1
|
Xu X, Yi M, Xiao C, Yang J, Guo J, Zhou W, Zhou K, Hu L, Lan L, Fan Y. IGF-1 Provides Protective Role in Arteriosclerotic Cerebral Small Vessel Disease. Hypertension 2025. [PMID: 40248881 DOI: 10.1161/hypertensionaha.124.24341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 04/04/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Hypertension and advanced age are risk factors for arteriosclerotic cerebral small vessel disease (cSVD), a common cause of vascular dementia in elderly individuals. Circulating IGF-1 (insulin-like growth factor 1) levels decrease with age and are linked to age-related cognitive impairment. This study assessed the relationship between serum IGF-1 and arteriosclerotic cSVD severity in patients and the therapeutic effects and underlying mechanisms of exogenous IGF-1 supplementation in a cSVD rat model. METHODS Serum and MR images were collected from healthy subjects (n=26) and patients with arteriosclerotic cSVD (n=86). Stroke-prone renovascular hypertensive rats were used as cSVD animal models and subjected to the Morris water maze test, magnetic resonance imaging, immunohistochemistry, and biochemical analysis. hCMEC/D3 cells were utilized to validate the underlying mechanisms in vitro. RESULTS Serum IGF-1 concentration was significantly reduced in patients and rats with arteriosclerotic cSVD. Lower serum IGF-1 was associated with an increased cSVD burden and cognitive impairment. Compared with cSVD rats, IGF-1-treated rats had lighter white matter lesions, greater global cerebral blood flow, greater cerebrovascular density, less blood-brain barrier leakage, and better cognitive function. In vitro, IGF-1 administration promoted endothelial proliferation, migration, tube formation, and barrier function. Mechanistically, IGF-1 exerts neuroprotective effects by activating the IGF-1R (IGF-1 receptor)/Wnt7b/β-catenin pathway in vivo and in vitro. CONCLUSIONS Low serum IGF-1 was associated with greater arteriosclerotic cSVD severity. IGF-1 treatment improved cerebral perfusion, blood-brain barrier integrity, and cognitive function in cSVD rats by activating the IGF-1R/Wnt7b/β-catenin pathway, suggesting a potential therapeutic strategy for patients with arteriosclerotic cSVD, particularly those with low IGF-1 levels.
Collapse
Affiliation(s)
- Xiangming Xu
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. (X.X., M.Y., C.X., J.Y., J.G., W.Z., K.Z., L.H., L.L., Y.F.)
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. (X.X.)
| | - Ming Yi
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. (X.X., M.Y., C.X., J.Y., J.G., W.Z., K.Z., L.H., L.L., Y.F.)
| | - Chi Xiao
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. (X.X., M.Y., C.X., J.Y., J.G., W.Z., K.Z., L.H., L.L., Y.F.)
| | - Jing Yang
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. (X.X., M.Y., C.X., J.Y., J.G., W.Z., K.Z., L.H., L.L., Y.F.)
| | - Jiayu Guo
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. (X.X., M.Y., C.X., J.Y., J.G., W.Z., K.Z., L.H., L.L., Y.F.)
| | - Wenli Zhou
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. (X.X., M.Y., C.X., J.Y., J.G., W.Z., K.Z., L.H., L.L., Y.F.)
| | - Kun Zhou
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. (X.X., M.Y., C.X., J.Y., J.G., W.Z., K.Z., L.H., L.L., Y.F.)
| | - Liuting Hu
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. (X.X., M.Y., C.X., J.Y., J.G., W.Z., K.Z., L.H., L.L., Y.F.)
| | - Linfang Lan
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. (X.X., M.Y., C.X., J.Y., J.G., W.Z., K.Z., L.H., L.L., Y.F.)
| | - Yuhua Fan
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. (X.X., M.Y., C.X., J.Y., J.G., W.Z., K.Z., L.H., L.L., Y.F.)
| |
Collapse
|
2
|
Xue C, Chu Q, Shi Q, Zeng Y, Lu J, Li L. Wnt signaling pathways in biology and disease: mechanisms and therapeutic advances. Signal Transduct Target Ther 2025; 10:106. [PMID: 40180907 PMCID: PMC11968978 DOI: 10.1038/s41392-025-02142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 12/29/2024] [Indexed: 04/05/2025] Open
Abstract
The Wnt signaling pathway is critically involved in orchestrating cellular functions such as proliferation, migration, survival, and cell fate determination during development. Given its pivotal role in cellular communication, aberrant Wnt signaling has been extensively linked to the pathogenesis of various diseases. This review offers an in-depth analysis of the Wnt pathway, detailing its signal transduction mechanisms and principal components. Furthermore, the complex network of interactions between Wnt cascades and other key signaling pathways, such as Notch, Hedgehog, TGF-β, FGF, and NF-κB, is explored. Genetic mutations affecting the Wnt pathway play a pivotal role in disease progression, with particular emphasis on Wnt signaling's involvement in cancer stem cell biology and the tumor microenvironment. Additionally, this review underscores the diverse mechanisms through which Wnt signaling contributes to diseases such as cardiovascular conditions, neurodegenerative disorders, metabolic syndromes, autoimmune diseases, and cancer. Finally, a comprehensive overview of the therapeutic progress targeting Wnt signaling was given, and the latest progress in disease treatment targeting key components of the Wnt signaling pathway was summarized in detail, including Wnt ligands/receptors, β-catenin destruction complexes, and β-catenin/TCF transcription complexes. The development of small molecule inhibitors, monoclonal antibodies, and combination therapy strategies was emphasized, while the current potential therapeutic challenges were summarized. This aims to enhance the current understanding of this key pathway.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Jiang X, Zhang Y, Li Y, Li X, Yang Y, Yu T. Comprehensive evaluation of differential expression of piRNAs in abdominal aortic aneurysm. Cell Signal 2025; 132:111785. [PMID: 40187471 DOI: 10.1016/j.cellsig.2025.111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/14/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Abdominal aortic aneurysm (AAA) is a prevalent and fatal cardiovascular condition characterized by a high incidence rate and nonspecific clinical manifestations, with no effective preventive or therapeutic measures currently available. Piwi-interacting RNAs (piRNAs) have been identified as significant biomarkers for disease diagnosis due to their essential functions in transposon suppression, maintenance of genomic stability, immune response, and epigenetic modulation. The piRNA is intimately associated with various diseases such as cardiac hypertrophy, tumors, and neurodegeneration, yet its role in AAA is unclear. In this study, we employed gene sequencing to analyze the piRNA expression profiles in AAA vascular tissues and predicted variations in their target genes. Our findings revealed a total of 1368 piRNAs with abnormal expression in the AAA group relative to the control group, including 1240 up-regulated and 128 down-regulated piRNAs (|log2(fold change)| ≥ 1.0), with 82 demonstrating significant differences (P < 0.05). Through bioinformatics analysis, it was determined that the Wnt signaling pathway, calcium signaling, TNF-α and the p53 pathway are crucial mechanisms by which piRNAs contribute to the development of AAA. RT-qPCR confirmed that hsa_piR_011324 was the most significantly up-regulated piRNA in AAA (P < 0.0001), corroborating RNA sequencing results. Further results indicate that hsa_piR_011324 promotes phenotypic transformation of human aortic vascular smooth muscle cells (HAVSMCs), enhances the activity of matrix metalloproteinases (MMPs), increased up-regulation of inflammation-related markers IL-1β and TNF-α, and induces apoptotic processes. In conclusion, the present study emphasizes the important regulatory role of hsa_piR_011324 in AAA, suggesting that it holds promise as a prospective target for diagnostic and therapeutic intervention.
Collapse
Affiliation(s)
- Xiaoxin Jiang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Yajun Zhang
- Department of Cardiac Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Yuanyuan Li
- Department of Laboratory Examination, People's Hospital of Rizhao City, The Affiliated Hospital of Jining Medical College, Rizhao 276827, People's Republic of China
| | - Xiaoqian Li
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao 266021, People's Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao 266021, People's Republic of China.
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China; Department of Cardiac Ultrasound, the Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China.
| |
Collapse
|
4
|
Xing C, Wu M, Zhou X, Gong B. Bioinformatic Analysis of the Protective Effects of Dexmedetomidine and Thrombopoietin Against Hypoxia/Reoxygenation-Induced Injury in AC16 Cells. Chem Biol Drug Des 2025; 105:e70105. [PMID: 40251893 PMCID: PMC12008733 DOI: 10.1111/cbdd.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/24/2025] [Accepted: 03/28/2025] [Indexed: 04/21/2025]
Abstract
This study aimed to investigate the protective mechanisms of dexmedetomidine (Dex) and thrombopoietin (TPO) against hypoxia/reoxygenation (H/R)-induced myocardial injury. Human cardiomyocyte AC16 cells were subjected to hypoxic conditions and treated with Dex and TPO. Cellular responses, including proliferation, apoptosis, and autophagy, were assessed. RNA sequencing and bioinformatic analyses were conducted to identify differentially expressed genes, followed by functional pathway enrichment analysis. The results demonstrated that Dex and TPO significantly promoted cell proliferation, reduced apoptosis and autophagy, and inhibited caspase-3 activity and light chain 3B (LC3B) expression. Pathway enrichment analysis revealed the involvement of mitogen-activated protein kinase (MAPK), transforming growth factor beta (TGF-β), and tumor necrosis factor (TNF) signaling pathways. Although both treatments demonstrated overlapping effects, they also exhibited distinct gene regulation mechanisms. These findings suggested that Dex and TPO could mitigate H/R-induced myocardial injury through complex gene regulatory mechanisms, highlighting their potential as therapeutic strategies for myocardial ischemia-reperfusion injury (MIRI).
Collapse
Affiliation(s)
- Cuiyan Xing
- Department of AnesthesiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Mingyi Wu
- Department of Anesthesiology, School and Hospital of StomatologyCheeloo College of Medicine, Shandong UniversityJinanChina
| | - Xiaoyang Zhou
- Department of AnesthesiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Benhang Gong
- Department of AnesthesiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| |
Collapse
|
5
|
Iusupova AO, Pakhtusov NN, Slepova OA, Privalova EV, Belenkov YN. WNT Signaling Cascade Proteins and Structural and Functional State of The Vascular Bed in Patients With Various Phenotypes of Stable Ischemic Heart Disease. KARDIOLOGIIA 2025; 65:3-9. [PMID: 40195773 DOI: 10.18087/cardio.2025.3.n2853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/24/2025] [Indexed: 04/09/2025]
Abstract
Aim To evaluate the concentration of the WNT signaling cascade proteins (WNT1, -3a, -4, -5a) and the state of the vasculature by photoplethysmography (PPG) in patients with different phenotypes of stable ischemic heart disease (IHD), with obstructive and non-obstructive coronary artery disease (CAD).Material and methods This cross-sectional observational study included 80 patients (45-75 years old) with a verified diagnosis of stable IHD. Based on the results of coronary angiography or multislice spiral computed tomography coronary angiography, the patients were divided into two equal groups (n=40), with obstructive IHD (oIHD), and ischemia with no obstructive CAD or angina with no obstructive CAD (INOCA/ANOCA). In the oIHD group, men prevailed (67.5%) while in the INOCA/ANOCA group, women prevailed (57.5%). Noninvasive PPG evaluation of the vasculature was performed, and WNT1, -3a, -4, and -5a concentrations were measured by ELISA in all patients.Results Higher concentrations of the WNT1 and WNT3a proteins were found in patients with oIHD (p<0.001) while the INOCA/ANOCA group had a significantly higher concentration of WNT5a (p=0.001). According to the PPG data, the arterial stiffness index (aSI) significantly differed between the INOCA/ANOCA (7.6 m/s [6.6; 9.35]) and oIHD (9.25 m/s [7.88; 10.33]) groups, p=0.048). The correlation analysis revealed a relationship between WNT1 and the reflectance index RI (ρ=0.359; p=0.014) in IHD patients (oIHD+INOCA/ANOCA). According to the ROC analysis, the curve for WNT3a turned out to be diagnostically significant (sensitivity and specificity of the model were 85.7 and 87.0%, respectively). The cut-off value of WNT3a was 0.183 pg/ml.Conclusion The results of the study showed that the activation of the canonical WNT cascade (WNT1 and WNT3a) was observed in patients with oIHD, while the non-canonical cascade (WNT5a) was activated in patients with INOCA/ANOCA. The obstructive IHD phenotype can be predicted with a WNT3a value ≥0.183 pg/ml.
Collapse
Affiliation(s)
- A O Iusupova
- Sechenov First Moscow State Medical University, Moscow
| | - N N Pakhtusov
- Sechenov First Moscow State Medical University, Moscow
| | - O A Slepova
- Sechenov First Moscow State Medical University, Moscow
| | - E V Privalova
- Sechenov First Moscow State Medical University, Moscow
| | - Yu N Belenkov
- Sechenov First Moscow State Medical University, Moscow
| |
Collapse
|
6
|
Li J, Liu MY, Li JG, Zhang H, Zhang CJ, Ao WY, Zhang M, Duan XG, Zhao ZY. Protective effect of polyphenols from Potentilla anserina L. against in rat myocardial ischemia-reperfusion on injury by Wnt/β-catenin pathway. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025:1-9. [PMID: 40110986 DOI: 10.1080/15287394.2025.2470845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Myocardial ischemia reperfusion injury (MIRI) remains a major clinical challenge. Polyphenols derived from Potentilla anserina L (PPA) were found to possess anti-hypoxic-ischemic in vitro. The aim of this study was to examine (1) whether this plant exerts a protective effect and (2) whether the underlying mechanisms involving inflammatory responses and the Wnt/β-catenin signaling pathway were involved in rats. Rats were randomly divided as follows (1): Sham operation (2); ischemia-reperfusion (MIRI) (3); polyphenols (PPA) (4); Wnt inhibitor group (XAV939). In cardiomyocytes (1), HE staining was used to examine morphology (2), enzyme-linked immunosorbent assay to determine interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) levels and (3) Western blot to measure protein expression of Wnt and β-catenin. HE staining showed in MIRI edema of cardiomyocytes, localized inflammatory cell infiltration, unclear outline of cells and cell fragmentation, and some cardiomyocytes were seen to have disordered arrangement of tissues. PPA markedly lowered the morphological alterations in MIRI. The levels of levels of IL-1β and TNF-α in MIRI were significantly elevated; however, PPA reduced these cytokine concentrations compared to MIRI. Western blot analysis demonstrated that MIRI increased the relative protein expression levels of Wnt and β-catenin. Treatment of MIRI with PPA resulted in a significant decrease in protein expression levels of Wnt and β-catenin. The involvement of the Wnt/β-catenin pathway in MIRI was further affirmed with the use Wnt inhibitor group (XAV939) that also diminished protein expression levels of Wnt and β-catenin.
Collapse
Affiliation(s)
- Jing Li
- Department of Human Anatomy, Baotou Medical College, Baotou, IM, China
- Department of Anesthesiology, The Fourth Hospital of Inner Mongolia Autonomous Region, Baotou, IM, China
| | - Meng-Yu Liu
- Department of Anesthesiology, Baotou Medical College, Baotou, IM, China
- Department of Anesthesiology, The Fourth Hospital of Baotou City, Baotou, IM, China
| | - Jian-Guo Li
- Department of Anesthesiology, The Fourth Hospital of Baotou City, Baotou, IM, China
| | - He Zhang
- Department of Human Anatomy, Baotou Medical College, Baotou, IM, China
| | - Chun-Jie Zhang
- Center of Collaborative Innovation in Translational Medicine, Baotou Medical College, Baotou, IM, China
| | - Wei-Yi Ao
- Clinical Department One, Chongqing Medical University, Chongqing, China
| | - Ming Zhang
- Department of Human Anatomy, Baotou Medical College, Baotou, IM, China
| | - Xia-Guang Duan
- Department of Anesthesiology, The Third Clinical Medical College, Inner Mongolia Medical University, Baotou, IM, China
| | - Zhi-Ying Zhao
- Department of Human Anatomy, Baotou Medical College, Baotou, IM, China
| |
Collapse
|
7
|
Liu X, Liu M, Wang C, Duan L, Ren Q, Jiang S, Han J, Fu H, Sun X, Man D, Feng X. Gestational high-sucrose diet mediated vascular hyper-contractility in mesenteric arteries from offspring. Sci Rep 2025; 15:9083. [PMID: 40097492 PMCID: PMC11914075 DOI: 10.1038/s41598-025-93361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025] Open
Abstract
Prenatal high sucrose diet (HS) generates profound effects on vascular diseases in offspring later in life. This study aimed to determine whether and how prenatal HS affect vasoreactivity in resistance arteries from adult offspring. Pregnant Sprague-Dawley rats were fed with normal drinking water or 20% high-sucrose solution during the whole gestational period. Mesenteric arteries (MAs) from adult offspring were obtained and tested for vascular functions with DMT. The whole-transcriptome sequencing (RNA-seq) of MAs was performed to reveal the different genes and possible pathway. Real-time PCR and western blot were performed to access mRNA and protein expression. The thicker smooth muscle layer and mitochondrial swelling were observed in MAs in HS offspring. Prenatal HS mediated higher vasoconstriction/vascular sensitivity induced by phenylephrine (PE) and 5-Hydroxytryptamine (5-HT). RNA-Seq analysis revealed that the genes crystallin alpha B (CYRAB) and heat shock protein family E member 1 (HSPE1) were upregulated, while the gene adenomatous polyposis coli downregulated 1 (APCDD1) was downregulated in HS group, confirmed at mRNA and protein expression levels. Wingless-related integration site (Wnt)/Ca2+ indicated by KEGG analysis was the essential pathway inducing vascular dysfunction in HS group. As a Wnt5a inhibitor, Box5 reduced MA tension induced by PE or 5-HT in HS group. Both protein kinase C (PKC) inhibitor-GF109203X and Inositol 1,4,5-trisphosphate receptor (IP3R) inhibitor-2-Aminoethoxydiphenyl borate (2-APB) significantly decreased MA tone in HS group. Ca2+ levels in MAs were markedly higher in HS offspring than in control (CON), likely contributing to enhanced vascular reactivity. Vascular relaxation induced by acetylcholine (ACh) in HS was lower than that in CON. N(G)-Nitro-L-arginine methyl ester (L-NAME) increased PE-mediated vascular tension in CON group, while no effect in HS group, suggesting that endothelial nitric oxide (NO) system dysfunction in MAs exposed to prenatal HS. This study demonstrated that prenatal HS induced hyper-vasocontraction in MAs from adult offspring, which was associated with the enhanced Wnt5a-PKC/IP3R-Ca2+ pathway and decreased endothelial NO function.
Collapse
Affiliation(s)
- Xinying Liu
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, 272001, Jining, China
| | - Meng Liu
- Department of Clinical Medicine, Jining Medical University, 272067, Jining, China
| | - Chunxia Wang
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, 272001, Jining, China
| | - Liting Duan
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, 272001, Jining, China
| | - Qinggui Ren
- Department of Mammary Gland Surgery, Affiliated Hospital of Jining Medical University, 272001, Jining, China
| | - Shuli Jiang
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, 272001, Jining, China
| | - Jing Han
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, 272001, Jining, China
| | - Hongwei Fu
- Department of Clinical Medicine, Jining Medical University, 272067, Jining, China
| | - Xiao Sun
- Department of Clinical Medicine, Jining Medical University, 272067, Jining, China
| | - Dongmei Man
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, 272001, Jining, China.
| | - Xueqin Feng
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, 272001, Jining, China.
| |
Collapse
|
8
|
Støle TP, Romaine A, Kleiberg T, Høst V, Lunde M, Hasic A, Lintvedt TA, Sanden KW, Kolset SO, Wold JP, Pisconti A, Rønning SB, Carlson CR, Pedersen ME. Cardiac implications of chicken wooden breast myopathy. Front Physiol 2025; 16:1547661. [PMID: 40110183 PMCID: PMC11919848 DOI: 10.3389/fphys.2025.1547661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/03/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction Wooden breast disease is a myopathy of the skeletal muscle in chickens of commercial breeding. Although the underlying pathophysiology remains unknown, we and others have previously shown that affected broilers display varying degrees of fibrosis, extracellular matrix (ECM) remodeling, inflammation, and alterations in various molecular signaling pathways. Other myopathy conditions, such as Duchenne muscular dystrophy, also affect the cardiac muscle and are associated with fibrosis and reduced cardiac function. To determine potential cardiac implications of wooden breast disease and identify whether molecular and fibrotic changes were similar to what we have previously found in the breast, we have investigated the hearts of commercial Ross 308 broilers. Methods Hearts from male Ross 308 broiler chickens from mildly and severely wooden breast-affected chickens categorized in previous studies were analyzed. Ventricles from the hearts were analyzed by immunoblotting, real-time qPCR, near-infrared spectroscopy, Raman spectroscopy, and Masson`s trichrome histology. RNA sequencing was also conducted to identify the molecular footprint of the mildly and severely wooden breast-affected chickens. Results Compared to mildly affected chickens, the severely wooden breast-affected chickens did not show an increase in heart weight, water-binding capacity, or macronutrient composition. The hearts did also not display any differences in fibrosis development, extracellular matrix gene expression, or typical cardiac and inflammatory markers. The severely affected chickens did, however, show a reduction in protein levels of biglycan and fibromodulin, as well as alterations in matrix metalloproteinase 2, Wnt ligands, mTOR signaling, heat shock protein 70, and muscle LIM protein. Functional enrichment analysis of RNA sequencing also suggested a different molecular footprint of biological processes and pathways between the two groups. Conclusion Hearts from wooden breast-affected chickens did not display the same fibrotic alterations as those previously found in the breast. Despite few alterations detected in the markers and signaling molecules tested, RNA sequencing indicated a different molecular footprint in the hearts of severely compared to mildly wooden breast-affected chickens.
Collapse
Affiliation(s)
- Thea Parsberg Støle
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Andreas Romaine
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Thea Kleiberg
- Raw Materials and Optimalization, Nofima As, Ås, Norway
| | - Vibeke Høst
- Raw Materials and Optimalization, Nofima As, Ås, Norway
| | - Marianne Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Almira Hasic
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | | | - Svein O Kolset
- Department of Nutrition, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| | | | - Addolorata Pisconti
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | | | - Cathrine Rein Carlson
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | |
Collapse
|
9
|
Kumari K, Verma K, Sahu M, Dwivedi J, Paliwal S, Sharma S. Emerging role of mesenchymal cells in cardiac and cerebrovascular diseases: Physiology, pathology, and therapeutic implications. Vascul Pharmacol 2025:107473. [PMID: 39993517 DOI: 10.1016/j.vph.2025.107473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/11/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
In recent years, the therapeutic utility of mesenchymal stem cells (MSCs) has received substantial attention from investigators, owing to their pleiotropic properties. The emerging insights from the developments in tissue engineering provide perspectives for the repair of damaged tissue and the replacement of failing organs. Perivascular cells including MSC-like pericytes, vascular smooth muscles, and other cells located around blood vessels, have been acknowledged to contribute to in situ angiogenesis and repair process. MSCs offer a wide array of therapeutic applications in different pathological states. However, in the current article, we have highlighted the recent updates on MSCs and their key applications in cardiac and cerebrovascular diseases, evident in different preclinical and clinical studies. We believe the present article would assist the investigators in understanding the recent advances of MSCs and exploring their therapeutic potential in varied ailments, especially cardiac and cerebrovascular diseases.
Collapse
Affiliation(s)
- Kajal Kumari
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; Department of Internal Medicine, Division of Cardiology, LSU Health Sciences Center - Shreveport, LA, USA
| | - Meenal Sahu
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; Department of Bioscience & Biotechnology, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India.
| |
Collapse
|
10
|
Shah R, Amador C, Poe AJ, Spektor TM, Bhandary P, Wang Y, Wang ZP, Weisenberger DJ, Borges VF, Sawant OB, Maguen E, Hamrah P, Kramerov AA, Saghizadeh M, Ljubimov AV. Identification of Wnt-5a Receptors Important in Diabetic and Non-Diabetic Corneal Epithelial Wound Healing. Invest Ophthalmol Vis Sci 2025; 66:64. [PMID: 39998459 PMCID: PMC11875028 DOI: 10.1167/iovs.66.2.64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/01/2025] [Indexed: 02/26/2025] Open
Abstract
Purpose Persistent epithelial alterations such as delayed wound healing are a key feature of diabetic corneal disease. Previously, we reported that epigenetic changes in the diabetic cornea led to the suppression of Wnt-5a, and that addition of Wnt-5a accelerated wound healing. In this study, we set to determine which Wnt receptor(s) mediated Wnt-5a induced stimulation of diabetic corneal epithelial wound healing. Methods Human limbal epithelial cells (LECs) were isolated from postmortem diabetic and non-diabetic donor eyes for single-cell RNA sequencing (scRNA-seq) and DNA methylation analysis. These analyses were validated by qRT-PCR, western blot, or immunostaining of corneal tissue sections. Cultured primary LECs were transfected with small interfering RNA (siRNA) to specific Wnt receptors to evaluate their role in scratch wound healing in the presence or absence of 200 ng/mL Wnt-5a. Results Single-cell RNA sequencing analysis revealed differential gene expression of Wnt receptors, ROR2, MCAM, FZD5, FZD6, and FZD7. DNA methylation arrays showed hypomethylation of ROR2 gene promoter in diabetic versus non-diabetic LECs by 41.3% (**P < 0.01) resulting in increased ROR2 protein expression. Non-diabetic cells transfected with siRNA to knockdown ROR2 but not FZD5, FZD6, FZD7, MCAM, and RYK showed significantly decreased wound healing by approximately 50% (*P < 0.05) versus control siRNA. In diabetic LECs, knockdown of ROR2 significantly inhibited wound healing by 40% (*P < 0.05) and of FZD5 partially blocked wound healing that could not be restored by the addition of Wnt-5a. Conclusions Wnt-5a seems to mediate wound healing in diabetic LECs mainly through receptor tyrosine kinase like orphan receptor 2 with Frizzled-5 serving as a possible co-receptor with a smaller effect.
Collapse
Affiliation(s)
- Ruchi Shah
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United Sates
- Board of Governors Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, California, United Sates
| | - Cynthia Amador
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United Sates
- Board of Governors Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, California, United Sates
| | - Adam J. Poe
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United Sates
- Board of Governors Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, California, United Sates
| | - Tanya M. Spektor
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United Sates
- Board of Governors Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, California, United Sates
| | - Priyanka Bhandary
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, California, United Sates
| | - Yizhou Wang
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, California, United Sates
| | - Zhiping Paul Wang
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, California, United Sates
| | - Daniel J. Weisenberger
- Keck School of Medicine, University of Southern California, Los Angeles, California, United Sates
| | - Vanessa F. Borges
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United Sates
- Board of Governors Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, California, United Sates
| | - Onkar B. Sawant
- Center for Vision and Eye Banking Research, Eversight, Cleveland, Ohio, United States
| | - Ezra Maguen
- American Eye Institute, Los Angeles, California, United States
| | - Pedram Hamrah
- Cornea Service, New England Eye Center, Tufts Medical Center, Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Andrei A. Kramerov
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United Sates
- Board of Governors Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, California, United Sates
| | - Mehrnoosh Saghizadeh
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United Sates
- Board of Governors Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, California, United Sates
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States
| | - Alexander V. Ljubimov
- Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United Sates
- Board of Governors Regenerative Medicine Institute Eye Program, Cedars-Sinai Medical Center, Los Angeles, California, United Sates
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States
| |
Collapse
|
11
|
Hong JY, Jeon WJ, Kim H, Yeo C, Kim H, Lee YJ, Ha IH. Differential Gene Expression Analysis in a Lumbar Spinal Stenosis Rat Model via RNA Sequencing: Identification of Key Molecular Pathways and Therapeutic Insights. Biomedicines 2025; 13:192. [PMID: 39857775 PMCID: PMC11762803 DOI: 10.3390/biomedicines13010192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Lumbar spinal stenosis (LSS) is a degenerative condition characterized by the narrowing of the spinal canal, resulting in chronic pain and impaired mobility. However, the molecular mechanisms underlying LSS remain unclear. In this study, we performed RNA sequencing (RNA-seq) to investigate differential gene expression in a rat LSS model and identify the key genes and pathways involved in its pathogenesis. METHODS We used bioinformatics analysis to identify significant alterations in gene expression between the LSS-induced and sham groups. RESULTS Pearson's correlation analysis demonstrated strongly consistent intragroup expression (r > 0.9), with distinct gene expression between the LSS and sham groups. A total of 113 differentially expressed genes (DEGs) were identified, including upregulated genes such as Slc47a1 and Prg4 and downregulated genes such as Higd1c and Mln. Functional enrichment analysis revealed that these DEGs included those involved in key biological processes, including synaptic plasticity, extracellular matrix organization, and hormonal regulation. Gene ontology analysis highlighted critical molecular functions such as mRNA binding and integrin binding, as well as cellular components such as contractile fibers and the extracellular matrix, which were significantly affected by LSS. CONCLUSIONS Our findings provide novel insights into the molecular mechanisms underlying LSS and offer potential avenues for the development of targeted therapies aimed at mitigating disease progression and improving patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Republic of Korea; (J.Y.H.); (W.-J.J.); (H.K.); (C.Y.); (H.K.); (Y.J.L.)
| |
Collapse
|
12
|
Qian C, Dong G, Yang C, Zheng W, Zhong C, Shen Q, Lu Y, Zhao Y. Broadening horizons: molecular mechanisms and disease implications of endothelial-to-mesenchymal transition. Cell Commun Signal 2025; 23:16. [PMID: 39789529 PMCID: PMC11720945 DOI: 10.1186/s12964-025-02028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
Endothelial-mesenchymal transition (EndMT) is defined as an important process of cellular differentiation by which endothelial cells (ECs) are prone to lose their characteristics and transform into mesenchymal cells. During EndMT, reduced expression of endothelial adhesion molecules disrupts intercellular adhesion, triggering cytoskeletal reorganization and mesenchymal transition. Numerous studies have proved that EndMT is a multifaceted biological event driven primarily by cytokines such as TGF-β, TNF-α, and IL-1β, alongside signaling pathways like WNT, Smad, MEK-ERK, and Notch. Nevertheless, the exact roles of EndMT in complicated diseases have not been comprehensively reviewed. In this review, we summarize the predominant molecular regulatory mechanisms and signaling pathways that contribute to the development of EndMT, as well as highlight the contributions of a series of imperative non-coding RNAs in curbing the initiation of EndMT. Furthermore, we discuss the significant impact of EndMT on worsening vasculature-related diseases, including cancer, cardiovascular diseases, atherosclerosis, pulmonary vascular diseases, diabetes-associated fibrotic conditions, and cerebral cavernous malformation, providing the implications that targeting EndMT holds promise as a therapeutic strategy to mitigate disease progression.
Collapse
Affiliation(s)
- Cheng Qian
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guanglu Dong
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chunmei Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weiwei Zheng
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chongjin Zhong
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qiuhong Shen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yang Zhao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
13
|
Azhdari M, Zur Hausen A. Wnt/β-catenin and notch signaling pathways in cardiovascular disease: Mechanisms and therapeutics approaches. Pharmacol Res 2025; 211:107565. [PMID: 39725339 DOI: 10.1016/j.phrs.2024.107565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/30/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Wnt and Notch signaling pathways play crucial roles in the development and homeostasis of the cardiovascular system. These pathways regulate important cellular processes in cardiomyocytes, endothelial cells, and smooth muscle cells, which are the key cell types involved in the structure and function of the heart and vasculature. During embryonic development, Wnt and Notch signaling coordinate cell fate specification, proliferation, differentiation, and morphogenesis of the heart and blood vessels. In the adult cardiovascular system, these pathways continue to maintain tissue homeostasis and arrange adaptive responses to various physiological and pathological stimuli. Dysregulation of Wnt and Notch signaling has been involved in the pathogenesis of numerous cardiovascular diseases, including atherosclerosis, hypertension, myocardial infarction, and heart failure. Abnormal activation or suppression of these pathways in specific cell types can contribute to endothelial dysfunction, vascular remodeling, cardiomyocyte hypertrophy, impaired cardiac contractility and dead. Understanding the complex interplay between Wnt and Notch signaling in the cardiovascular system has led to the investigation of these pathways as potential therapeutic targets in clinical trials. In conclusion, this review summarizes the current knowledge on the roles of Wnt and Notch signaling in the development and homeostasis of cardiomyocytes, endothelial cells, and smooth muscle cells. It further discusses the dysregulation of these pathways in the context of major cardiovascular diseases and the ongoing clinical investigations targeting Wnt and Notch signaling for therapeutic intervention.
Collapse
Affiliation(s)
- Manizheh Azhdari
- Pathologie, School for Cardiovascular Diseases, Fac. Health, Medicine and Life Sciences, Maastricht university, MUMC, the Netherland.
| | - Axel Zur Hausen
- Pathologie, School for Cardiovascular Diseases, Fac. Health, Medicine and Life Sciences, Maastricht university, MUMC, the Netherland.
| |
Collapse
|
14
|
Zeng D, Umar M, Zhu Z, Pan H, Lu WW, Xiao G, Chen Y, Tong L, Chen D. Development of novel osteoarthritis therapy by targeting AMPK-β-catenin-Runx2 signaling. Genes Dis 2025; 12:101247. [PMID: 39552787 PMCID: PMC11566674 DOI: 10.1016/j.gendis.2024.101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/06/2024] [Accepted: 01/25/2024] [Indexed: 11/19/2024] Open
Abstract
Osteoarthritis (OA) is a debilitating chronic joint disease affecting large populations of patients, especially the elderly. The pathological mechanisms of OA are currently unknown. Multiple risk factors are involved in OA development. Among these risk factors, alterations of mechanical loading in the joint leading to changes in biological signaling pathways have been known as a key event in OA development. The importance of AMPK-β-catenin-Runx2 signaling in the initiation and progression of OA has been recognized in recent years. In this review, we discuss the recent progress in understanding the role of this signaling pathway and the underlying interaction mechanisms during OA development. We also discuss the drug development aiming to target this signaling pathway for OA treatment.
Collapse
Affiliation(s)
- Daofu Zeng
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong 518055, China
| | - Muhammad Umar
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong 518055, China
| | - Zhenglin Zhu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Haobo Pan
- Shenzhen Healthemes Biotechnology Co., Ltd., Shenzhen, Guangdong 518071, China
| | - William W. Lu
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong 518055, China
| | - Guozhi Xiao
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yan Chen
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Liping Tong
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
15
|
Aggarwal K, Pathan MS, Dhalani M, Kaur IP, Anamika F, Gupta V, Jayaraman DK, Jain R. Elevated Perspectives: Unraveling Cardiovascular Dynamics in High-Altitude Realms. Curr Cardiol Rev 2025; 21:19-26. [PMID: 39506447 DOI: 10.2174/011573403x308818241030051249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/07/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024] Open
Abstract
High-altitude regions pose distinctive challenges for cardiovascular health because of decreased oxygen levels, reduced barometric pressure, and colder temperatures. Approximately 82 million people live above 2400 meters, while over 100 million people visit these heights annually. Individuals ascending rapidly or those with pre-existing cardiovascular conditions are particularly vulnerable to altitude-related illnesses, including Acute Mountain Sickness (AMS) and Chronic Mountain Sickness (CMS). The cardiovascular system struggles to adapt to hypoxic stress, which can lead to arrhythmias, systemic hypertension, and right ventricular failure. Pathophysiologically, high-altitude exposure triggers immediate increases in cardiac output and heart rate, often due to enhanced sympathetic activity. Over time, acclimatisation involves complex changes, such as reduced stroke volume and increased blood volume. The pulmonary vasculature also undergoes significant alterations, including hypoxic pulmonary vasoconstriction and vascular remodelling, contributing to conditions, like pulmonary hypertension and high-altitude pulmonary edema. Genetic adaptations in populations living at high altitudes, such as gene variations linked to hypoxia response, further influence these physiological processes. Regarding cardiovascular disease risk, stable coronary artery disease patients generally do not face significant adverse outcomes at altitudes up to 3500 meters. However, those with unstable angina or recent cardiac interventions should avoid high-altitude exposure to prevent exacerbation. Remarkably, high-altitude living correlates with reduced cardiovascular mortality rates, possibly due to improved air quality and hypoxia-induced adaptations. Additionally, there is a higher incidence of congenital heart disease among children born at high altitudes, highlighting the profound impact of hypoxia on heart development. Understanding these dynamics is crucial for managing risks and improving health outcomes in high-altitude environments.
Collapse
Affiliation(s)
| | | | - Mayank Dhalani
- GMERS Medical College & Hospital, Gotri, Vadodara, Gujrat, India
| | - Inder P Kaur
- University of Mississippi Medical Center, Jackson, Mississippi, MS 39216, USA
| | - Fnu Anamika
- University College of Medical Sciences, New Delhi, India
| | | | | | - Rohit Jain
- Penn State Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| |
Collapse
|
16
|
Mousavi SM, Jalali-Zefrei F, Shourmij M, Tabaghi S, Davari A, Khalili SB, Farzipour S, Salari A. Targeting Wnt Pathways with Small Molecules as New Approach in Cardiovascular Disease. Curr Cardiol Rev 2025; 21:108-122. [PMID: 39482911 DOI: 10.2174/011573403x333038241023153349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/03/2024] Open
Abstract
The increasing incidences of morbidity and mortality associated with cardiovascular diseases represent significant difficulties for clinical treatment and have a major impact on patient health. Wnt signaling pathways are highly conserved and are well known for their regulatory roles in embryonic development, tissue regeneration, and adult tissue homeostasis. Wnt signaling is classified into two distinct pathways: canonical Wnt/β-catenin signaling and noncanonical pathways, including planar cell polarity and Wnt/Ca2+ pathways. A growing body of experimental evidence suggests the involvement of both canonical and non-canonical Wnt signaling pathways in the development of cardiovascular diseases, including myocardial hypertrophy, arrhythmias, diabetic cardiomyopathy, arrhythmogenic cardiomyopathy, and myocardial infarction. Thus, to enhance patient quality of life, diagnosing and treating cardiac illnesses may require a thorough understanding of the molecular functions played by the Wnt pathway in these disorders. Many small-molecule inhibitors specifically target various components within the Wnt signaling pathways, such as Frizzled, Disheveled, Porcupine, and Tankyrase. This study aims to present an overview of the latest findings regarding the functions of Wnt signaling in human cardiac disorders and possible inhibitors of Wnt, which could lead to novel approaches for treating cardiac ailments.
Collapse
Affiliation(s)
- Seyed Mehdi Mousavi
- Cardiovascular Diseases Research Center, Department of Cardiology, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Jalali-Zefrei
- Department of Radiology, Faculty of Medicine, Guilan University of Medical Science, Rasht, Iran
| | - Mohammad Shourmij
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Shiva Tabaghi
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhesam Davari
- Cardiovascular Diseases Research Center, Department of Cardiology, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeed Bahador Khalili
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Soghra Farzipour
- Cardiovascular Diseases Research Center, Department of Cardiology, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Arsalan Salari
- Cardiovascular Diseases Research Center, Department of Cardiology, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
17
|
Svetláková BB, Líšková VP, Barančík M. Wnt Signaling Inhibitors as Therapeutic Approach in Ischemic Heart Disease. Molecules 2024; 29:5958. [PMID: 39770047 PMCID: PMC11677181 DOI: 10.3390/molecules29245958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Wnt (wingless-type MMTV integration site family) signaling is an evolutionary conserved system highly active during embryogenesis, but in adult hearts has low activities under normal conditions. It is essential for a variety of physiological processes including stem cell regeneration, proliferation, migration, cell polarity, and morphogenesis, thereby ensuring homeostasis and regeneration of cardiac tissue. Its dysregulation and excessive activation during pathological conditions leads to morphological and functional changes in the heart resulting in impaired myocardial regeneration under pathological conditions such as myocardial infarction, heart failure, and coronary artery disease. Several groups of Wnt inhibitors have demonstrated the ability to modulate the Wnt pathway and thereby significantly reduce fibrosis and improve cardiac function after myocardial ischemia. Their inhibitory effect can be realized at multiple levels, which include the inhibition of Wnt ligands, the inhibition of Frizzled receptors, the stabilization of the β-catenin destruction complex, and the disruption of nuclear β-catenin interactions. In this review, we overview the function of Wnt signaling in responses of cardiac cells to pathological conditions, especially ischemic heart disease, with an emphasis on the use of inhibitors of this signaling as a therapeutic approach. Finally, we summarize the current knowledge about the potential of the targeting of Wnt signaling in therapeutic applications.
Collapse
Affiliation(s)
| | | | - Miroslav Barančík
- Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (B.B.S.); (V.P.L.)
| |
Collapse
|
18
|
Ageed FEM, Tifow FA, Ibrahim LA, Ismael AB, Balcıoğlu Ö, Özcem B, Cobanogullari H, Yılmaz S, Ergören MÇ. Molecular insights into Wnt3a and Wnt5a gene expression in venous insufficiency. Mol Biol Rep 2024; 52:53. [PMID: 39680245 DOI: 10.1007/s11033-024-10153-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Chronic venous insufficiency (CVI) manifests as morphological and functional abnormalities in the venous system, primarily affecting the lower extremities and presenting as leg heaviness, oedema, and varicose veins. CVI is a common vascular disorder characterised by impaired blood flow in the veins, often leading to various clinical manifestations. To better understand the additional underlying mechanisms of CVI, it is essential to explore the role of Wnt proteins, which play a crucial role in regulating signalling processes. This study aimed to investigate the expression levels of the Wnt3a and Wnt5a genes using real-time PCR in patients with venous insufficiency compared to acontrol group. METHODS AND RESULTS 68 participants were included, comprising 29 controls and 39 patients with venous insufficiency from Near East University Hospital. Real-time PCR was utilised for gene expression analysis on a segment of the great saphenous vein biopsy, encompassing all vascular layers, from each participant in both groups. With a significance threshold of p < 0.05, the analysis revealed a significant difference in Wnt3a gene expression (p ₌ 0.0007) and a nonsignificant difference in Wnt5a expression levels (p ₌ 0.5726) between patients with venous insufficiency and the healthy control group. CONCLUSION This study indicates fluctuations in the Wnt genes in varicose vein biopsies compared to healthy veins. Consequently, further research is essential to elucidate whether the dysregulation of the Wnt pathway induces venous insufficiency or vice versa. This may facilitate targeted interventions addressing its fundamental molecular aberrations.
Collapse
Affiliation(s)
- Fatima Eltayb M Ageed
- Faculty of Medicine, Department of Medical Genetics, Near East University, Nicosia, 99138, Cyprus
| | - Fadumo Ali Tifow
- Faculty of Medicine, Department of Medical Genetics, Near East University, Nicosia, 99138, Cyprus
| | - Leylo Abdullahi Ibrahim
- Faculty of Medicine, Department of Medical Genetics, Near East University, Nicosia, 99138, Cyprus
| | - Aya B Ismael
- Faculty of Medicine, Department of Medical Genetics, Near East University, Nicosia, 99138, Cyprus
| | - Özlem Balcıoğlu
- Faculty of Medicine, Department of Cardiovascular Surgery, Near East University, Nicosia, 99138, Cyprus
| | - Barçın Özcem
- Faculty of Medicine, Department of Cardiovascular Surgery, Near East University, Nicosia, 99138, Cyprus
| | - Havva Cobanogullari
- Laboratory of Medical Genetics, Near East University, Near East University Hospital, Nicosia, 99138, Cyprus
| | - Selma Yılmaz
- Faculty of Medicine, Department of Medical Genetics, Near East University, Nicosia, 99138, Cyprus
| | - Mahmut Çerkez Ergören
- Faculty of Medicine, Department of Medical Genetics, Near East University, Nicosia, 99138, Cyprus.
- Faculty of Art and Sciences, Department of Biological Sciences, Eastern Mediterranean University, Famagusta, Cyprus.
| |
Collapse
|
19
|
Jiang SX, Zhou ZY, Tu B, Song K, Lin LC, Liu ZY, Cao W, Zhao JY, Tao H. Epigenetic regulation of mitochondrial fission and cardiac fibrosis via sFRP3 promoter methylation. Cell Mol Life Sci 2024; 81:483. [PMID: 39644393 PMCID: PMC11625034 DOI: 10.1007/s00018-024-05516-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/23/2024] [Accepted: 11/17/2024] [Indexed: 12/09/2024]
Abstract
In the process of cardiac fibrosis, the balance between the Wnt/β-catenin signalling pathway and Wnt inhibitory factor genes plays an important role. Secreted frizzled-related protein 3 (sFRP3), a Wnt inhibitory factor, has been linked to epigenetic mechanisms. However, the underlying role of epigenetic regulation of sFRP3, which is crucial in fibroblast proliferation and migration, in cardiac fibrosis have not been elucidated. Therefore, we aimed to investigate epigenetic and transcription of sFRP3 in cardiac fibrosis. Using clinical samples and animal models, we investigated the role of sFRP3 promoter methylation in potentially enhancing cardiac fibrosis. We also attempted to characterize the underlying mechanisms using an isoprenaline-induced cardiac fibrosis mouse model and cultured primary cardiac fibroblasts. Hypermethylation of sFRP3 was associated with perpetuation of fibroblast activation and cardiac fibrosis. Additionally, mitochondrial fission, regulated by the Drp1 protein, was found to be significantly altered in fibrotic hearts, contributing to fibroblast proliferation and cardiac fibrosis. Epigenetic modification of sFRP3 promoter methylation also influenced mitochondrial dynamics, linking sFRP3 repression to excessive mitochondrial fission. Moreover, sFRP3 hypermethylation was mediated by DNA methyltransferase 3A (DNMT3A) in cardiac fibrosis and fibroblasts, and DNMT3A knockdown demethylated the sFRP3 promoter, rescued sFRP3 loss, and ameliorated the isoprenaline-induced cardiac fibrosis and cardiac fibroblast proliferation, migration and mitochondrial fission. Mechanistically, DNMT3A was shown to epigenetically repress sFRP3 expression via promoter methylation. We describe a novel epigenetic mechanism wherein DNMT3A represses sFRP3 through promoter methylation, which is a critical mediator of cardiac fibrosis and mitochondrial fission. Our findings provide new insights for the development of preventive measures for cardiac fibrosis.
Collapse
Affiliation(s)
- Shun-Xiang Jiang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Ze-Yu Zhou
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Bin Tu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Kai Song
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Wei Cao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China.
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China.
| |
Collapse
|
20
|
Chen A, Gong M, Chi J, Wang Z, Dai L. Exploring the potential mechanisms of the ethyl acetate fraction of Hippophae rhamnoides L. seeds as a natural healing agent for wound repair. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118688. [PMID: 39142622 DOI: 10.1016/j.jep.2024.118688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sea buckthorn (Hippophae rhamnoides L.) has been designated a "medicine food homology" fruit by the National Health Commission of China due to its nutritional value. In traditional Chinese ethnomedicine, Hippophae rhamnoides L. is commonly used to treat nonhealing wounds such as burns, sores, and gastric ulcers. The aim of this study was to explore the healing effects of the ethyl acetate extract of sea buckthorn seeds (SBS-EF) on burn wounds. AIM OF THE STUDY The primary objectives of this research were to determine the most effective medicinal site of action for treating burns with sea buckthorn seeds (SBS) and to investigate the underlying material basis and mechanisms of their therapeutic effects. MATERIALS AND METHODS The effects of different components of SBS-EF on the proliferation and migration of human skin fibroblasts (HSFs) were evaluated via MTT assays, scratch assays, transwell assays, and hydroxyproline secretion analysis. SBS-EF displayed the greatest activity amongst the extracts. Subsequent analyses included network pharmacology methodology, molecular docking studies, ultraperformance liquid chromatography UPLC-Orbitrap-Exploris-120-MS and a severe second-degree burn rat model to investigate the chemical constituents and potential therapeutic mechanisms of the SBS-EF. RESULTS In vitro studies demonstrated the efficacy of SBS-EF in promoting HSF growth and migration. UPLC-Orbitrap-Exploris-120-MS analysis revealed that SBS-EF had ten major constituents, with flavonoids being the predominant compounds, especially catechin, quercetin, and kaempferol derivatives. Network pharmacology and molecular docking analyses indicated that SBS-EF may exert its healing effects by modulating the Wnt/β-catenin signalling pathway. Subsequent in vivo experiments demonstrated that SBS-EF accelerated burn wound healing in rats, increased hydroxyproline expression in skin tissue, facilitated skin structure repair, and enhanced collagen production and organisation over a 21 d period. Additionally, exposure to SBS-EF upregulated WNT3a and β-catenin while downregulating GSK-3β levels in rat skin tissue. CONCLUSIONS The wound healing properties of SBS-EF were attributed to its ability to enhance HSF growth and migration, increase hydroxyproline levels in the skin, promote collagen accumulation, reduce scarring, and decrease the skin water content. SBS-EF may also provide therapeutic benefits for burns by modulating the Wnt/β-catenin signalling pathway, as evidenced by its effective site and likely mechanism of action in the treatment of burned rats.
Collapse
Affiliation(s)
- Anying Chen
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Henan, 450046, China; Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials from Henan, Henan, 450046, China.
| | - Man Gong
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Henan, 450046, China; Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials from Henan, Henan, 450046, China.
| | - Jun Chi
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Henan, 450046, China; Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials from Henan, Henan, 450046, China.
| | - Zhimin Wang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Henan, 450046, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Liping Dai
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Henan, 450046, China; Engineering Technology Research Center for Comprehensive Development and Utilization of Authentic Medicinal Materials from Henan, Henan, 450046, China.
| |
Collapse
|
21
|
Ellegård R, Malm T, Weismann CG, Fernlund E, Nordén Björnlert A, Klang Årstrand H, Ellnebo-Svedlund K, Gunnarsson C. Transcriptome analysis of the aortic coarctation area. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 10:100094. [PMID: 39801805 PMCID: PMC11708122 DOI: 10.1016/j.jmccpl.2024.100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/21/2024] [Accepted: 09/16/2024] [Indexed: 01/16/2025]
Abstract
Background Coarctation of the aorta (CoA) is a relatively common congenital heart defect. The underlying causes are not known, but a combination of genetic factors and abnormalities linked to embryonic development is suspected. There are only a few studies of the underlying molecular mechanisms in CoA. The aim of the current study was to expand our understanding of the pathogenesis of CoA by characterizing the transcriptome of the coarctation area. Methods Tissue samples from 21 pediatric patients operated for CoA were dissected into separate biopsies consisting of the localized coarctation itself, proximal/distal tissue and ductus. RNA was sequenced to evaluate gene expression in the different biopsies. Results We observed an activation of acute phase response in samples from the localized coarctation compared to samples from distal or proximal tissue. However, we observed even bigger differences for patient age and sex than compared to biopsy location. A cluster of genes located at 1q21, including the S100 gene family, displayed contrasting expression depending on patient sex, and appeared to affect the balance between inflammatory and interferon pathways. Biopsies from patients <3 months old were characterized by a significantly higher fibrotic activity compared to samples from older patients. The ductus tissue was characterized by an upregulation of factors associated with proliferation. Conclusions The ongoing processes in the coarctation area are influenced by the age and sex of the patient, and possibly by differences in etiology between different patients. The impact of patient attributes must be taken into consideration when performing future studies.
Collapse
Affiliation(s)
- Rada Ellegård
- Department of Clinical Genetics, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Torsten Malm
- Pediatric Cardiac Surgery Unit, Skane University Hospital, Lund, Sweden
- Tissue Bank Lund, Skane University Hospital, Lund, Sweden
- Department of Clinical Sciences, Thoracic Surgery, Lund University, Lund, Sweden
| | - Constance G. Weismann
- Department of Clinical Sciences, Pediatrics, Lund University, Lund, Sweden
- Department of Pediatric Cardiology, Skane University Hospital, Lund, Sweden
- Department of Pediatric Cardiology and Pediatric Intensive Care, Ludwig-Maximilian University, Munich, Germany
| | - Eva Fernlund
- Department of Pediatric Cardiology, Skane University Hospital, Lund, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Division of Pediatrics, Crown Princess Victoria Children's Hospital, Linköping University Hospital, Linköping, and Vrinnevi Hospital Norrköping, Sweden
| | - Swedish National Biobank for Congenital Heart Disease (SNAB-CHD) consortium
- Department of Clinical Genetics, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Pediatric Cardiac Surgery Unit, Skane University Hospital, Lund, Sweden
- Tissue Bank Lund, Skane University Hospital, Lund, Sweden
- Department of Clinical Sciences, Thoracic Surgery, Lund University, Lund, Sweden
- Department of Clinical Sciences, Pediatrics, Lund University, Lund, Sweden
- Department of Pediatric Cardiology, Skane University Hospital, Lund, Sweden
- Department of Pediatric Cardiology and Pediatric Intensive Care, Ludwig-Maximilian University, Munich, Germany
- Department of Clinical and Experimental Medicine, Linköping University, Division of Pediatrics, Crown Princess Victoria Children's Hospital, Linköping University Hospital, Linköping, and Vrinnevi Hospital Norrköping, Sweden
- Centre for Rare Diseases in South East Region of Sweden, Linköping University, Linköping, Sweden
| | - Anneli Nordén Björnlert
- Department of Clinical Genetics, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Hanna Klang Årstrand
- Department of Clinical Genetics, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Katarina Ellnebo-Svedlund
- Department of Clinical Genetics, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Cecilia Gunnarsson
- Department of Clinical Genetics, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Centre for Rare Diseases in South East Region of Sweden, Linköping University, Linköping, Sweden
| |
Collapse
|
22
|
Lv Y, Yang W, Kannan PR, Zhang H, Zhang R, Zhao R, Kong X. Materials-based hair follicle engineering: Basic components and recent advances. Mater Today Bio 2024; 29:101303. [PMID: 39498149 PMCID: PMC11532916 DOI: 10.1016/j.mtbio.2024.101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
The hair follicle (HF) is a significant skin appendage whose primary function is to produce the hair shaft. HFs are a non-renewable resource; skin damage or follicle closure may lead to permanent hair loss. Advances in biomaterials and biomedical engineering enable the feasibility of manipulating the HF-associated cell function for follicle reconstruction via rational design. The regeneration of bioengineered HF addresses the issue of limited resources and contributes to advancements in research and applications in hair loss treatment, HF development, and drug screening. Based on these requirements, this review summarizes the basic and recent advances in hair follicle regulation, including four components: acquisition of stem cells, signaling pathways, materials, and engineering methods. Recent studies have focused on efficiently combining these components and reproducing functionality, which would boost fabrication in HF rebuilding ex vivo, thereby eliminating the obstacles of transplantation into animals to promote mature development.
Collapse
Affiliation(s)
- Yudie Lv
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Weili Yang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Perumal Ramesh Kannan
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Han Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Rui Zhang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ruibo Zhao
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
23
|
Yuan X, Pan L, Zhang C, Zhu Q, Huang Z, Qin Y, Zhang G, Feng Z, Yang C, Hou N. Empagliflozin improves pressure-overload-induced cardiac hypertrophy by inhibiting the canonical Wnt/β-catenin signaling pathway. Front Pharmacol 2024; 15:1499542. [PMID: 39664517 PMCID: PMC11631586 DOI: 10.3389/fphar.2024.1499542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/30/2024] [Indexed: 12/13/2024] Open
Abstract
Background Empagliflozin (EMPA) is an SGLT-2 inhibitor that can control hyperglycemia. Clinical trials have indicated its cardio-protective effects against cardiac remodeling in diabetes or non-diabetes patients. However, the underlying molecular mechanisms of EMPA's cardio-protective effects remain elusive. Methods We evaluated whether the EMPA attenuated the pressure-overload-induced cardiac hypertrophy by inhibiting the Wnt/β-catenin pathway. Furthermore, the effects of the EMPA on a mouse model of transverse aortic constriction (TAC) induced cardiac hypertrophy was also evaluated. Mice were administrated with 0.5% CMC-Na as a vehicle or EMPA (10 mg/kg/day, daily, throughout the study) by intragastric gavage. Results The in vivo echocardiography and histologic morphological analyses revealed that EMPA attenuated TAC-induced cardiac hypertrophy. Moreover, it also ameliorated TAC-induced cardiac fibrosis and decreased the cell size of the cardiomyocytes in isolated adult cardiomyocytes. Molecular mechanism analysis revealed that the EMPA reduced the TAC-induced enhanced expression of the Wnt/β-catenin pathway in vivo. For in vitro assessments, isolated neonatal rat cardiomyocytes (NRCMs) were treated with Angiotensin II (AngII) and EMPA; the results showed that in the absence of EMPA, the expression of the Wnt/β-catenin pathway was enhanced. In the trans-genetic heterozygous β-catenin deletion mice, EMPA attenuated TAC-induced cardiac remodeling by reducing the Wnt/β-catenin pathway. In addition, molecular docking analysis indicated that EMPA interacts with FZD4 to inhibit the TAC and AngII induced Wnt/β-catenin pathway in cardiomyocytes. Conclusion Our study illustrated that EMPA might directly interact with FZD4 to inhibit the TAC and AngII-induced activation of the Wnt/β-catenin pathway to attenuate the adverse cardiac remodeling.
Collapse
Affiliation(s)
- Xun Yuan
- The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, Guangzhou Medical University, Guangzhou, China
| | - Li Pan
- Department of Physiology, School of Basic Medicine Sciences, Guangzhou Health Science College, Guangzhou, China
| | - Chi Zhang
- School of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Qiulian Zhu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, Guangzhou Medical University, Guangzhou, China
| | - Zexin Huang
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, Guangzhou Medical University, Guangzhou, China
| | - Yuan Qin
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, Guangzhou Medical University, Guangzhou, China
| | - Guiping Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, Guangzhou Medical University, Guangzhou, China
| | - Zhimei Feng
- The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, China
| | - Caixian Yang
- The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, China
| | - Ning Hou
- The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, China
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
24
|
Tang W, Gu Z, Guo J, Lin M, Tao H, Jia D, Jia P. Activins and Inhibins in Cardiovascular Pathophysiology. Biomolecules 2024; 14:1462. [PMID: 39595638 PMCID: PMC11592067 DOI: 10.3390/biom14111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Activins and inhibins, members of the transforming growth factor β (TGFβ) superfamily, were initially recognized for their opposing effects on the secretion of follicle-stimulating hormone. Subsequent research has demonstrated their broader biological roles across various tissue types. Primarily, activins and inhibins function through the classical TGFβ SMAD signaling pathway, but studies suggest that they also act through other pathways, with their specific signaling being complex and context-dependent. Recent research has identified significant roles for activins and inhibins in the cardiovascular system. Their actions in other systems and their signaling pathways show strong correlations with the development and progression of cardiovascular diseases, indicating potential broader roles in the cardiovascular system. This review summarizes the progress in research on the biological functions and mechanisms of activins and inhibins and their signaling pathways in cardiovascular diseases, offering new insights for the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Dalin Jia
- Department of Cardiology, The First Hospital of China Medical University, Shenyang 110001, China; (W.T.); (Z.G.); (J.G.); (M.L.); (H.T.)
| | - Pengyu Jia
- Department of Cardiology, The First Hospital of China Medical University, Shenyang 110001, China; (W.T.); (Z.G.); (J.G.); (M.L.); (H.T.)
| |
Collapse
|
25
|
Coban M, Algul Durak B, Sebnem Karakan M. Relationship of Dickkopf-1 With Atherosclerosis and Arterial Stiffness in Renal Transplant Recipients. Transplant Proc 2024; 56:1937-1946. [PMID: 39477726 DOI: 10.1016/j.transproceed.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/03/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION Dickkopf wingless (Wnt) signaling pathway inhibitor-1 (DKK-1) is a potent antagonist of the WNT canonical signaling pathway. DKK-1 is a substance that exerts anabolic effects on bone and is also involved in vascular cell regulation. The study aimed to determine the relationship of DKK-1 with atherosclerosis as determined by carotid artery intima-media thickness (CA-IMT) and arterial stiffness (AS) as determined by brachial-ankle pulse wave velocity (baPWV) in renal transplant recipients (RTRs). METHODS A total of 62 (62%) male and 38 (438%) female RTRs with a mean age of 44.22 ± 10.88 years were included in the study. RTRs were compared with 65 healthy individuals. CA-IMT measurement with ultrasonography was used as a marker of atherosclerosis. The presence of AS was detected with the baPWV device. RESULTS Creatinine, CA-IMT, and baPWV were higher in the RTRs compared to the healthy subjects. No difference was determined between the two groups regarding log10 DKK-1. No difference was noted in the levels of CA-IMT and baPWV in patients with log10 DKK-1 > 3.83 pg/mL compared to patients with ≤3.83 pg/mL. Correlation and multivariate analyses showed no correlation between log10 DKK-1 and CA-IMT and baPWV. DISCUSSION In RTRs, an increased development of atherosclerosis and AS was observed compared to healthy individuals. There was no difference in DKK-1 between the groups based on improved renal function. DKK-1 was not correlated with atherosclerosis and AS.
Collapse
Affiliation(s)
- Melahat Coban
- Department of Nephrology, Bilkent City Hospital, Ankara, Turkey.
| | | | | |
Collapse
|
26
|
Jiang Y, Zhang Y, Suo H, Lv Y, Liu S, Gao Z, Chen Y, Zhang M, Meng X, Gao S. Modulation of miR-466d-3p on Wnt signaling pathway in response to DEPs-induced blood-brain barrier disruption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116869. [PMID: 39178759 DOI: 10.1016/j.ecoenv.2024.116869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Diesel exhaust particles (DEPs), a predominant component of ambient particulate matter (PM), are classified as ultrafine particles with the capacity to penetrate the cerebral blood-brain barrier (BBB). This penetration is implicated in the pathogenesis of central nervous system (CNS) disorders. The integrity of the BBB is inextricably linked to cerebrovascular homeostasis and the development of neurodegenerative disease, highlighting the importance of studying the effects and mechanisms of DEPs on BBB function damage. METHODS AND RESULTS Utilizing mouse cerebral microvascular endothelial cells (bEnd.3 cells) as an in vitro model of the BBB, we explored the detrimental effects of DEPs exposure on BBB permeability and integrity, with particular focus on inflammation, cell apoptosis, and miRNA expression profiles. Our findings revealed that exposure to DEPs at varying concentrations for 48 h resulted in the inhibition of bEND.3 cell proliferation, induction of cell apoptosis, and an upregulation in the secretion of inflammatory cytokines/chemokines and adhesion molecules. The BBB integrity was further compromised, as evidenced by a decrease in trans-epithelial electrical resistance(TEER), a reduction in cytoskeletal F-actin, and diminished tight junction (TJ) protein expression. Microarray analysis revealed that 23 miRNAs were upregulated and 11 were downregulated in response to a 50 μg/mL DEPs treatment, with miR-466d-3p being notably differentially expressed. Wnt3 was identified as a target of miR-466d-3p, with the Wnt signaling pathway being significantly enriched. We validated that miR-466d-3p expression was downregulated, and the protein expression levels of Wnt/β-catenin and Wnt/PCP signaling components were elevated. The modulation of the Wnt signaling pathway by miR-466d-3p was demonstrated by the transfection of miR-466d-3p mimic, which resulted in a downregulation of Wnt3 and β-catenin protein expression, and the mRNA level of Daam1, as well as an enhancement of TJ proteins ZO-1 and Claudin-5 expression. CONCLUSIONS Our study further confirmed that DEPs can induce the disruption of BBB integrity through inflammatory processes. We identified alterations in the expression profile of microRNAs (miRNAs) in endothelial cells, with miR-466d-3p emerging as a key regulator of tight junction (TJ) proteins, essential for maintaining BBB integrity. Additionally, our findings primarily demonstrated that the Wnt/ β-catenin and Wnt/PCP signaling pathway can be activated by DEPs and are regulated by miR-466d-3p. Under the combined effects of Wnt/PCP and inflammation, there is an ultimate increase in BBB hyperpermeability.
Collapse
Affiliation(s)
- Yue Jiang
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Ya Zhang
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Huimin Suo
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Yanming Lv
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Siqi Liu
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Zhijian Gao
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Yingying Chen
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Mingming Zhang
- School of Bioinformatics, Harbin Medical University, Harbin 150081, China
| | - Xiangning Meng
- Department of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Shuying Gao
- Department of Toxicology, School of Public Health, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
27
|
Manning D, Rivera EJ, Santana LF. The life cycle of a capillary: Mechanisms of angiogenesis and rarefaction in microvascular physiology and pathologies. Vascul Pharmacol 2024; 156:107393. [PMID: 38857638 DOI: 10.1016/j.vph.2024.107393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Capillaries are the smallest blood vessels (<10 μm in diameter) in the body and their walls are lined by endothelial cells. These microvessels play a crucial role in nutrient and gas exchange between blood and tissues. Capillary endothelial cells also produce vasoactive molecules and initiate the electrical signals that underlie functional hyperemia and neurovascular coupling. Accordingly, capillary function and density are critical for all cell types to match blood flow to cellular activity. This begins with the process of angiogenesis, when new capillary blood vessels emerge from pre-existing vessels, and ends with rarefaction, the loss of these microvascular structures. This review explores the mechanisms behind these processes, emphasizing their roles in various microvascular diseases and their impact on surrounding cells in health and disease. We discuss recent work on the mechanisms controlling endothelial cell proliferation, migration, and tube formation that underlie angiogenesis under physiological and pathological conditions. The mechanisms underlying functional and anatomical rarefaction and the role of pericytes in this process are also discussed. Based on this work, a model is proposed in which the balance of angiogenic and rarefaction signaling pathways in a particular tissue match microvascular density to the metabolic demands of the surrounding cells. This negative feedback loop becomes disrupted during microvascular rarefaction: angiogenic mechanisms are blunted, reactive oxygen species accumulate, capillary function declines and eventually, capillaries disappear. This, we propose, forms the foundation of the reciprocal relationship between vascular density, blood flow, and metabolic needs and functionality of nearby cells.
Collapse
Affiliation(s)
- Declan Manning
- Department of Physiology & Membrane Biology, School of Medicine, University of California, Davis, United States of America.
| | - Ernesto J Rivera
- Department of Physiology & Membrane Biology, School of Medicine, University of California, Davis, United States of America
| | - L Fernando Santana
- Department of Physiology & Membrane Biology, School of Medicine, University of California, Davis, United States of America
| |
Collapse
|
28
|
Zhang Y, Zhang C, Peng C, Jia J. Unraveling the crosstalk: circRNAs and the wnt signaling pathway in cancers of the digestive system. Noncoding RNA Res 2024; 9:853-864. [PMID: 38586314 PMCID: PMC10995981 DOI: 10.1016/j.ncrna.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 04/09/2024] Open
Abstract
Circular RNA (circRNA) is a unique type of noncoding RNA molecule characterized by its closed-loop structure. Functionally versatile, circRNAs play pivotal roles in gene expression regulation, protein activity modulation, and participation in cell signaling processes. In the context of cancers of the digestive system, the Wnt signaling pathway holds particular significance. Anomalous activation of the Wnt pathway serves as a primary catalyst for the development of colorectal cancer. Extensive research underscores the notable participation of circRNAs associated with the Wnt pathway in the progression of digestive system tumors. These circRNAs exhibit pronounced dysregulation across esophageal cancer, gastric cancer, liver cancer, colorectal cancer, pancreatic cancer, and cholangiocarcinoma. Furthermore, the altered expression of circRNAs linked to the Wnt pathway correlates with prognostic factors in digestive system tumors. Additionally, circRNAs related to the Wnt pathway showcase potential as diagnostic, therapeutic, and prognostic markers within the realm of digestive system tumors. This comprehensive review outlines the interplay between circRNAs and the Wnt signaling pathway in cancers of the digestive system. It seeks to provide a comprehensive perspective on their association while delving into ongoing research that explores the clinical applications of circRNAs associated with the Wnt pathway.
Collapse
Affiliation(s)
- Yu Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chuanhui Peng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junjun Jia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
29
|
Zhao Y, Liu F, Pei Y, Lian F, Lin H. Involvement of the Wnt/β-catenin signalling pathway in heterotopic ossification and ossification-related diseases. J Cell Mol Med 2024; 28:e70113. [PMID: 39320014 PMCID: PMC11423343 DOI: 10.1111/jcmm.70113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Heterotopic ossification (HO) is a pathological condition characterized by the formation of bone within soft tissues. The development of HO is a result of abnormal activation of the bone formation programs, where multiple signalling pathways, including Wnt/β-catenin, BMP and hedgehog signalling, are involved. The Wnt/β-catenin signalling pathway, a conserved pathway essential for various fundamental activities, has been found to play a significant role in pathological bone formation processes. It regulates angiogenesis, chondrocyte hypertrophy and osteoblast differentiation during the development of HO. More importantly, the crosstalk between Wnt signalling and other factors including BMP, Hedgehog signalling, YAP may contribute in a HO-favourable manner. Moreover, several miRNAs may also be involved in HO formation via the regulation of Wnt signalling. This review aims to summarize the role of Wnt/β-catenin signalling in the pathogenesis of HO, its interactions with related molecules, and potential preventive and therapeutic measures targeting Wnt/β-catenin signalling.
Collapse
Affiliation(s)
- Yike Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Queen Mary school, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Fangzhou Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Queen Mary school, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yiran Pei
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Queen Mary school, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Fengyu Lian
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Queen Mary school, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
30
|
Jeong JY, Bafor AE, Freeman BH, Chen PR, Park ES, Kim E. Pathophysiology in Brain Arteriovenous Malformations: Focus on Endothelial Dysfunctions and Endothelial-to-Mesenchymal Transition. Biomedicines 2024; 12:1795. [PMID: 39200259 PMCID: PMC11351371 DOI: 10.3390/biomedicines12081795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
Brain arteriovenous malformations (bAVMs) substantially increase the risk for intracerebral hemorrhage (ICH), which is associated with significant morbidity and mortality. However, the treatment options for bAVMs are severely limited, primarily relying on invasive methods that carry their own risks for intraoperative hemorrhage or even death. Currently, there are no pharmaceutical agents shown to treat this condition, primarily due to a poor understanding of bAVM pathophysiology. For the last decade, bAVM research has made significant advances, including the identification of novel genetic mutations and relevant signaling in bAVM development. However, bAVM pathophysiology is still largely unclear. Further investigation is required to understand the detailed cellular and molecular mechanisms involved, which will enable the development of safer and more effective treatment options. Endothelial cells (ECs), the cells that line the vascular lumen, are integral to the pathogenesis of bAVMs. Understanding the fundamental role of ECs in pathological conditions is crucial to unraveling bAVM pathophysiology. This review focuses on the current knowledge of bAVM-relevant signaling pathways and dysfunctions in ECs, particularly the endothelial-to-mesenchymal transition (EndMT).
Collapse
Affiliation(s)
| | | | | | | | | | - Eunhee Kim
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.Y.J.); (A.E.B.); (B.H.F.); (P.R.C.); (E.S.P.)
| |
Collapse
|
31
|
Larionov A, Hammer CM, Fiedler K, Filgueira L. Dynamics of Endothelial Cell Diversity and Plasticity in Health and Disease. Cells 2024; 13:1276. [PMID: 39120307 PMCID: PMC11312403 DOI: 10.3390/cells13151276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Endothelial cells (ECs) are vital structural units of the cardiovascular system possessing two principal distinctive properties: heterogeneity and plasticity. Endothelial heterogeneity is defined by differences in tissue-specific endothelial phenotypes and their high predisposition to modification along the length of the vascular bed. This aspect of heterogeneity is closely associated with plasticity, the ability of ECs to adapt to environmental cues through the mobilization of genetic, molecular, and structural alterations. The specific endothelial cytoarchitectonics facilitate a quick structural cell reorganization and, furthermore, easy adaptation to the extrinsic and intrinsic environmental stimuli, known as the epigenetic landscape. ECs, as universally distributed and ubiquitous cells of the human body, play a role that extends far beyond their structural function in the cardiovascular system. They play a crucial role in terms of barrier function, cell-to-cell communication, and a myriad of physiological and pathologic processes. These include development, ontogenesis, disease initiation, and progression, as well as growth, regeneration, and repair. Despite substantial progress in the understanding of endothelial cell biology, the role of ECs in healthy conditions and pathologies remains a fascinating area of exploration. This review aims to summarize knowledge and concepts in endothelial biology. It focuses on the development and functional characteristics of endothelial cells in health and pathological conditions, with a particular emphasis on endothelial phenotypic and functional heterogeneity.
Collapse
Affiliation(s)
- Alexey Larionov
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Christian Manfred Hammer
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Klaus Fiedler
- Independent Researcher, CH-1700 Fribourg, Switzerland;
| | - Luis Filgueira
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| |
Collapse
|
32
|
Huang Y, Gu W, Qin Z, Jin Y. Bromuconazole exposure induces cardiac dysfunction by upregulating the expression LEF1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173113. [PMID: 38735319 DOI: 10.1016/j.scitotenv.2024.173113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/18/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
With the wide application of bromuconazole (BRO), a kind of triazole fungicide, the environmental problems caused by BRO have been paid more and more attention. In this study, adult male zebrafish were exposed to environmental related concentration and the maximum non-lethal concentration for zebrafish larvae (0,50 ng/L and 7.5 mg/L) for 7 days, respectively. Zebrafish exposed to BRO exhibited a significant reduction in body length and an increase in fatness index, indicating adverse physiological changes. Notably, the exposed zebrafish showed enlarged heart ventricular volumes and thinner heart walls. Transcriptome analysis of heart samples showed that BRO exposure mainly affected pathways related to cardiac energy metabolism. In addition, the amount of ATP in the heart tissue was correspondingly reduced, and the expression levels of genes related to controlling ion balance and myosin synthesis in the heart were also altered. The study extended its findings to the rat cardiomyocytes (H9C2), where similar cardiotoxic effects including changes in transcription of genes related to energy metabolism and heart function were also observed, suggesting a potential universal mechanism of BRO-induced cardiotoxicity. In a doxorubicin (DOX) induced larval zebrafish heart failure model, the expression of lymphoid enhancer-binding factor 1(LEF1), a key gene in the Wnt/β-catenin signaling pathway, was significantly increased in larval zebrafish and adult fish heart tissues and cardiomyocytes, suggesting that LEF1 might play an important role in BRO-induced cardiotoxicity. Taken together, BRO exposure could interfere with cardiac function and metabolic capacity by abnormal activation the expression of LEF1. The study emphasized the urgent need for monitoring and regulating BRO due to its harmful effects on the hearts of aquatic organisms.
Collapse
Affiliation(s)
- Yilin Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Weijie Gu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhen Qin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
33
|
Manukjan N, Chau S, Caiment F, van Herwijnen M, Smeets HJ, Fulton D, Ahmed Z, Blankesteijn WM, Foulquier S. Wnt7a Decreases Brain Endothelial Barrier Function Via β-Catenin Activation. Mol Neurobiol 2024; 61:4854-4867. [PMID: 38147228 PMCID: PMC11236883 DOI: 10.1007/s12035-023-03872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/11/2023] [Indexed: 12/27/2023]
Abstract
The blood-brain barrier consists of tightly connected endothelial cells protecting the brain's microenvironment from the periphery. These endothelial cells are characterized by specific tight junction proteins such as Claudin-5 and Occludin, forming the endothelial barrier. Disrupting these cells might lead to blood-brain barrier dysfunction. The Wnt/β-catenin signaling pathway can regulate the expression of these tight junction proteins and subsequent barrier permeability. The aim of this study was to investigate the in vitro effects of Wnt7a mediated β-catenin signaling on endothelial barrier integrity. Mouse brain endothelial cells, bEnd.3, were treated with recombinant Wnt7a protein or XAV939, a selective inhibitor of Wnt/β-catenin mediated transcription to modulate the Wnt signaling pathway. The involvement of Wnt/HIF1α signaling was investigated by inhibiting Hif1α signaling with Hif1α siRNA. Wnt7a stimulation led to activation and nuclear translocation of β-catenin, which was inhibited by XAV939. Wnt7a stimulation decreased Claudin-5 expression mediated by β-catenin and decreased endothelial barrier formation. Wnt7a increased Hif1α and Vegfa expression mediated by β-catenin. However, Hif1α signaling pathway did not regulate tight junction proteins Claudin-5 and Occludin. Our data suggest that Wnt7a stimulation leads to a decrease in tight junction proteins mediated by the nuclear translocation of β-catenin, which hampers proper endothelial barrier formation. This process might be crucial in initiating endothelial cell proliferation and angiogenesis. Although HIF1α did not modulate the expression of tight junction proteins, it might play a role in brain angiogenesis and underlie pathogenic mechanisms in Wnt/HIF1α signaling in diseases such as cerebral small vessel disease.
Collapse
Affiliation(s)
- Narek Manukjan
- Department of Pharmacology and Toxicology, Maastricht University, 50 Universiteitssingel, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
- CARIM-School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Steven Chau
- Department of Pharmacology and Toxicology, Maastricht University, 50 Universiteitssingel, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Florian Caiment
- Department of Toxicogenomics, GROW - School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Marcel van Herwijnen
- Department of Toxicogenomics, GROW - School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Hubert J Smeets
- Department of Toxicogenomics, GROW - School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
- MHeNs-School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands
| | - Daniel Fulton
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK.
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - W Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Maastricht University, 50 Universiteitssingel, P.O. Box 616, Maastricht, 6200 MD, The Netherlands.
- CARIM-School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands.
| | - Sébastien Foulquier
- Department of Pharmacology and Toxicology, Maastricht University, 50 Universiteitssingel, P.O. Box 616, Maastricht, 6200 MD, The Netherlands.
- CARIM-School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands.
- MHeNs-School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, Maastricht, 6200 MD, The Netherlands.
- Department of Neurology, Maastricht University Medical Center+, P.O. Box 5800, Maastricht, 6202 AZ, The Netherlands.
| |
Collapse
|
34
|
Xu N, Alfieri CM, Yu Y, Guo M, Yutzey KE. Wnt Signaling Inhibition Prevents Postnatal Inflammation and Disease Progression in Mouse Congenital Myxomatous Valve Disease. Arterioscler Thromb Vasc Biol 2024; 44:1540-1554. [PMID: 38660802 PMCID: PMC11209782 DOI: 10.1161/atvbaha.123.320388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Myxomatous valve disease (MVD) is the most common cause of mitral regurgitation, leading to impaired cardiac function and heart failure. MVD in a mouse model of Marfan syndrome includes valve leaflet thickening and progressive valve degeneration. However, the underlying mechanisms by which the disease progresses remain undefined. METHODS Mice with Fibrillin 1 gene variant Fbn1C1039G/+ recapitulate histopathologic features of Marfan syndrome, and Wnt (Wingless-related integration site) signaling activity was detected in TCF/Lef-lacZ (T-cell factor/lymphoid enhancer factor-β-galactosidase) reporter mice. Single-cell RNA sequencing was performed from mitral valves of wild-type and Fbn1C1039G/+ mice at 1 month of age. Inhibition of Wnt signaling was achieved by conditional induction of the secreted Wnt inhibitor Dkk1 (Dickkopf-1) expression in periostin-expressing valve interstitial cells of Periostin-Cre; tetO-Dkk1; R26rtTA; TCF/Lef-lacZ; Fbn1C1039G/+ mice. Dietary doxycycline was administered for 1 month beginning with MVD initiation (1-month-old) or MVD progression (2-month-old). Histological evaluation and immunofluorescence for ECM (extracellular matrix) and immune cells were performed. RESULTS Wnt signaling is activated early in mitral valve disease progression, before immune cell infiltration in Fbn1C1039G/+ mice. Single-cell transcriptomics revealed similar mitral valve cell heterogeneity between wild-type and Fbn1C1039G/+ mice at 1 month of age. Wnt pathway genes were predominantly expressed in valve interstitial cells and valve endothelial cells of Fbn1C1039G/+ mice. Inhibition of Wnt signaling in Fbn1C1039G/+ mice at 1 month of age prevented the initiation of MVD as indicated by improved ECM remodeling and reduced valve leaflet thickness with decreased infiltrating macrophages. However, later, Wnt inhibition starting at 2 months did not prevent the progression of MVD. CONCLUSIONS Wnt signaling is involved in the initiation of mitral valve abnormalities and inflammation but is not responsible for later-stage valve disease progression once it has been initiated. Thus, Wnt signaling contributes to MVD progression in a time-dependent manner and provides a promising therapeutic target for the early treatment of congenital MVD in Marfan syndrome.
Collapse
Affiliation(s)
- Na Xu
- Division of Molecular Cardiovascular Biology, the Heart Institute, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - Christina M. Alfieri
- Division of Molecular Cardiovascular Biology, the Heart Institute, Cincinnati Children’s Hospital Medical Center
| | - Yang Yu
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center
| | - Minzhe Guo
- Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - Katherine E. Yutzey
- Division of Molecular Cardiovascular Biology, the Heart Institute, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| |
Collapse
|
35
|
Salinero-Fort MA, San Andrés-Rebollo FJ, Cárdenas-Valladolid J, Mostaza J, Lahoz C, Rodriguez-Artalejo F, Gómez-Campelo P, Vich-Pérez P, Jiménez-García R, de-Miguel-Yanes JM, Maroto-Rodriguez J, Taulero-Escalera B, Campo VI. Effect of glucose variability on the mortality of adults aged 75 years and over during the first year of the COVID-19 pandemic. BMC Geriatr 2024; 24:533. [PMID: 38902647 PMCID: PMC11188234 DOI: 10.1186/s12877-024-05149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 06/13/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND To our knowledge, only one study has examined the association between glucose variability (GV) and mortality in the elderly population with diabetes. GV was assessed by HbA1c, and a J-shaped curve was observed in the relationship between HbA1c thresholds and mortality. No study of GV was conducted during the COVID-19 pandemic and its lockdown. This study aims to evaluate whether GV is an independent predictor of all-cause mortality in patients aged 75 years or older with and without COVID-19 who were followed during the first year of the COVID-19 pandemic and its lockdown measures. METHODS This was a retrospective cohort study of 407,492 patients from the AGED-MADRID dataset aged 83.5 (SD 5.8) years; 63.2% were women, and 29.3% had diabetes. GV was measured by the coefficient of variation of fasting plasma glucose (CV-FPG) over 6 years of follow-up (2015-2020). The outcome measure was all-cause mortality in 2020. Four models of logistic regression were performed, from simple (age, sex) to fully adjusted, to assess the effect of CV-FPG on all-cause mortality. RESULTS During follow-up, 34,925 patients died (14,999 women and 19,926 men), with an all-cause mortality rate of 822.3 per 10,000 person-years (95% confidence interval (CI), 813.7 to 822.3) (739 per 10,000; 95% CI 728.7 to 739.0 in women and 967.1 per 10,000; 95% CI 951.7 to 967.2 in men). The highest quartile of CV-FPG was significantly more common in the deceased group (40.1% vs. 23.6%; p < 0.001). In the fully adjusted model including dementia (Alzheimer's disease) and basal FPG, the odds ratio for mortality ranged from 1.88 to 2.06 in patients with T2DM and from 2.30 to 2.61 in patients with normoglycaemia, according to different sensitivity analyses. CONCLUSIONS GV has clear implications for clinical practice, as its assessment as a risk prediction tool should be included in the routine follow-up of the elderly and in a comprehensive geriatric assessment. Electronic health records can incorporate tools that allow its calculation, and with this information, clinicians will have a broader view of the medium- and long-term prognosis of their patients.
Collapse
Affiliation(s)
- Miguel A Salinero-Fort
- Department of Health, Foundation for Biosanitary Research and Innovation in Primary Care, The Hospital La Paz Institute for Health Research (IdiPAZ), Alfonso X El Sabio University, Research Network On Chronicity, Primary Care and Health Promotion -RICAPPS-(RICORS), General Subdirectorate of Research and Documentation, Madrid, Spain.
- Subdirección General de Investigación Sanitaria, Consejería de Sanidad, Madrid, Spain.
| | - F Javier San Andrés-Rebollo
- Foundation for Biosanitary Research and Innovation in Primary Care, Las Calesas Health Center, Madrid, Spain
| | - Juan Cárdenas-Valladolid
- Foundation for Biosanitary Research and Innovation in Primary Care, Information Systems Department, Primary Health Care Management of Madrid, Alfonso X El Sabio University, The Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - José Mostaza
- Lipids and Vascular Risk Unit, Internal Medicine, University Hospital La Paz-Cantoblanco-Carlos III, The Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Carlos Lahoz
- Lipids and Vascular Risk Unit, Internal Medicine, University Hospital La Paz-Cantoblanco-Carlos III, The Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Fernando Rodriguez-Artalejo
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid-IdIPAZ, CIBERESP (CIBER of Epidemiology and Public Health), and IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Paloma Gómez-Campelo
- Foundation for Biomedical Research of La Paz University Hospital (FIBHULP), The Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Pilar Vich-Pérez
- Foundation for Biosanitary Research and Innovation in Primary Care, Los Alpes Health Center, Madrid, Spain
| | - Rodrigo Jiménez-García
- Department of Public Health & Maternal and Child Health, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - José M de-Miguel-Yanes
- School of Medicine, Internal Medicine Department, Complutense University of Madrid, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Javier Maroto-Rodriguez
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Calle del Arzobispo Morcillo 4, Madrid, 28029, Spain
| | | | - Víctor Iriarte Campo
- Foundation for Biosanitary Research and Innovation in Primary Care, Madrid, Spain
| |
Collapse
|
36
|
Song P, Gao Z, Bao Y, Chen L, Huang Y, Liu Y, Dong Q, Wei X. Wnt/β-catenin signaling pathway in carcinogenesis and cancer therapy. J Hematol Oncol 2024; 17:46. [PMID: 38886806 PMCID: PMC11184729 DOI: 10.1186/s13045-024-01563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
The Wnt/β-catenin signaling pathway plays a crucial role in various physiological processes, encompassing development, tissue homeostasis, and cell proliferation. Under normal physiological conditions, the Wnt/β-catenin signaling pathway is meticulously regulated. However, aberrant activation of this pathway and downstream target genes can occur due to mutations in key components of the Wnt/β-catenin pathway, epigenetic modifications, and crosstalk with other signaling pathways. Consequently, these dysregulations contribute significantly to tumor initiation and progression. Therapies targeting the Wnt/β-catenin signaling transduction have exhibited promising prospects and potential for tumor treatment. An increasing number of medications targeting this pathway are continuously being developed and validated. This comprehensive review aims to summarize the latest advances in our understanding of the role played by the Wnt/β-catenin signaling pathway in carcinogenesis and targeted therapy, providing valuable insights into acknowledging current opportunities and challenges associated with targeting this signaling pathway in cancer research and treatment.
Collapse
Affiliation(s)
- Pan Song
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Zirui Gao
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yige Bao
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Li Chen
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yuhe Huang
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yanyan Liu
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Qiang Dong
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
37
|
Młynarczyk MA, Domian N, Kasacka I. Evaluation of the Canonical Wnt Signaling Pathway in the Hearts of Hypertensive Rats of Various Etiologies. Int J Mol Sci 2024; 25:6428. [PMID: 38928134 PMCID: PMC11204257 DOI: 10.3390/ijms25126428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Wnt/β-catenin signaling dysregulation is associated with the pathogenesis of many human diseases, including hypertension and heart disease. The aim of this study was to immunohistochemically evaluate and compare the expression of the Fzd8, WNT1, GSK-3β, and β-catenin genes in the hearts of rats with spontaneous hypertension (SHRs) and deoxycorticosterone acetate (DOCA)-salt-induced hypertension. The myocardial expression of Fzd8, WNT1, GSK-3β, and β-catenin was detected by immunohistochemistry, and the gene expression was assessed with a real-time PCR method. In SHRs, the immunoreactivity of Fzd8, WNT1, GSK-3β, and β-catenin was attenuated in comparison to that in normotensive animals. In DOCA-salt-induced hypertension, the immunoreactivity of Fzd8, WNT1, GSK-3β, and β-catenin was enhanced. In SHRs, decreases in the expression of the genes encoding Fzd8, WNT1, GSK-3β, and β-catenin were observed compared to the control group. Increased expression of the genes encoding Fzd8, WNT1, GSK-3β, and β-catenin was demonstrated in the hearts of rats with DOCA-salt-induced hypertension. Wnt signaling may play an essential role in the pathogenesis of arterial hypertension and the accompanying heart damage. The obtained results may constitute the basis for further research aimed at better understanding the role of the Wnt/β-catenin pathway in the functioning of the heart.
Collapse
Affiliation(s)
| | | | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland; (M.A.M.); (N.D.)
| |
Collapse
|
38
|
Zhang Y, Ren Y, Li X, Li M, Fu M, Zhou W, Yu Y, Xiong Y. A review on decoding the roles of YAP/TAZ signaling pathway in cardiovascular diseases: Bridging molecular mechanisms to therapeutic insights. Int J Biol Macromol 2024; 271:132473. [PMID: 38795886 DOI: 10.1016/j.ijbiomac.2024.132473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) serve as transcriptional co-activators that dynamically shuttle between the cytoplasm and nucleus, resulting in either the suppression or enhancement of their downstream gene expression. Recent emerging evidence demonstrates that YAP/TAZ is strongly implicated in the pathophysiological processes that contribute to cardiovascular diseases (CVDs). In the cardiovascular system, YAP/TAZ is involved in the orchestration of a range of biological processes such as oxidative stress, inflammation, proliferation, and autophagy. Furthermore, YAP/TAZ has been revealed to be closely associated with the initiation and development of various cardiovascular diseases, including atherosclerosis, pulmonary hypertension, myocardial fibrosis, cardiac hypertrophy, and cardiomyopathy. In this review, we delve into recent studies surrounding YAP and TAZ, along with delineating their roles in contributing to the pathogenesis of CVDs with a link to various physiological processes in the cardiovascular system. Additionally, we highlight the current potential drugs targeting YAP/TAZ for CVDs therapy and discuss their challenges for translational application. Overall, this review may offer novel insights for understanding and treating cardiovascular disorders.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Yuanyuan Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Xiaofang Li
- Department of Gastroenterology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, PR China
| | - Man Li
- Department of Endocrinology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, PR China
| | - Mingdi Fu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Wenjing Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China.
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, 710018 Xi'an, Shaanxi, PR China.
| |
Collapse
|
39
|
JIN X, WU B, LIN M, ZHONG B, LIN L, XU D. Clinical efficacy and gene chip expression analysis of Shenzhu Guanxin recipe granules in patients with intermediate coronary lesions. J TRADIT CHIN MED 2024; 44:545-553. [PMID: 38767639 PMCID: PMC11077140 DOI: 10.19852/j.cnki.jtcm.20240308.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/10/2023] [Indexed: 05/22/2024]
Abstract
OBJECTIVE To evaluate the clinical efficacy and safety of Shenzhu Guanxin recipe granules (, SGR) in treating patients with intermediate coronary lesions (ICL), and to investigate the potential mechanism though a transcriptome sequencing approach. METHODS ICL patients with Qi deficiency and phlegm stasis were adopted and randomly assigned to a case group or a control by random number generator in a 1:1 randomization ratio to evaluate the clinical efficacy. RESULTS There was no significant difference between the two groups in coronary computed tomography angiography related indexes in the two groups before and after intervention. Through the gene chip expression analysis, it is finally concluded that there are 355 differential mRNAs (190 up-regulated genes and 165 down regulated genes) when compared the SGR group and placebo group. Through protein-protein interaction network analysis of differentially expressed genes, 10 hub genes were finally obtained: CACNA2D2, CACNA2D3, DNAJC6, FGF12, SGSM2, CACNA1G, LRP6, KIF25, OXTR, UPB1. CONCLUSIONS SGR combined with Western Medicine can be safely used to treat ICL patients with Qi deficiency and phlegm stasis. The possible mechanism of action and relevant gene loci and pathway were proposed.
Collapse
Affiliation(s)
- Xiao JIN
- 1 Department of Traditional Chinese Medicine, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
| | - Bingxin WU
- 2 Department of Cardiology, Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Miaoyang LIN
- 2 Department of Cardiology, Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Biying ZHONG
- 2 Department of Cardiology, Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Luoqi LIN
- 2 Department of Cardiology, Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Danping XU
- 3 Department of Traditional Chinese Medicine, the Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
| |
Collapse
|
40
|
Belenkov YN, Iusupova AO, Slepova OA, Pakhtusov NN, Popova LV, Lishuta AS, Krivova AV, Khabarova NV, Abidaev MY, Privalova EV. WNT Signaling Cascade Proteins and LRP6 in the Formation of Various Types of Coronary Lesions in Patients With Coronary Artery Disease. KARDIOLOGIIA 2024; 64:3-10. [PMID: 38841783 DOI: 10.18087/cardio.2024.5.n2626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 06/07/2024]
Abstract
AIM Assessment of WNT1, WNT3a, and LRP6 concentrations in patients with ischemic heart disease (IHD) and obstructive and non-obstructive coronary artery (CA) disease. MATERIAL AND METHODS This cross-sectional observational study included 50 IHD patients (verified by coronary angiography, CAG), of which 25 (50%) were men, mean age 64.9±8.1 years; 20 patients had non-obstructive CA disease (stenosis <50%), and 30 patients had hemodynamically significant stenosis. Concentrations of WNT1, WNT3a and LRP6 were measured in all patients. RESULTS The concentrations of WNT1 and WNT3a proteins were significantly higher in patients with IHD and obstructive CA disease (p < 0.001), while the concentration of LRP6 was higher in the group with non-obstructive CA disease (p = 0.016). Data analysis of the group with obstructive CA disease showed a moderate correlation between WNT1 and LRP6 (ρ=0.374; p=0.042). Correlation analysis of all groups of patients with CA disease revealed a moderate association between the concentrations of WNT1 and uric acid (ρ=0.416; p=0.007). Regression analysis showed that risk factors for the development of IHD, such as increased body mass index, age, smoking, dyslipidemia, and hypertension, did not significantly influence the type of CA disease in IHD patients. According to ROC analysis, the obstructive form of IHD was predicted by a WNT3a concentration higher than 0.155 ng/ml and a LRP6 concentration lower than 12.94 ng/ml. CONCLUSION IHD patients with non-obstructive CA disease had the greatest increase in LRP6, while patients with obstructive CA disease had significantly higher concentrations of the canonical WNT cascade proteins, WNT1 and WNT3a. According to the ROC analysis, a WNT3a concentration >0.155 ng/ml can serve as a predictor for the presence of hemodynamically significant CA stenosis in IHD patients (sensitivity 96.7%; specificity 70%), whereas a LRP6 concentration >12.94 ng/ml can predict the development of non-obstructive CA disease (sensitivity 76.7%; specificity 65%).
Collapse
Affiliation(s)
- Yu N Belenkov
- Sechenov First Moscow State Medical University, Moscow
| | - A O Iusupova
- Sechenov First Moscow State Medical University, Moscow
| | - O A Slepova
- Sechenov First Moscow State Medical University, Moscow
| | - N N Pakhtusov
- Sechenov First Moscow State Medical University, Moscow
| | - L V Popova
- Sechenov First Moscow State Medical University, Moscow
| | - A S Lishuta
- Sechenov First Moscow State Medical University, Moscow
| | - A V Krivova
- Sechenov First Moscow State Medical University, Moscow
| | - N V Khabarova
- Sechenov First Moscow State Medical University, Moscow
| | - M Yu Abidaev
- Sechenov First Moscow State Medical University, Moscow
| | - E V Privalova
- Sechenov First Moscow State Medical University, Moscow
| |
Collapse
|
41
|
Xu P, Cao Y, Zhang S, Liu X, Zhang M, Zhang C. The predictive value of serum Dickkopf-1, Dickkopf-3 level to coronary artery disease and acute coronary syndrome. Int J Cardiol 2024; 403:131887. [PMID: 38382851 DOI: 10.1016/j.ijcard.2024.131887] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/22/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Previous studies have already confirmed the association between Dickkopf (Dkk) protein and the occurrence and progression of atherosclerosis. However, there is limited clinical evidence regarding the serum levels of Dickkopf-1 (Dkk1) and Dickkopf-3 (Dkk3) in relation to atherosclerotic cardiovascular disease (ASCVD), particularly acute coronary syndrome (ACS). MATERIALS AND METHODS A total of 88 healthy volunteers and 280 patients with coronary artery disease (CAD) undergoing coronary angiography for angina between October 2021 and October 2022, including 96 cases of stable angina (SA), 96 of unstable angina (UA) and 88 of acute myocardial infarction (AMI) were included finally. The serum concentrations of Dkk1 and Dkk3 were measured using electrochemiluminescence of Meso Scale Discovery. The predictive value of single or combined application of serum Dkk1 and Dkk3 in CAD and ACS were evaluated. RESULTS The serum levels of Dkk1 were significantly higher in the SA group, UA group, and AMI group compared to the control group. Multivariable logistic regression analysis demonstrated that elevated serum Dkk1 levels were independent predictive factors for increased risk of CAD and ACS (OR = 1.027, 95%CI = 1.019-1.034, p < 0.001; OR = 1.045, 95%CI = 1.028-1.053, p < 0.001, respectively). Receiver operating characteristic curve (ROC) analysis showed that the optimal cutoff value of serum Dkk1 for predicting ACS was 205 ng/dl, with a sensitivity of 82.6% and specificity of 96.6%. The area under the curve (AUC) was 0.930 (95%CI: 0.899-0.961, p < 0.001). Regarding Dkk3, serum Dkk3 levels were elevated in CAD patients compared to the healthy control group, and significantly higher in ACS patients compared to SA patients. Serum Dkk3 was significantly associated with increased risk of CAD and ACS (OR = 1.131, 95%CI = 1.091-1.173, p < 0.001; OR = 1.201, 95%CI = 1.134-1.271, p < 0.001, respectively). ROC curve analysis showed that the optimal cutoff value of serum Dkk3 for predicting ACS was 50.82 ng/ml, with a sensitivity of 85.9% and specificity of 87.5%. The AUC was 0.925 (95%CI: 0.894-0.956, p < 0.001). When serum Dkk1 and Dkk3 are combined as predictive factors for ACS, the AUC was 0.975. CONCLUSION Serum levels of Dkk1 and Dkk3 are significantly associated with an increased risk of CAD and ACS, and they possess predictive value for CAD and ACS. The combination of serum Dkk1 and Dkk3 is a superior predictive factor for CAD and ACS.
Collapse
Affiliation(s)
- Panpan Xu
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu Cao
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Shuai Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoling Liu
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Meng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Cheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
42
|
Zheng B, Zhou B, Ye D, Wang Y, Zheng W, Wang X, Liu D, Qian F, Zhou X, Yan T, Li Y, Fang L. LINC01572 promotes triple-negative breast cancer progression through EIF4A3-mediated β-catenin mRNA nuclear exportation. ENVIRONMENTAL TOXICOLOGY 2024; 39:3026-3039. [PMID: 38317508 DOI: 10.1002/tox.24171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/08/2024] [Accepted: 01/26/2024] [Indexed: 02/07/2024]
Abstract
Long noncoding RNAs have been reported to be involved in the development of breast cancer. LINC01572 was previously reported to promote the development of various tumors. However, the potential biological function of LINC01572 in breast cancer remains largely unknown. R language was used to perform bioinformatic analysis of The Cancer Genome Atlas data. The expression level of RNAs was examined by RT-qPCR. The effect of knocking down or overexpression LINC01572 in triple-negative breast cancer (TNBC) cell lines was evaluated by detecting cell proliferation, migrant action. RNA immunoprecipitation assay and RNA pull-down assay were performed to explore the regulatory relationship between LINC01572, EIF4A3, and β-catenin. Bioinformatics analysis identifies LINC01572 as an oncogene of breast cancer. LINC01572 is over-expressed in TNBC tissues and cell lines, correlated with poor clinical prognosis in BC patients. Cell function studies confirmed that LINC01572 facilitated the proliferation and migration of TNBC cells in both vivo and vitro. Mechanistically, β-catenin mRNA and EIF4A3 combine spatially to form a complex, LINC01572 helps transport this complex from the nucleus to the cytoplasm, thereby facilitating the translation of β-catenin. Our findings confirm that LINC01572 acts as a tumor promoter and may act as a biomarker in TNBC. In addition, novel molecular regulatory relationships involving LINC01572/EIF4A3/β-catenin are critical to the development of TNBC, which led to a new understanding of the mechanisms of TNBC progression and shows a new target for precision treatment for TNBC.
Collapse
Affiliation(s)
- Bowen Zheng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Baian Zhou
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Danrong Ye
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Yuying Wang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Wenfang Zheng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xuehui Wang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Diya Liu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Fengyuan Qian
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Xiqian Zhou
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Tao Yan
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
- Medical College, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Yating Li
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
- Medical College, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Lin Fang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
43
|
Puertas-Umbert L, Alonso J, Roselló-Díez E, Santamaría-Orleans A, Martínez-González J, Rodríguez C. Rolipram impacts on redox homeostasis and cellular signaling in an experimental model of abdominal aortic aneurysm. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2024; 36:108-117. [PMID: 38061958 DOI: 10.1016/j.arteri.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 05/08/2024]
Abstract
INTRODUCTION Cyclic nucleotide phosphodiesterases (PDEs) of the PDE4 subfamily are responsible for the hydrolysis and subcellular compartmentalization of cAMP, a second messenger that modulates vascular functionality. We had shown that PDE4B is induced in abdominal aortic aneurysms (AAA) and that PDE4 inhibition by rolipram limits experimental aneurysms. In this study we have delved into the mechanisms underlying the beneficial effect of rolipram on AAA. METHODS AAA were induced in ApoE-/- mice by angiotensin II (Ang II) infusion. Aneurysm formation was evaluated by ultrasonography. The expression of enzymes involved in rédox homeostasis was analyzed by real-time RT-PCR and the activation of signaling pathways by Western blot. RESULTS Induction of PDE4B in human AAA has been confirmed in a second cohort of patients. In Ang II-infused ApoE-/- mice, rolipram increased the percentage of animals free of aneurysms without affecting the percentage of aortic ruptures. Quantitative analyses determined that this drug significantly attenuated aortic collagen deposition. Additionally, rolipram reduced the increased Nox2 expression triggered by Ang II, exacerbated Sod1 induction, and normalized Sod3 expression. Likewise, PDE4 inhibition decreased the activation of both ERK1/2 and the canonical Wnt pathway, while AKT activity was not altered. CONCLUSIONS The inhibition of PDE4 activity modulates the expression of enzymes involved in rédox homeostasis and affects cell signaling pathways involved in the development of AAA.
Collapse
Affiliation(s)
- Lídia Puertas-Umbert
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, España; Institut de Recerca Hospital de la Santa Creu i Sant Pau (IRHSCSP), Barcelona, España; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, España
| | - Judith Alonso
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, España; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, España; Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, España
| | - Elena Roselló-Díez
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, España; Departamento de Cirugía Cardíaca, Hospital de la Santa Creu i Sant Pau-Universitat Autònoma de Barcelona (HSCSP-UAB), Barcelona, España
| | - Alicia Santamaría-Orleans
- Laboratorios Ordesa S.L., Scientific Communication Department, Sant Boi del Llobregat, Barcelona, España
| | - José Martínez-González
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, España; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, España; Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, España
| | - Cristina Rodríguez
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, España; Institut de Recerca Hospital de la Santa Creu i Sant Pau (IRHSCSP), Barcelona, España; CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, España.
| |
Collapse
|
44
|
Guo Y, Zhang T, Wang X, Zhang J, Miao W, Li QX, Fan Y. Toxic effects of the insecticide tolfenpyrad on zebrafish embryos: Cardiac toxicity and mitochondrial damage. ENVIRONMENTAL TOXICOLOGY 2024; 39:2583-2595. [PMID: 38205909 DOI: 10.1002/tox.24133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/07/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
Tolfenpyrad, a highly effective and broad-spectrum insecticide and acaricide extensively utilized in agriculture, presents a potential hazard to nontarget organisms. This study was designed to explore the toxic mechanisms of tolfenpyrad on zebrafish embryos. Between 24 and 96 h after exposure of the fertilized embryos to tolfenpyrad at concentrations ranging from 0.001 to 0.016 mg/L (96 h-LC50 = 0.017 mg/L), lethal effects were apparent, accompanied with notable anomalies including pericardial edema, increased pericardial area, diminished heart rate, and an elongated distance between the venous sinus and the arterial bulb. Tolfenpyrad elicited noteworthy alterations in the expression of genes pertinent to cardiac development and apoptosis, with the most pronounced changes observed in the cardiac development-related genes of bone morphogenetic protein 2b (bmp2b) and p53 upregulated modulator of apoptosis (puma). The findings underscore that tolfenpyrad induces severe cardiac toxicity and mitochondrial damage in zebrafish embryos. This data is imperative for a comprehensive assessment of tolfenpyrad risks to aquatic ecosystems, particularly considering the limited knowledge regarding its detrimental impact on aquatic vertebrates.
Collapse
Affiliation(s)
- Yuzhao Guo
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Taiyu Zhang
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Xinyu Wang
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Jie Zhang
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Yongmei Fan
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, College of Plant Protection, Hainan University, Haikou, Hainan, China
| |
Collapse
|
45
|
Li Y, Huang H, Gu C, Huang W, Chen X, Lu X, You A, Ye S, Zhong J, Zhao Y, Yan Y, Li C. Film-forming polymer solutions containing cholesterol myristate and berberine mediate pressure ulcer repair via the Wnt/β-catenin pathway. Wound Repair Regen 2024; 32:279-291. [PMID: 38353052 DOI: 10.1111/wrr.13158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 05/23/2024]
Abstract
Pressure ulcer (PU) is a worldwide problem that is difficult to address because of the related inflammatory response, local hypoxia, and repeated ischaemia/reperfusion, causing great suffering and financial burden to patients. Traditional Chinese medicine turtle plate powder can treat skin trauma, but its composition is complex and inconvenient to use. Here, we combined cholesterol myristate (S8) with berberine (BBR), with anti-inflammatory and antibacterial effects, as a drug and used hydroxypropyl methylcellulose and polyvinylpyrrolidone K30 as carriers to construct a novel film-forming polymeric solution (S8 + BBR FFPS), comprehensively study its reparative effect on PU and explore the potential mechanism in rat PU models. The results showed that S8 + BBR FFPS inhibits excessive inflammatory response, promotes re-epithelialization, and promotes hair follicle growth during the healing process of PU, which may be related to the activation of the Wnt/β-catenin signalling pathway by S8 + BBR FFPS to mediate hair follicle stem cell proliferation and maintain skin homeostasis. Therefore, S8 + BBR FFPS may be a potential candidate for the treatment of chronic skin injury, and its association with the Wnt/β-catenin signalling pathway may provide new ideas to guide the design of biomaterial-based wound dressings for chronic wound repair.
Collapse
Affiliation(s)
- Yu Li
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haiting Huang
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cuijin Gu
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenyi Huang
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianxian Chen
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoting Lu
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Aijia You
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sen Ye
- Research Center of Integrative Medicine, School Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Zhong
- Research Center of Integrative Medicine, School Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yao Zhao
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Yan
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chun Li
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
46
|
Khan K, Yu B, Tardif JC, Rhéaume E, Al-Kindi H, Filimon S, Pop C, Genest J, Cecere R, Schwertani A. Significance of the Wnt signaling pathway in coronary artery atherosclerosis. Front Cardiovasc Med 2024; 11:1360380. [PMID: 38586172 PMCID: PMC10995361 DOI: 10.3389/fcvm.2024.1360380] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction The progression of coronary atherosclerosis is an active and regulated process. The Wnt signaling pathway is thought to play an active role in the pathogenesis of several cardiovascular diseases; however, a better understanding of this system in atherosclerosis is yet to be unraveled. Methods In this study, real-time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting were used to quantify the expression of Wnt3a, Wnt5a, and Wnt5b in the human coronary plaque, and immunohistochemistry was used to identify sites of local expression. To determine the pathologic significance of increased Wnt, human vascular smooth muscle cells (vSMCs) were treated with Wnt3a, Wnt5a, and Wnt5b recombinant proteins and assessed for changes in cell differentiation and function. Results RT-PCR and Western blotting showed a significant increase in the expression of Wnt3a, Wnt5a, Wnt5b, and their receptors in diseased coronary arteries compared with that in non-diseased coronary arteries. Immunohistochemistry revealed an abundant expression of Wnt3a and Wnt5b in diseased coronary arteries, which contrasted with little or no signals in normal coronary arteries. Immunostaining of Wnt3a and Wnt5b was found largely in inflammatory cells and myointimal cells. The treatment of vSMCs with Wnt3a, Wnt5a, and Wnt5b resulted in increased vSMC differentiation, migration, calcification, oxidative stress, and impaired cholesterol handling. Conclusions This study demonstrates the upregulation of three important members of canonical and non-canonical Wnt signaling pathways and their receptors in coronary atherosclerosis and shows an important role for these molecules in plaque development through increased cellular remodeling and impaired cholesterol handling.
Collapse
Affiliation(s)
- Kashif Khan
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | - Bin Yu
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | | | - Eric Rhéaume
- Department of Medicine, Montreal Heart Institute, Montreal, QC, Canada
| | - Hamood Al-Kindi
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | - Sabin Filimon
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | - Cristina Pop
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | - Jacques Genest
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | - Renzo Cecere
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | - Adel Schwertani
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
47
|
Toth PP. Dickkopf-1: an emerging danger signal in hypertension and cardiovascular disease. Eur Heart J 2024; 45:704-706. [PMID: 38156467 DOI: 10.1093/eurheartj/ehad797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2023] Open
Affiliation(s)
- Peter P Toth
- CGH Medical Center, Sterling, Illinois, and Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, 101 East Miller Road, Baltimore, MD 61081, USA
| |
Collapse
|
48
|
Sharifi KA, Farzad F, Soldozy S, DeWitt MR, Price RJ, Sheehan J, Kalani MYS, Tvrdik P. Exploring the dynamics of adult Axin2 cell lineage integration into dentate gyrus granule neurons. Front Neurosci 2024; 18:1353142. [PMID: 38449734 PMCID: PMC10915230 DOI: 10.3389/fnins.2024.1353142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
The Wnt pathway plays critical roles in neurogenesis. The expression of Axin2 is induced by Wnt/β-catenin signaling, making this gene a reliable indicator of canonical Wnt activity. We employed pulse-chase genetic lineage tracing with the Axin2-CreERT2 allele to follow the fate of Axin2+ lineage in the adult hippocampal formation. We found Axin2 expressed in astrocytes, neurons and endothelial cells, as well as in the choroid plexus epithelia. Simultaneously with the induction of Axin2 fate mapping by tamoxifen, we marked the dividing cells with 5-ethynyl-2'-deoxyuridine (EdU). Tamoxifen induction led to a significant increase in labeled dentate gyrus granule cells three months later. However, none of these neurons showed any EdU signal. Conversely, six months after the pulse-chase labeling with tamoxifen/EdU, we identified granule neurons that were positive for both EdU and tdTomato lineage tracer in each animal. Our data indicates that Axin2 is expressed at multiple stages of adult granule neuron differentiation. Furthermore, these findings suggest that the integration process of adult-born neurons from specific cell lineages may require more time than previously thought.
Collapse
Affiliation(s)
- Khadijeh A Sharifi
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, United States
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Faraz Farzad
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Sauson Soldozy
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, United States
- Department of Neurosurgery, Westchester Medical Center and New York Medical College, Valhalla, NY, United States
| | - Matthew R DeWitt
- Department of Focused Ultrasound Cancer Immunotherapy Center, University of Virginia, Charlottesville, VA, United States
| | - Richard J Price
- Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Jason Sheehan
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - M Yashar S Kalani
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, United States
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
- School of Medicine, St. John's Neuroscience Institute, University of Oklahoma, Tulsa, OK, United States
| | - Petr Tvrdik
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, United States
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
49
|
He K, Wang X, Li T, Li Y, Ma L. Chlorogenic Acid Attenuates Isoproterenol Hydrochloride-Induced Cardiac Hypertrophy in AC16 Cells by Inhibiting the Wnt/β-Catenin Signaling Pathway. Molecules 2024; 29:760. [PMID: 38398512 PMCID: PMC10892528 DOI: 10.3390/molecules29040760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Cardiac hypertrophy (CH) is an important characteristic in heart failure development. Chlorogenic acid (CGA), a crucial bioactive compound from honeysuckle, is reported to protect against CH. However, its underlying mechanism of action remains incompletely elucidated. Therefore, this study aimed to explore the mechanism underlying the protective effect of CGA on CH. This study established a CH model by stimulating AC16 cells with isoproterenol (Iso). The observed significant decrease in cell surface area, evaluated through fluorescence staining, along with the downregulation of CH-related markers, including atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and β-myosin heavy chain (β-MHC) at both mRNA and protein levels, provide compelling evidence of the protective effect of CGA against isoproterenol-induced CH. Mechanistically, CGA induced the expression of glycogen synthase kinase 3β (GSK-3β) while concurrently attenuating the expression of the core protein β-catenin in the Wnt/β-catenin signaling pathway. Furthermore, the experiment utilized the Wnt signaling activator IM-12 to observe its ability to modulate the impact of CGA pretreatment on the development of CH. Using the Gene Expression Omnibus (GEO) database combined with online platforms and tools, this study identified Wnt-related genes influenced by CGA in hypertrophic cardiomyopathy (HCM) and further validated the correlation between CGA and the Wnt/β-catenin signaling pathway in CH. This result provides new insights into the molecular mechanisms underlying the protective effect of CGA against CH, indicating CGA as a promising candidate for the prevention and treatment of heart diseases.
Collapse
Affiliation(s)
- Kai He
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.H.); (X.W.)
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Xiaoying Wang
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.H.); (X.W.)
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Tingting Li
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Yanfei Li
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.H.); (X.W.)
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| | - Linlin Ma
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (K.H.); (X.W.)
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China;
| |
Collapse
|
50
|
Yuan D, Zheng Z, Shen C, Ye J, Zhu L. Cytoprotective effects of C1s enzyme in macrophages in atherosclerosis mediated through the LRP5 and Wnt/β-catenin pathway. Mol Immunol 2024; 166:29-38. [PMID: 38218080 DOI: 10.1016/j.molimm.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
C1s enzyme (active C1s) is a subunit of the complement C1 complex that cleaves low-density lipoprotein receptor-related proteins 5 and 6, leading to Wnt/β-catenin pathway activation in some cell lines. Macrophages have two major functional polarization states (the classically activated M1 state and the alternatively activated M2 state) and play an essential role in atherosclerosis. An increasing amount of evidence suggests that canonical Wnt signaling is related to macrophage polarization. In this study, we explored the cytoprotective effects of C1s enzyme in macrophages. The results show that C1s enzyme activates canonical Wnt signaling in macrophages, exacerbates macrophage M2 polarization, and inhibits M1 polarization. Moreover, C1s enzyme reduces foam cell formation and simultaneously enhances efferocytosis. This study reveals a novel function of C1s enzyme in macrophages in the context of atherosclerosis.
Collapse
Affiliation(s)
- Dong Yuan
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | | | - Cheng Shen
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Ye
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China.
| | - Li Zhu
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China.
| |
Collapse
|