SmBiTβarr2 and hA3ARLgBiT-SmBiTminiGαi), both employing the NanoBiT technology. The previously established inverse agonist PSB-10 showed a decrease in basal signal in the β-arrestin 2 (βarr2) but not the miniGαi recruitment assay, indicative of inverse agonism in the former assay. Control experiments confirmed the specificity and reversibility of this observation. Evaluation of a set of presumed neutral antagonists (MRS7907, MRS7799, XAC, and MRS1220) revealed that all displayed concentration-dependent signal decreases when tested in the A3AR-βarr2 recruitment assay, yielding EC50 and Emax values for inverse agonism. Conversely, in the miniGαi recruitment assay, no signal decreases were observed. To assess whether this observation was caused by the inability of the ligands to induce inverse agonism in the G protein pathway, or rather by a limitation inherent to the employed A3AR-miniGαi recruitment assay, a GloSensor cAMP assay was performed. The outcome of the latter also suggests inverse agonism by the presumed neutral antagonists in this latter assay. These findings emphasize the importance of prior characterization of ligands in the relevant test system. Moreover, it showed the suitability of the NanoBiT βarr2 recruitment and the GloSensor cAMP assays to capture inverse agonism at the A3AR, as opposed to the NanoBiT miniGαi recruitment assay.
Collapse
Affiliation(s)
- Eline Pottie
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg
460, B-9000 Ghent, Belgium
| | - R. Rama Suresh
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes & Digestive & Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20802, United States
| | - Kenneth A. Jacobson
- Laboratory
of Bioorganic Chemistry, National Institute
of Diabetes & Digestive & Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20802, United States
| | - Christophe P. Stove
- Laboratory
of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical
Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg
460, B-9000 Ghent, Belgium
| |
Collapse
|
27
|
Gao ZG, Auchampach JA, Jacobson KA. Species dependence of A 3 adenosine receptor pharmacology and function. Purinergic Signal 2023; 19:523-550. [PMID: 36538251 PMCID: PMC9763816 DOI: 10.1007/s11302-022-09910-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/26/2022] [Indexed: 12/24/2022] Open
Abstract
Efforts to fully understand pharmacological differences between G protein-coupled receptor (GPCR) species homologues are generally not pursued in detail during the drug development process. To date, many GPCRs that have been successfully targeted are relatively well-conserved across species in amino acid sequence and display minimal variability of biological effects. However, the A3 adenosine receptor (AR), an exciting drug target for a multitude of diseases associated with tissue injury, ischemia, and inflammation, displays as little as 70% sequence identity among mammalian species (e.g., rodent vs. primate) commonly used in drug development. Consequently, the pharmacological properties of synthetic A3AR ligands vary widely, not only in binding affinity, selectivity, and signaling efficacy, but to the extent that some function as agonists in some species and antagonists in others. Numerous heterocyclic antagonists that have nM affinity at the human A3AR are inactive or weakly active at the rat and mouse A3ARs. Positive allosteric modulators, including the imidazo [4,5-c]quinolin-4-amine derivative LUF6000, are only active at human and some larger animal species that have been evaluated (rabbit and dog), but not rodents. A3AR agonists evoke systemic degranulation of rodent, but not human mast cells. The rat A3AR undergoes desensitization faster than the human A3AR, but the human homologue can be completely re-sensitized and recycled back to the cell surface. Thus, comprehensive pharmacological evaluation and awareness of potential A3AR species differences are critical in studies to further understand the basic biological functions of this unique AR subtype. Recombinant A3ARs from eight different species have been pharmacologically characterized thus far. In this review, we describe in detail current knowledge of species differences in genetic identity, G protein-coupling, receptor regulation, and both orthosteric and allosteric A3AR pharmacology.
Collapse
Affiliation(s)
- Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0810, USA.
| | - John A Auchampach
- Department of Pharmacology and Toxicology, and the Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0810, USA.
| |
Collapse
|
28
|
Zhou J, Tong Y, Zhu W, Sui X, Ma X, Han C. Combination immunotherapy of PEG-modified Preladenant thermosensitive liposomes and PD-1 inhibitor effectively enhances the anti-tumor immune response and therapeutic effects. Pharm Dev Technol 2023:1-8. [PMID: 37191345 DOI: 10.1080/10837450.2023.2214201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Immunotherapy is a promising cancer treatment strategy. In contrast, PD-1/PD-L1 inhibitors are associated with low response rates and are only useful in a small group of cancer patients. A combination of treatments may be effective for overcoming this clinical issue. Preladenant is an adenosine receptor inhibitor that can block the adenosine pathway and improve the tumor microenvironment (TME), thereby enhancing the immunotherapeutic effect of PD-1 inhibitors. However, its poor water solubility and low targeting limit its clinical applications. We designed a PEG-modified thermosensitive liposome (pTSL) loaded with adenosine small molecule inhibitor Preladenant (P-pTSL) to overcome these problems and enhance the effect of PD-1 inhibitor on breast cancer immunotherapy. The prepared P-pTSL was round and uniformly distributed with a particle size of (138.9 ± 1.22) nm, PDI: 0.134 ± 0.031 and Zeta potential (-10.1 ± 1.63) mV; Preladenant was released slowly at 37 °C but released fast at 42 °C from P-pTSL, which was 76.52 ± 0.44%. P-pTSL has good long-term and serum stability and excellent tumor-targeting ability in mice. Moreover, the combination with PD-1 inhibitor significantly enhanced the anti-tumor effect, and the improvement of related factors in serum and lymph was more obvious under the condition of 42 °C thermotherapy in vitro.
Collapse
Affiliation(s)
- Jianwen Zhou
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, China
| | - Yao Tong
- Heilongjiang Di 'an Medical Laboratory Co. LTD, Harbin, China
| | - Wenquan Zhu
- School of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Xiaoyu Sui
- School of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Xiaoxing Ma
- School of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Cuiyan Han
- School of Pharmacy, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
29
|
Ferguson L, Madieh NS, Vaideanu A, Schatzlein A, Festa J, Singh H, Wells G, Bhakta S, Brucoli F. C2-linked alkynyl poly-ethylene glycol(PEG) adenosine conjugates as water-soluble adenosine receptor agonists. Chem Biol Drug Des 2023; 101:340-349. [PMID: 35993496 PMCID: PMC10087458 DOI: 10.1111/cbdd.14128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/09/2022] [Accepted: 07/30/2022] [Indexed: 01/14/2023]
Abstract
A series of 12 novel polyethylene-glycol(PEG)-alkynyl C2-adenosine(ADN) conjugates were synthesized using a robust Sonogashira coupling protocol and characterized by NMR spectroscopy and mass spectrometry analysis. The ADN-PEG conjugates showed null to moderate toxicity in murine macrophages and 12c was active against Mycobacterium aurum growth (MIC = 62.5 mg/L). The conjugates were not active against Mycobacterium bovis BCG. Conjugates 10b and 11b exhibited high water solubility with solubility values of 1.22 and 1.18 mg/ml, respectively, in phosphate buffer solutions at pH 6.8. Further, 10b and 11b induced a significant increase in cAMP accumulation in RAW264.7 cells comparable with that induced by adenosine. Analogues 10c, 11c and 12c were docked to the A1 , A2A , A2B and A3 adenosine receptors (ARs) using crystal-structures and homology models. ADN-PEG-conjugates bearing chains with up to five ethyleneoxy units could be well accommodated within the binding sites of A1 , A2A and A3 ARs. Docking studies showed that compound 10b and 11b were the best A2A receptor binders of the series, whereas 12c was the best binder for A1 AR. In summary, introduction of hydrophilic PEG substituents at the C2 of adenine ring significantly improved water solubility and did not affect AR binding properties of the ADN-PEG conjugates.
Collapse
Affiliation(s)
- Lindsay Ferguson
- School of Science, University of the West of Scotland, Paisley, UK
| | | | | | | | - Joseph Festa
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK
| | - Harprit Singh
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK
| | - Geoffrey Wells
- UCL School of Pharmacy, University College London, London, UK
| | - Sanjib Bhakta
- Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
| | - Federico Brucoli
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| |
Collapse
|
30
|
A novel GRK2 inhibitor alleviates experimental arthritis through restraining Th17 cell differentiation. Biomed Pharmacother 2023; 157:113997. [PMID: 36399825 DOI: 10.1016/j.biopha.2022.113997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/29/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
T helper type 17 (Th17) cell which is induced by interleukine-6 (IL-6)-signal transducers and activators of transcription 3 (STAT3) signaling is a central pro-inflammatory T cell subtype in rheumatoid arthritis (RA) and could be significantly reduced by paeoniflorin-6'-O-benzene sulfonate (CP-25) treatment with unclear mechanisms. This study was aimed to found out the mechanism of CP-25 in hampering Th17 cells differentiation in arthritic animals thus explore more therapeutic targets for RA. In mice with collagen-induced arthritis (CIA), both circulating and splenic Th17 subsets were expanded with increased STAT3 phosphorylation and decreased Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1)-β-arrestin2 (arrb2)-STAT3 interaction in CD4+ helper T (Th) cells. Either CP-25 or paroxetine (PAR), an established G protein coupled receptor kinase 2 (GRK2) inhibitor treatment effectively relieved the joints inflammation of CIA mice with substantially reduced Th17 cell population through inhibiting STAT3 and restoring the SHP1-arrb2-STAT3 complex. Knockout of arrb2 exacerbated the clinical manifestations of collagen antibody-induced arthritis with upregulated Th17 cells. In vitro studies revealed that depletion of arrb2 or inhibition of SHP1 promoted Th17 cell differentiation. Moreover, stimulation of adenosine A3 receptor (A3AR) simultaneously promoted Th17 cell differentiation via accelerating abbr2-A3AR binding, which could be prevented through inhibiting GRK2 phosphorylation by CP-25 or PAR, or genetically reducing GRK2. This work has demonstrated that CP-25 or PAR treatment recovers the SHP1-arrb2-STAT3 complex which prevents STAT3 activation in Th cells through reducing arrb2 recruitment to A3AR by inhibiting GRK2 phosphorylation, leading to the reduction in Th17 cell differentiation and arthritis attenuation.
Collapse
|
31
|
Kumar K, Singh N, Yadav HN, Maslov L, Jaggi AS. Endless Journey of Adenosine Signaling in Cardioprotective Mechanism of Conditioning Techniques: Clinical Evidence. Curr Cardiol Rev 2023; 19:56-71. [PMID: 37309766 PMCID: PMC10636797 DOI: 10.2174/1573403x19666230612112259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/10/2023] [Accepted: 05/11/2023] [Indexed: 06/14/2023] Open
Abstract
Myocardial ischemic injury is a primary cause of death among various cardiovascular disorders. The condition occurs due to an interrupted supply of blood and vital nutrients (necessary for normal cellular activities and viability) to the myocardium, eventually leading to damage. Restoration of blood supply to ischemic tissue is noted to cause even more lethal reperfusion injury. Various strategies, including some conditioning techniques, like preconditioning and postconditioning, have been developed to check the detrimental effects of reperfusion injury. Many endogenous substances have been proposed to act as initiators, mediators, and end effectors of these conditioning techniques. Substances, like adenosine, bradykinin, acetylcholine, angiotensin, norepinephrine, opioids, etc., have been reported to mediate cardioprotective activity. Among these agents, adenosine has been widely studied and suggested to have the most pronounced cardioprotective effects. The current review article highlights the role of adenosine signaling in the cardioprotective mechanism of conditioning techniques. The article also provides an insight into various clinical studies that substantiate the applicability of adenosine as a cardioprotective agent in myocardial reperfusion injury.
Collapse
Affiliation(s)
- Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Harlokesh Narayan Yadav
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Leonid Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| |
Collapse
|
32
|
Fallot LB, Suresh RR, Fisher CL, Salmaso V, O'Connor RD, Kaufman N, Gao ZG, Auchampach JA, Jacobson KA. Structure-Activity Studies of 1 H-Imidazo[4,5- c]quinolin-4-amine Derivatives as A 3 Adenosine Receptor Positive Allosteric Modulators. J Med Chem 2022; 65:15238-15262. [PMID: 36367749 PMCID: PMC10354740 DOI: 10.1021/acs.jmedchem.2c01170] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We previously reported 1H-imidazo[4,5-c]quinolin-4-amines as A3 adenosine receptor (A3AR) positive allosteric modulators (PAMs). A3AR agonists, but not PAMs, are in clinical trials for inflammatory diseases and liver conditions. We synthesized new analogues to distinguish 2-cyclopropyl antagonist 17 (orthosteric interaction demonstrated by binding and predicted computationally) from PAMs (derivatives with large 2-alkyl/cycloalkyl/bicycloalkyl groups). We predicted PAM binding at a hydrophobic site on the A3AR cytosolic interface. Although having low Caco-2 permeability and high plasma protein binding, hydrophobic 2-cyclohept-4-enyl-N-3,4-dichlorophenyl, MRS7788 18, and 2-heptan-4-yl-N-4-iodophenyl, MRS8054 39, derivatives were orally bioavailable in rat. 2-Heptan-4-yl-N-3,4-dichlorophenyl 14 and 2-cyclononyl-N-3,4-dichlorophenyl 20 derivatives and 39 greatly enhanced Cl-IB-MECA-stimulated [35S]GTPγS binding Emax, with only 12b trending toward decreasing the agonist EC50. A feasible route for radio-iodination at the p-position of a 4-phenylamino substituent suggests a potential radioligand for allosteric site binding. Herein, we advanced an allosteric approach to developing A3AR-activating drugs that are potentially event- and site-specific in action.
Collapse
Affiliation(s)
- Lucas B Fallot
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814, United States
- Department of Chemistry and Life Science, United States Military Academy, 646 Swift Road, West Point, New York 10996, United States
| | - R Rama Suresh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | | | - Veronica Salmaso
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Robert D O'Connor
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Noy Kaufman
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | | | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| |
Collapse
|
33
|
Pasquini S, Contri C, Cappello M, Borea PA, Varani K, Vincenzi F. Update on the recent development of allosteric modulators for adenosine receptors and their therapeutic applications. Front Pharmacol 2022; 13:1030895. [PMID: 36278183 PMCID: PMC9581118 DOI: 10.3389/fphar.2022.1030895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Adenosine receptors (ARs) have been identified as promising therapeutic targets for countless pathological conditions, spanning from inflammatory diseases to central nervous system disorders, from cancer to metabolic diseases, from cardiovascular pathologies to respiratory diseases, and beyond. This extraordinary therapeutic potential is mainly due to the plurality of pathophysiological actions of adenosine and the ubiquitous expression of its receptors. This is, however, a double-edged sword that makes the clinical development of effective ligands with tolerable side effects difficult. Evidence of this is the low number of AR agonists or antagonists that have reached the market. An alternative approach is to target allosteric sites via allosteric modulators, compounds endowed with several advantages over orthosteric ligands. In addition to the typical advantages of allosteric modulators, those acting on ARs could benefit from the fact that adenosine levels are elevated in pathological tissues, thus potentially having negligible effects on normal tissues where adenosine levels are maintained low. Several A1 and various A3AR allosteric modulators have been identified so far, and some of them have been validated in different preclinical settings, achieving promising results. Less fruitful, instead, has been the discovery of A2A and A2BAR allosteric modulators, although the results obtained up to now are encouraging. Collectively, data in the literature suggests that allosteric modulators of ARs could represent valuable pharmacological tools, potentially able to overcome the limitations of orthosteric ligands.
Collapse
Affiliation(s)
- Silvia Pasquini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Chiara Contri
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Martina Cappello
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | | | - Katia Varani
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- *Correspondence: Katia Varani,
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
34
|
Stampelou M, Suchankova A, Tzortzini E, Dhingra L, Barkan K, Lougiakis N, Marakos P, Pouli N, Ladds G, Kolocouris A. Dual A1/A3 Adenosine Receptor Antagonists: Binding Kinetics and Structure-Activity Relationship Studies Using Mutagenesis and Alchemical Binding Free Energy Calculations. J Med Chem 2022; 65:13305-13327. [PMID: 36173355 DOI: 10.1021/acs.jmedchem.2c01123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Drugs targeting adenosine receptors (AR) can provide treatment for diseases. We report the identification of 7-(phenylamino)-pyrazolo[3,4-c]pyridines L2-L10, A15, and A17 as low-micromolar to low-nanomolar A1R/A3R dual antagonists, with 3-phenyl-5-cyano-7-(trimethoxyphenylamino)-pyrazolo[3,4-c]pyridine (A17) displaying the highest affinity at both receptors with a long residence time of binding, as determined using a NanoBRET-based assay. Two binding orientations of A17 produce stable complexes inside the orthosteric binding area of A1R in molecular dynamics (MD) simulations, and we selected the most plausible orientation based on the agreement with alanine mutagenesis supported by affinity experiments. Interestingly, for drug design purposes, the mutation of L2506.51 to alanine increased the binding affinity of A17 at A1R. We explored the structure-activity relationships against A1R using alchemical binding free energy calculations with the thermodynamic integration coupled with the MD simulation (TI/MD) method, applied on the whole G-protein-coupled receptor-membrane system, which showed a good agreement (r = 0.73) between calculated and experimental relative binding free energies.
Collapse
Affiliation(s)
- Margarita Stampelou
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Anna Suchankova
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Efpraxia Tzortzini
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Lakshiv Dhingra
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Kerry Barkan
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Nikolaos Lougiakis
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Panagiotis Marakos
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Nicole Pouli
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece
| |
Collapse
|
35
|
Mechanisms underlying paclitaxel-induced neuropathic pain: Channels, inflammation and immune regulations. Eur J Pharmacol 2022; 933:175288. [PMID: 36122757 DOI: 10.1016/j.ejphar.2022.175288] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
Paclitaxel is a chemotherapeutic agent widely used for many types of malignancies. However, when paclitaxel is used to treat tumors, patients commonly experience severe neuropathic pain that is difficult to manage. The mechanism underlying paclitaxel-induced neuropathic pain remains unclear. Evidence demonstrates correlations between mechanisms of paclitaxel-mediated pain and associated actions of ion channels, neuroinflammation, mitochondrial damage, and other factors. This review provides a comprehensive analysis of paclitaxel-induced neuropathic pain mechanisms and suggestions for effective interventions.
Collapse
|
36
|
Khan H, Kaur P, Singh TG, Grewal AK, Sood S. Adenosine as a Key Mediator of Neuronal Survival in Cerebral Ischemic Injury. Neurochem Res 2022; 47:3543-3555. [PMID: 36042141 DOI: 10.1007/s11064-022-03737-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 10/14/2022]
Abstract
Several experimental studies have linked adenosine's neuroprotective role in cerebral ischemia. During ischemia, adenosine is formed due to intracellular ATP breakdown into ADP, further when phosphate is released from ADP, the adenosine monophosphate is formed. It acts via A1, A2, and A3 receptors found on neurons, blood vessels, glial cells, platelets, and leukocytes. It is related to various effector systems such as adenyl cyclase and membrane ion channels via G-proteins. Pharmacological manipulation of adenosine receptors by agonists (CCPA, ADAC, IB-MECA) increases ischemic brain damage in various in vivo and in vitro models of cerebral ischemia whereas, agonist can also be neuroprotective. Mainly, receptor antagonists (CGS15943, MRS1706) indicated neuroprotection. Later, various studies also revealed that the downregulation or upregulation of specific adenosine receptors is necessary during the recovery of cerebral ischemia by activating several downstream signaling pathways. In the current review, we elaborate on the dual roles of adenosine and its receptor subtypes A1, A2, and A3 and their involvement in the pathobiology of cerebral ischemic injury. Adenosine-based therapies have the potential to improve the outcomes of cerebral injury patients, thereby providing them with a more optimistic future.
Collapse
Affiliation(s)
- Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Parneet Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurejet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Shreya Sood
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
37
|
Pan S, Zhang X, Guo Y, Li Y. DPCPX induces Bim-dependent apoptosis in nasopharyngeal carcinoma cells. Cell Biol Int 2022; 46:2050-2059. [PMID: 35989488 DOI: 10.1002/cbin.11887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 07/08/2022] [Accepted: 08/05/2022] [Indexed: 11/07/2022]
Abstract
ADORA1 promotes tumor growth and development in multiple cancers. DPCPX (a selective adenosine A1 receptor antagonist), a specific ADORA1 antagonist, has shown antitumor effects in many cancer types. Nevertheless, the function of DPCPX in nasopharyngeal carcinoma (NPC) still remains to be unraveled. In this study, we investigated the functional role of DPCPX on NPC cells. We found that DPCPX promotes NPC cells growth inhibition. DPCPX induced Bim-dependent apoptosis in NPC cells irrespective of p53 status via the FoxO3a pathway following PI3K/AKT inhibition. Furthermore, DPCPX enhanced the antitumor effect of cisplatin, 5-FU and Paclitaxel in NPC. Xenograft experiment revealed that deficiency of Bim in vivo stalls apoptosis and antitumor activity of DPCPX. In conclusion, the PI3K/AKT/FoxO3a/Bim axis plays a critical role in the anticancer effects of DPCPX in NPC.
Collapse
Affiliation(s)
- Suming Pan
- Department of Radiation Oncology, Yue Bei People's Hospital, Shaoguan, China
| | - Xiangguo Zhang
- Department of Radiation Oncology, Yue Bei People's Hospital, Shaoguan, China
| | - Yugan Guo
- Department of Radiation Oncology, Yue Bei People's Hospital, Shaoguan, China
| | - Yin Li
- Faculty of education, Shaoguan University, Shaoguan, China
| |
Collapse
|
38
|
Jang KH, Heras CR, Lee G. m 6A in the Signal Transduction Network. Mol Cells 2022; 45:435-443. [PMID: 35748227 PMCID: PMC9260138 DOI: 10.14348/molcells.2022.0017] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 11/27/2022] Open
Abstract
In response to environmental changes, signaling pathways rewire gene expression programs through transcription factors. Epigenetic modification of the transcribed RNA can be another layer of gene expression regulation. N6-adenosine methylation (m6A) is one of the most common modifications on mRNA. It is a reversible chemical mark catalyzed by the enzymes that deposit and remove methyl groups. m6A recruits effector proteins that determine the fate of mRNAs through changes in splicing, cellular localization, stability, and translation efficiency. Emerging evidence shows that key signal transduction pathways including TGFβ (transforming growth factor-β), ERK (extracellular signal-regulated kinase), and mTORC1 (mechanistic target of rapamycin complex 1) regulate downstream gene expression through m6A processing. Conversely, m6A can modulate the activity of signal transduction networks via m6A modification of signaling pathway genes or by acting as a ligand for receptors. In this review, we discuss the current understanding of the crosstalk between m6A and signaling pathways and its implication for biological systems.
Collapse
Affiliation(s)
- Ki-Hong Jang
- Department of Microbiology and Molecular Genetics, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, CA 92617, USA
| | - Chloe R. Heras
- Department of Microbiology and Molecular Genetics, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, CA 92617, USA
- School of Biological Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Gina Lee
- Department of Microbiology and Molecular Genetics, Chao Family Comprehensive Cancer Center, School of Medicine, University of California Irvine, Irvine, CA 92617, USA
| |
Collapse
|
39
|
Fishman P. Drugs Targeting the A3 Adenosine Receptor: Human Clinical Study Data. Molecules 2022; 27:3680. [PMID: 35744805 PMCID: PMC9229414 DOI: 10.3390/molecules27123680] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
The A3 adenosine receptor (A3AR) is overexpressed in pathological human cells. Piclidenoson and namodenoson are A3AR agonists with high affinity and selectivity to A3AR. Both induce apoptosis of cancer and inflammatory cells via a molecular mechanism entailing deregulation of the Wnt and the NF-κB signaling pathways. Our company conducted phase I studies showing the safety of these 2 molecules. In the phase II studies in psoriasis patients, piclidenoson was safe and demonstrated efficacy manifested in significant improvements in skin lesions. Namodenoson is currently being developed to treat liver cancer, where prolonged overall survival was observed in patients with advanced liver disease and a Child-Pugh B score of 7. A pivotal phase III study in this patient population has been approved by the FDA and the EMA and is currently underway. Namodenoson is also being developed to treat non-alcoholic steatohepatitis (NASH). A Phase IIa study has been successfully concluded and showed that namodenoson has anti-inflammatory, anti-fibrosis, and anti-steatosis effects. A phase IIb study in NASH is currently enrolling patients. In conclusion, A3AR agonists are promising drug candidates in advanced stages of clinical development and demonstrate safety and efficacy in their targeted indications.
Collapse
Affiliation(s)
- Pnina Fishman
- Can-Fite BioPharma Ltd., 10 Bareket St., Petah Tikva 49170, Israel
| |
Collapse
|
40
|
Mahmood A, Iqbal J. Purinergic receptors modulators: An emerging pharmacological tool for disease management. Med Res Rev 2022; 42:1661-1703. [PMID: 35561109 DOI: 10.1002/med.21888] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/16/2022] [Accepted: 05/04/2022] [Indexed: 11/10/2022]
Abstract
Purinergic signaling is mediated through extracellular nucleotides (adenosine 5'-triphosphate, uridine-5'-triphosphate, adenosine diphosphate, uridine-5'-diphosphate, and adenosine) that serve as signaling molecules. In the early 1990s, purines and pyrimidine receptors were cloned and characterized drawing the attention of scientists toward this aspect of cellular signaling. This signaling pathway is comprised of four subtypes of adenosine receptors (P1), eight subtypes of G-coupled protein receptors (P2YRs), and seven subtypes of ligand-gated ionotropic receptors (P2XRs). In current studies, the pathophysiology and therapeutic potentials of these receptors have been focused on. Various ligands, modulating the functions of purinergic receptors, are in current clinical practices for the treatment of various neurodegenerative disorders and cardiovascular diseases. Moreover, several purinergic receptors ligands are in advanced phases of clinical trials as a remedy for depression, epilepsy, autism, osteoporosis, atherosclerosis, myocardial infarction, diabetes, irritable bowel syndrome, and cancers. In the present study, agonists and antagonists of purinergic receptors have been summarized that may serve as pharmacological tools for drug design and development.
Collapse
Affiliation(s)
- Abid Mahmood
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad, Pakistan
| |
Collapse
|
41
|
Merighi S, Nigro M, Travagli A, Pasquini S, Borea PA, Varani K, Vincenzi F, Gessi S. A 2A Adenosine Receptor: A Possible Therapeutic Target for Alzheimer's Disease by Regulating NLRP3 Inflammasome Activity? Int J Mol Sci 2022; 23:ijms23095056. [PMID: 35563447 PMCID: PMC9101264 DOI: 10.3390/ijms23095056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023] Open
Abstract
The A2A adenosine receptor, a member of the P1 purinergic receptor family, plays a crucial role in the pathophysiology of different neurodegenerative illnesses, including Alzheimer’s disease (AD). It regulates both neurons and glial cells, thus modulating synaptic transmission and neuroinflammation. AD is a complex, progressive neurological condition that is the leading cause of dementia in the world’s old population (>65 years of age). Amyloid peptide-β extracellular accumulation and neurofibrillary tangles constitute the principal etiologic tracts, resulting in apoptosis, brain shrinkage, and neuroinflammation. Interestingly, a growing body of evidence suggests a role of NLRP3 inflammasome as a target to treat neurodegenerative diseases. It represents a tripartite multiprotein complex including NLRP3, ASC, and procaspase-1. Its activation requires two steps that lead with IL-1β and IL-18 release through caspase-1 activation. NLRP3 inhibition provides neuroprotection, and in recent years adenosine, through the A2A receptor, has been reported to modulate NLRP3 functions to reduce organ damage. In this review, we describe the role of NLRP3 in AD pathogenesis, both alone and in connection to A2A receptor regulation, in order to highlight a novel approach to address treatment of AD.
Collapse
Affiliation(s)
- Stefania Merighi
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (S.M.); (M.N.); (A.T.); (K.V.); (F.V.)
| | - Manuela Nigro
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (S.M.); (M.N.); (A.T.); (K.V.); (F.V.)
| | - Alessia Travagli
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (S.M.); (M.N.); (A.T.); (K.V.); (F.V.)
| | - Silvia Pasquini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | | | - Katia Varani
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (S.M.); (M.N.); (A.T.); (K.V.); (F.V.)
| | - Fabrizio Vincenzi
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (S.M.); (M.N.); (A.T.); (K.V.); (F.V.)
| | - Stefania Gessi
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (S.M.); (M.N.); (A.T.); (K.V.); (F.V.)
- Correspondence:
| |
Collapse
|
42
|
Pathophysiological Role and Medicinal Chemistry of A 2A Adenosine Receptor Antagonists in Alzheimer's Disease. Molecules 2022; 27:molecules27092680. [PMID: 35566035 PMCID: PMC9102440 DOI: 10.3390/molecules27092680] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 12/20/2022] Open
Abstract
The A2A adenosine receptor is a protein belonging to a family of four GPCR adenosine receptors. It is involved in the regulation of several pathophysiological conditions in both the central nervous system and periphery. In the brain, its localization at pre- and postsynaptic level in striatum, cortex, hippocampus and its effects on glutamate release, microglia and astrocyte activation account for a crucial role in neurodegenerative diseases, including Alzheimer’s disease (AD). This ailment is considered the main form of dementia and is expected to exponentially increase in coming years. The pathological tracts of AD include amyloid peptide-β extracellular accumulation and tau hyperphosphorylation, causing neuronal cell death, cognitive deficit, and memory loss. Interestingly, in vitro and in vivo studies have demonstrated that A2A adenosine receptor antagonists may counteract each of these clinical signs, representing an important new strategy to fight a disease for which unfortunately only symptomatic drugs are available. This review offers a brief overview of the biological effects mediated by A2A adenosine receptors in AD animal and human studies and reports the state of the art of A2A adenosine receptor antagonists currently in clinical trials. As an original approach, it focuses on the crucial role of pharmacokinetics and ability to pass the blood–brain barrier in the discovery of new agents for treating CNS disorders. Considering that A2A receptor antagonist istradefylline is already commercially available for Parkinson’s disease treatment, if the proof of concept of these ligands in AD is confirmed and reinforced, it will be easier to offer a new hope for AD patients.
Collapse
|
43
|
A3 adenosine receptor agonist IB-MECA reverses chronic cerebral ischemia-induced inhibitory avoidance memory deficit. Eur J Pharmacol 2022; 921:174874. [DOI: 10.1016/j.ejphar.2022.174874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022]
|
44
|
IJzerman AP, Jacobson KA, Müller CE, Cronstein BN, Cunha RA. International Union of Basic and Clinical Pharmacology. CXII: Adenosine Receptors: A Further Update. Pharmacol Rev 2022; 74:340-372. [PMID: 35302044 PMCID: PMC8973513 DOI: 10.1124/pharmrev.121.000445] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Our previous International Union of Basic and Clinical Pharmacology report on the nomenclature and classification of adenosine receptors (2011) contained a number of emerging developments with respect to this G protein-coupled receptor subfamily, including protein structure, protein oligomerization, protein diversity, and allosteric modulation by small molecules. Since then, a wealth of new data and results has been added, allowing us to explore novel concepts such as target binding kinetics and biased signaling of adenosine receptors, to examine a multitude of receptor structures and novel ligands, to gauge new pharmacology, and to evaluate clinical trials with adenosine receptor ligands. This review should therefore be considered a further update of our previous reports from 2001 and 2011. SIGNIFICANCE STATEMENT: Adenosine receptors (ARs) are of continuing interest for future treatment of chronic and acute disease conditions, including inflammatory diseases, neurodegenerative afflictions, and cancer. The design of AR agonists ("biased" or not) and antagonists is largely structure based now, thanks to the tremendous progress in AR structural biology. The A2A- and A2BAR appear to modulate the immune response in tumor biology. Many clinical trials for this indication are ongoing, whereas an A2AAR antagonist (istradefylline) has been approved as an anti-Parkinson agent.
Collapse
Affiliation(s)
- Adriaan P IJzerman
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (A.P.IJ.); National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Molecular Recognition Section, Bethesda, Maryland (K.A.J.); Universität Bonn, Bonn, Germany (C.E.M.); New York University School of Medicine, New York, New York (B.N.C.); and Center for Neurosciences and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal (R.A.C.)
| | - Kenneth A Jacobson
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (A.P.IJ.); National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Molecular Recognition Section, Bethesda, Maryland (K.A.J.); Universität Bonn, Bonn, Germany (C.E.M.); New York University School of Medicine, New York, New York (B.N.C.); and Center for Neurosciences and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal (R.A.C.)
| | - Christa E Müller
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (A.P.IJ.); National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Molecular Recognition Section, Bethesda, Maryland (K.A.J.); Universität Bonn, Bonn, Germany (C.E.M.); New York University School of Medicine, New York, New York (B.N.C.); and Center for Neurosciences and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal (R.A.C.)
| | - Bruce N Cronstein
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (A.P.IJ.); National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Molecular Recognition Section, Bethesda, Maryland (K.A.J.); Universität Bonn, Bonn, Germany (C.E.M.); New York University School of Medicine, New York, New York (B.N.C.); and Center for Neurosciences and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal (R.A.C.)
| | - Rodrigo A Cunha
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (A.P.IJ.); National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Molecular Recognition Section, Bethesda, Maryland (K.A.J.); Universität Bonn, Bonn, Germany (C.E.M.); New York University School of Medicine, New York, New York (B.N.C.); and Center for Neurosciences and Cell Biology and Faculty of Medicine, University of Coimbra, Coimbra, Portugal (R.A.C.)
| |
Collapse
|
45
|
Abel B, Murakami M, Tosh DK, Yu J, Lusvarghi S, Campbell RG, Gao ZG, Jacobson KA, Ambudkar SV. Interaction of A 3 adenosine receptor ligands with the human multidrug transporter ABCG2. Eur J Med Chem 2022; 231:114103. [PMID: 35152062 PMCID: PMC8893036 DOI: 10.1016/j.ejmech.2022.114103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 12/19/2022]
Abstract
Various adenosine receptor nucleoside-like ligands were found to modulate ATP hydrolysis by the multidrug transporter ABCG2. Both ribose-containing and rigidified (N)-methanocarba nucleosides (C2-, N6- and 5'-modified), as well as adenines (C2-, N6-, and deaza modified), were included. 57 compounds out of 63 tested either stimulated (50) or inhibited (7) basal ATPase activity. Structure-activity analysis showed a separation of adenosine receptor and ABCG2 activities. The 7-deaza modification had favorable effects in both (N)-methanocarba nucleosides and adenines. Adenine 37c (MRS7608) and (N)-methanocarba 7-deaza-5'-ethyl ester 60 (MRS7343) were found to be potent stimulators of ABCG2 ATPase activity with EC50 values of 13.2 ± 1.7 and 13.2 ± 2.2 nM, respectively. Both had affinity in the micromolar range for A3 adenosine receptor and lacked the 5'-amide agonist-enabling group (37c was reported as a weak A3 antagonist, Ki 6.82 μM). Compound 60 significantly inhibited ABCG2 substrate transport (IC50 0.44 μM). Docking simulations predicted the interaction of 60 with 21 residues in the drug-binding pocket of ABCG2.
Collapse
Affiliation(s)
- Biebele Abel
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (BA, MM, SL, SVA), USA
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (BA, MM, SL, SVA), USA
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (DKT, JY, RGC, ZGG, KAJ), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jinha Yu
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (DKT, JY, RGC, ZGG, KAJ), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (BA, MM, SL, SVA), USA
| | - Ryan G Campbell
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (DKT, JY, RGC, ZGG, KAJ), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (DKT, JY, RGC, ZGG, KAJ), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (DKT, JY, RGC, ZGG, KAJ), National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (BA, MM, SL, SVA), USA.
| |
Collapse
|
46
|
Kotulova J, Lonova K, Kubickova A, Vrbkova J, Kourilova P, Hajduch M, Dzubak P. 2‑Cl‑IB‑MECA regulates the proliferative and drug resistance pathways, and facilitates chemosensitivity in pancreatic and liver cancer cell lines. Int J Mol Med 2022; 49:31. [PMID: 35039871 PMCID: PMC8788926 DOI: 10.3892/ijmm.2022.5086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Specific A3 adenosine receptor (A3AR) agonist, 2-chloro-N6-(3-iodobenzyl)-5′-N-methylcarboxamidoadenosine (2-Cl-IB-MECA), demonstrates anti-proliferative effects on various types of tumor. In the present study, the cytotoxicity of 2-Cl-IB-MECA was analyzed in a panel of tumor and non-tumor cell lines and its anticancer mechanisms in JoPaca-1 pancreatic and Hep-3B hepatocellular carcinoma cell lines were also investigated. Initially, decreased tumor cell proliferation, cell accumulation in the G1 phase and inhibition of DNA and RNA synthesis was found. Furthermore, western blot analysis showed decreased protein expression level of β-catenin, patched1 (Ptch1) and glioma-associated oncogene homolog zinc finger protein 1 (Gli1), which are components of the Wnt/β-catenin and Sonic hedgehog/Ptch/Gli transduction pathways. In concordance with these findings, the protein expression levels of cyclin D1 and c-Myc were reduced. Using a luciferase assay, it was revealed for the first time a decrease in β-catenin transcriptional activity, as an early event following 2-Cl-IB-MECA treatment. In addition, the protein expression levels of multidrug resistance-associated protein 1 and P-glycoprotein (P-gp) were reduced and the P-gp xenobiotic efflux function was also reduced. Next, the enhancing effects of 2-Cl-IB-MECA on the cytotoxicity of conventional chemotherapy was investigated. It was found that 2-Cl-IB-MECA enhanced carboplatin and doxorubicin cytotoxic effects in the JoPaca-1 and Hep-3B cell lines, and a greater synergy was found in the highly tumorigenic JoPaca-1 cell line. This provides a novel in vitro rationale for the utiliza- tion of 2-Cl-IB-MECA in combination with chemotherapeutic agents, not only for hepatocellular carcinoma, but also for pancreatic cancer. Other currently used conventional chemo- therapeutics, fluorouracil and gemcitabine, showed synergy only when combined with high doses of 2-Cl-IB-MECA. Notably, experiments with A3AR-specific antagonist, N-[9-Chloro-2-(2-furanyl)(1,2,4)-triazolo(1,5-c)quinazolin-5-yl] benzene acetamide, revealed that 2-Cl-IB-MECA had antitumor effects via both A3AR-dependent and -independent pathways. In conclusion, the present study identified novel antitumor mechanisms of 2-Cl-IB-MECA in pancreatic and hepatocellular carcinoma in vitro that further underscores the importance of A3AR agonists in cancer therapy.
Collapse
Affiliation(s)
- Jana Kotulova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| | - Katerina Lonova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| | - Agata Kubickova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| | - Jana Vrbkova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| | - Pavla Kourilova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| | - Petr Dzubak
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
| |
Collapse
|
47
|
Mazziotta C, Rotondo JC, Lanzillotti C, Campione G, Martini F, Tognon M. Cancer biology and molecular genetics of A 3 adenosine receptor. Oncogene 2022; 41:301-308. [PMID: 34750517 PMCID: PMC8755539 DOI: 10.1038/s41388-021-02090-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 09/01/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022]
Abstract
A3 adenosine receptor (A3AR) is a cell membrane protein, which has been found to be overexpressed in a large number of cancer types. This receptor plays an important role in cancer by interacting with adenosine. Specifically, A3AR has a dual nature in different pathophysiological conditions, as it is expressed according to tissue type and stimulated by an adenosine dose-dependent manner. A3AR activation leads to tumor growth, cell proliferation and survival in some cases, while triggering cytostatic and apoptotic pathways in others. This review aims to describe the most relevant aspects of A3AR activation and its ligands whereas it summarizes A3AR activities in cancer. Progress in the field of A3AR modulators, with a potential therapeutic role in cancer treatment are reported, as well.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Center for Studies on Gender Medicine-Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - John Charles Rotondo
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Center for Studies on Gender Medicine-Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Carmen Lanzillotti
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Center for Studies on Gender Medicine-Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Giulia Campione
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Fernanda Martini
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121, Ferrara, Italy.
| | - Mauro Tognon
- Laboratories of Cell Biology and Molecular Genetics, Section of Experimental Medicine, Department of Medical Sciences, School of Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
| |
Collapse
|
48
|
Bednarska-Szczepaniak K, Mieczkowski A, Kierozalska A, Pavlović Saftić D, Głąbała K, Przygodzki T, Stańczyk L, Karolczak K, Watała C, Rao H, Gao ZG, Jacobson KA, Leśnikowski ZJ. Synthesis and evaluation of adenosine derivatives as A 1, A 2A, A 2B and A 3 adenosine receptor ligands containing boron clusters as phenyl isosteres and selective A 3 agonists. Eur J Med Chem 2021; 223:113607. [PMID: 34171656 PMCID: PMC8448983 DOI: 10.1016/j.ejmech.2021.113607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/30/2023]
Abstract
A series of adenosine and 2'-deoxyadenosine pairs modified with a 1,12-dicarba-closo-dodecaborane cluster or alternatively with a phenyl group at the same position was synthesized, and their affinity was determined at A1, A2A, A2B and A3 adenosine receptors (ARs). While AR affinity differences were noted, a general tendency to preferentially bind A3 AR over other ARs was observed for most tested ligands. In particular, 5'-ethylcarbamoyl-N6-(3-phenylpropyl)adenosine (18), N6-(3-phenylpropyl)-2-chloroadenosine (24) and N6-(3-phenylpropyl)adenosine (40) showed nanomolar A3 affinity (Ki 4.5, 6.4 and 7.5 nM, respectively). Among the boron cluster-containing compounds, the highest A3 affinity (Ki 206 nM) was for adenosine derivative 41 modified at C2. In the matched molecular pairs, analogs bearing boron clusters were found to show lower binding affinity for adenosine receptors than the corresponding phenyl analogs. Nevertheless, interestingly, several boron cluster modified adenosine ligands showed significantly higher A3 receptor selectivity than the corresponding phenyl analogs: 7vs. 8, 15vs. 16, 17vs. 18.
Collapse
Affiliation(s)
| | - Adam Mieczkowski
- Laboratory of Biological Chemistry of Metal Ions, Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Aleksandra Kierozalska
- Laboratory of Medicinal Chemistry, Institute of Medical Biology PAS, Lodowa 106, 92-232, Łódź, Poland
| | - Dijana Pavlović Saftić
- Laboratory of Medicinal Chemistry, Institute of Medical Biology PAS, Lodowa 106, 92-232, Łódź, Poland
| | - Konrad Głąbała
- Laboratory of Medicinal Chemistry, Institute of Medical Biology PAS, Lodowa 106, 92-232, Łódź, Poland
| | - Tomasz Przygodzki
- Department of Haemostatic Disorders, Medical University of Lodz, 6/8 Mazowiecka St. 92-215, Lodz, Poland
| | - Lidia Stańczyk
- Department of Haemostatic Disorders, Medical University of Lodz, 6/8 Mazowiecka St. 92-215, Lodz, Poland
| | - Kamil Karolczak
- Department of Haemostatic Disorders, Medical University of Lodz, 6/8 Mazowiecka St. 92-215, Lodz, Poland
| | - Cezary Watała
- Department of Haemostatic Disorders, Medical University of Lodz, 6/8 Mazowiecka St. 92-215, Lodz, Poland
| | - Harsha Rao
- Laboratory of Bioorganic Chemistry and Molecular Recognition Section, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Bethesda, MD, 20892-0810, USA
| | - Zhan-Guo Gao
- Laboratory of Bioorganic Chemistry and Molecular Recognition Section, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Bethesda, MD, 20892-0810, USA
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry and Molecular Recognition Section, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Bethesda, MD, 20892-0810, USA
| | - Zbigniew J Leśnikowski
- Laboratory of Medicinal Chemistry, Institute of Medical Biology PAS, Lodowa 106, 92-232, Łódź, Poland.
| |
Collapse
|
49
|
Mollet I, Marto JP, Mendonça M, Baptista MV, Vieira HLA. Remote but not Distant: a Review on Experimental Models and Clinical Trials in Remote Ischemic Conditioning as Potential Therapy in Ischemic Stroke. Mol Neurobiol 2021; 59:294-325. [PMID: 34686988 PMCID: PMC8533672 DOI: 10.1007/s12035-021-02585-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022]
Abstract
Stroke is one of the main causes of neurological disability worldwide and the second cause of death in people over 65 years old, resulting in great economic and social burden. Ischemic stroke accounts for 85% of total cases, and the approved therapies are based on re-establishment of blood flow, and do not directly target brain parenchyma. Thus, novel therapies are urgently needed. In this review, limb remote ischemic conditioning (RIC) is revised and discussed as a potential therapy against ischemic stroke. The review targets both (i) fundamental research based on experimental models and (ii) clinical research based on clinical trials and human interventional studies with healthy volunteers. Moreover, it also presents two approaches concerning RIC mechanisms in stroke: (i) description of the underlying cerebral cellular and molecular mechanisms triggered by limb RIC that promote neuroprotection against stroke induced damage and (ii) the identification of signaling factors involved in inter-organ communication following RIC procedure. Limb to brain remote signaling can occur via circulating biochemical factors, immune cells, and/or stimulation of autonomic nervous system. In this review, these three hypotheses are explored in both humans and experimental models. Finally, the challenges involved in translating experimentally generated scientific knowledge to a clinical setting are also discussed.
Collapse
Affiliation(s)
- Inês Mollet
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-526, Caparica, Portugal.,CEDOC, Faculdade de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - João Pedro Marto
- CEDOC, Faculdade de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | - Marcelo Mendonça
- CEDOC, Faculdade de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Champalimaud Research, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Miguel Viana Baptista
- CEDOC, Faculdade de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | - Helena L A Vieira
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-526, Caparica, Portugal. .,CEDOC, Faculdade de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal. .,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| |
Collapse
|
50
|
Saini A, Patel R, Gaba S, Singh G, Gupta GD, Monga V. Adenosine receptor antagonists: Recent advances and therapeutic perspective. Eur J Med Chem 2021; 227:113907. [PMID: 34695776 DOI: 10.1016/j.ejmech.2021.113907] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022]
Abstract
Adenosine is an endogenous purine-based nucleoside expressed nearly in all body tissues. It regulates various body functions by activating four G-protein coupled receptors, A1, A2A, A2B, and A3. These receptors are widely acknowledged as drug targets for treating different neurological, metabolic, and inflammatory diseases. Although numerous adenosine receptor inhibitors have been developed worldwide, achieving target selectivity is still a big hurdle in drug development. However, the identification of specific radioligands-based affinity assay, fluorescent ligands, and MS-based ligand assay have contributed to the development of selective and potent adenosine ligands. In recent years various small heterocyclic-based molecules have shown some promising results. Istradefylline has been approved for treating Parkinson's in Japan, while preladenant, tozadenant, CVT-6883, MRS-1523, and many more are under different phases of clinical development. The present review is focused on the quest to develop potent and selective adenosine inhibitors from 2013 to early 2021 by various research groups. The review also highlights their biological activity, selectivity, structure-activity relationship, molecular docking, and mechanistic studies. A special emphsesis on drug designing strategies has been also given the manuscript. The comprehensive compilation of research work carried out in the field will provide inevitable scope for designing and developing novel adenosine inhibitors with improved selectivity and efficacy.
Collapse
Affiliation(s)
- Anjali Saini
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Rajiv Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Sobhi Gaba
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India.
| | - G D Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga, 142001, Punjab, India.
| |
Collapse
|