1
|
Novy B, Dagunts A, Weishaar T, Holland EE, Adoff H, Hutchinson E, De Maria M, Kampmann M, Tsvetanova NG, Lobingier BT. An engineered trafficking biosensor reveals a role for DNAJC13 in DOR downregulation. Nat Chem Biol 2025; 21:360-370. [PMID: 39223388 PMCID: PMC11867885 DOI: 10.1038/s41589-024-01705-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Trafficking of G protein-coupled receptors (GPCRs) through the endosomal-lysosomal pathway is critical to homeostatic regulation of GPCRs following activation with agonist. Identifying the genes involved in GPCR trafficking is challenging due to the complexity of sorting operations and the large number of cellular proteins involved in the process. Here, we developed a high-sensitivity biosensor for GPCR expression and agonist-induced trafficking to the lysosome by leveraging the ability of the engineered peroxidase APEX2 to activate the fluorogenic substrate Amplex UltraRed (AUR). We used the GPCR-APEX2/AUR assay to perform a genome-wide CRISPR interference screen focused on identifying genes regulating expression and trafficking of the δ-opioid receptor (DOR). We identified 492 genes consisting of both known and new regulators of DOR function. We demonstrate that one new regulator, DNAJC13, controls trafficking of multiple GPCRs, including DOR, through the endosomal-lysosomal pathway by regulating the composition of the endosomal proteome and endosomal homeostasis.
Collapse
Affiliation(s)
- Brandon Novy
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Aleksandra Dagunts
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Tatum Weishaar
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Emily E Holland
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Hayden Adoff
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Emily Hutchinson
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Monica De Maria
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Martin Kampmann
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA, USA
| | | | - Braden T Lobingier
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
2
|
Kafel H, Braga-Basaria M, Basaria S. Opioid-induced androgen deficiency in men: Prevalence, pathophysiology, and efficacy of testosterone therapy. Andrology 2025. [PMID: 39982737 DOI: 10.1111/andr.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/03/2025] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Opioid analgesics are frequently prescribed for the treatment of chronic pain and are a common cause of male androgen deficiency. Despite its high prevalence, this adverse effect of chronic opioid use remains underappreciated by clinicians. As a result, androgen deficiency remains underdiagnosed and likely undertreated. This focused review discusses the expanding literature on opioid-induced androgen deficiency and the efficacy of testosterone therapy, with a particular focus on its anti-nociceptive effects. METHODS Original and review articles on opioid-induced male androgen deficiency published from 1950 through June 2024 were retrieved from PubMed using the key terms "opioids," "hypogonadism," "low testosterone," and "testosterone therapy." References within the retrieved publications were also researched. RESULTS Opioids suppress the gonadal axis mainly by inhibiting GnRH synthesis and secretion. The prevalence of opioid-induced androgen deficiency in men varies between 20% and 80% and is influenced by the type of opioid used, duration of exposure, age of the cohort, and how low testosterone was defined. Limited data from clinical trials suggest that testosterone therapy improves libido, body composition, and certain domains of quality of life. Early evidence also suggests that testosterone has anti-nociceptive properties, confirming findings from preclinical and population studies. CONCLUSION Chronic opioid use is a common but underappreciated cause of androgen deficiency in men. There is a need to raise awareness among clinicians regarding this adverse effect of opioid use. Testosterone therapy could be considered in men with unequivocal androgen deficiency after a thorough clinical evaluation. Ongoing clinical trials will shed further light on the efficacy of testosterone therapy, particularly regarding its anti-nociceptive effects.
Collapse
Affiliation(s)
- Hussein Kafel
- Section on Men's Health: Aging and Metabolism, Endocrinology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Milena Braga-Basaria
- Section on Men's Health: Aging and Metabolism, Endocrinology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shehzad Basaria
- Section on Men's Health: Aging and Metabolism, Endocrinology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Breault É, Desgagné M, Neve JD, Côté J, Barlow TMA, Ballet S, Sarret P. Multitarget ligands that comprise opioid/nonopioid pharmacophores for pain management: Current state of the science. Pharmacol Res 2024; 209:107408. [PMID: 39307212 DOI: 10.1016/j.phrs.2024.107408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Chronic pain, which affects more than one-third of the world's population, represents one of the greatest medical challenges of the 21st century, yet its effective management remains sub-optimal. The 'gold standard' for the treatment of moderate to severe pain consists of opioid ligands, such as morphine and fentanyl, that target the µ-opioid receptor (MOP). Paradoxically, these opioids also cause serious side effects, including constipation, respiratory depression, tolerance, and addiction. In addition, the development of opioid-use disorders, such as opioid diversion, misuse, and abuse, has led to the current opioid crisis, with dramatic increases in addiction, overdoses, and ultimately deaths. As pain is a complex, multidimensional experience involving a variety of pathways and mediators, dual or multitarget ligands that can bind to more than one receptor and exert complementary analgesic effects, represent a promising avenue for pain relief. Indeed, unlike monomodal therapeutic approaches, the modulation of several endogenous nociceptive systems can often result in an additive or even synergistic effect, thereby improving the analgesic-to-side-effect ratio. Here, we provide a comprehensive overview of research efforts towards the development of dual- or multi-targeting opioid/nonopioid hybrid ligands for effective and safer pain management. We reflect on the underpinning discovery rationale by discussing the design, medicinal chemistry, and in vivo pharmacological effects of multitarget antinociceptive compounds.
Collapse
Affiliation(s)
- Émile Breault
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Michael Desgagné
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Jolien De Neve
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Jérôme Côté
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Thomas M A Barlow
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Philippe Sarret
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
4
|
Cheng L, Miao Z, Liu S, Li Z, Fu H, Xu C, Hu S, Zhao C, Liu Y, Zhao T, Liu W, Wang H, Liu R, Yan W, Tang X, Liu J, Shao Z, Ke B. Cryo-EM structure of small-molecule agonist bound delta opioid receptor-G i complex enables discovery of biased compound. Nat Commun 2024; 15:8284. [PMID: 39333070 PMCID: PMC11437176 DOI: 10.1038/s41467-024-52601-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Delta opioid receptor (δOR) plays a pivotal role in modulating human sensation and emotion. It is an attractive target for drug discovery since, unlike Mu opioid receptor, it is associated with low risk of drug dependence. Despite its potential applications, the pharmacological properties of δOR, including the mechanisms of activation by small-molecule agonists and the complex signaling pathways it engages, as well as their relation to the potential side effects, remain poorly understood. In this study, we use cryo-electron microscopy (cryo-EM) to determine the structure of the δOR-Gi complex when bound to a small-molecule agonist (ADL5859). Moreover, we design a series of probes to examine the key receptor-ligand interaction site and identify a region involved in signaling bias. Using ADL06 as a chemical tool, we elucidate the relationship between the β-arrestin pathway of the δOR and its biological functions, such as analgesic tolerance and convulsion activities. Notably, we discover that the β-arrestin recruitment of δOR might be linked to reduced gastrointestinal motility. These insights enhance our understanding of δOR's structure, signaling pathways, and biological functions, paving the way for the structure-based drug discovery.
Collapse
Grants
- 2023ZYD0168 Department of Science and Technology of Sichuan Province (Sichuan Provincial Department of Science and Technology)
- 2024NSFJQ0052 Department of Science and Technology of Sichuan Province (Sichuan Provincial Department of Science and Technology)
- 82425054, 82273784 National Natural Science Foundation of China (National Science Foundation of China)
- 82271190, 32100965 National Natural Science Foundation of China (National Science Foundation of China)
- 323B2038 National Natural Science Foundation of China (National Science Foundation of China)
- 32371288, 32100988 National Natural Science Foundation of China (National Science Foundation of China)
- 31972916, T2221004, 31972916 National Natural Science Foundation of China (National Science Foundation of China)
- 32330049, 82320108021 National Natural Science Foundation of China (National Science Foundation of China)
- 2019YFA0508800 Ministry of Science,Technology and Research (Ministry of Technology & Research)
- 2021ZD0201900 Ministry of Science and Technology of the People's Republic of China (Chinese Ministry of Science and Technology)
- the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University,ZYYC21002 and ZYGD23025
- Ministry of Science,Technology and Research (Ministry of Technology & Research)
- Frontiers Medical Center, Tianfu Jincheng Laboratory Foundation, TFJC2023010010; the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University, ZYYC20023.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zhuang Miao
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sicen Liu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China
| | - Zhe Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Hong Fu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chanjuan Xu
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shilong Hu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chang Zhao
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuxuan Liu
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tiantian Zhao
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wencheng Liu
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Heli Wang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Runduo Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Wei Yan
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiangdong Tang
- Sleep Medicine Center, Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jianfeng Liu
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Zhenhua Shao
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| | - Bowen Ke
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Damiescu R, Dawood M, Elbadawi M, Klauck SM, Bringmann G, Efferth T. Identification of Cytisine Derivatives as Agonists of the Human Delta Opioid Receptor by Supercomputer-Based Virtual Drug Screening and Transcriptomics. ACS Chem Biol 2024; 19:1963-1981. [PMID: 39167688 DOI: 10.1021/acschembio.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Delta opioid receptors (DORs) are rising as therapeutic targets, not only for the treatment of pain but also other neurological disorders (e.g., Parkinson's disease). The advantage of DOR agonists compared to μ-opioid receptor agonists is that they have fewer side effects and a lower potential to induce tolerance. However, although multiple candidates have been tested in the past few decades, none have been approved for clinical use. The current study focused on searching for new DOR agonists by screening a chemical library containing 40,000 natural and natural-derived products. The functional activity of the top molecules was evaluated in vitro through the cyclic adenosine monophosphate accumulation assay. Compound 3 showed promising results, and its activity was further investigated through transcriptomic methods. Compound 3 inhibited the expression of TNF-α, prevented NF-κB translocation to the nucleus, and activated the G-protein-mediated ERK1/2 pathway. Additionally, compound 3 is structurally different from known DOR agonists, making it a valuable candidate for further investigation for its anti-inflammatory and analgesic potential.
Collapse
Affiliation(s)
- Roxana Damiescu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55099, Germany
| | - Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55099, Germany
| | - Mohamed Elbadawi
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55099, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) Heidelberg, National Center for Tumor Diseases (NCT), NCT Heidelberg, A Partnership between DKFZ and University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg D-97074, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55099, Germany
| |
Collapse
|
6
|
Chiang CC, Porreca F, Robertson CE, Dodick DW. Potential treatment targets for migraine: emerging options and future prospects. Lancet Neurol 2024; 23:313-324. [PMID: 38365382 DOI: 10.1016/s1474-4422(24)00003-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 10/23/2023] [Accepted: 01/05/2024] [Indexed: 02/18/2024]
Abstract
Migraine is a leading cause of disability worldwide. Despite the recent approval of several calcitonin gene-related peptide-targeted therapies, many people with migraine do not achieve satisfactory headache improvement with currently available therapies and there continues to be an unmet need for effective and tolerable migraine-specific treatments. Exploring additional targets that have compelling evidence for their involvement in modulating migraine pathways is therefore imperative. Potential new therapies for migraine include pathways involved in nociception, regulation of homoeostasis, modulation of vasodilation, and reward circuits. Animal and human studies show that these targets are expressed in regions of the CNS and peripheral nervous system that are involved in pain processing, indicating that these targets might be regarded as promising for the discovery of new migraine therapies. Future studies will require assessment of whether targets are suitable for therapeutic modulation, including assessment of specificity, affinity, solubility, stability, efficacy, and safety.
Collapse
Affiliation(s)
| | - Frank Porreca
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | | | - David W Dodick
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, USA; Atria Academy of Science and Medicine, New York, NY, USA
| |
Collapse
|
7
|
Morales Rodríguez LM, Crilly SE, Rowe JB, Isom DG, Puthenveedu MA. Location-biased activation of the proton-sensor GPR65 is uncoupled from receptor trafficking. Proc Natl Acad Sci U S A 2023; 120:e2302823120. [PMID: 37722051 PMCID: PMC10523530 DOI: 10.1073/pnas.2302823120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/07/2023] [Indexed: 09/20/2023] Open
Abstract
The canonical view of G protein-coupled receptor (GPCR) function is that receptor trafficking is tightly coupled to signaling. GPCRs remain on the plasma membrane (PM) at the cell surface until they are activated, after which they are desensitized and internalized into endosomal compartments. This canonical view presents an interesting context for proton-sensing GPCRs because they are more likely to be activated in acidic endosomal compartments than at the PM. Here, we show that the trafficking of the prototypical proton-sensor GPR65 is fully uncoupled from signaling, unlike that of other known mammalian GPCRs. GPR65 internalizes and localizes to early and late endosomes, from where they signal at steady state, irrespective of extracellular pH. Acidic extracellular environments stimulate receptor signaling at the PM in a dose-dependent manner, although endosomal GPR65 is still required for a full signaling response. Receptor mutants that were incapable of activating cAMP trafficked normally, internalize and localize to endosomal compartments. Our results show that GPR65 is constitutively active in endosomes, and suggest a model where changes in extracellular pH reprograms the spatial pattern of receptor signaling and biases the location of signaling to the cell surface.
Collapse
Affiliation(s)
| | - Stephanie E. Crilly
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI48109
| | - Jacob B. Rowe
- The Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL33136
| | - Daniel G. Isom
- The Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL33136
- Institute for Data Science and Computing, University of Miami Miller School of Medicine, Miami, FL33136
| | - Manojkumar A. Puthenveedu
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI48109
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI48109
| |
Collapse
|
8
|
Blaine AT, van Rijn RM. Receptor expression and signaling properties in the brain, and structural ligand motifs that contribute to delta opioid receptor agonist-induced seizures. Neuropharmacology 2023; 232:109526. [PMID: 37004753 PMCID: PMC11078570 DOI: 10.1016/j.neuropharm.2023.109526] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The δ opioid receptor (δOR) is a therapeutic target for the treatment of various neurological disorders, such as migraines, chronic pain, alcohol use, and mood disorders. Relative to μ opioid receptor agonists, δOR agonists show lower abuse liability and may be potentially safer analgesic alternatives. However, currently no δOR agonists are approved for clinical use. A small number of δOR agonists reached Phase II trials, but ultimately failed to progress due to lack of efficacy. One side effect of δOR agonism that remains poorly understood is the ability of δOR agonists to produce seizures. The lack of a clear mechanism of action is partly driven by the fact that δOR agonists range in their propensity to induce seizure behavior, with multiple δOR agonists reportedly not causing seizures. There is a significant gap in our current understanding of why certain δOR agonists are more likely to induce seizures, and what signal-transduction pathway and/or brain area is engaged to produce these seizures. In this review we provide a comprehensive overview of the current state of knowledge of δOR agonist-mediated seizures. The review was structured to highlight which agonists produce seizures, which brain regions have been implicated and which signaling mediators have been examined in this behavior. Our hope is that this review will spur future studies that are carefully designed and aimed to solve the question why certain δOR agonists are seizurogenic. Obtaining such insight may expedite the development of novel δOR clinical candidates without the risk of inducing seizures. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".
Collapse
Affiliation(s)
- Arryn T Blaine
- Purdue University, Department of Medicinal Chemistry and Molecular Pharmacology, West Lafayette, IN, 47907, USA; Purdue University Interdisciplinary Life Science graduate program, West Lafayette, IN, 47907, USA
| | - Richard M van Rijn
- Purdue University, Department of Medicinal Chemistry and Molecular Pharmacology, West Lafayette, IN, 47907, USA; Purdue Institute for Integrative Neuroscience, West Lafayette, IN, 47907, USA; Purdue Institute for Drug Discovery, West Lafayette, IN, 47907, USA; Septerna Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
9
|
Inyang KE, Sim J, Clark KB, Matan G, Monahan K, Evans C, Beng P, Ma JV, Heijnen CJ, Dantzer R, Scherrer G, Kavelaars A, Bernard M, Aldhamen Y, Folger JK, Laumet G. Tonic Meningeal Interleukin-10 Upregulates Delta Opioid Receptor to Prevent Relapse to Pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544200. [PMID: 37333074 PMCID: PMC10274865 DOI: 10.1101/2023.06.08.544200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Chronic pain often alternates between transient remission and relapse of severe pain. While most research on chronic pain has focused on mechanisms maintaining pain, there is a critical unmet need to understand what prevents pain from re-emerging in those who recover from acute pain. We found that interleukin (IL)-10, a pain resolving cytokine, is persistently produced by resident macrophages in the spinal meninges during remission from pain. IL-10 upregulated expression and analgesic activity of δ-opioid receptor (δOR) in the dorsal root ganglion. Genetic or pharmacological inhibition of IL-10 signaling or δOR triggered relapse to pain in both sexes. These data challenge the widespread assumption that remission of pain is simply a return to the naïve state before pain was induced. Instead, our findings strongly suggest a novel concept that: remission is a state of lasting pain vulnerability that results from a long-lasting neuroimmune interactions in the nociceptive system.
Collapse
|
10
|
Mazzeo F, Meccariello R, Guatteo E. Molecular and Epigenetic Aspects of Opioid Receptors in Drug Addiction and Pain Management in Sport. Int J Mol Sci 2023; 24:ijms24097831. [PMID: 37175536 PMCID: PMC10178540 DOI: 10.3390/ijms24097831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Opioids are substances derived from opium (natural opioids). In its raw state, opium is a gummy latex extracted from Papaver somniferum. The use of opioids and their negative health consequences among people who use drugs have been studied. Today, opioids are still the most commonly used and effective analgesic treatments for severe pain, but their use and abuse causes detrimental side effects for health, including addiction, thus impacting the user's quality of life and causing overdose. The mesocorticolimbic dopaminergic circuitry represents the brain circuit mediating both natural rewards and the rewarding aspects of nearly all drugs of abuse, including opioids. Hence, understanding how opioids affect the function of dopaminergic circuitry may be useful for better knowledge of the process and to develop effective therapeutic strategies in addiction. The aim of this review was to summarize the main features of opioids and opioid receptors and focus on the molecular and upcoming epigenetic mechanisms leading to opioid addiction. Since synthetic opioids can be effective for pain management, their ability to induce addiction in athletes, with the risk of incurring doping, is also discussed.
Collapse
Affiliation(s)
- Filomena Mazzeo
- Department of Economics, Law, Cybersecurity and Sports Sciences, University of Naples "Parthenope", 80133 Naples, Italy
- Department of Movement Sciences and Wellbeing, University of Naples "Parthenope", 80133 Naples, Italy
| | - Rosaria Meccariello
- Department of Movement Sciences and Wellbeing, University of Naples "Parthenope", 80133 Naples, Italy
| | - Ezia Guatteo
- Department of Movement Sciences and Wellbeing, University of Naples "Parthenope", 80133 Naples, Italy
- IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| |
Collapse
|
11
|
Manai F, Zanoletti L, Morra G, Mansoor S, Carriero F, Bozzola E, Muscianisi S, Comincini S. Gluten Exorphins Promote Cell Proliferation through the Activation of Mitogenic and Pro-Survival Pathways. Int J Mol Sci 2023; 24:3912. [PMID: 36835317 PMCID: PMC9966116 DOI: 10.3390/ijms24043912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Celiac disease (CD) is a chronic and systemic autoimmune disorder that affects preferentially the small intestine of individuals with a genetic predisposition. CD is promoted by the ingestion of gluten, a storage protein contained in the endosperm of the seeds of wheat, barley, rye, and related cereals. Once in the gastrointestinal (GI) tract, gluten is enzymatically digested with the consequent release of immunomodulatory and cytotoxic peptides, i.e., 33mer and p31-43. In the late 1970s a new group of biologically active peptides, called gluten exorphins (GEs), was discovered and characterized. In particular, these short peptides showed a morphine-like activity and high affinity for the δ-opioid receptor (DOR). The relevance of GEs in the pathogenesis of CD is still unknown. Recently, it has been proposed that GEs could contribute to asymptomatic CD, which is characterized by the absence of symptoms that are typical of this disorder. In the present work, GEs cellular and molecular effects were in vitro investigated in SUP-T1 and Caco-2 cells, also comparing viability effects with human normal primary lymphocytes. As a result, GEs treatments increased tumor cell proliferation by cell cycle and Cyclins activation as well as by induction of mitogenic and pro-survival pathways. Finally, a computational model of GEs interaction with DOR is provided. Altogether, the results might suggest a possible role of GEs in CD pathogenesis and on its associated cancer comorbidities.
Collapse
Affiliation(s)
- Federico Manai
- Department of Biology and Biotechnology “L.Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Lisa Zanoletti
- Department of Biology and Biotechnology “L.Spallanzani”, University of Pavia, 27100 Pavia, Italy
- Laboratory for Mucosal Immunology, TARGID, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, 3000 Leuven, Belgium
| | - Giulia Morra
- SCITEC, Consiglio Nazionale delle Ricerche, 20131 Milano, Italy
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Samman Mansoor
- SCITEC, Consiglio Nazionale delle Ricerche, 20131 Milano, Italy
| | - Francesca Carriero
- Department of Biology and Biotechnology “L.Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Elena Bozzola
- Pediatric Unit, I.R.C.C.S. Bambino Gesù Children Hospital, 00165 Roma, Italy
| | - Stella Muscianisi
- Cell Factory and Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Sergio Comincini
- Department of Biology and Biotechnology “L.Spallanzani”, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
12
|
Novel Therapeutic Targets for Migraine. Biomedicines 2023; 11:biomedicines11020569. [PMID: 36831105 PMCID: PMC9952984 DOI: 10.3390/biomedicines11020569] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Migraine, a primary headache disorder involving a dysfunctional trigeminal vascular system, remains a major debilitating neurological condition impacting many patients' quality of life. Despite the success of multiple new migraine therapies, not all patients achieve significant clinical benefits. The success of CGRP pathway-targeted therapy highlights the importance of translating the mechanistic understanding toward effective therapy. Ongoing research has identified multiple potential mechanisms in migraine signaling and nociception. In this narrative review, we discuss several potential emerging therapeutic targets, including pituitary adenylate cyclase-activating polypeptide (PACAP), adenosine, δ-opioid receptor (DOR), potassium channels, transient receptor potential ion channels (TRP), and acid-sensing ion channels (ASIC). A better understanding of these mechanisms facilitates the discovery of novel therapeutic targets and provides more treatment options for improved clinical care.
Collapse
|
13
|
Shi Y, Chen Y, Deng L, Du K, Lu S, Chen T. Structural Understanding of Peptide-Bound G Protein-Coupled Receptors: Peptide-Target Interactions. J Med Chem 2023; 66:1083-1111. [PMID: 36625741 DOI: 10.1021/acs.jmedchem.2c01309] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The activation of G protein-coupled receptors (GPCRs) is triggered by ligand binding to their orthosteric sites, which induces ligand-specific conformational changes. Agonists and antagonists bound to GPCR orthosteric sites provide detailed information on ligand-binding modes. Among these, peptide ligands play an instrumental role in GPCR pharmacology and have attracted increased attention as therapeutic drugs. The recent breakthrough in GPCR structural biology has resulted in the remarkable availability of peptide-bound GPCR complexes. Despite the several structural similarities shared by these receptors, they exhibit distinct features in terms of peptide recognition and receptor activation. From this perspective, we have summarized the current status of peptide-bound GPCR structural complexes, largely focusing on the interactions between the receptor and its peptide ligand at the orthosteric site. In-depth structural investigations have yielded valuable insights into the molecular mechanisms underlying peptide recognition. This study would contribute to the discovery of GPCR peptide drugs with improved therapeutic effects.
Collapse
Affiliation(s)
- Yuxin Shi
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.,Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Yi Chen
- Department of Ultrasound Interventional, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai 200433, China
| | - Liping Deng
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Kui Du
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.,Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
14
|
Kelly E, Conibear A, Henderson G. Biased Agonism: Lessons from Studies of Opioid Receptor Agonists. Annu Rev Pharmacol Toxicol 2023; 63:491-515. [PMID: 36170657 DOI: 10.1146/annurev-pharmtox-052120-091058] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In ligand bias different agonist drugs are thought to produce distinct signaling outputs when activating the same receptor. If these signaling outputs mediate therapeutic versus adverse drug effects, then agonists that selectively activate the therapeutic signaling pathway would be extremely beneficial. It has long been thought that μ-opioid receptor agonists that selectively activate G protein- over β-arrestin-dependent signaling pathways would produce effective analgesia without the adverse effects such as respiratory depression. However, more recent data indicate that most of the therapeutic and adverse effects of agonist-induced activation of the μ-opioid receptor are actually mediated by the G protein-dependent signaling pathway, and that a number of drugs described as G protein biased in fact may not be biased, but instead may be low-intrinsic-efficacy agonists. In this review we discuss the current state of the field of bias at the μ-opioid receptor and other opioid receptor subtypes.
Collapse
Affiliation(s)
- Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| | - Alexandra Conibear
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| | - Graeme Henderson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom;
| |
Collapse
|
15
|
Catalani V, Botha M, Corkery JM, Guirguis A, Vento A, Schifano F. Designer Benzodiazepines' Activity on Opioid Receptors: A Docking Study. Curr Pharm Des 2022; 28:2639-2652. [PMID: 35538798 DOI: 10.2174/1381612828666220510153319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/21/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Previous studies have reported that benzodiazepines (BZDs) seem to enhance euphoric and reinforcing properties of opioids in opioid users so that a direct effect on opioid receptors has been postulated, together with a possible synergistic induction of severe side effects due to co use of BDZs and opioids. This is particularly worrisome given the appearance on the market of designer benzodiazepines (DBZDs), whose activity/toxicity profiles are scarcely known. OBJECTIVES This study aimed to evaluate, through computational studies, the binding affinity (or lack thereof) of 101 DBZDs identified online on the kappa, mu, and delta opioid receptors (K, M, DOR); and to assess whether their mechanism of action could include activation of the latter. METHODS MOE® was used for the computational studies. Pharmacophore mapping based on strong opioids agonist binders' 3D chemical features was used to filter the DBZDs. Resultant DBZDs were docked into the crystallised 3D active conformation of KOR (PDB6B73), DOR (PDB6PT3) and MOR (PDB5C1M). Co-crystallised ligands and four strong agonists were used as reference compounds. A score (S, Kcal/mol) representative of the predicted binding affinity, and a description of ligand interactions were obtained from MOE®. RESULTS The docking results, filtered for S < -8.0 and the interaction with the Asp residue, identified five DBZDs as putative binders of the three ORs : ciclotizolam, fluloprazolam, JQ1, Ro 48-6791, and Ro 48-8684. CONCLUSION It may be inferred that at least some DBZDs may have the potential to activate opioid receptors. This could mediate/increase their anxiolytic, analgesic, and addiction potentials, as well as worsen the side effects associated with opioid co-use.
Collapse
Affiliation(s)
- Valeria Catalani
- Psychopharmacology, Drug Misuse & Novel Psychoactive Substances Research Unit, School of Life & Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, United Kingdom
| | - Michelle Botha
- Psychopharmacology, Drug Misuse & Novel Psychoactive Substances Research Unit, School of Life & Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, United Kingdom
| | - John Martin Corkery
- Psychopharmacology, Drug Misuse & Novel Psychoactive Substances Research Unit, School of Life & Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, United Kingdom
| | - Amira Guirguis
- Psychopharmacology, Drug Misuse & Novel Psychoactive Substances Research Unit, School of Life & Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, United Kingdom.,Swansea University Medical School, The Grove, Swansea University, Singleton Park, Swansea, United Kingdom
| | - Alessandro Vento
- Department of Mental Health, ASL Roma 2, Rome, Italy.,Addictions\' Observatory (ODDPSS), Rome, Italy.,Guglielmo Marconi' University, Rome, Italy
| | - Fabrizio Schifano
- Psychopharmacology, Drug Misuse & Novel Psychoactive Substances Research Unit, School of Life & Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, United Kingdom
| |
Collapse
|
16
|
Blaine AT, Miao Y, Yuan J, Palant S, Liu RJ, Zhang ZY, van Rijn RM. Exploration of beta-arrestin isoform signaling pathways in delta opioid receptor agonist-induced convulsions. Front Pharmacol 2022; 13:914651. [PMID: 36059958 PMCID: PMC9428791 DOI: 10.3389/fphar.2022.914651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
The δ-opioid receptor (δOR) has been considered as a therapeutic target in multiple neurological and neuropsychiatric disorders particularly as δOR agonists are deemed safer alternatives relative to the more abuse-liable µ-opioid receptor drugs. Clinical development of δOR agonists, however, has been challenging in part due to the seizure-inducing effects of certain δOR agonists. Especially agonists that resemble the δOR-selective agonist SNC80 have well-established convulsive activity. Close inspection suggests that many of those seizurogenic δOR agonists efficaciously recruit β-arrestin, yet surprisingly, SNC80 displays enhanced seizure activity in β-arrestin 1 knockout mice. This finding led us to hypothesize that perhaps β-arrestin 1 is protective against, whereas β-arrestin 2 is detrimental for δOR-agonist-induced seizures. To investigate our hypothesis, we characterized three different δOR agonists (SNC80, ADL5859, ARM390) in cellular assays and in vivo in wild-type and β-arrestin 1 and β-arrestin 2 knockout mice for seizure activity. We also investigated downstream kinases associated with β-arrestin-dependent signal transduction. We discovered that δOR agonist-induced seizure activity strongly and positively correlates with β-arrestin 2 efficacy for the agonist, but that indirect inhibition of ERK activation using the MEK inhibitor SL327 did not inhibit seizure potency and duration. Inhibition of the PI3K/AKT/mTOR signaling with honokiol but not PQR530, attenuated SNC80 seizure duration in β-arrestin 1 knockout, but honokiol did not reduce SNC80-induced seizures in wild-type mice. Ultimately, our results indicate that β-arrestin 2 is correlated with δOR agonist-induced seizure intensity, but that global β-arrestin 1 knockout mice are a poor model system to investigate their mechanism of action.
Collapse
Affiliation(s)
- Arryn T. Blaine
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Purdue Interdisciplinary Life Sciences Graduate Program, West Lafayette, IN, United States
| | - Yiming Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Jinling Yuan
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Sophia Palant
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Rebecca J. Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Drug Discovery, West Lafayette, IN, United States
- Purdue University Cancer Center, West Lafayette, IN, United States
| | - Richard. M. van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Drug Discovery, West Lafayette, IN, United States
- Purdue University Cancer Center, West Lafayette, IN, United States
- Purdue Institute for Integrative Neuroscience, West Lafayette, IN, United States
- *Correspondence: Richard. M. van Rijn,
| |
Collapse
|
17
|
Meqbil YJ, van Rijn RM. Opportunities and Challenges for In Silico Drug Discovery at Delta Opioid Receptors. Pharmaceuticals (Basel) 2022; 15:873. [PMID: 35890173 PMCID: PMC9324648 DOI: 10.3390/ph15070873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022] Open
Abstract
The delta opioid receptor is a Gi-protein-coupled receptor (GPCR) with a broad expression pattern both in the central nervous system and the body. The receptor has been investigated as a potential target for a multitude of significant diseases including migraine, alcohol use disorder, ischemia, and neurodegenerative diseases. Despite multiple attempts, delta opioid receptor-selective molecules have not been translated into the clinic. Yet, the therapeutic promise of the delta opioid receptor remains and thus there is a need to identify novel delta opioid receptor ligands to be optimized and selected for clinical trials. Here, we highlight recent developments involving the delta opioid receptor, the closely related mu and kappa opioid receptors, and in the broader area of the GPCR drug discovery research. We focus on the validity and utility of the available delta opioid receptor structures. We also discuss the increased ability to perform ultra-large-scale docking studies on GPCRs, the rise in high-resolution cryo-EM structures, and the increased prevalence of machine learning and artificial intelligence in drug discovery. Overall, we pose that there are multiple opportunities to enable in silico drug discovery at the delta opioid receptor to identify novel delta opioid modulators potentially with unique pharmacological properties, such as biased signaling.
Collapse
Affiliation(s)
- Yazan J. Meqbil
- Department of Medicinal Chemistry and Molecular Pharmacology, Computational Interdisciplinary Graduate Program, Purdue University, West Lafayette, IN 47907, USA;
| | - Richard M. van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue Institute for Neuroscience, Purdue University, West Lafayette, IN 47907, USA
- Septerna Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
18
|
Reeves KC, Shah N, Muñoz B, Atwood BK. Opioid Receptor-Mediated Regulation of Neurotransmission in the Brain. Front Mol Neurosci 2022; 15:919773. [PMID: 35782382 PMCID: PMC9242007 DOI: 10.3389/fnmol.2022.919773] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
Opioids mediate their effects via opioid receptors: mu, delta, and kappa. At the neuronal level, opioid receptors are generally inhibitory, presynaptically reducing neurotransmitter release and postsynaptically hyperpolarizing neurons. However, opioid receptor-mediated regulation of neuronal function and synaptic transmission is not uniform in expression pattern and mechanism across the brain. The localization of receptors within specific cell types and neurocircuits determine the effects that endogenous and exogenous opioids have on brain function. In this review we will explore the similarities and differences in opioid receptor-mediated regulation of neurotransmission across different brain regions. We discuss how future studies can consider potential cell-type, regional, and neural pathway-specific effects of opioid receptors in order to better understand how opioid receptors modulate brain function.
Collapse
Affiliation(s)
- Kaitlin C. Reeves
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, United States
| | - Nikhil Shah
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Braulio Muñoz
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brady K. Atwood
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
19
|
Quirion B, Beaulieu C, Côté L, Parent JL, Gendron L. Distribution of delta and mu opioid receptor mRNA in rodent dorsal root ganglia neurons. Eur J Neurosci 2022; 56:4031-4044. [PMID: 35674691 PMCID: PMC9543299 DOI: 10.1111/ejn.15733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 12/01/2022]
Abstract
Primary afferents are responsible for transmitting signals produced by noxious stimuli from the periphery to the spinal cord. Mu and delta opioid receptors (MOP and DOP) have analgesic properties and are highly expressed in dorsal root ganglia (DRG) neurons. In humans, spinal DOP is almost exclusively located on central terminals of DRG neurons, whereas in rodents, it is expressed both on presynaptic terminals and spinal neurons. In this study, we aimed to assess the distribution of MOP and DOP in the DRGs of mice and rats. Using in situ hybridization and immunofluorescence, we visualized MOP and DOP mRNA together with various neuronal markers. In rats and mice, we show that both receptors are expressed, albeit to different extents, in all types of neurons, namely, large and medium myelinated neurons (NF200-positive), small nonpeptidergic (IB4- or P2X3R-positive) and peptidergic C fibres (Tac1-positive). Overall, DOP mRNA was found to be mainly expressed in large and medium myelinated neurons, whereas MOP mRNA was mainly found in C fibres. The distribution of MOP and DOP, however, slightly differs between rats and mice, with a higher proportion of small nonpeptidergic C fibres expressing DOP mRNA in mice than in rats. We further found that neither morphine nor inflammation affected the distribution of the receptor mRNA. Because of their location, our results confirm that MOP and DOP have the potential to alleviate similar types of pain and that this effect could slightly differ between species.
Collapse
Affiliation(s)
- Béatrice Quirion
- Département de Pharmacologie-Physiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Claudie Beaulieu
- Département de Pharmacologie-Physiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Laurie Côté
- Département de Pharmacologie-Physiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Département de Médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-Luc Parent
- Département de Médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Louis Gendron
- Département de Pharmacologie-Physiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Quebec Pain Research Network
| |
Collapse
|
20
|
Singh UA, Iyengar S. The Role of the Endogenous Opioid System in the Vocal Behavior of Songbirds and Its Possible Role in Vocal Learning. Front Physiol 2022; 13:823152. [PMID: 35273519 PMCID: PMC8902293 DOI: 10.3389/fphys.2022.823152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/31/2022] [Indexed: 12/04/2022] Open
Abstract
The opioid system in the brain is responsible for processing affective states such as pain, pleasure, and reward. It consists of three main receptors, mu- (μ-ORs), delta- (δ-ORs), and kappa- (κ-ORs), and their ligands – the endogenous opioid peptides. Despite their involvement in the reward pathway, and a signaling mechanism operating in synergy with the dopaminergic system, fewer reports focus on the role of these receptors in higher cognitive processes. Whereas research on opioids is predominated by studies on their addictive properties and role in pain pathways, recent studies suggest that these receptors may be involved in learning. Rodents deficient in δ-ORs were poor at recognizing the location of novel objects in their surroundings. Furthermore, in chicken, learning to avoid beads coated with a bitter chemical from those without the coating was modulated by δ-ORs. Similarly, μ-ORs facilitate long term potentiation in hippocampal CA3 neurons in mammals, thereby having a positive impact on spatial learning. Whereas these studies have explored the role of opioid receptors on learning using reward/punishment-based paradigms, the role of these receptors in natural learning processes, such as vocal learning, are yet unexplored. In this review, we explore studies that have established the expression pattern of these receptors in different brain regions of birds, with an emphasis on songbirds which are model systems for vocal learning. We also review the role of opioid receptors in modulating the cognitive processes associated with vocalizations in birds. Finally, we discuss the role of these receptors in regulating the motivation to vocalize, and a possible role in modulating vocal learning.
Collapse
|
21
|
Degrandmaison J, Rochon-Haché S, Parent JL, Gendron L. Knock-In Mouse Models to Investigate the Functions of Opioid Receptors in vivo. Front Cell Neurosci 2022; 16:807549. [PMID: 35173584 PMCID: PMC8841419 DOI: 10.3389/fncel.2022.807549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/04/2022] [Indexed: 12/28/2022] Open
Abstract
Due to their low expression levels, complex multi-pass transmembrane structure, and the current lack of highly specific antibodies, the assessment of endogenous G protein-coupled receptors (GPCRs) remains challenging. While most of the research regarding their functions was performed in heterologous systems overexpressing the receptor, recent advances in genetic engineering methods have allowed the generation of several unique mouse models. These animals proved to be useful to investigate numerous aspects underlying the physiological functions of GPCRs, including their endogenous expression, distribution, interactome, and trafficking processes. Given their significant pharmacological importance and central roles in the nervous system, opioid peptide receptors (OPr) are often referred to as prototypical receptors for the study of GPCR regulatory mechanisms. Although only a few GPCR knock-in mouse lines have thus far been generated, OPr are strikingly well represented with over 20 different knock-in models, more than half of which were developed within the last 5 years. In this review, we describe the arsenal of OPr (mu-, delta-, and kappa-opioid), as well as the opioid-related nociceptin/orphanin FQ (NOP) receptor knock-in mouse models that have been generated over the past years. We further highlight the invaluable contribution of such models to our understanding of the in vivo mechanisms underlying the regulation of OPr, which could be conceivably transposed to any other GPCR, as well as the limitations, future perspectives, and possibilities enabled by such tools.
Collapse
Affiliation(s)
- Jade Degrandmaison
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Médecine, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Quebec Network of Junior Pain Investigators, Sherbrooke, QC, Canada
| | - Samuel Rochon-Haché
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Médecine, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Quebec Network of Junior Pain Investigators, Sherbrooke, QC, Canada
| | - Jean-Luc Parent
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Médecine, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Jean-Luc Parent,
| | - Louis Gendron
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Quebec Pain Research Network, Sherbrooke, QC, Canada
- *Correspondence: Louis Gendron,
| |
Collapse
|
22
|
Mas-Orea X, Basso L, Blanpied C, Gaveriaux-Ruff C, Cenac N, Dietrich G. Delta opioid receptors on nociceptive sensory neurons mediate peripheral endogenous analgesia in colitis. J Neuroinflammation 2022; 19:7. [PMID: 34991641 PMCID: PMC8740424 DOI: 10.1186/s12974-021-02352-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 12/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Inflammatory visceral pain is endogenously controlled by enkephalins locally released by mucosal CD4+ T lymphocytes in mice. The present study aimed at identifying opioid receptor(s) expressed on nociceptive sensory nerves involved in this peripheral opioid-mediated analgesia. METHODS The peripheral analgesia associated with the accumulation of CD4+ T lymphocytes within the inflamed colonic mucosa was assessed in conditional knockout mice specifically deleted for either of the two opioid receptors for enkephalins (i.e., µ (MOR) and δ (DOR) receptors) in Nav1.8-expressing sensory neurons in the dextran sulfate sodium (DSS)-induced colitis model. RESULTS Endogenous analgesia is lost in conditional knockout mice for DOR, but not MOR at the later phase of the DSS-induced colitis. The absence of either of the opioid receptors on sensory nerves had no impact on both the colitis severity and the rate of T lymphocytes infiltrating the inflamed colonic mucosa. CONCLUSION The key role of DOR on primary afferents in relieving intestinal inflammatory pain opens new therapeutic opportunities for peripherally restricted DOR analgesics to avoid most of the side effects associated with MOR-targeting drugs used in intestinal disorders.
Collapse
Affiliation(s)
- Xavier Mas-Orea
- Digestive Health Research Institute (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan BP 3028, 31024, Toulouse Cedex 3, France
| | - Lilian Basso
- Digestive Health Research Institute (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan BP 3028, 31024, Toulouse Cedex 3, France
- INFINITy, Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Catherine Blanpied
- Digestive Health Research Institute (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan BP 3028, 31024, Toulouse Cedex 3, France
| | | | - Nicolas Cenac
- Digestive Health Research Institute (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan BP 3028, 31024, Toulouse Cedex 3, France
| | - Gilles Dietrich
- Digestive Health Research Institute (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan BP 3028, 31024, Toulouse Cedex 3, France.
| |
Collapse
|
23
|
Cahill CM, Holdridge SV, Liu S, Xue L, Magnussen C, Ong E, Grenier P, Sutherland A, Olmstead MC. Delta opioid receptor activation modulates affective pain and modality-specific pain hypersensitivity associated with chronic neuropathic pain. J Neurosci Res 2022; 100:129-148. [PMID: 32623788 PMCID: PMC8218601 DOI: 10.1002/jnr.24680] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/28/2020] [Accepted: 06/04/2020] [Indexed: 01/03/2023]
Abstract
Delta opioid receptor (DOR) agonists alleviate nociceptive behaviors in various chronic pain models, including neuropathic pain, while having minimal effect on sensory thresholds in the absence of injury. The mechanisms underlying nerve injury-induced enhancement of DOR function are unclear. We used a peripheral nerve injury (PNI) model of neuropathic pain to assess changes in the function and localization of DORs in mice and rats. Intrathecal administration of DOR agonists reversed mechanical allodynia and thermal hyperalgesia. The dose-dependent thermal antinociceptive effects of DOR agonists were shifted to the left in PNI rats. Administration of DOR agonists produced a conditioned place preference in PNI, but not in sham, animals, whereas the DOR antagonist naltrindole produced a place aversion in PNI, but not in sham, mice, suggesting the engagement of endogenous DOR activity in suppressing pain associated with the injury. GTPγS autoradiography revealed an increase in DOR function in the dorsal spinal cord, ipsilateral to PNI. Immunogold electron microscopy and in vivo fluorescent agonist assays were used to assess changes in the ultrastructural localization of DORs in the spinal dorsal horn. In shams, DORs were primarily localized within intracellular compartments. PNI significantly increased the cell surface expression of DORs within lamina IV-V dendritic profiles. Using neonatal capsaicin treatment, we identified that DOR agonist-induced thermal antinociception was mediated via receptors expressed on primary afferent sensory neurons but did not alter mechanical thresholds. These data reveal that the regulation of DORs following PNI and suggest the importance of endogenous activation of DORs in regulating chronic pain states.
Collapse
Affiliation(s)
- Catherine M. Cahill
- Dept of Psychiatry & Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California, USA, 90095
| | - Sarah V. Holdridge
- Dept of Pharmacology & Toxicology, Queen’s University, Kingston, Ontario, Canada, K7L 3N6
| | - Steve Liu
- Dept of Psychiatry & Biobehavioral Sciences, Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California, USA, 90095,Department of Psychology and Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada, K7L 3N6
| | - Lihua Xue
- Dept of Pharmacology & Toxicology, Queen’s University, Kingston, Ontario, Canada, K7L 3N6
| | - Claire Magnussen
- Dept of Pharmacology & Toxicology, Queen’s University, Kingston, Ontario, Canada, K7L 3N6
| | - Edmund Ong
- Dept of Pharmacology & Toxicology, Queen’s University, Kingston, Ontario, Canada, K7L 3N6
| | - Patrick Grenier
- Dept of Pharmacology & Toxicology, Queen’s University, Kingston, Ontario, Canada, K7L 3N6
| | - Anne Sutherland
- Dept of Pharmacology & Toxicology, Queen’s University, Kingston, Ontario, Canada, K7L 3N6
| | - Mary C. Olmstead
- Department of Psychology and Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada, K7L 3N6
| |
Collapse
|
24
|
Blackwood CA, Cadet JL. Epigenetic and Genetic Factors Associated With Opioid Use Disorder: Are These Relevant to African American Populations. Front Pharmacol 2021; 12:798362. [PMID: 35002733 PMCID: PMC8727544 DOI: 10.3389/fphar.2021.798362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/07/2021] [Indexed: 01/02/2023] Open
Abstract
In the United States, the number of people suffering from opioid use disorder has skyrocketed in all populations. Nevertheless, observations of racial disparities amongst opioid overdose deaths have recently been described. Opioid use disorder is characterized by compulsive drug consumption followed by periods of withdrawal and recurrent relapses while patients are participating in treatment programs. Similar to other rewarding substances, exposure to opioid drugs is accompanied by epigenetic changes in the brain. In addition, genetic factors that are understudied in some racial groups may also impact the clinical manifestations of opioid use disorder. These studies are important because genetic factors and epigenetic alterations may also influence responses to pharmacological therapeutic approaches. Thus, this mini-review seeks to briefly summarize what is known about the genetic bases of opioid use disorder in African Americans.
Collapse
Affiliation(s)
- Christopher A. Blackwood
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, United States
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, United States
| |
Collapse
|
25
|
Mansour A, Nagi K, Dallaire P, Lukasheva V, Le Gouill C, Bouvier M, Pineyro G. Comprehensive Signaling Profiles Reveal Unsuspected Functional Selectivity of δ-Opioid Receptor Agonists and Allow the Identification of Ligands with the Greatest Potential for Inducing Cyclase Superactivation. ACS Pharmacol Transl Sci 2021; 4:1483-1498. [PMID: 34661070 PMCID: PMC8506601 DOI: 10.1021/acsptsci.1c00019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 11/29/2022]
Abstract
![]()
Prolonged exposure
to opioid receptor agonists triggers adaptations
in the adenylyl cyclase (AC) pathway that lead to enhanced production
of cyclic adenosine monophosphate (cAMP) upon withdrawal. This cellular
phenomenon contributes to withdrawal symptoms, hyperalgesia and analgesic
tolerance that interfere with clinical management of chronic pain
syndromes. Since δ-opioid receptors (DOPrs) are a promising
target for chronic pain management, we were interested in finding
out if cell-based signaling profiles as generated for drug discovery
purposes could inform us of the ligand potential to induce sensitization
of the cyclase path. For this purpose, signaling of DOPr agonists
was monitored at multiple effectors. The resulting signaling profiles
revealed marked functional selectivity, particularly for Met-enkephalin
(Met-ENK) whose signaling bias profile differed from those of synthetic
ligands like SNC-80 and ARM390. Signaling diversity among ligands
was systematized by clustering agonists according to similarities
in Emax and Log(τ) values for the
different responses. The classification process revealed that the
similarity in Gα/Gβγ, but not in β-arrestin
(βarr), responses was correlated with the potential of Met-ENK,
deltorphin II, (d-penicillamine2,5)-enkephalin (DPDPE), ARM390,
and SNC-80 to enhance cAMP production, all of which required Ca2+ mobilization to produce this response. Moreover, superactivation
by Met-ENK, which was the most-effective Ca2+ mobilizing
agonist, required Gαi/o activation, availability of Gβγ
subunits at the membrane, and activation of Ca2+ effectors
such as calmodulin and protein kinase C (PKC). In contrast, superactivation by (N-(l-tyrosyl)-(3S)-1,2,3,4-tetrahydroisoquinoline-3-carbonyl)-l-phenylalanyl-l-phenylalanine (TIPP), which was set
in a distinct category through clustering, required activation of
Gαi/o subunits but was independent of the Gβγ dimer
and Ca2+ mobilization, relying instead on Src and Raf-1
to induce this cellular adaptation.
Collapse
Affiliation(s)
- Ahmed Mansour
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada.,CHU Sainte-Justine Research Center, Montréal, Quebec H3T 1C5, Canada
| | - Karim Nagi
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Paul Dallaire
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada.,CHU Sainte-Justine Research Center, Montréal, Quebec H3T 1C5, Canada
| | - Viktoriya Lukasheva
- Institute for Research in Immunology and Cancer, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Christian Le Gouill
- Institute for Research in Immunology and Cancer, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Graciela Pineyro
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada.,CHU Sainte-Justine Research Center, Montréal, Quebec H3T 1C5, Canada
| |
Collapse
|
26
|
Degrandmaison J, Grisé O, Parent JL, Gendron L. Differential barcoding of opioid receptors trafficking. J Neurosci Res 2021; 100:99-128. [PMID: 34559903 DOI: 10.1002/jnr.24949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 07/25/2021] [Accepted: 08/05/2021] [Indexed: 11/09/2022]
Abstract
Over the past several years, studies have highlighted the δ-opioid receptor (DOPr) as a promising therapeutic target for chronic pain management. While exhibiting milder undesired effects than most currently prescribed opioids, its specific agonists elicit effective analgesic responses in numerous animal models of chronic pain, including inflammatory, neuropathic, diabetic, and cancer-related pain. However, as compared with the extensively studied μ-opioid receptor, the molecular mechanisms governing its trafficking remain elusive. Recent advances have denoted several significant particularities in the regulation of DOPr intracellular routing, setting it apart from the other members of the opioid receptor family. Although they share high homology, each opioid receptor subtype displays specific amino acid patterns potentially involved in the regulation of its trafficking. These precise motifs or "barcodes" are selectively recognized by regulatory proteins and therefore dictate several aspects of the itinerary of a receptor, including its anterograde transport, internalization, recycling, and degradation. With a specific focus on the regulation of DOPr trafficking, this review will discuss previously reported, as well as potential novel trafficking barcodes within the opioid and nociceptin/orphanin FQ opioid peptide receptors, and their impact in determining distinct interactomes and physiological responses.
Collapse
Affiliation(s)
- Jade Degrandmaison
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Quebec Network of Junior Pain Investigators, QC, Canada
| | - Olivier Grisé
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Luc Parent
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Louis Gendron
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Quebec Pain Research Network, QC, Canada
| |
Collapse
|
27
|
Arttamangkul S, Platt EJ, Carroll J, Farrens D. Functional independence of endogenous µ- and δ-opioid receptors co-expressed in cholinergic interneurons. eLife 2021; 10:69740. [PMID: 34477106 PMCID: PMC8718112 DOI: 10.7554/elife.69740] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/31/2021] [Indexed: 12/18/2022] Open
Abstract
Class A G-protein-coupled receptors (GPCRs) normally function as monomers, although evidence from heterologous expression systems suggests that they may sometimes form homodimers and/or heterodimers. This study aims to evaluate possible functional interplay of endogenous µ- and δ-opioid receptors (MORs and DORs) in mouse neurons. Detecting GPCR dimers in native tissues, however, has been challenging. Previously, MORs and DORs co-expressed in transfected cells have been reported to form heterodimers, and their possible co-localization in neurons has been studied in knock-in mice expressing genetically engineered receptors fused to fluorescent proteins. Here, we find that single cholinergic neurons in the mouse striatum endogenously express both MORs and DORs. The receptors on neurons from live brain slices were fluorescently labeled with a ligand-directed labeling reagent, NAI-A594. The selective activation of MORs and DORs, with DAMGO (µ-agonist) and deltorphin (δ-agonist) inhibited spontaneous firing in all cells examined. In the continued presence of agonist, the firing rate returned to baseline as the result of receptor desensitization with the application of deltorphin but was less observed with the application of DAMGO. In addition, agonist-induced internalization of DORs but not MORs was detected. When MORs and DORs were activated simultaneously with [Met5]-enkephalin, desensitization of MORs was facilitated but internalization was not increased. Together, these results indicate that while MORs and DORs are expressed in single striatal cholinergic interneurons, the two receptors function independently.
Collapse
Affiliation(s)
| | - Emily J Platt
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, United States
| | - James Carroll
- Surgery, Oregon Health and Science University, Portland, United States
| | - David Farrens
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health and Science University, Portland, United States
| |
Collapse
|
28
|
Moye LS, Siegersma K, Dripps I, Witkowski W, Mangutov E, Wang D, Scherrer G, Pradhan AA. Delta opioid receptor regulation of calcitonin gene-related peptide dynamics in the trigeminal complex. Pain 2021; 162:2297-2308. [PMID: 33605657 PMCID: PMC8730473 DOI: 10.1097/j.pain.0000000000002235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
ABSTRACT Migraine is highly prevalent and is the sixth leading cause worldwide for years lost to disability. Therapeutic options specifically targeting migraine are limited, and delta opioid receptor (DOP) agonists were recently identified as a promising pharmacotherapy. The mechanisms by which DOPs regulate migraine are currently unclear. Calcitonin gene-related peptide (CGRP) has been identified as an endogenous migraine trigger and plays a critical role in migraine initiation and susceptibility. The aim of this study was to determine the behavioral effects of DOP agonists on the development of chronic migraine-associated pain and to investigate DOP coexpression with CGRP and CGRP receptor (CGRPR) in the trigeminal system. Chronic migraine-associated pain was induced in mice through repeated intermittent injection of the known human migraine trigger, nitroglycerin. Chronic nitroglycerin resulted in severe chronic cephalic allodynia which was prevented with cotreatment of the DOP-selective agonist, SNC80. In addition, a corresponding increase in CGRP expression in the trigeminal ganglia and trigeminal nucleus caudalis was observed after chronic nitroglycerin, an augmentation that was blocked by SNC80. Moreover, DOP was also upregulated in these head pain-processing regions following the chronic migraine model. Immunohistochemical analysis of the trigeminal ganglia revealed coexpression of DOP with CGRP as well as with a primary component of the CGRPR, RAMP1. In the trigeminal nucleus caudalis, DOP was not coexpressed with CGRP but was highly coexpressed with RAMP1 and calcitonin receptor-like receptor. These results suggest that DOP agonists inhibit migraine-associated pain by attenuating CGRP release and blocking pronociceptive signaling of the CGRPR.
Collapse
Affiliation(s)
- Laura S Moye
- Department of Psychiatry, University of Illinois at Chicago
| | | | - Isaac Dripps
- Department of Psychiatry, University of Illinois at Chicago
| | | | | | - Dong Wang
- Department of Anesthesiology, Perioperative and Pain Medicine, Department of Neurosurgery, Department of Molecular and Cellular Physiology, Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- New York Stem Cell Foundation – Robertson Investigator
| | | |
Collapse
|
29
|
Kunselman JM, Lott J, Puthenveedu MA. Mechanisms of selective G protein-coupled receptor localization and trafficking. Curr Opin Cell Biol 2021; 71:158-165. [PMID: 33965654 PMCID: PMC8328924 DOI: 10.1016/j.ceb.2021.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022]
Abstract
The trafficking of G protein-coupled receptors (GPCRs) to different membrane compartments has recently emerged as being a critical determinant of the signaling profiles of activation. GPCRs, which share many structural and functional similarities, also share many mechanisms that traffic them between compartments. This sharing raises the question of how the trafficking of individual GPCRs is selectively regulated. Here, we will discuss recent studies addressing the mechanisms that contribute to selectivity in endocytic and biosynthetic trafficking of GPCRs.
Collapse
Affiliation(s)
- Jennifer M Kunselman
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Joshua Lott
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Manojkumar A Puthenveedu
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
30
|
O'Brien JB, Roman DL. Novel treatments for chronic pain: moving beyond opioids. Transl Res 2021; 234:1-19. [PMID: 33727192 DOI: 10.1016/j.trsl.2021.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023]
Abstract
It is essential that safe and effective treatment options be available to patients suffering from chronic pain. The emergence of an opioid epidemic has shaped public opinions and created stigmas surrounding the use of opioids for the management of pain. This reality, coupled with high risk of adverse effects from chronic opioid use, has led chronic pain patients and their healthcare providers to utilize nonopioid treatment approaches. In this review, we will explore a number of cellular reorganizations that are associated with the development and progression of chronic pain. We will also discuss the safety and efficacy of opioid and nonopioid treatment options for chronic pain. Finally, we will review the evidence for adenylyl cyclase type 1 (AC1) as a novel target for the treatment of chronic pain.
Collapse
Affiliation(s)
- Joseph B O'Brien
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa
| | - David L Roman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa; Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
31
|
Pasquinucci L, Parenti C, Georgoussi Z, Reina L, Tomarchio E, Turnaturi R. LP1 and LP2: Dual-Target MOPr/DOPr Ligands as Drug Candidates for Persistent Pain Relief. Molecules 2021; 26:molecules26144168. [PMID: 34299443 PMCID: PMC8305117 DOI: 10.3390/molecules26144168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 12/19/2022] Open
Abstract
Although persistent pain is estimated to affect about 20% of the adult population, current treatments have poor results. Polypharmacology, which is the administration of more than one drug targeting on two or more different sites of action, represents a prominent therapeutic approach for the clinical management of persistent pain. Thus, in the drug discovery process the "one-molecule-multiple targets" strategy nowadays is highly recognized. Indeed, multitarget ligands displaying a better antinociceptive activity with fewer side effects, combined with favorable pharmacokinetic and pharmacodynamic characteristics, have already been shown. Multitarget ligands possessing non-opioid/opioid and opioid/opioid mechanisms of action are considered as potential drug candidates for the management of various pain conditions. In particular, dual-target MOPr (mu opioid peptide receptor)/DOPr (delta opioid peptide receptor) ligands exhibit an improved antinociceptive profile associated with a reduced tolerance-inducing capability. The benzomorphan-based compounds LP1 and LP2 belong to this class of dual-target MOPr/DOPr ligands. In the present manuscript, the structure-activity relationships and the pharmacological fingerprint of LP1 and LP2 compounds as suitable drug candidates for persistent pain relief is described.
Collapse
Affiliation(s)
- Lorella Pasquinucci
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Correspondence: (L.P.); (R.T.); Tel.: +39-095-738-4273 (L.P. & R.T.)
| | - Carmela Parenti
- Department of Drug and Health Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Zafiroula Georgoussi
- Laboratory of Cellular Signaling and Molecular Pharmacology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos” Ag. Paraskevi-Attikis, 15310 Athens, Greece;
| | - Lorena Reina
- Postgraduate School of Clinical Pharmacology, Toxicology University of Catania, via S. Sofia n. 97, 95100 Catania, Italy;
| | - Emilia Tomarchio
- Postgraduate School of Anesthesiology and Intensive Care, University of Milan, Via Francesco Sforza, 35, 20122 Milan, Italy;
| | - Rita Turnaturi
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Correspondence: (L.P.); (R.T.); Tel.: +39-095-738-4273 (L.P. & R.T.)
| |
Collapse
|
32
|
De Neve J, Barlow TMA, Tourwé D, Bihel F, Simonin F, Ballet S. Comprehensive overview of biased pharmacology at the opioid receptors: biased ligands and bias factors. RSC Med Chem 2021; 12:828-870. [PMID: 34223156 PMCID: PMC8221262 DOI: 10.1039/d1md00041a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
One of the main challenges in contemporary medicinal chemistry is the development of safer analgesics, used in the treatment of pain. Currently, moderate to severe pain is still treated with the "gold standard" opioids whose long-term often leads to severe side effects. With the discovery of biased agonism, the importance of this area of pharmacology has grown exponentially over the past decade. Of these side effects, tolerance, opioid misuse, physical dependence and substance use disorder (SUD) stand out, since these have led to many deaths over the past decades in both USA and Europe. New therapeutic molecules that induce a biased response at the opioid receptors (MOR, DOR, KOR and NOP receptor) are able to circumvent these side effects and, consequently, serve as more advantageous therapies with great promise. The concept of biased signaling extends far beyond the already sizeable field of GPCR pharmacology and covering everything would be vastly outside the scope of this review which consequently covers the biased ligands acting at the opioid family of receptors. The limitation of quantifying bias, however, makes this a controversial subject, where it is dependent on the reference ligand, the equation or the assay used for the quantification. Hence, the major issue in the field of biased ligands remains the translation of the in vitro profiles of biased signaling, with corresponding bias factors to in vivo profiles showing the presence or the lack of specific side effects. This review comprises a comprehensive overview of biased ligands in addition to their bias factors at individual members of the opioid family of receptors, as well as bifunctional ligands.
Collapse
Affiliation(s)
- Jolien De Neve
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| | - Thomas M A Barlow
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| | - Frédéric Bihel
- Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, UMR 7200, CNRS Université de Strasbourg Illkirch France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242, CNRS, Université de Strasbourg Illkirch France
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| |
Collapse
|
33
|
Levran O, Randesi M, Adelson M, Kreek MJ. OPRD1 SNPs associated with opioid addiction are cis-eQTLs for the phosphatase and actin regulator 4 gene, PHACTR4, a mediator of cytoskeletal dynamics. Transl Psychiatry 2021; 11:316. [PMID: 34031368 PMCID: PMC8144180 DOI: 10.1038/s41398-021-01439-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
Several OPRD1 intronic variants were associated with opioid addiction (OD) in a population-specific manner. This follow-up study aims to further characterize the OPRD1 haplotype pattern of the risk variants in different populations and apply in silico analysis to identify potential causal variants. A population-specific haplotype pattern was revealed based on six OPRD1 eQTL SNPs and five common haplotypes were identified in a sample of European ancestry (CEU). A European-specific haplotype ('Hap 3') that includes SNPs previously associated with OD and is tagged by SNP rs2236861 is more common in subjects with OD. It is quite common (10%) in CEU but is absent in the African sample (YRI) and extends upstream of OPRD1. SNP rs2236857 is most probably a non-causal variant in LD with the causal SNP/s in a population-specific manner. The study provides an explanation for the lack of association in African Americans, despite its high frequency in this population. OD samples homozygous for 'Hap 3' were reanalyzed using a denser coverage of the region and revealed at least 25 potentially regulatory SNPs in high LD. Notably, GTEx data indicate that some of the SNPs are eQTLs for the upstream phosphatase and actin regulator 4 (PHACTR4), in the cortex, and others are eQTLs for OPRD1 and the upstream lncRNA ENSG00000270605, in the cerebellum. The study highlights the limitation of single SNP analysis and the sensitivity of association studies of OPRD1 to a genetic background. It proposes a long-range functional connection between OPRD1 and PHACTR4. PHACTR4, a mediator of cytoskeletal dynamics, may contribute to drug addiction by modulating synaptic plasticity.
Collapse
Affiliation(s)
- Orna Levran
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA.
| | - Matthew Randesi
- grid.134907.80000 0001 2166 1519The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY USA
| | - Miriam Adelson
- grid.134907.80000 0001 2166 1519The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY USA ,Dr. Miriam and Sheldon G. Adelson Clinic for Drug Abuse Treatment and Research, Las Vegas, NV USA
| | - Mary Jeanne Kreek
- grid.134907.80000 0001 2166 1519The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY USA
| |
Collapse
|
34
|
Crilly SE, Ko W, Weinberg ZY, Puthenveedu MA. Conformational specificity of opioid receptors is determined by subcellular location irrespective of agonist. eLife 2021; 10:67478. [PMID: 34013886 PMCID: PMC8208814 DOI: 10.7554/elife.67478] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
The prevailing model for the variety in drug responses is that different drugs stabilize distinct active states of their G protein-coupled receptor (GPCR) targets, allowing coupling to different effectors. However, whether the same ligand generates different GPCR active states based on the immediate environment of receptors is not known. Here we address this question using spatially resolved imaging of conformational biosensors that read out distinct active conformations of the δ-opioid receptor (DOR), a physiologically relevant GPCR localized to Golgi and the surface in neuronal cells. We have shown that Golgi and surface pools of DOR both inhibit cAMP, but engage distinct conformational biosensors in response to the same ligand in rat neuroendocrine cells. Further, DOR recruits arrestins on the surface but not on the Golgi. Our results suggest that the local environment determines the active states of receptors for any given drug, allowing GPCRs to couple to different effectors at different subcellular locations.
Collapse
Affiliation(s)
- Stephanie E Crilly
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, United States.,Department of Pharmacology University of Michigan Medical School, Ann Arbor, United States
| | - Wooree Ko
- Department of Pharmacology University of Michigan Medical School, Ann Arbor, United States
| | - Zara Y Weinberg
- Department of Pharmacology University of Michigan Medical School, Ann Arbor, United States
| | - Manojkumar A Puthenveedu
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, United States.,Department of Pharmacology University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
35
|
Kunselman JM, Gupta A, Gomes I, Devi LA, Puthenveedu MA. Compartment-specific opioid receptor signaling is selectively modulated by different dynorphin peptides. eLife 2021; 10:e60270. [PMID: 33908346 PMCID: PMC8112862 DOI: 10.7554/elife.60270] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
Many signal transduction systems have an apparent redundancy built into them, where multiple physiological agonists activate the same receptors. Whether this is true redundancy, or whether this provides an as-yet unrecognized specificity in downstream signaling, is not well understood. We address this question using the kappa opioid receptor (KOR), a physiologically relevant G protein-coupled receptor (GPCR) that is activated by multiple members of the Dynorphin family of opioid peptides. We show that two related peptides, Dynorphin A and Dynorphin B, bind and activate KOR to similar extents in mammalian neuroendocrine cells and rat striatal neurons, but localize KOR to distinct intracellular compartments and drive different post-endocytic fates of the receptor. Strikingly, localization of KOR to the degradative pathway by Dynorphin A induces sustained KOR signaling from these compartments. Our results suggest that seemingly redundant endogenous peptides can fine-tune signaling by regulating the spatiotemporal profile of KOR signaling.
Collapse
Affiliation(s)
- Jennifer M Kunselman
- Cellular and Molecular Biology Training Program, University of Michigan Medical SchoolAnn ArborUnited States
| | - Achla Gupta
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Ivone Gomes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Manojkumar A Puthenveedu
- Cellular and Molecular Biology Training Program, University of Michigan Medical SchoolAnn ArborUnited States
- Department of Pharmacology, University of Michigan Medical SchoolAnn ArborUnited States
| |
Collapse
|
36
|
Coveler AL, Mizrahi J, Eastman B, Apisarnthanarax SJ, Dalal S, McNearney T, Pant S. Pancreas Cancer-Associated Pain Management. Oncologist 2021; 26:e971-e982. [PMID: 33885205 PMCID: PMC8176967 DOI: 10.1002/onco.13796] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/02/2021] [Indexed: 12/12/2022] Open
Abstract
Pain is highly prevalent in patients with pancreas cancer and contributes to the morbidity of the disease. Pain may be due to pancreatic enzyme insufficiency, obstruction, and/or a direct mass effect on nerves in the celiac plexus. Proper supportive care to decrease pain is an important aspect of the overall management of these patients. There are limited data specific to the management of pain caused by pancreatic cancer. Here we review the literature and offer recommendations regarding multiple modalities available to treat pain in these patients. The dissemination and adoption of these best supportive care practices can improve quantity and quality of life for patients with pancreatic cancer. IMPLICATIONS FOR PRACTICE: Pain management is important to improve the quality of life and survival of a patient with cancer. The pathophysiology of pain in pancreas cancer is complex and multifactorial. Despite tumor response to chemotherapy, a sizeable percentage of patients are at risk for ongoing cancer-related pain and its comorbid consequences. Accordingly, the management of pain in patients with pancreas cancer can be challenging and often requires a multifaceted approach.
Collapse
Affiliation(s)
- Andrew L Coveler
- Department of Medical Oncology, University of Washington, Seattle, Washington, USA
| | - Jonathan Mizrahi
- Department of Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bory Eastman
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
| | | | - Shalini Dalal
- Department of Palliative, Rehabilitation and Integrative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Shubham Pant
- Department of Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
37
|
Zhang Y, Li S, Zhang H, Xu H. Design and Application of Receptor-Targeted Fluorescent Probes Based on Small Molecular Fluorescent Dyes. Bioconjug Chem 2021; 32:4-24. [PMID: 33412857 DOI: 10.1021/acs.bioconjchem.0c00606] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In recent years, a variety of receptor-targeted fluorescent probes have been developed and widely used to realize the visualization of certain receptors, which facilitates the early diagnosis and treatment of diseases. In this Review, we focus on the recent achievements in design, chemical structure, imaging characterization, and potential applications of receptor-targeted fluorescent probes from the past 10 years. The development and application of receptor-targeted fluorescent probes will expand our knowledge of the distribution and function of disease-related receptors, shed light on the drug discovery for clinical diseases where receptors are implicated, and feed into the diagnosis and treatment of a plethora of diseases, including tumors.
Collapse
Affiliation(s)
- Yujie Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shufeng Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
38
|
Bertels Z, Witkowski WD, Asif S, Siegersma K, van Rijn RM, Pradhan AA. A non-convulsant delta-opioid receptor agonist, KNT-127, reduces cortical spreading depression and nitroglycerin-induced allodynia. Headache 2021; 61:170-178. [PMID: 33326598 PMCID: PMC8082730 DOI: 10.1111/head.14019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of this study was to determine if the non-convulsant delta-opioid receptor (DOR) agonist, KNT-127, could inhibit migraine-associated endpoints. BACKGROUND The DOR has been identified as a therapeutic target for migraine. However, the development of delta agonists is limited as some ligands have seizurogenic properties, which may be related to their ability to induce receptor internalization. While both pro- and non-convulsant delta agonists can reduce migraine-associated allodynia, only the proconvulsant agonist, SNC80, has been shown to decrease cortical spreading depression (CSD). It is unclear if the ability of delta agonists to modulate cortical activity is related to the same signaling mechanisms that produce proconvulsant effects. METHODS The effects of the non-convulsant delta agonist, KNT-127, were examined. Repetitive CSD was induced in female C57BL6/J (n = 6/group) mice by continuous application of KCl and the effect of KNT-127/vehicle (Veh) on both local field potentials and optical intrinsic signals was determined. To assess the effect of KNT-127 on established chronic migraine-associated pain, male and female C57BL6/J mice were treated with nitroglycerin (NTG; 10 mg/kg, ip) every other day for 9 days and tested with KNT-127 (5 mg/kg, sc) or Veh on day 10 (n = 6/group). DOR-enhanced green fluorescent protein mice (n = 4/group) were used to confirm the internalization properties of KNT-127 in the trigeminal ganglia, trigeminal nucleus caudalis, and somatosensory cortex. RESULTS KNT-127 inhibited CSD events (t(10) = 3.570, p = 0.0051). In addition, this delta agonist also reversed established cephalic allodynia in the NTG model of chronic migraine (F(1, 20) = 12.80, p < 0.01). Furthermore, KNT-127 caused limited internalization of DOR in key migraine processing regions. CONCLUSIONS This study shows that the antimigraine effects of DOR agonists can be separated from their proconvulsant effects. This data provides valuable information for the continued development of delta agonists for the treatment of migraine.
Collapse
Affiliation(s)
| | | | - Sarah Asif
- Department of Psychiatry, University of Illinois at Chicago
| | | | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Integrative Neuroscience, Purdue Institute for Drug Discovery, Purdue University
| | | |
Collapse
|
39
|
Blackwood CA, Cadet JL. The molecular neurobiology and neuropathology of opioid use disorder. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2. [PMID: 35548327 PMCID: PMC9090195 DOI: 10.1016/j.crneur.2021.100023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The number of people diagnosed with opioid use disorder has skyrocketed as a consequence of the opioid epidemic and the increased prescribing of opioid drugs for chronic pain relief. Opioid use disorder is characterized by loss of control of drug taking, continued drug use in the presence of adverse consequences, and repeated relapses to drug taking even after long periods of abstinence. Patients who suffer from opioid use disorder often present with cognitive deficits that are potentially secondary to structural brain abnormalities that vary according to the chemical composition of the abused opioid. This review details the neurobiological effects of oxycodone, morphine, heroin, methadone, and fentanyl on brain neurocircuitries by presenting the acute and chronic effects of these drugs on the human brain. In addition, we review results of neuroimaging in opioid use disorder patients and/or histological studies from brains of patients who had expired after acute intoxication following long-term use of these drugs. Moreover, we include relevant discussions of the neurobiological mechanisms involved in promoting abnormalities in the brains of opioid-exposed patients. Finally, we discuss how novel strategies could be used to provide pharmacological treatment against opioid use disorder. Brain abnormalities caused by opioid intoxication. Intoxication of opioids leads to defects in brain neurocircuitries. Insight into the molecular mechanisms associated with craving in heroin addicts.
Collapse
Affiliation(s)
| | - Jean Lud Cadet
- Corresponding author.Molecular Neuropsychiatry Research Branch NIH/NIDA Intramural Research Program 251 Bayview Boulevard Baltimore, MD, USA
| |
Collapse
|
40
|
Pineyro G, Nagi K. Signaling diversity of mu- and delta- opioid receptor ligands: Re-evaluating the benefits of β-arrestin/G protein signaling bias. Cell Signal 2020; 80:109906. [PMID: 33383156 DOI: 10.1016/j.cellsig.2020.109906] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 01/02/2023]
Abstract
Opioid analgesics are elective for treating moderate to severe pain but their use is restricted by severe side effects. Signaling bias has been proposed as a viable means for improving this situation. To exploit this opportunity, continuous efforts are devoted to understand how ligand-specific modulations of receptor functions could mediate the different in vivo effects of opioids. Advances in the field have led to the development of biased agonists based on hypotheses that allocated desired and undesired effects to specific signaling pathways. However, the prevalent hypothesis associating β-arrestin to opioid side effects was recently challenged and multiple of the newly developed biased drugs may not display the superior side effects profile that was sought. Moreover, biased agonism at opioid receptors is now known to be time- and cell-dependent, which adds a new layer of complexity for bias estimation. Here, we first review the signaling mechanisms underlying desired and undesired effects of opioids. We then describe biased agonism at opioid receptors and discuss the different perspectives that support the desired and undesired effects of opioids in view of exploiting biased signaling for therapeutic purposes. Finally, we explore how signaling kinetics and cellular background can influence the magnitude and directionality of bias at those receptors.
Collapse
Affiliation(s)
- Graciela Pineyro
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; CHU Sainte-Justine research center, Montreal, QC H3T 1C5, Canada
| | - Karim Nagi
- College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
41
|
Kirk RD, Picard K, Christian JA, Johnson SL, DeBoef B, Bertin MJ. Unnarmicin D, an Anti-inflammatory Cyanobacterial Metabolite with δ and μ Opioid Binding Activity Discovered via a Pipeline Approach Designed to Target Neurotherapeutics. ACS Chem Neurosci 2020; 11:4478-4488. [PMID: 33284578 PMCID: PMC7811748 DOI: 10.1021/acschemneuro.0c00686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To combat the bottlenecks in drug discovery and development, a pipeline to identify neuropharmacological candidates using in silico, in vitro, and receptor specific assays was devised. The focus of this pipeline was to identify metabolites with the ability to reduce neuroinflammation, due to the implications that chronic neuroinflammation has in chronic pain and neurodegenerative diseases. A library of pure compounds isolated from the cyanobacterium Trichodesmium thiebautii was evaluated using this method. In silico analysis of drug likelihood and in vitro permeability analysis using the parallel artificial membrane permeability assay (PAMPA) highlighted multiple metabolites of interest from the library. Murine BV-2 microglia were used in conjunction with the Griess assay to determine if metabolites could reduce lipopolysaccharide induced neuroinflammation followed by analysis of pro-inflammatory cytokine concentrations in the supernatant of the treated cell cultures. The nontoxic metabolite unnarmicin D was further evaluated due to its moderate permeability in the PAMPA assay, promising ADME data, modulation of all cytokines tested, and prediction as an opioid receptor ligand. Molecular modeling of unnarmicin D to the μ and δ opioid receptors showed strong theoretical binding potential to the μ opioid receptor. In vitro binding assays validated this pipeline showing low micromolar binding affinity for the μ opioid receptor launching the potential for further analysis of unnarmicin D derivatives for the treatment of pain and neuroinflammation related diseases.
Collapse
Affiliation(s)
- Riley D. Kirk
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
| | - Kassie Picard
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, United States
| | - Joseph A. Christian
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
| | - Shelby L. Johnson
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
| | - Brenton DeBoef
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, United States
| | - Matthew J. Bertin
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
| |
Collapse
|
42
|
Harda Z, Spyrka J, Jastrzębska K, Szumiec Ł, Bryksa A, Klimczak M, Polaszek M, Gołda S, Zajdel J, Misiołek K, Błasiak A, Rodriguez Parkitna J. Loss of mu and delta opioid receptors on neurons expressing dopamine receptor D1 has no effect on reward sensitivity. Neuropharmacology 2020; 180:108307. [PMID: 32941853 DOI: 10.1016/j.neuropharm.2020.108307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/03/2020] [Accepted: 09/13/2020] [Indexed: 10/23/2022]
Abstract
Opioid signaling controls the activity of the brain's reward system. It is involved in signaling the hedonic effects of rewards and has essential roles in reinforcement and motivational processes. Here, we focused on opioid signaling through mu and delta receptors on dopaminoceptive neurons and evaluated the role these receptors play in reward-driven behaviors. We generated a genetically modified mouse with selective double knockdown of mu and delta opioid receptors in neurons expressing dopamine receptor D1. Selective expression of the transgene was confirmed using immunostaining. Knockdown was validated by measuring the effects of selective opioid receptor agonists on neuronal membrane currents using whole-cell patch clamp recordings. We found that in the nucleus accumbens of control mice, the majority of dopamine receptor D1-expressing neurons were sensitive to a mu or delta opioid agonist. In mutant mice, the response to the delta receptor agonist was blocked, while the effects of the mu agonist were strongly attenuated. Behaviorally, the mice had no obvious impairments. The mutation did not affect the sensitivity to the rewarding effects of morphine injections or social contact and had no effect on preference for sweet taste. Knockdown had a moderate effect on motor activity in some of the tests performed, but this effect did not reach statistical significance. Thus, we found that knocking down mu and delta receptors on dopamine receptor D1-expressing cells does not appreciably affect some of the reward-driven behaviors previously attributed to opioid signaling.
Collapse
Affiliation(s)
- Zofia Harda
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Jadwiga Spyrka
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Kamila Jastrzębska
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Łukasz Szumiec
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Anna Bryksa
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Marta Klimczak
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Maria Polaszek
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Sławomir Gołda
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Joanna Zajdel
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Klaudia Misiołek
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Anna Błasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Jan Rodriguez Parkitna
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
43
|
Abstract
The management of pain, particularly chronic pain, is still an area of medical need. In this context, opioids remain a gold standard for the treatment of pain. However, significant side effects, mainly of central origin, limit their clinical use. Here, we review recent progress to improve the therapeutic and safety profiles of opioids for pain management. Characterization of peripheral opioid-mediated pain mechanisms have been a key component of this process. Several studies identified peripheral µ, δ, and κ opioid receptors (MOR, DOR, and KOR, respectively) and nociceptin/orphanin FQ (NOP) receptors as significant players of opioid-mediated antinociception, able to achieve clinically significant effects independently of any central action. Following this, particularly from a medicinal chemistry point of view, main efforts have been directed towards the peripheralization of opioid receptor agonists with the objective of optimizing receptor activity and minimizing central exposure and the associated undesired effects. These activities have allowed the characterization of a great variety of compounds and investigational drugs that show low central nervous system (CNS) penetration (and therefore a reduced side effect profile) yet maintaining the desired opioid-related peripheral antinociceptive activity. These include highly hydrophilic/amphiphilic and massive molecules unable to easily cross lipid membranes, substrates of glycoprotein P (a extrusion pump that avoids CNS penetration), nanocarriers that release the analgesic agent at the site of inflammation and pain, and pH-sensitive opioid agonists that selectively activate at those sites (and represent a new pharmacodynamic paradigm). Hopefully, patients with pain will benefit soon from the incorporation of these new entities.
Collapse
|
44
|
Camacho E, Marie N, Dupas Q, Martel C, Nowoczyn M, Elie N, Rochais C, Töth G, Allouche S. Impact of T161, Y318 and S363 alanine mutations on regulation of the human delta-opioid receptor (hDOPr) induced by peptidic and alkaloid agonists. Neuropharmacology 2020; 179:108286. [PMID: 32841607 DOI: 10.1016/j.neuropharm.2020.108286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 11/16/2022]
Abstract
Previously, we showed a differential regulation of the human delta-opioid receptor (hDOPr) by etorphine and [D-Pen2, D-Pen5] enkephalin (DPDPE). To understand the molecular basis of such differences, we introduced 3 alanine mutations at the residues T161. Y318 and S363. Both wild type (WT) and hDOPr mutants were expressed in HEK cells containing endogenous arrestins or CFP-tagged arrestin 3, then desensitization, internalization, recycling and phosphorylation were studied. In a context of endogenous arrestin expression, a major difference in DOPr desensitization was observed between agonists that was modified with the T161A mutation upon etorphine and with the S363A substitution upon DPDPE exposure. While both agonists induced a major receptor internalization, T161A and S363A impaired DOPr sequestration only for etorphine. However, similar level of S363 phosphorylation was measured between agonists. When CFP-tagged arrestin 3 was over-expressed, a similar profile of desensitization was measured for both agonists. In this context, all the 3 alanine mutations decreased etorphine-induced receptor desensitization. Using FRET, we showed similar interactions between WT hDOPr and arrestin 3 under DPDPE and etorphine stimulation which were delayed by both the Y318A and the S363A substitutions for etorphine. Finally, hDOPr recycling was qualitatively evaluated by microscopy and showed neither arrestin 3/hDOPr colocalization nor major impact of alanine mutations except for the S363A which impaired internalization and recycling for etorphine. The T161, Y318 and S363 residues of hDOPr could underlie the differential regulation promoted by DPDPE and etorphine.
Collapse
Affiliation(s)
- Elise Camacho
- Laboratoire de Signalisation, électrophysiologie et Imagerie des Lésions D'ischémie-reperfusion Myocardique, Normandie Univ, UNICAEN, Caen, France
| | - Nicolas Marie
- Centre National de Recherche Scientifique, Unité Mixte de Recherche 8206, Institut National de La Santé et de La Recherche Médicale. U705, Université Paris Descartes, Laboratoire de Neuropsychopharmacologie des Addictions, 4 Avenue de L'observatoire, 75006, Paris, France
| | - Quentin Dupas
- Laboratoire de Signalisation, électrophysiologie et Imagerie des Lésions D'ischémie-reperfusion Myocardique, Normandie Univ, UNICAEN, Caen, France
| | - Caroline Martel
- Laboratoire de Signalisation, électrophysiologie et Imagerie des Lésions D'ischémie-reperfusion Myocardique, Normandie Univ, UNICAEN, Caen, France
| | - Marie Nowoczyn
- Laboratoire de Signalisation, électrophysiologie et Imagerie des Lésions D'ischémie-reperfusion Myocardique, Normandie Univ, UNICAEN, Caen, France
| | - Nicolas Elie
- Plateau D'Histo-Imagerie Quantitative, CmaBio(3), SF 4206 ICORE, Normandie Univ, Caen, France
| | - Christophe Rochais
- Centre D'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Normandie Univ, UNICAEN, 14000, Caen, France
| | - Geza Töth
- Biological Research Centre, Institute of Biochemistry, Hungarian Academy of Sciences, Szeged, Hungary
| | - Stéphane Allouche
- Laboratoire de Signalisation, électrophysiologie et Imagerie des Lésions D'ischémie-reperfusion Myocardique, Normandie Univ, UNICAEN, Caen, France.
| |
Collapse
|
45
|
GRKs as Key Modulators of Opioid Receptor Function. Cells 2020; 9:cells9112400. [PMID: 33147802 PMCID: PMC7692057 DOI: 10.3390/cells9112400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022] Open
Abstract
Understanding the link between agonist-induced phosphorylation of the mu-opioid receptor (MOR) and the associated physiological effects is critical for the development of novel analgesic drugs and is particularly important for understanding the mechanisms responsible for opioid-induced tolerance and addiction. The family of G protein receptor kinases (GRKs) play a pivotal role in such processes, mediating phosphorylation of residues at the C-tail of opioid receptors. Numerous strategies, such as phosphosite specific antibodies and mass spectrometry have allowed the detection of phosphorylated residues and the use of mutant knock-in mice have shed light on the role of GRK regulation in opioid receptor physiology. Here we review our current understanding on the role of GRKs in the actions of opioid receptors, with a particular focus on the MOR, the target of most commonly used opioid analgesics such as morphine or fentanyl.
Collapse
|
46
|
Parker KE, Sugiarto E, Taylor AMW, Pradhan AA, Al-Hasani R. Pain, Motivation, Migraine, and the Microbiome: New Frontiers for Opioid Systems and Disease. Mol Pharmacol 2020; 98:433-444. [PMID: 32958571 PMCID: PMC7562975 DOI: 10.1124/mol.120.119438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
For decades the broad role of opioids in addiction, neuropsychiatric disorders, and pain states has been somewhat well established. However, in recent years, with the rise of technological advances, not only is the existing dogma being challenged, but we are identifying new disease areas in which opioids play a critical role. This review highlights four new areas of exploration in the opioid field. The most recent addition to the opioid family, the nociceptin receptor system, shows promise as the missing link in understanding the neurocircuitry of motivation. It is well known that activation of the kappa opioid receptor system modulates negative affect and dysphoria, but recent studies now implicate the kappa opioid system in the modulation of negative affect associated with pain. Opioids are critical in pain management; however, the often-forgotten delta opioid receptor system has been identified as a novel therapeutic target for headache disorders and migraine. Lastly, changes to the gut microbiome have been shown to directly contribute to many of the symptoms of chronic opioid use and opioid related behaviors. This review summarizes the findings from each of these areas with an emphasis on identifying new therapeutic targets. SIGNIFICANCE STATEMENT: The focus of this minireview is to highlight new disease areas or new aspects of disease in which opioids have been implicated; this includes pain, motivation, migraine, and the microbiome. In some cases, this has resulted in the pursuit of a novel therapeutic target and resultant clinical trial. We believe this is very timely and will be a refreshing take on reading about opioids and disease.
Collapse
Affiliation(s)
- Kyle E Parker
- Department of Anesthesiology and Washington University Pain Center, Washington University in St. Louis, Missouri (K.E.P, R.A.-H.); Center for Clinical Pharmacology, Washington University School of Medicine, St. Louis, Missouri (K.E.P., R.A.-H.); Department of Pharmacology, University of Alberta, Edmonton, Canada (E.S., A.M.W.T.); Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada (E.S., A.M.W.T.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (A.A.P.); and St. Louis College of Pharmacy, St. Louis, Missouri (R.A.-H.)
| | - Elizabeth Sugiarto
- Department of Anesthesiology and Washington University Pain Center, Washington University in St. Louis, Missouri (K.E.P, R.A.-H.); Center for Clinical Pharmacology, Washington University School of Medicine, St. Louis, Missouri (K.E.P., R.A.-H.); Department of Pharmacology, University of Alberta, Edmonton, Canada (E.S., A.M.W.T.); Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada (E.S., A.M.W.T.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (A.A.P.); and St. Louis College of Pharmacy, St. Louis, Missouri (R.A.-H.)
| | - Anna M W Taylor
- Department of Anesthesiology and Washington University Pain Center, Washington University in St. Louis, Missouri (K.E.P, R.A.-H.); Center for Clinical Pharmacology, Washington University School of Medicine, St. Louis, Missouri (K.E.P., R.A.-H.); Department of Pharmacology, University of Alberta, Edmonton, Canada (E.S., A.M.W.T.); Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada (E.S., A.M.W.T.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (A.A.P.); and St. Louis College of Pharmacy, St. Louis, Missouri (R.A.-H.)
| | - Amynah A Pradhan
- Department of Anesthesiology and Washington University Pain Center, Washington University in St. Louis, Missouri (K.E.P, R.A.-H.); Center for Clinical Pharmacology, Washington University School of Medicine, St. Louis, Missouri (K.E.P., R.A.-H.); Department of Pharmacology, University of Alberta, Edmonton, Canada (E.S., A.M.W.T.); Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada (E.S., A.M.W.T.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (A.A.P.); and St. Louis College of Pharmacy, St. Louis, Missouri (R.A.-H.)
| | - Ream Al-Hasani
- Department of Anesthesiology and Washington University Pain Center, Washington University in St. Louis, Missouri (K.E.P, R.A.-H.); Center for Clinical Pharmacology, Washington University School of Medicine, St. Louis, Missouri (K.E.P., R.A.-H.); Department of Pharmacology, University of Alberta, Edmonton, Canada (E.S., A.M.W.T.); Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada (E.S., A.M.W.T.); Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois (A.A.P.); and St. Louis College of Pharmacy, St. Louis, Missouri (R.A.-H.)
| |
Collapse
|
47
|
Design, Synthesis and Functional Analysis of Cyclic Opioid Peptides with Dmt-Tic Pharmacophore. Molecules 2020; 25:molecules25184260. [PMID: 32957550 PMCID: PMC7570497 DOI: 10.3390/molecules25184260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 11/17/2022] Open
Abstract
The opioid receptors are members of the G-protein-coupled receptor (GPCR) family and are known to modulate a variety of biological functions, including pain perception. Despite considerable advances, the mechanisms by which opioid agonists and antagonists interact with their receptors and exert their effect are still not completely understood. In this report, six new hybrids of the Dmt-Tic pharmacophore and cyclic peptides, which were shown before to have a high affinity for the µ-opioid receptor (MOR) were synthesized and characterized pharmacologically in calcium mobilization functional assays. All obtained ligands turned out to be selective antagonists of the δ-opioid receptor (DOR) and did not activate or block the MOR. The three-dimensional structural determinants responsible for the DOR antagonist properties of these analogs were further investigated by docking studies. The results indicate that these compounds attach to the DOR in a slightly different orientation with respect to the Dmt-Tic pharmacophore than Dmt-TicΨ[CH2-NH]Phe-Phe-NH2 (DIPP-NH2[Ψ]), a prototypical DOR antagonist peptide. Key pharmacophoric contacts between the DOR and the ligands were maintained through an analogous spatial arrangement of pharmacophores, which could provide an explanation for the predicted high-affinity binding and the experimentally observed functional properties of the novel synthetic ligands.
Collapse
|
48
|
Faouzi A, Varga BR, Majumdar S. Biased Opioid Ligands. Molecules 2020; 25:E4257. [PMID: 32948048 PMCID: PMC7570672 DOI: 10.3390/molecules25184257] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022] Open
Abstract
Achieving effective pain management is one of the major challenges associated with modern day medicine. Opioids, such as morphine, have been the reference treatment for moderate to severe acute pain not excluding chronic pain modalities. Opioids act through the opioid receptors, the family of G-protein coupled receptors (GPCRs) that mediate pain relief through both the central and peripheral nervous systems. Four types of opioid receptors have been described, including the μ-opioid receptor (MOR), κ-opioid receptor (KOR), δ-opioid receptor (DOR), and the nociceptin opioid peptide receptor (NOP receptor). Despite the proven success of opioids in treating pain, there are still some inherent limitations. All clinically approved MOR analgesics are associated with adverse effects, which include tolerance, dependence, addiction, constipation, and respiratory depression. On the other hand, KOR selective analgesics have found limited clinical utility because they cause sedation, anxiety, dysphoria, and hallucinations. DOR agonists have also been investigated but they have a tendency to cause convulsions. Ligands targeting NOP receptor have been reported in the preclinical literature to be useful as spinal analgesics and as entities against substance abuse disorders while mixed MOR/NOP receptor agonists are useful as analgesics. Ultimately, the goal of opioid-related drug development has always been to design and synthesize derivatives that are equally or more potent than morphine but most importantly are devoid of the dangerous residual side effects and abuse potential. One proposed strategy is to take advantage of biased agonism, in which distinct downstream pathways can be activated by different molecules working through the exact same receptor. It has been proposed that ligands not recruiting β-arrestin 2 or showing a preference for activating a specific G-protein mediated signal transduction pathway will function as safer analgesic across all opioid subtypes. This review will focus on the design and the pharmacological outcomes of biased ligands at the opioid receptors, aiming at achieving functional selectivity.
Collapse
MESH Headings
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/metabolism
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/therapeutic use
- Arrestin/metabolism
- Furans/chemistry
- Furans/metabolism
- Humans
- Ligands
- Pain/drug therapy
- Pyrones/chemistry
- Pyrones/metabolism
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
| | | | - Susruta Majumdar
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO 63131, USA; (A.F.); (B.R.V.)
| |
Collapse
|
49
|
The relationship between the level of μ-opioid receptor (μORs) and postoperative analgesic use in patients undergoing septoplasty: a prospective randomized controlled trial. BMC Anesthesiol 2020; 20:230. [PMID: 32900361 PMCID: PMC7487904 DOI: 10.1186/s12871-020-01138-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/24/2020] [Indexed: 11/10/2022] Open
Abstract
Background In this study, the μ-Opioid receptor activity was assessed pre-operatively for its association with postoperative pain level and second analgesic requirement in patients undergoing septoplasty. Methods In our prospective study, 120 adult patients underwent septoplasty from June 2015 to January 2019 were randomly divided into 2 pre-operative groups. The first group (n = 60) was patients given tramadol (1–2 mg/kg) for post-operative analgesia, and the second group (control group) (n = 60) was initially prescribed only fentanyl (1 μg/ kg-i.v.) in the induction. Acetaminophen with codeine analgesic 325/30 mg (p.o.) was used as an rescue painkiller in the post-operative period. The μ-Opioid receptor activity was investigated in pre-operative blood samples and compared to post-operative pain level and time required for second round of analgesic administration. The visual analogue score (VAS) was used to evaluate the post-operative pain degree (0 no pain; 10 worst pain). The patients’ post-operative VAS scores were evaluated upon arrival to recovery room, and at the 1st, 3rd, 7th, 10th, and 24th hour post-operative period. Results Demographic data and peri-operative variables were similar in both study group (p < 0.05).There was no significant difference between the receptor levels in both groups and the mean receptor level was 200.94 ± 15.34 pg/mL (max:489.92 ± 22.36 pg/mL, min: 94.56 ± 11.23 pg/mL).In patients who used tramadol as the levels of μ-Opioid receptors increased, VAS scores of patients and second analgesic use decreased in post-operative period.The VAS scores in patients with higher receptor levels were lower in the recovery room (p < 0.05), 1st (p < 0.05) and 3rd hours (p < 0.05).The VAS scores were lower in the tramadol group compared to the control group (p < 0.05).Number of secondary analgesic requirement was significantly lower in patients of the tramadol group with higher receptor levels compared to the ones with lower receptor (p < 0.05) for arrival at the recovery room and 1st hour. Patients in the tramadol group needed a second pain killer much later than patients in the control group. Conclusions Our study demonstrates that patients with higher μOR levels have a higher efficacy of opioid analgesic agents and an lesser need for additional analgesic agents. Trial registration This trial was registered retrospectively (The ACTRN: ACTRN12619001652167, registration date: 26/11/2019).
Collapse
|
50
|
Bertels Z, Pradhan AAA. Emerging Treatment Targets for Migraine and Other Headaches. Headache 2020; 59 Suppl 2:50-65. [PMID: 31291018 DOI: 10.1111/head.13585] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2019] [Indexed: 12/17/2022]
Abstract
Migraine is a complex disorder that is characterized by an assortment of neurological and systemic effects. While headache is the most prominent feature of migraine, a host of symptoms affecting many physiological functions are also observed before, during, and after an attack. Furthermore, migraineurs are heterogeneous and have a wide range of responses to migraine therapies. The recent approval of calcitonin gene-related-peptide based therapies has opened up the treatment of migraine and generated a renewed interest in migraine research and discovery. Ongoing advances in migraine research have identified a number of other promising therapeutic targets for this disorder. In this review, we highlight emergent treatments within the following biological systems: pituitary adenylate cyclase activating peptdie, 2 non-mu opioid receptors that have low abuse liability - the delta and kappa opioid receptors, orexin, and nitric oxide-based therapies. Multiple mechanisms have been identified in the induction and maintenance of migraine symptoms; and this divergent set of targets have highly distinct biological effects. Increasing the mechanistic diversity of the migraine tool box will lead to more treatment options and better patient care.
Collapse
Affiliation(s)
- Zachariah Bertels
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|