1
|
Cai Y, Xu H, Deng K, Yang H, Zhao B, Zhang C, Li S, Wei Z, Wang Z, Wang F, Zhang Y. A novel nuclear receptor NR1D1 suppresses HSD17B12 transcription to regulate granulosa cell apoptosis and autophagy via the AMPK pathway in sheep. Int J Biol Macromol 2025; 306:141271. [PMID: 39986531 DOI: 10.1016/j.ijbiomac.2025.141271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/03/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
Dominant follicular development and atresia are governed by the proliferation of granulosa cells (GCs), a process influenced by the delicate balance between apoptosis and autophagy. Oxidative stress, a pivotal catalyst of GCs apoptosis, modulates gene expression through epigenetic mechanisms, including chromatin remodeling. Nevertheless, the regulatory mechanisms underpinning GCs functionality in relation to prolificacy remain inadequately elucidated. In this study, we discovered that the chromatin accessibility of nuclear receptor subfamily 1 group D member 1 (NR1D1) was markedly enhanced in dominant follicular GCs from low-prolificacy sheep, as evidenced by Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq), which correlated with elevated NR1D1 transcript levels. Remarkably, NR1D1 emerged as a novel regulator of follicular development, exhibiting heightened expression in dominant follicles. The overexpression of NR1D1 induced cell cycle arrest, autophagy activation, and mitochondrial dysfunction via the AMPK pathway, while its knockdown fostered GCs survival and functionality. Furthermore, NR1D1 inhibits the transcription of HSD17B12, thereby contributing to oxidative stress (ROS)-induced apoptosis, as demonstrated by CUT&Tag-qPCR and dual luciferase assays. The downregulation of HSD17B12 partially alleviated the effects of NR1D1 knockdown on GCs functionality. These findings indicate that NR1D1 orchestrates GCs proliferation and apoptosis through the suppression of HSD17B12 and the activation of the AMPK pathway, establishing NR1D1 as a novel transcription factor implicated in follicular development and ovarian function, with significant implications for prolificacy.
Collapse
Affiliation(s)
- Yu Cai
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Xu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaiping Deng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hua Yang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bingru Zhao
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chong Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shanglai Li
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zongyou Wei
- Taicang Agricultural and rural science & Technology Service Center, and Enterprise Graduate workstation, Taicang 215400, China
| | - Zhibo Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Tan CY, Ong HF, Lim CH, Tan MS, Ooi EH, Wong K. Amogel: a multi-omics classification framework using associative graph neural networks with prior knowledge for biomarker identification. BMC Bioinformatics 2025; 26:94. [PMID: 40155814 PMCID: PMC11954243 DOI: 10.1186/s12859-025-06111-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/10/2025] [Indexed: 04/01/2025] Open
Abstract
The advent of high-throughput sequencing technologies, such as DNA microarray and DNA sequencing, has enabled effective analysis of cancer subtypes and targeted treatment. Furthermore, numerous studies have highlighted the capability of graph neural networks (GNN) to model complex biological systems and capture non-linear interactions in high-throughput data. GNN has proven to be useful in leveraging multiple types of omics data, including prior biological knowledge from various sources, such as transcriptomics, genomics, proteomics, and metabolomics, to improve cancer classification. However, current works do not fully utilize the non-linear learning potential of GNN and lack of the integration ability to analyse high-throughput multi-omics data simultaneously with prior biological knowledge. Nevertheless, relying on limited prior knowledge in generating gene graphs might lead to less accurate classification due to undiscovered significant gene-gene interactions, which may require expert intervention and can be time-consuming. Hence, this study proposes a graph classification model called associative multi-omics graph embedding learning (AMOGEL) to effectively integrate multi-omics datasets and prior knowledge through GNN coupled with association rule mining (ARM). AMOGEL employs an early fusion technique using ARM to mine intra-omics and inter-omics relationships, forming a multi-omics synthetic information graph before the model training. Moreover, AMOGEL introduces multi-dimensional edges, with multi-omics gene associations or edges as the main contributors and prior knowledge edges as auxiliary contributors. Additionally, it uses a gene ranking technique based on attention scores, considering the relationships between neighbouring genes. Several experiments were performed on BRCA and KIPAN cancer subtypes to demonstrate the integration of multi-omics datasets (miRNA, mRNA, and DNA methylation) with prior biological knowledge of protein-protein interactions, KEGG pathways and Gene Ontology. The experimental results showed that the AMOGEL outperformed the current state-of-the-art models in terms of classification accuracy, F1 score and AUC score. The findings of this study represent a crucial step forward in advancing the effective integration of multi-omics data and prior knowledge to improve cancer subtype classification.
Collapse
Affiliation(s)
- Chia Yan Tan
- School of Information Technology, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Petaling Jaya, Selangor, Malaysia.
| | - Huey Fang Ong
- School of Information Technology, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Petaling Jaya, Selangor, Malaysia
| | - Chern Hong Lim
- School of Information Technology, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Petaling Jaya, Selangor, Malaysia
| | - Mei Sze Tan
- School of Information Technology, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Petaling Jaya, Selangor, Malaysia
| | - Ean Hin Ooi
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Petaling Jaya, Selangor, Malaysia
| | - KokSheik Wong
- School of Information Technology, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
3
|
Goglia AG, Alshalalfa M, Khan A, Isakov DR, Hougen HY, Swami N, Kannikal J, Mcbride SM, Gomez DR, Punnen S, Nguyen PL, Iyengar P, Antonarakis ES, Mahal BA, Dee EC. Pan-cancer genomic analysis reveals FOXA1 amplification is associated with adverse outcomes in non-small cell lung, prostate, and breast cancers. J Natl Cancer Inst 2025; 117:188-197. [PMID: 39254651 PMCID: PMC11717412 DOI: 10.1093/jnci/djae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/01/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Alterations in forkhead box A1 (FOXA1), a pioneer transcription factor, are associated with poor prognosis in breast cancer and prostate cancer. We characterized FOXA1 genomic alterations and their clinical impacts in a large pan-cancer cohort from the American Association for Cancer Research Genomics, Evidence, Neoplasia, Information, Exchange database. METHODS FOXA1 alterations were characterized across more than 87 000 samples from more than 30 cancer types for primary and metastatic tumors alongside patient characteristics and clinical outcomes. FOXA1 alterations were queried in the Memorial Sloan Kettering - Metastatic Events and Tropisms (MSK-MET) cohort (a GENIE subset), allowing definition of hazard ratios (HRs) and survival estimates based on Cox proportional hazard models. RESULTS FOXA1 was altered in 1869 (2.1%) samples, with distinct patterns across different cancers: prostate cancer enriched with indel-inframe alterations, breast cancer with missense mutations, and lung cancers with copy number amplifications. Of 74 715 samples with FOXA1 copy number profiles, amplification was detected in 834 (1.1%). Amplification was most common in non-small cell lung cancer (NSCLC; 3% in primary; 6% in metastatic) and small cell lung cancer (4.1% primary; 3.5% metastatic), followed by breast cancer (2% primary; 1.6% metastatic) and prostate cancer (2.2% primary; 1.6% metastatic). Copy number amplifications were associated with decreased overall survival in NSCLC (HR = 1.45, 95% confidence interval [CI] = 1.06 to 1.99; P = .02), breast cancer (HR = 3.04, 95% CI = 1.89 to 4.89; P = 4e-6), and prostate cancer (HR = 1.94, 95% CI = 1.03 to 3.68; P = .04). Amplifications were associated with widespread metastases in NSCLC, breast cancer, and prostate cancer. CONCLUSIONS FOXA1 demonstrates distinct alteration profiles across cancer sites. Our findings suggest an association between FOXA1 amplification and enhanced metastatic potential and decreased survival, highlighting prognostic and therapeutic potential in breast cancer, prostate cancer, and NSCLC.
Collapse
Affiliation(s)
- Alexander G Goglia
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mohammed Alshalalfa
- Department of Radiation Oncology, University of Miami Miller School of Medicine/Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Anwar Khan
- The Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Danielle R Isakov
- Human Oncology and Pathogenesis Program, Department of Neuro-Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Helen Y Hougen
- Department of Urology, University of Iowa, Iowa City, IA, USA
| | - Nishwant Swami
- Division of Internal Medicine, University of Pennsylvania Health System, Pennsylvania, PA, USA
| | - Jasmine Kannikal
- The Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sean M Mcbride
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel R Gomez
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sanoj Punnen
- Desai and Sethi Institute of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Paul L Nguyen
- Department of Radiation Oncology, Dana-Farber Brigham Cancer Center, Boston, MA, USA
| | - Puneeth Iyengar
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Brandon A Mahal
- Department of Radiation Oncology, University of Miami Miller School of Medicine/Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Edward Christopher Dee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
4
|
Li Z, Chen F, Chen L, Liu J, Tseng D, Hadi F, Omarjee S, Kishore K, Kent J, Kirkpatrick J, D'Santos C, Lawson M, Gertz J, Sikora MJ, McDonnell DP, Carroll JS, Polyak K, Oesterreich S, Lee AV. The EstroGene2.0 database for endocrine therapy response and resistance in breast cancer. NPJ Breast Cancer 2024; 10:106. [PMID: 39702552 PMCID: PMC11659402 DOI: 10.1038/s41523-024-00709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/08/2024] [Indexed: 12/21/2024] Open
Abstract
Endocrine therapies targeting the estrogen receptor (ER/ESR1) are the cornerstone to treat ER-positive breast cancers patients, but resistance often limits their effectiveness. Notable progress has been made although the fragmented way data is reported has reduced their potential impact. Here, we introduce EstroGene2.0, an expanded database of its precursor 1.0 version. EstroGene2.0 focusses on response and resistance to endocrine therapies in breast cancer models. Incorporating multi-omic profiling of 361 experiments from 212 studies across 28 cell lines, a user-friendly browser offers comprehensive data visualization and metadata mining capabilities ( https://estrogeneii.web.app/ ). Taking advantage of the harmonized data collection, our follow-up meta-analysis revealed transcriptomic landscape and substantial diversity in response to different classes of ER modulators. Endocrine-resistant models exhibit a spectrum of transcriptomic alterations including a contra-directional shift in ER and interferon signalings, which is recapitulated clinically. Dissecting multiple ESR1-mutant cell models revealed the different clinical relevance of cell model engineering and identified high-confidence mutant-ER targets, such as NPY1R. These examples demonstrate how EstroGene2.0 helps investigate breast cancer's response to endocrine therapies and explore resistance mechanisms.
Collapse
Affiliation(s)
- Zheqi Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Fangyuan Chen
- School of Medicine, Tsinghua University, Beijing, China
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Li Chen
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jiebin Liu
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Danielle Tseng
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Fazal Hadi
- AstraZeneca, The Discovery Centre, Biomedical Campus, Cambridge, UK
| | - Soleilmane Omarjee
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Kamal Kishore
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Joshua Kent
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Joanna Kirkpatrick
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Clive D'Santos
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Mandy Lawson
- AstraZeneca, The Discovery Centre, Biomedical Campus, Cambridge, UK
| | - Jason Gertz
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Matthew J Sikora
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Jason S Carroll
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Steffi Oesterreich
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adrian V Lee
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- Institute for Precision Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Li Z, Chen F, Chen L, Liu J, Tseng D, Hadi F, Omarjee S, Kishore K, Kent J, Kirkpatrick J, D’Santos C, Lawson M, Gertz J, Sikora MJ, McDonnell DP, Carroll JS, Polyak K, Oesterreich S, Lee AV. EstroGene2.0: A multi-omic database of response to estrogens, ER-modulators, and resistance to endocrine therapies in breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601163. [PMID: 39005294 PMCID: PMC11244912 DOI: 10.1101/2024.06.28.601163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Endocrine therapies targeting the estrogen receptor (ER/ESR1) are the cornerstone to treat ER-positive breast cancers patients, but resistance often limits their effectiveness. Understanding the molecular mechanisms is thus key to optimize the existing drugs and to develop new ER-modulators. Notable progress has been made although the fragmented way data is reported has reduced their potential impact. Here, we introduce EstroGene2.0, an expanded database of its precursor 1.0 version. EstroGene2.0 focusses on response and resistance to endocrine therapies in breast cancer models. Incorporating multi-omic profiling of 361 experiments from 212 studies across 28 cell lines, a user-friendly browser offers comprehensive data visualization and metadata mining capabilities (https://estrogeneii.web.app/). Taking advantage of the harmonized data collection, our follow-up meta-analysis revealed substantial diversity in response to different classes of ER-modulators including SERMs, SERDs, SERCA and LDD/PROTAC. Notably, endocrine resistant models exhibit a spectrum of transcriptomic alterations including a contra-directional shift in ER and interferon signaling, which is recapitulated clinically. Furthermore, dissecting multiple ESR1-mutant cell models revealed the different clinical relevance of genome-edited versus ectopic overexpression model engineering and identified high-confidence mutant-ER targets, such as NPY1R. These examples demonstrate how EstroGene2.0 helps investigate breast cancer's response to endocrine therapies and explore resistance mechanisms.
Collapse
Affiliation(s)
- Zheqi Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Fangyuan Chen
- School of Medicine, Tsinghua University, Beijing, China
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh PA, USA
| | - Li Chen
- Computational Biology Department, Carnegie Mellon University, Pittsburgh PA, USA
| | - Jiebin Liu
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh PA, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Danielle Tseng
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh PA, USA
| | | | - Soleilmane Omarjee
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Kamal Kishore
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Joshua Kent
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Joanna Kirkpatrick
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Clive D’Santos
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Jason Gertz
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Matthew J. Sikora
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Donald P. McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Jason S. Carroll
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Steffi Oesterreich
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
| | - Adrian V. Lee
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
- Institute for Precision Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Ginley-Hidinger M, Abewe H, Osborne K, Richey A, Kitchen N, Mortenson KL, Wissink EM, Lis J, Zhang X, Gertz J. Cis-regulatory control of transcriptional timing and noise in response to estrogen. CELL GENOMICS 2024; 4:100542. [PMID: 38663407 PMCID: PMC11099348 DOI: 10.1016/j.xgen.2024.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/26/2023] [Accepted: 03/27/2024] [Indexed: 05/07/2024]
Abstract
Cis-regulatory elements control transcription levels, temporal dynamics, and cell-cell variation or transcriptional noise. However, the combination of regulatory features that control these different attributes is not fully understood. Here, we used single-cell RNA-seq during an estrogen treatment time course and machine learning to identify predictors of expression timing and noise. We found that genes with multiple active enhancers exhibit faster temporal responses. We verified this finding by showing that manipulation of enhancer activity changes the temporal response of estrogen target genes. Analysis of transcriptional noise uncovered a relationship between promoter and enhancer activity, with active promoters associated with low noise and active enhancers linked to high noise. Finally, we observed that co-expression across single cells is an emergent property associated with chromatin looping, timing, and noise. Overall, our results indicate a fundamental tradeoff between a gene's ability to quickly respond to incoming signals and maintain low variation across cells.
Collapse
Affiliation(s)
- Matthew Ginley-Hidinger
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Hosiana Abewe
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Kyle Osborne
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Alexandra Richey
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Noel Kitchen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Katelyn L Mortenson
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Erin M Wissink
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - John Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Xiaoyang Zhang
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jason Gertz
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
7
|
Ginley-Hidinger M, Abewe H, Osborne K, Richey A, Kitchen N, Mortenson KL, Wissink EM, Lis J, Zhang X, Gertz J. Cis-regulatory control of transcriptional timing and noise in response to estrogen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.14.532457. [PMID: 36993565 PMCID: PMC10054948 DOI: 10.1101/2023.03.14.532457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cis-regulatory elements control transcription levels, temporal dynamics, and cell-cell variation or transcriptional noise. However, the combination of regulatory features that control these different attributes is not fully understood. Here, we used single cell RNA-seq during an estrogen treatment time course and machine learning to identify predictors of expression timing and noise. We find that genes with multiple active enhancers exhibit faster temporal responses. We verified this finding by showing that manipulation of enhancer activity changes the temporal response of estrogen target genes. Analysis of transcriptional noise uncovered a relationship between promoter and enhancer activity, with active promoters associated with low noise and active enhancers linked to high noise. Finally, we observed that co-expression across single cells is an emergent property associated with chromatin looping, timing, and noise. Overall, our results indicate a fundamental tradeoff between a gene's ability to quickly respond to incoming signals and maintain low variation across cells.
Collapse
Affiliation(s)
- Matthew Ginley-Hidinger
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Hosiana Abewe
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Kyle Osborne
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Alexandra Richey
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Noel Kitchen
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Katelyn L. Mortenson
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Erin M. Wissink
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - John Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Xiaoyang Zhang
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jason Gertz
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
8
|
Sadaf, Hazazi A, Alkhalil SS, Alsaiari AA, Gharib AF, Alhuthali HM, Rana S, Aloliqi AA, Eisa AA, Hasan MR, Dev K. Role of Fork-Head Box Genes in Breast Cancer: From Drug Resistance to Therapeutic Targets. Biomedicines 2023; 11:2159. [PMID: 37626655 PMCID: PMC10452497 DOI: 10.3390/biomedicines11082159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer has been acknowledged as one of the most notorious cancers, responsible for millions of deaths around the globe. Understanding the various factors, genetic mutations, comprehensive pathways, etc., that are involved in the development of breast cancer and how these affect the development of the disease is very important for improving and revitalizing the treatment of this global health issue. The forkhead-box gene family, comprising 19 subfamilies, is known to have a significant impact on the growth and progression of this cancer. The article looks into the various forkhead genes and how they play a role in different types of cancer. It also covers their impact on cancer drug resistance, interaction with microRNAs, explores their potential as targets for drug therapies, and their association with stem cells.
Collapse
Affiliation(s)
- Sadaf
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India;
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh 11481, Saudi Arabia;
| | - Samia S. Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11961, Saudi Arabia;
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Amal F. Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Hayaa M. Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Shanika Rana
- School of Biosciences, Apeejay Stya University, Gurugram 122003, India;
| | - Abdulaziz A. Aloliqi
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Alaa Abdulaziz Eisa
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Medina 30002, Saudi Arabia;
| | - Mohammad Raghibul Hasan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11961, Saudi Arabia;
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India;
| |
Collapse
|
9
|
Zheng D, Bashir M, Li Z. ERα prevents tumorigenesis of both liver and breast cancer cells through CCN5. Biochem Biophys Res Commun 2023; 672:103-112. [PMID: 37343316 DOI: 10.1016/j.bbrc.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023]
Abstract
Estrogen receptor alpha (ERα)-mediated estrogen signaling has also shown to prevent hepatic tumorigenesis in mice. Consistent with this, hormone replacement therapy with estrogen supplementation dramatically reduced the risk of hepatocellular carcinoma. Silencing of ERα is also a key event for the transformation of ERα-positive breast cancer cells into malignant triple-negative breast cancer cells. However, the mechanisms underlying ERα-mediated prevention of both hepatic and mammary tumorigenesis in humans are still unclear. Here, we present a functional genomics study of ERα targeting by comparing human liver cancer cells with human breast cancer cells using "loss or gain of function" genetic assays of ERα in vitro and in vivo. We discover that cellular communication network factor 5 (CCN5) is a direct downstream target of ERα; ERα suppresses growth and prevents tumorigenesis and malignant transformation of both liver and breast cancer cells through CCN5 in humans. The ERα-CCN5 regulatory axis functions as suppressors for both hepatic and mammary tumors, which is a common mechanism of preventing tumorigenesis for both liver cancer and breast cancer in humans.
Collapse
Affiliation(s)
- Daoshan Zheng
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, No. 1 Xuefu North Road, University Town, Fuzhou, Fujian Province, 350112, China
| | - Muniba Bashir
- School of Biomedical Sciences, University of Western Australia, QE II, M Block 225C, Crawley, WA, 6009, Australia
| | - Zhaoyu Li
- School of Biomedical Sciences, University of Western Australia, QE II, M Block 225C, Crawley, WA, 6009, Australia.
| |
Collapse
|
10
|
Warren I, Moeller MM, Guiggey D, Chiang A, Maloy M, Ogoke O, Groth T, Mon T, Meamardoost S, Liu X, Thompson S, Szeglowski A, Thompson R, Chen P, Paulmurugan R, Yarmush ML, Kidambi S, Parashurama N. FOXA1/2 depletion drives global reprogramming of differentiation state and metabolism in a human liver cell line and inhibits differentiation of human stem cell-derived hepatic progenitor cells. FASEB J 2023; 37:e22652. [PMID: 36515690 DOI: 10.1096/fj.202101506rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 12/15/2022]
Abstract
FOXA factors are critical members of the developmental gene regulatory network (GRN) composed of master transcription factors (TF) which regulate murine cell fate and metabolism in the gut and liver. How FOXA factors dictate human liver cell fate, differentiation, and simultaneously regulate metabolic pathways is poorly understood. Here, we aimed to determine the role of FOXA2 (and FOXA1 which is believed to compensate for FOXA2) in controlling hepatic differentiation and cell metabolism in a human hepatic cell line (HepG2). siRNA mediated knockdown of FOXA1/2 in HepG2 cells significantly downregulated albumin (p < .05) and GRN TF gene expression (HNF4α, HEX, HNF1ß, TBX3) (p < .05) and significantly upregulated endoderm/gut/hepatic endoderm markers (goosecoid [GSC], FOXA3, and GATA4), gut TF (CDX2), pluripotent TF (NANOG), and neuroectodermal TF (PAX6) (p < .05), all consistent with partial/transient reprograming. shFOXA1/2 targeting resulted in similar findings and demonstrated evidence of reversibility of phenotype. RNA-seq followed by bioinformatic analysis of shFOXA1/2 knockdown HepG2 cells demonstrated 235 significant downregulated genes and 448 upregulated genes, including upregulation of markers for alternate germ layers lineages (cardiac, endothelial, muscle) and neurectoderm (eye, neural). We found widespread downregulation of glycolysis, citric acid cycle, mitochondrial genes, and alterations in lipid metabolism, pentose phosphate pathway, and ketogenesis. Functional metabolic analysis agreed with these findings, demonstrating significantly diminished glycolysis and mitochondrial respiration, with concomitant accumulation of lipid droplets. We hypothesized that FOXA1/2 inhibit the initiation of human liver differentiation in vitro. During human pluripotent stem cells (hPSC)-hepatic differentiation, siRNA knockdown demonstrated de-differentiation and unexpectedly, activation of pluripotency factors and neuroectoderm. shRNA knockdown demonstrated similar results and activation of SOX9 (hepatobiliary). These results demonstrate that FOXA1/2 controls hepatic and developmental GRN, and their knockdown leads to reprogramming of both differentiation and metabolism, with applications in studies of cancer, differentiation, and organogenesis.
Collapse
Affiliation(s)
- Iyan Warren
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Michael M Moeller
- Department of Chemical and Biomolecular Engineering, University of Nebraska- Lincoln, Lincoln, Nebraska, USA
| | - Daniel Guiggey
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Alexander Chiang
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Mitchell Maloy
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Ogechi Ogoke
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Theodore Groth
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Tala Mon
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Saber Meamardoost
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Xiaojun Liu
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Sarah Thompson
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Antoni Szeglowski
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Ryan Thompson
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Peter Chen
- Department of Biomedical Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Ramasamy Paulmurugan
- Department of Radiology, Canary Center for Early Cancer Detection and the Molecular Imaging Program at Stanford, Stanford University, Palo Alto, California, USA
| | - Martin L Yarmush
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Srivatsan Kidambi
- Department of Chemical and Biomolecular Engineering, University of Nebraska- Lincoln, Lincoln, Nebraska, USA
| | - Natesh Parashurama
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA.,Department of Biomedical Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA.,Clinical and Translation Research Center (CTRC), University at Buffalo (State University of New York), Buffalo, New York, USA
| |
Collapse
|
11
|
Zangouei AS, Tolue Ghasaban F, Dalili A, Akhlaghipour I, Moghbeli M. MicroRNAs as the pivotal regulators of Forkhead box protein family during gastrointestinal tumor progression and metastasis. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
FOXA1 in Breast Cancer: A Luminal Marker with Promising Prognostic and Predictive Impact. Cancers (Basel) 2022; 14:cancers14194699. [PMID: 36230619 PMCID: PMC9564251 DOI: 10.3390/cancers14194699] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
The present review focuses on the function of the forkhead protein FOXA1 in breast cancer (BC) in relation to steroid hormone receptors. We explored the currently available analytic approaches for FOXA1 assessment both at gene and protein levels, comparing the differences between the available techniques used for its diagnostic assessment. In addition, we elaborated on data regarding the prognostic and predictive role of this marker in BC based on several studies that evaluated its expression in relation to the outcome and/or response to therapy. FOXA1, similar to the androgen receptor (AR), may have a dual role in BC according to hormonal status. In luminal cancers, its expression contributes to a better prognosis, while in triple-negative breast cancers (TNBC), it implies an adverse outcome. Consequently, we observed that FOXA1-positive expression in a neoadjuvant setting may predict a lack of response in luminal BC as opposed to TNBC, in which FOXA1 allegedly increases its chemosensitivity. In conclusion, considering its accessible and convenient identification by immunohistochemistry, its important impact on prognosis, and its suitability to identify patients with different responses to chemotherapy, we propose that FOXA1 could be tested in routine diagnostics as an additional prognostic and predictive marker in BC.
Collapse
|
13
|
Elevated FOXA1 Expression Indicates Poor Prognosis in Liver Cancer due to Its Effects on Cell Proliferation and Metastasis. DISEASE MARKERS 2022; 2022:3317315. [PMID: 35968505 PMCID: PMC9374549 DOI: 10.1155/2022/3317315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/24/2022]
Abstract
Purpose Studying the pathogenesis of liver cancer is conducive to the exploration of effective diagnostic and prognostic biomarkers. In this study, we investigated the expression of FOXA1 and its oncogenic role in hepatocellular carcinoma (HCC). Methods Transcriptome data of HCC tissues were downloaded from The Cancer Genome Atlas (TCGA) and GEO databases and analyzed using R software. We also upregulated FOXA1 expression in HCC cells and investigated the role of FOXA1 in the proliferation and migration of HCC cells through proliferation, colony formation, wound healing, and Transwell assays. Results An analysis of the transcriptome data in TCGA database revealed found that FOXA1 is highly expressed in HCC tissues and that patients with low FOXA1 expression have a better prognosis. High FOXA1 expression was mainly associated with extracellular matrix organization, cancer, and mitosis. The results of an immunohistochemistry (IHC) assay showed that FOXA1 protein was highly expressed in HCC tissues, and patients with low FOXA1 expression showed longer disease-specific survival times and progression-free intervals. The results from quantitative reverse transcription–PCR (RT–qPCR) and Western blot experiments showed that the expression of FOXA1 in liver cancer cell lines was higher than that in immortalized human liver cell lines. Proliferation, wound healing, and Transwell experiments showed that FOXA1 enhanced the proliferation and migration abilities of liver cancer and immortalized human cell lines. Conclusion Our research suggests that FOXA1 plays an important role in promoting the recurrence and metastasis of HCC by increasing cell proliferation and metastasis.
Collapse
|
14
|
Karn V, Sandhya S, Hsu W, Parashar D, Singh HN, Jha NK, Gupta S, Dubey NK, Kumar S. CRISPR/Cas9 system in breast cancer therapy: advancement, limitations and future scope. Cancer Cell Int 2022; 22:234. [PMID: 35879772 PMCID: PMC9316746 DOI: 10.1186/s12935-022-02654-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/12/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer is one of the major causes of mortality worldwide, therefore it is considered a major health concern. Breast cancer is the most frequent type of cancer which affects women on a global scale. Various current treatment strategies have been implicated for breast cancer therapy that includes surgical removal, radiation therapy, hormonal therapy, chemotherapy, and targeted biological therapy. However, constant effort is being made to introduce novel therapies with minimal toxicity. Gene therapy is one of the promising tools, to rectify defective genes and cure various cancers. In recent years, a novel genome engineering technology, namely the clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein-9 (Cas9) has emerged as a gene-editing tool and transformed genome-editing techniques in a wide range of biological domains including human cancer research and gene therapy. This could be attributed to its versatile characteristics such as high specificity, precision, time-saving and cost-effective methodologies with minimal risk. In the present review, we highlight the role of CRISPR/Cas9 as a targeted therapy to tackle drug resistance, improve immunotherapy for breast cancer.
Collapse
Affiliation(s)
- Vamika Karn
- Department of Biotechnology, Amity University, Mumbai, 410221, India
| | - Sandhya Sandhya
- Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Wayne Hsu
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, 110, Taiwan
| | - Deepak Parashar
- Department of Obstetrics and Gynaecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Himanshu Narayan Singh
- Department of System Biology, Columbia University Irving Medical Centre, New York, NY, 10032, USA
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, India.,Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.,Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Navneet Kumar Dubey
- Victory Biotechnology Co., Ltd., Taipei, 114757, Taiwan. .,ShiNeo Technology Co., Ltd., New Taipei City, 24262, Taiwan.
| | - Sanjay Kumar
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, India.
| |
Collapse
|
15
|
Bommi-Reddy A, Park-Chouinard S, Mayhew DN, Terzo E, Hingway A, Steinbaugh MJ, Wilson JE, Sims RJ, Conery AR. CREBBP/EP300 acetyltransferase inhibition disrupts FOXA1-bound enhancers to inhibit the proliferation of ER+ breast cancer cells. PLoS One 2022; 17:e0262378. [PMID: 35353838 PMCID: PMC8967035 DOI: 10.1371/journal.pone.0262378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Therapeutic targeting of the estrogen receptor (ER) is a clinically validated approach for estrogen receptor positive breast cancer (ER+ BC), but sustained response is limited by acquired resistance. Targeting the transcriptional coactivators required for estrogen receptor activity represents an alternative approach that is not subject to the same limitations as targeting estrogen receptor itself. In this report we demonstrate that the acetyltransferase activity of coactivator paralogs CREBBP/EP300 represents a promising therapeutic target in ER+ BC. Using the potent and selective inhibitor CPI-1612, we show that CREBBP/EP300 acetyltransferase inhibition potently suppresses in vitro and in vivo growth of breast cancer cell line models and acts in a manner orthogonal to directly targeting ER. CREBBP/EP300 acetyltransferase inhibition suppresses ER-dependent transcription by targeting lineage-specific enhancers defined by the pioneer transcription factor FOXA1. These results validate CREBBP/EP300 acetyltransferase activity as a viable target for clinical development in ER+ breast cancer.
Collapse
Affiliation(s)
- Archana Bommi-Reddy
- Constellation Pharmaceuticals, a Morphosys Company, Cambridge, Massachusetts, United States of America
| | - Sungmi Park-Chouinard
- Constellation Pharmaceuticals, a Morphosys Company, Cambridge, Massachusetts, United States of America
| | - David N. Mayhew
- Constellation Pharmaceuticals, a Morphosys Company, Cambridge, Massachusetts, United States of America
| | - Esteban Terzo
- Constellation Pharmaceuticals, a Morphosys Company, Cambridge, Massachusetts, United States of America
| | - Aparna Hingway
- Constellation Pharmaceuticals, a Morphosys Company, Cambridge, Massachusetts, United States of America
| | - Michael J. Steinbaugh
- Constellation Pharmaceuticals, a Morphosys Company, Cambridge, Massachusetts, United States of America
| | - Jonathan E. Wilson
- Constellation Pharmaceuticals, a Morphosys Company, Cambridge, Massachusetts, United States of America
| | - Robert J. Sims
- Constellation Pharmaceuticals, a Morphosys Company, Cambridge, Massachusetts, United States of America
| | - Andrew R. Conery
- Constellation Pharmaceuticals, a Morphosys Company, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
16
|
Munne PM, Martikainen L, Räty I, Bertula K, Nonappa, Ruuska J, Ala-Hongisto H, Peura A, Hollmann B, Euro L, Yavuz K, Patrikainen L, Salmela M, Pokki J, Kivento M, Väänänen J, Suomi T, Nevalaita L, Mutka M, Kovanen P, Leidenius M, Meretoja T, Hukkinen K, Monni O, Pouwels J, Sahu B, Mattson J, Joensuu H, Heikkilä P, Elo LL, Metcalfe C, Junttila MR, Ikkala O, Klefström J. Compressive stress-mediated p38 activation required for ERα + phenotype in breast cancer. Nat Commun 2021; 12:6967. [PMID: 34845227 PMCID: PMC8630031 DOI: 10.1038/s41467-021-27220-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/04/2021] [Indexed: 01/01/2023] Open
Abstract
Breast cancer is now globally the most frequent cancer and leading cause of women's death. Two thirds of breast cancers express the luminal estrogen receptor-positive (ERα + ) phenotype that is initially responsive to antihormonal therapies, but drug resistance emerges. A major barrier to the understanding of the ERα-pathway biology and therapeutic discoveries is the restricted repertoire of luminal ERα + breast cancer models. The ERα + phenotype is not stable in cultured cells for reasons not fully understood. We examine 400 patient-derived breast epithelial and breast cancer explant cultures (PDECs) grown in various three-dimensional matrix scaffolds, finding that ERα is primarily regulated by the matrix stiffness. Matrix stiffness upregulates the ERα signaling via stress-mediated p38 activation and H3K27me3-mediated epigenetic regulation. The finding that the matrix stiffness is a central cue to the ERα phenotype reveals a mechanobiological component in breast tissue hormonal signaling and enables the development of novel therapeutic interventions. Subject terms: ER-positive (ER + ), breast cancer, ex vivo model, preclinical model, PDEC, stiffness, p38 SAPK.
Collapse
Affiliation(s)
- Pauliina M Munne
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland
| | - Lahja Martikainen
- Department of Applied Physics, Molecular Materials Group, Aalto University School of Science, PO Box, 15100, FI-00076, Espoo, Finland
| | - Iiris Räty
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland
| | - Kia Bertula
- Department of Applied Physics, Molecular Materials Group, Aalto University School of Science, PO Box, 15100, FI-00076, Espoo, Finland
| | - Nonappa
- Department of Applied Physics, Molecular Materials Group, Aalto University School of Science, PO Box, 15100, FI-00076, Espoo, Finland
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Espoo, Finland
| | - Janika Ruuska
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland
| | - Hanna Ala-Hongisto
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland
| | - Aino Peura
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland
| | - Babette Hollmann
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland
| | - Lilya Euro
- Research Program of Stem Cells and Metabolism, Biomedicum Helsinki, University of Helsinki, 00290, Helsinki, Finland
| | - Kerim Yavuz
- Applied Tumor Genomics Research Program, Enhancer Biology Laboratory, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Linda Patrikainen
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland
| | - Maria Salmela
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland
| | - Juho Pokki
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Mikko Kivento
- Applied Tumor Genomics Research Program, Faculty of Medicine, Oncogenomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Juho Väänänen
- Applied Tumor Genomics Research Program, Faculty of Medicine, Oncogenomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Tomi Suomi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Liina Nevalaita
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland
| | - Minna Mutka
- Department of Pathology, HUSLAB and Haartman Institute, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Panu Kovanen
- Department of Pathology, HUSLAB and Haartman Institute, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Marjut Leidenius
- Breast Surgery Unit, Helsinki University Central Hospital, Helsinki, Finland
| | - Tuomo Meretoja
- Breast Surgery Unit, Helsinki University Central Hospital, Helsinki, Finland
| | - Katja Hukkinen
- Department of Mammography, Helsinki University Central Hospital, Helsinki, Finland
| | - Outi Monni
- Applied Tumor Genomics Research Program, Faculty of Medicine, Oncogenomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Jeroen Pouwels
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland
| | - Biswajyoti Sahu
- Applied Tumor Genomics Research Program, Enhancer Biology Laboratory, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Mattson
- Department of Oncology, University of Helsinki & Helsinki University Hospital, Helsinki, Finland
| | - Heikki Joensuu
- Department of Oncology, University of Helsinki & Helsinki University Hospital, Helsinki, Finland
| | - Päivi Heikkilä
- Department of Pathology, HUSLAB and Haartman Institute, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Ciara Metcalfe
- Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | - Olli Ikkala
- Department of Applied Physics, Molecular Materials Group, Aalto University School of Science, PO Box, 15100, FI-00076, Espoo, Finland
- Department of Bioproducts and Biosystems, Aalto University School of Chemical Engineering, Espoo, Finland
| | - Juha Klefström
- Finnish Cancer Institute, FICAN South Helsinki University Hospital & Translational Cancer Medicine, Medical Faculty, University of Helsinki. Cancer Cell Circuitry Laboratory, PO Box 63 Haartmaninkatu 8, 00014 University of Helsinki, Helsinki, Finland.
| |
Collapse
|
17
|
Liu L, Cui J, Zhao Y, Liu X, Chen L, Xia Y, Wang Y, Chen S, Sun S, Shi B, Zou Y. KDM6A-ARHGDIB axis blocks metastasis of bladder cancer by inhibiting Rac1. Mol Cancer 2021; 20:77. [PMID: 34006303 PMCID: PMC8130406 DOI: 10.1186/s12943-021-01369-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/06/2021] [Indexed: 12/24/2022] Open
Abstract
Background KDM6A, a histone demethylase, is frequently mutated in bladder cancer (BCa). However, the role and detailed molecular mechanism of KDM6A involved in bladder cancer progression remains unknown. Methods Tissue specimens were used to determine the expression levels and prognostic values of KDM6A and ARHGDIB. The MTT, colony formation, wound healing and Transwell migration and invasion assays were employed to detect the BCa cell proliferation, migration and invasion, respectively. Chemotaxis of macrophages was used to evaluate the ability of KDM6A to recruit macrophages. A subcutaneous tumour model and tail vein tumour injection in nude mice were used to assess the role of KDM6A in vivo. RNA sequencing, qPCR, Western blot, ChIP and phalloidin staining assay were performed to investigate the molecular functions of KDM6A. Dual-luciferase reporter assay was used to determine the effects of KDM6A and FOXA1 on the promoters of the ARHGDIB and KDM6A. Results We showed that the KDM6A inhibited the motility and invasiveness of the BCa cells. Mechanistically, KDM6A promotes the transcription of ARHGDIB by demethylating histone H3 lysine di/trimethylation (H3K27me2/3) and consequently leads to inhibition of Rac1. EZH2, which catalyses the methylation of H3K27, functions to silence ARHGDIB expression, and an EZH2 inhibitor can neutralize the metastatic effect caused by KDM6A deficiency. Furthermore, we demonstrated that FOXA1 directly binds to the KDM6A promoter and thus transactivates KDM6A, leading to diminished metastatic potential. Conclusion Our findings establish the critical role of the FOXA1-KDM6A-ARHGDIB axis in restraining the malignancy of BCa and identify KDM6A and EZH2 as potential therapeutic targets in the management of BCa. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01369-9.
Collapse
Affiliation(s)
- Lei Liu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory for Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Jianfeng Cui
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory for Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Yajing Zhao
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaochen Liu
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Lipeng Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory for Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Yangyang Xia
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory for Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Yong Wang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory for Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Shouzhen Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory for Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Shuna Sun
- Department of Dermatology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, China
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China. .,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China.
| | - Yongxin Zou
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
18
|
Pan J, Xu Z, Xu M, Lin X, Lin B, Lin M. Knockdown of Forkhead box A1 suppresses the tumorigenesis and progression of human colon cancer cells through regulating the phosphatase and tensin homolog/Akt pathway. J Int Med Res 2021; 48:300060520971453. [PMID: 33296605 PMCID: PMC7731712 DOI: 10.1177/0300060520971453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background This study aimed to evaluate the role and the underlying mechanisms of Forkhead box A1 (encoded by FOXA1) in colon cancer. Methods We analyzed FOXA1 mRNA and protein expression in colon cancer tissues and cell lines. We also silenced FOXA1 expression in HCT116 and SW480 cells to evaluate the effects on cell proliferation, cell cycle, migration, and invasion by using MTT, colony formation, flow cytometry, and the Transwell assay, respectively. Results FOXA1 immunostaining was higher in colon cancer tissues than adjacent healthy tissues. FOXA1 mRNA and protein expression was significantly increased in human colon cancer cells compared with a normal colonic cell line. FOXA1 expression was also significantly higher in colorectal cancer tissues from TCGA data sets and was associated with worse prognosis in the R2 database. FOXA1 expression was negatively correlated with the extent of its methylation, and its knockdown reduced proliferation, migration, and invasion, and induced G2/M phase arrest in HCT116 and SW480 cells by suppressing the phosphatase and tensin homolog/Akt signaling pathway and inhibiting epithelial–mesenchymal transition. Conclusion FOXA1 may act as an oncogene in colon cancer tumorigenesis and development.
Collapse
Affiliation(s)
- Jie Pan
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China
| | - Zongbin Xu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China
| | - Meifang Xu
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China
| | - Xiaoyan Lin
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China
| | - Bingqiang Lin
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China
| | - Mengxin Lin
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China
| |
Collapse
|
19
|
Iyyanki T, Zhang B, Wang Q, Hou Y, Jin Q, Xu J, Yang H, Liu T, Wang X, Song F, Luan Y, Yamashita H, Chien R, Lyu H, Zhang L, Wang L, Warrick J, Raman JD, Meeks JJ, DeGraff DJ, Yue F. Subtype-associated epigenomic landscape and 3D genome structure in bladder cancer. Genome Biol 2021; 22:105. [PMID: 33858483 PMCID: PMC8048365 DOI: 10.1186/s13059-021-02325-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 03/25/2021] [Indexed: 12/24/2022] Open
Abstract
Muscle-invasive bladder cancers are characterized by their distinct expression of luminal and basal genes, which could be used to predict key clinical features such as disease progression and overall survival. Transcriptionally, FOXA1, GATA3, and PPARG are shown to be essential for luminal subtype-specific gene regulation and subtype switching, while TP63, STAT3, and TFAP2 family members are critical for regulation of basal subtype-specific genes. Despite these advances, the underlying epigenetic mechanisms and 3D chromatin architecture responsible for subtype-specific regulation in bladder cancer remain unknown. RESULT: We determine the genome-wide transcriptome, enhancer landscape, and transcription factor binding profiles of FOXA1 and GATA3 in luminal and basal subtypes of bladder cancer. Furthermore, we report the first-ever mapping of genome-wide chromatin interactions by Hi-C in both bladder cancer cell lines and primary patient tumors. We show that subtype-specific transcription is accompanied by specific open chromatin and epigenomic marks, at least partially driven by distinct transcription factor binding at distal enhancers of luminal and basal bladder cancers. Finally, we identify a novel clinically relevant transcription factor, Neuronal PAS Domain Protein 2 (NPAS2), in luminal bladder cancers that regulates other subtype-specific genes and influences cancer cell proliferation and migration. CONCLUSION: In summary, our work identifies unique epigenomic signatures and 3D genome structures in luminal and basal urinary bladder cancers and suggests a novel link between the circadian transcription factor NPAS2 and a clinical bladder cancer subtype.
Collapse
Affiliation(s)
- Tejaswi Iyyanki
- Department of Biochemistry and Molecular Biology, Penn State School of Medicine, Hershey, PA, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Baozhen Zhang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
- Present address: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Qixuan Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Ye Hou
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Qiushi Jin
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Jie Xu
- Department of Biochemistry and Molecular Biology, Penn State School of Medicine, Hershey, PA, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Hongbo Yang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Tingting Liu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Xiaotao Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Fan Song
- Department of Biochemistry and Molecular Biology, Penn State School of Medicine, Hershey, PA, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Yu Luan
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Hironobu Yamashita
- Department of Pathology and Laboratory Medicine, The Pennsylvania State University, College of Medicine, Hershey, PA, USA
- Department of Surgery, Division of Urology, The Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Ruby Chien
- University of Illinois College of Medicine, Chicago, IL, USA
| | - Huijue Lyu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Lijun Zhang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Lu Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA
| | - Joshua Warrick
- Department of Pathology and Laboratory Medicine, The Pennsylvania State University, College of Medicine, Hershey, PA, USA
- Department of Surgery, Division of Urology, The Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Jay D Raman
- Department of Surgery, Division of Urology, The Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Joshua J Meeks
- Department of Urology, Feinberg School of Medicine and The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - David J DeGraff
- Department of Pathology and Laboratory Medicine, The Pennsylvania State University, College of Medicine, Hershey, PA, USA.
- Department of Surgery, Division of Urology, The Pennsylvania State University, College of Medicine, Hershey, PA, USA.
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.
| |
Collapse
|
20
|
Lazar SB, Pongor L, Li XL, Grammatikakis I, Muys BR, Dangelmaier EA, Redon CE, Jang SM, Walker RL, Tang W, Ambs S, Harris CC, Meltzer PS, Aladjem MI, Lal A. Genome-Wide Analysis of the FOXA1 Transcriptional Network Identifies Novel Protein-Coding and Long Noncoding RNA Targets in Colorectal Cancer Cells. Mol Cell Biol 2020; 40:e00224-20. [PMID: 32839292 PMCID: PMC7556848 DOI: 10.1128/mcb.00224-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/12/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Differentiation status of tumors is correlated with metastatic potential and malignancy. FOXA1 (forkhead box A1) is a transcription factor known to regulate differentiation in certain tissues. Here, we investigate FOXA1 function in human colorectal cancer (CRC). We found that FOXA1 is robustly expressed in the normal human colon but significantly downregulated in colon adenocarcinoma. Applying FOXA1 chromatin immunoprecipitation coupled with deep sequencing and transcriptome analysis upon FOXA1 knockdown in well-differentiated CRC cells and FOXA1 overexpression in poorly differentiated CRC cells, we identified novel protein-coding and lncRNA genes regulated by FOXA1. Among the numerous novel FOXA1 targets we identified, we focused on CEACAM5, a tumor marker and facilitator of cell adhesion. We show that FOXA1 binds to a distal enhancer downstream of CEACAM5 and strongly activates its expression. Consistent with these data, we show that FOXA1 inhibits anoikis in CRC cells. Collectively, our results uncover novel protein-coding and noncoding targets of FOXA1 and suggest a vital role of FOXA1 in enhancing CEACAM5 expression and anoikis resistance in CRC cells.
Collapse
Affiliation(s)
- Sarah B Lazar
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Lorinc Pongor
- Developmental Therapeutics Branch, Laboratory of Molecular Pharmacology, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Xiao Ling Li
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ioannis Grammatikakis
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Bruna R Muys
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Emily A Dangelmaier
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Christophe E Redon
- Developmental Therapeutics Branch, Laboratory of Molecular Pharmacology, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Sang-Min Jang
- Developmental Therapeutics Branch, Laboratory of Molecular Pharmacology, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Robert L Walker
- Molecular Genetics Section, Genetics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Wei Tang
- Molecular Epidemiology Section, Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Stefan Ambs
- Molecular Epidemiology Section, Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Curtis C Harris
- Molecular Genetics and Carcinogenesis Section, Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Paul S Meltzer
- Molecular Genetics Section, Genetics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Laboratory of Molecular Pharmacology, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
21
|
Serna-Pujol N, Salinas-Pena M, Mugianesi F, Lopez-Anguita N, Torrent-Llagostera F, Izquierdo-Bouldstridge A, Marti-Renom MA, Jordan A. TADs enriched in histone H1.2 strongly overlap with the B compartment, inaccessible chromatin, and AT-rich Giemsa bands. FEBS J 2020; 288:1989-2013. [PMID: 32896099 DOI: 10.1111/febs.15549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/22/2020] [Accepted: 09/01/2020] [Indexed: 01/04/2023]
Abstract
Giemsa staining of metaphase chromosomes results in a characteristic banding useful for identification of chromosomes and its alterations. We have investigated in silico whether Giemsa bands (G bands) correlate with epigenetic and topological features of the interphase genome. Staining of G-positive bands decreases with GC content; nonetheless, G-negative bands are GC heterogeneous. High GC bands are enriched in active histone marks, RNA polymerase II, and SINEs and associate with gene richness, gene expression, and early replication. Low GC bands are enriched in repressive marks, lamina-associated domains, and LINEs. Histone H1 variants distribute heterogeneously among G bands: H1X is enriched at high GC bands and H1.2 is abundant at low GC, compacted bands. According to epigenetic features and H1 content, G bands can be organized in clusters useful to compartmentalize the genome. Indeed, we have obtained Hi-C chromosome interaction maps and compared topologically associating domains (TADs) and A/B compartments to G banding. TADs with high H1.2/H1X ratio strongly overlap with B compartment, late replicating, and inaccessible chromatin and low GC bands. We propose that GC content is a strong driver of chromatin compaction and 3D genome organization, that Giemsa staining recapitulates this organization denoted by high-throughput techniques, and that H1 variants distribute at distinct chromatin domains. DATABASES: Hi-C data on T47D breast cancer cells have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE147627.
Collapse
Affiliation(s)
| | | | - Francesca Mugianesi
- CNAG-CRG, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Spain
| | | | | | | | - Marc A Marti-Renom
- CNAG-CRG, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Spain.,Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, Spain.,Pompeu Fabra University, Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Albert Jordan
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Spain
| |
Collapse
|
22
|
Tang DE, Dai Y, Xu Y, Lin LW, Liu DZ, Hong XP, Ou ML, Jiang HW, Xu SH. The ubiquitinase ZFP91 promotes tumor cell survival and confers chemoresistance through FOXA1 destabilization. Carcinogenesis 2020; 41:56-66. [PMID: 31046116 DOI: 10.1093/carcin/bgz085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/08/2019] [Accepted: 05/01/2019] [Indexed: 01/17/2023] Open
Abstract
The forkhead box A1 (FOXA1), one of the forkhead class of DNA-binding proteins, functions as a transcription factor and plays a vital role in cellular control of embryonic development and cancer progression. Downregulation of FOXA1 has reported in several types of cancer, which contributes to cancer cell survival and chemoresistance. However, the mechanism for FOXA1 downregulation in cancer remains unclear. Here, we report that the ubiquitination enzyme zinc finger protein 91 (ZFP91) ubiquitinates and destabilizes FOXA1, which promotes cancer cell growth. High level of ZFP91 expression correlates with low level of FOXA1 protein in human gastric cancer (GC) cell lines and patient samples. Furthermore, ZFP91 knockdown reduces FOXA1 polyubiquitination, which decreases FOXA1 turnover and enhances cellular sensitivity to chemotherapy. Taken together, our findings reveal ZFP91-FOXA1 axis plays an important role in promoting GC progression and provides us a potential therapeutic intervention in the treatment of GC.
Collapse
Affiliation(s)
- Dong-E Tang
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong, P.R. China
| | - Yong Dai
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong, P.R. China
| | - Yong Xu
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong, P.R. China
| | - Lie-Wen Lin
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong, P.R. China
| | - Dong-Zhou Liu
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong, P.R. China
| | - Xiao-Ping Hong
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong, P.R. China
| | - Ming-Lin Ou
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong, P.R. China
| | - Hao-Wu Jiang
- Department of Anesthesiology and Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - Song-Hui Xu
- Department of Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong, P.R. China.,Department of Biochemistry, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Hankey W, Chen Z, Wang Q. Shaping Chromatin States in Prostate Cancer by Pioneer Transcription Factors. Cancer Res 2020; 80:2427-2436. [PMID: 32094298 PMCID: PMC7299826 DOI: 10.1158/0008-5472.can-19-3447] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/14/2020] [Accepted: 02/19/2020] [Indexed: 01/28/2023]
Abstract
The androgen receptor (AR) is a critical therapeutic target in prostate cancer that responds to antagonists in primary disease, but inevitably becomes reactivated, signaling onset of the lethal castration-resistant prostate cancer (CRPC) stage. Epigenomic investigation of the chromatin environment and interacting partners required for AR transcriptional activity has uncovered three pioneer factors that open up chromatin and facilitate AR-driven transcriptional programs. FOXA1, HOXB13, and GATA2 are required for normal AR transcription in prostate epithelial development and for oncogenic AR transcription during prostate carcinogenesis. AR signaling is dependent upon these three pioneer factors both before and after the clinical transition from treatable androgen-dependent disease to untreatable CRPC. Agents targeting their respective DNA binding or downstream chromatin-remodeling events have shown promise in preclinical studies of CRPC. AR-independent functions of FOXA1, HOXB13, and GATA2 are emerging as well. While all three pioneer factors exert effects that promote carcinogenesis, some of their functions may inhibit certain stages of prostate cancer progression. In all, these pioneer factors represent some of the most promising potential therapeutic targets to emerge thus far from the study of the prostate cancer epigenome.
Collapse
Affiliation(s)
- William Hankey
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina
| | - Zhong Chen
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina.
| | - Qianben Wang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
24
|
Zhang X, Chen Q, Shen J, Wang L, Cai Y, Zhu K. miR‐194 relieve neuropathic pain and prevent neuroinflammation via targeting FOXA1. J Cell Biochem 2020; 121:3278-3285. [PMID: 31930555 DOI: 10.1002/jcb.29598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Xian Zhang
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Qiuqing Chen
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Jian Shen
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Li Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST)& Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of StomatologyWuhan University Wuhan China
| | - Yi Cai
- Department of Pain, The Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and Technology Wuhan Hubei China
| | - Kai‐Run Zhu
- Department of Anesthesiology, Huai'an Second People's HospitalThe Affiliated Huai'an Hospital of Xuzhou Medical University Huai'an China
| |
Collapse
|
25
|
Zhou S, Hawley JR, Soares F, Grillo G, Teng M, Madani Tonekaboni SA, Hua JT, Kron KJ, Mazrooei P, Ahmed M, Arlidge C, Yun HY, Livingstone J, Huang V, Yamaguchi TN, Espiritu SMG, Zhu Y, Severson TM, Murison A, Cameron S, Zwart W, van der Kwast T, Pugh TJ, Fraser M, Boutros PC, Bristow RG, He HH, Lupien M. Noncoding mutations target cis-regulatory elements of the FOXA1 plexus in prostate cancer. Nat Commun 2020; 11:441. [PMID: 31974375 PMCID: PMC6978390 DOI: 10.1038/s41467-020-14318-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 12/20/2019] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer is the second most commonly diagnosed malignancy among men worldwide. Recurrently mutated in primary and metastatic prostate tumors, FOXA1 encodes a pioneer transcription factor involved in disease onset and progression through both androgen receptor-dependent and androgen receptor-independent mechanisms. Despite its oncogenic properties however, the regulation of FOXA1 expression remains unknown. Here, we identify a set of six cis-regulatory elements in the FOXA1 regulatory plexus harboring somatic single-nucleotide variants in primary prostate tumors. We find that deletion and repression of these cis-regulatory elements significantly decreases FOXA1 expression and prostate cancer cell growth. Six of the ten single-nucleotide variants mapping to FOXA1 regulatory plexus significantly alter the transactivation potential of cis-regulatory elements by modulating the binding of transcription factors. Collectively, our results identify cis-regulatory elements within the FOXA1 plexus mutated in primary prostate tumors as potential targets for therapeutic intervention. FOXA1 pioneer transcription factor is recurrently mutated in primary and metastatic prostate tumors. Here, authors identify a set of six cis-regulatory elements in the FOXA1 regulatory plexus harboring somatic SNVs in primary prostate tumors and characterize their role in regulating FOXA1 expression and prostate cancer cell growth.
Collapse
Affiliation(s)
- Stanley Zhou
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - James R Hawley
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Fraser Soares
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Giacomo Grillo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mona Teng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Seyed Ali Madani Tonekaboni
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Junjie Tony Hua
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Ken J Kron
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Parisa Mazrooei
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Musaddeque Ahmed
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Christopher Arlidge
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Hwa Young Yun
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Vincent Huang
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | | | | | - Yanyun Zhu
- Division of Oncogenomics, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tesa M Severson
- Division of Oncogenomics, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alex Murison
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sarina Cameron
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, the Netherlands Cancer Institute, Amsterdam, The Netherlands.,Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Theodorus van der Kwast
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Michael Fraser
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Ontario Institute for Cancer Research, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, CA, Canada.,Department of Human Genetics, University of California, Los Angeles, CA, USA.,Department of Urology, University of California, Los Angeles, CA, USA.,Institute for Precision Health, University of California, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Robert G Bristow
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada.,CRUK Manchester Institute and Manchester Cancer Research Centre, Manchester, UK.,Division of Cancer Sciences, Faculty of Biology, Health and Medicine, University of Manchester, Manchester, UK.,The Christie NHS Foundation Trust, Manchester, UK
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. .,Ontario Institute for Cancer Research, Toronto, ON, Canada.
| |
Collapse
|
26
|
Beesley J, Sivakumaran H, Moradi Marjaneh M, Lima LG, Hillman KM, Kaufmann S, Tuano N, Hussein N, Ham S, Mukhopadhyay P, Kazakoff S, Lee JS, Michailidou K, Barnes DR, Antoniou AC, Fachal L, Dunning AM, Easton DF, Waddell N, Rosenbluh J, Möller A, Chenevix-Trench G, French JD, Edwards SL. Chromatin interactome mapping at 139 independent breast cancer risk signals. Genome Biol 2020; 21:8. [PMID: 31910858 PMCID: PMC6947858 DOI: 10.1186/s13059-019-1877-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/01/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Genome-wide association studies have identified 196 high confidence independent signals associated with breast cancer susceptibility. Variants within these signals frequently fall in distal regulatory DNA elements that control gene expression. RESULTS We designed a Capture Hi-C array to enrich for chromatin interactions between the credible causal variants and target genes in six human mammary epithelial and breast cancer cell lines. We show that interacting regions are enriched for open chromatin, histone marks for active enhancers, and transcription factors relevant to breast biology. We exploit this comprehensive resource to identify candidate target genes at 139 independent breast cancer risk signals and explore the functional mechanism underlying altered risk at the 12q24 risk region. CONCLUSIONS Our results demonstrate the power of combining genetics, computational genomics, and molecular studies to rationalize the identification of key variants and candidate target genes at breast cancer GWAS signals.
Collapse
Affiliation(s)
- Jonathan Beesley
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Haran Sivakumaran
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Mahdi Moradi Marjaneh
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Current address: UK Dementia Research Institute, Imperial College London, London, UK
| | - Luize G Lima
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kristine M Hillman
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Susanne Kaufmann
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Natasha Tuano
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Nehal Hussein
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Sunyoung Ham
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Pamela Mukhopadhyay
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Stephen Kazakoff
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jason S Lee
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Daniel R Barnes
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Laura Fachal
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Nicola Waddell
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Joseph Rosenbluh
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Andreas Möller
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Juliet D French
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | - Stacey L Edwards
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| |
Collapse
|
27
|
Hernández-Lemus E, Reyes-Gopar H, Espinal-Enríquez J, Ochoa S. The Many Faces of Gene Regulation in Cancer: A Computational Oncogenomics Outlook. Genes (Basel) 2019; 10:E865. [PMID: 31671657 PMCID: PMC6896122 DOI: 10.3390/genes10110865] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022] Open
Abstract
Cancer is a complex disease at many different levels. The molecular phenomenology of cancer is also quite rich. The mutational and genomic origins of cancer and their downstream effects on processes such as the reprogramming of the gene regulatory control and the molecular pathways depending on such control have been recognized as central to the characterization of the disease. More important though is the understanding of their causes, prognosis, and therapeutics. There is a multitude of factors associated with anomalous control of gene expression in cancer. Many of these factors are now amenable to be studied comprehensively by means of experiments based on diverse omic technologies. However, characterizing each dimension of the phenomenon individually has proven to fall short in presenting a clear picture of expression regulation as a whole. In this review article, we discuss some of the more relevant factors affecting gene expression control both, under normal conditions and in tumor settings. We describe the different omic approaches that we can use as well as the computational genomic analysis needed to track down these factors. Then we present theoretical and computational frameworks developed to integrate the amount of diverse information provided by such single-omic analyses. We contextualize this within a systems biology-based multi-omic regulation setting, aimed at better understanding the complex interplay of gene expression deregulation in cancer.
Collapse
Affiliation(s)
- Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico.
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Helena Reyes-Gopar
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico.
| | - Jesús Espinal-Enríquez
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico.
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Soledad Ochoa
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico.
| |
Collapse
|
28
|
Barbosa JMG, Pereira NZ, David LC, de Oliveira CG, Soares MFG, Avelino MAG, de Oliveira AE, Shokry E, Filho NRA. Cerumenogram: a new frontier in cancer diagnosis in humans. Sci Rep 2019; 9:11722. [PMID: 31409861 PMCID: PMC6692389 DOI: 10.1038/s41598-019-48121-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer is the deadliest human disease and the development of new diagnosis methods is important to increase the chances of a cure. In this work it was developed a new method, named here for the first time as cerumenogram, using cerumen (earwax) as a new biomatrix for diagnosis. Earwax samples collected from cancer patients (cancer group) and cancer-free patients (control group) were analyzed by Headspace/Gas Chromatography-Mass Spectrometry (HS/GC-MS), following with multivariate analysis steps to process the raw data generated. In total, 158 volatile organic metabolites (VOMs) were identified in the cerumen samples. The 27 selected as potential VOMs biomarkers for cancer provided 100% discrimination between the cancer and control groups. This new test can thus be routinely employed for cancer diagnoses that is non-invasive, fast, cheap, and highly accurate.
Collapse
Affiliation(s)
- João Marcos Gonçalves Barbosa
- Laboratory of Extraction and Separation Methods (LAMES), Institute of Chemistry, Federal University of Goiás (UFG), Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil.
| | - Naiara Zedes Pereira
- Laboratory of Extraction and Separation Methods (LAMES), Institute of Chemistry, Federal University of Goiás (UFG), Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil
| | - Lurian Caetano David
- Laboratory of Extraction and Separation Methods (LAMES), Institute of Chemistry, Federal University of Goiás (UFG), Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil
| | - Camilla Gabriela de Oliveira
- Clinical Hospital, Federal University of Goiás (UFG), Campus I - Colemar Natal e Silva, 74605-020, Goiânia, GO, Brazil
| | - Marina Ferraz Gontijo Soares
- Clinical Hospital, Federal University of Goiás (UFG), Campus I - Colemar Natal e Silva, 74605-020, Goiânia, GO, Brazil
| | - Melissa Ameloti Gomes Avelino
- Clinical Hospital, Federal University of Goiás (UFG), Campus I - Colemar Natal e Silva, 74605-020, Goiânia, GO, Brazil
| | - Anselmo Elcana de Oliveira
- Laboratory of Theoretical and Computational Chemistry (LQTC), Institute of Chemistry, Federal University of Goiás (UFG), Campus II - Samambaia, 74690-970, Goiânia, GO, Brazil
| | - Engy Shokry
- Laboratory of Extraction and Separation Methods (LAMES), Institute of Chemistry, Federal University of Goiás (UFG), Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil
| | - Nelson Roberto Antoniosi Filho
- Laboratory of Extraction and Separation Methods (LAMES), Institute of Chemistry, Federal University of Goiás (UFG), Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil. .,Laboratory of Extraction and Separation Methods (LAMES), Institute of Chemistry, Federal University of Goiás (UFG), Campus II - Samambaia, 74690-900, Goiânia, GO, Brazil.
| |
Collapse
|
29
|
Park YL, Kim SH, Park SY, Jung MW, Ha SY, Choi JH, Myung DS, Cho SB, Lee WS, Kim HS, Joo YE. Forkhead‑box A1 regulates tumor cell growth and predicts prognosis in colorectal cancer. Int J Oncol 2019; 54:2169-2178. [PMID: 31081047 DOI: 10.3892/ijo.2019.4771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/26/2019] [Indexed: 11/06/2022] Open
Abstract
Forkhead box A1 (FOXA1) functions as a tumor suppressor gene or an oncogene in various types of cancer; however, the distinct function of FOXA1 in colorectal cancer is unclear. The present study aimed to evaluate whether FOXA1 affects the oncogenic behavior of colorectal cancer cells, and to investigate its prognostic value in colorectal cancer. The impact of FOXA1 on tumor cell behavior was investigated using small interfering RNA and the pcDNA6‑myc vector in human colorectal cancer cell lines. To investigate the role of FOXA1 in the progression of human colorectal cancer, an immunohistochemical technique was used to localize FOXA1 protein in paraffin‑embedded tissue blocks obtained from 403 patients with colorectal cancer. Tumor cell apoptosis and proliferation were evaluated using a terminal deoxynucleotidyl transferase‑mediated dUTP nick‑end labeling assay and Ki‑67 immunohistochemical staining, respectively. FOXA1 knockdown inhibited tumor cell invasion in colorectal cancer cells, and induced apoptosis and cell cycle arrest. FOXA1 knockdown activated cleaved caspase‑poly (ADP‑ribose) polymerase, upregulated the expression of p53 upregulated modulator of apoptosis, and downregulated BH3 interacting domain death agonist and myeloid cell leukemia‑1, leading to the induction of apoptosis. FOXA1 knockdown increased the phosphorylation level of signal transducer and activator of tran-scription‑3. By contrast, these results were reversed following the overexpression of FOXA1. The overexpression of FOXA1 was associated with differentiation, lymphovascular invasion, advanced tumor stage, depth of invasion, lymph node metastasis and poor survival rate. The mean Ki‑67 labeling index value of FOXA1‑positive tumors was significantly higher than that of FOXA1‑negative tumors. However, no significant association was observed between the expression of FOXA1 and the mean apoptotic index value. These results indicate that FOXA1 is associated with tumor progression via the modulation of tumor cell survival in human colorectal cancer.
Collapse
Affiliation(s)
- Young-Lan Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501‑757, Republic of Korea
| | - Seung-Hun Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501‑757, Republic of Korea
| | - Sun-Young Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501‑757, Republic of Korea
| | - Min-Woo Jung
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501‑757, Republic of Korea
| | - Sang-Yoon Ha
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501‑757, Republic of Korea
| | - Jung-Ho Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501‑757, Republic of Korea
| | - Dae-Seong Myung
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501‑757, Republic of Korea
| | - Sung-Bum Cho
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501‑757, Republic of Korea
| | - Wan-Sik Lee
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501‑757, Republic of Korea
| | - Hyun-Soo Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501‑757, Republic of Korea
| | - Young-Eun Joo
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 501‑757, Republic of Korea
| |
Collapse
|
30
|
De Lara S, Nyqvist J, Werner Rönnerman E, Helou K, Kenne Sarenmalm E, Einbeigi Z, Karlsson P, Parris TZ, Kovács A. The prognostic relevance of FOXA1 and Nestin expression in breast cancer metastases: a retrospective study of 164 cases during a 10-year period (2004-2014). BMC Cancer 2019; 19:187. [PMID: 30819139 PMCID: PMC6394077 DOI: 10.1186/s12885-019-5373-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/17/2019] [Indexed: 12/30/2022] Open
Abstract
Background Current prognostic markers cannot adequately predict the clinical outcome of breast cancer patients. Therefore, additional biomarkers need to be included in routine immune panels. FOXA1 was a significant predictor of favorable outcome in primary breast cancer, while Nestin expression is preferentially found in triple-negative tumors with increased rate of nodal metastases, and reduced survival. No studies have investigated the prognostic value of FOXA1 and Nestin expression in breast cancer metastases. Methods Breast cancer metastases (n = 164) from various anatomical sites were retrospectively analyzed by immunohistochemistry for FOXA1, Nestin and GATA3 expression. Cox regression analysis assessed the prognostic value of FOXA1 and Nestin expression. Results In breast cancer metastases, FOXA1 expression was associated with Nestin-negativity, GATA3-positivity, ER-positivity, HER2-positivity and non-triple-negative status (P < 0.05). In contrast, Nestin expression was associated with FOXA1-negative, GATA3-negative, ER-negative, and triple-negative metastases (P < 0.05). Univariate Cox regression analysis showed FOXA1 expression was predictive of overall survival (OS, P = 0.00048) and metastasis-free survival (DMFS, P = 0.0011), as well as, distant metastasis-free survival in ER-positive patients (P = 0.036) and overall survival in ER-negative patients (P = 0.024). Multivariate analysis confirmed the significance of FOXA1 for both survival endpoints in metastatic breast cancer patients (OS, P = 0.0033; DMFS, P = 0.015). Conclusions In our study, FOXA1 was expressed mostly in ER-positive breast cancer metastases. Expression of Nestin was related to triple-negative metastases, where brain was the most frequent metastatic site. These findings highlight the clinical utility of FOXA1 and Nestin expression and warrant their inclusion in routine immunohistochemical panels for breast carcinoma.
Collapse
Affiliation(s)
- Shahin De Lara
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gula stråket 8, SE-41345, Gothenburg, Sweden
| | - Jenny Nyqvist
- Department of Surgery, Skaraborgs Hospital, Lidköping and Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Elisabeth Werner Rönnerman
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gula stråket 8, SE-41345, Gothenburg, Sweden.,Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | | | - Zakaria Einbeigi
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gula stråket 8, SE-41345, Gothenburg, Sweden.
| |
Collapse
|
31
|
Bach DH, Long NP, Luu TTT, Anh NH, Kwon SW, Lee SK. The Dominant Role of Forkhead Box Proteins in Cancer. Int J Mol Sci 2018; 19:E3279. [PMID: 30360388 PMCID: PMC6213973 DOI: 10.3390/ijms19103279] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/16/2022] Open
Abstract
Forkhead box (FOX) proteins are multifaceted transcription factors that are significantly implicated in cancer, with various critical roles in biological processes. Herein, we provide an overview of several key members of the FOXA, FOXC, FOXM1, FOXO and FOXP subfamilies. Important pathophysiological processes of FOX transcription factors at multiple levels in a context-dependent manner are discussed. We also specifically summarize some major aspects of FOX transcription factors in association with cancer research such as drug resistance, tumor growth, genomic alterations or drivers of initiation. Finally, we suggest that targeting FOX proteins may be a potential therapeutic strategy to combat cancer.
Collapse
Affiliation(s)
- Duc-Hiep Bach
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | | | | | - Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
32
|
Mihaylova Y, Abnave P, Kao D, Hughes S, Lai A, Jaber-Hijazi F, Kosaka N, Aboobaker AA. Conservation of epigenetic regulation by the MLL3/4 tumour suppressor in planarian pluripotent stem cells. Nat Commun 2018; 9:3633. [PMID: 30194301 PMCID: PMC6128892 DOI: 10.1038/s41467-018-06092-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/13/2018] [Indexed: 12/18/2022] Open
Abstract
Currently, little is known about the evolution of epigenetic regulation in animal stem cells. Here we demonstrate, using the planarian stem cell system to investigate the role of the COMPASS family of MLL3/4 histone methyltransferases that their function as tumor suppressors in mammalian stem cells is conserved over a long evolutionary distance. To investigate the potential conservation of a genome-wide epigenetic regulatory program in animal stem cells, we assess the effects of Mll3/4 loss of function by performing RNA-seq and ChIP-seq on the G2/M planarian stem cell population, part of which contributes to the formation of outgrowths. We find many oncogenes and tumor suppressors among the affected genes that are likely candidates for mediating MLL3/4 tumor suppression function. Our work demonstrates conservation of an important epigenetic regulatory program in animals and highlights the utility of the planarian model system for studying epigenetic regulation.
Collapse
Affiliation(s)
- Yuliana Mihaylova
- Department of Zoology, Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK
| | - Prasad Abnave
- Department of Zoology, Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK
| | - Damian Kao
- Department of Zoology, Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK
| | - Samantha Hughes
- HAN University of Applied Sciences, Institute of Applied Sciences, Laan van Scheut 2, 6525EM, Nijmegen, The Netherlands
| | - Alvina Lai
- Department of Zoology, Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK
| | - Farah Jaber-Hijazi
- Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Nobuyoshi Kosaka
- Department of Zoology, Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK
| | - A Aziz Aboobaker
- Department of Zoology, Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK.
| |
Collapse
|
33
|
Mori H, Cardiff RD, Borowsky AD. Aging Mouse Models Reveal Complex Tumor-Microenvironment Interactions in Cancer Progression. Front Cell Dev Biol 2018; 6:35. [PMID: 29651417 PMCID: PMC5884881 DOI: 10.3389/fcell.2018.00035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/15/2018] [Indexed: 12/15/2022] Open
Abstract
Mouse models and genetically engineered mouse models (GEMM) are essential experimental tools for the understanding molecular mechanisms within complex biological systems. GEMM are especially useful for inferencing phenocopy information to genetic human diseases such as breast cancer. Human breast cancer modeling in mice most commonly employs mammary epithelial-specific promoters to investigate gene function(s) and, in particular, putative oncogenes. Models are specifically useful in the mammary epithelial cell in the context of the complete mammary gland environment. Gene targeted knockout mice including conditional targeting to specific mammary cells can reveal developmental defects in mammary organogenesis and demonstrate the importance of putative tumor suppressor genes. Some of these models demonstrate a non-traditional type of tumor suppression which involves interplay between the tumor susceptible cell and its host/environment. These GEMM help to reveal the processes of cancer progression beyond those intrinsic to cancer cells. Furthermore, the, analysis of mouse models requires appropriate consideration of mouse strain, background, and environmental factors. In this review, we compare aging-related factors in mouse models for breast cancer. We introduce databases of GEMM attributes and colony functional variations.
Collapse
Affiliation(s)
- Hidetoshi Mori
- Center for Comparative Medicine, University of California, Davis, Davis, CA, United States
| | - Robert D Cardiff
- Center for Comparative Medicine, University of California, Davis, Davis, CA, United States.,Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Alexander D Borowsky
- Center for Comparative Medicine, University of California, Davis, Davis, CA, United States.,Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
34
|
Yang H, Jaeger M, Walker A, Wei D, Leiker K, Weitao T. Break Breast Cancer Addiction by CRISPR/Cas9 Genome Editing. J Cancer 2018; 9:219-231. [PMID: 29344267 PMCID: PMC5771328 DOI: 10.7150/jca.22554] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the leading diagnosed cancer for women globally. Evolution of breast cancer in tumorigenesis, metastasis and treatment resistance appears to be driven by the aberrant gene expression and protein degradation encoded by the cancer genomes. The uncontrolled cancer growth relies on these cellular events, thus constituting the cancerous programs and rendering the addiction towards them. These programs are likely the potential anticancer biomarkers for Personalized Medicine of breast cancer. This review intends to delineate the impact of the CRSPR/Cas-mediated genome editing in identification and validation of these anticancer biomarkers. It reviews the progress in three aspects of CRISPR/Cas9-mediated editing of the breast cancer genomes: Somatic genome editing, transcription and protein degradation addictions.
Collapse
Affiliation(s)
- Haitao Yang
- Laboratory for Cancer Genome Editing, Zhuhai Lifecode Medical Technologies. Inc. Department of Prenatal Diagnosis, Huizhou 2nd Hospital for Children and Women, #101 University Road, Tangjiawan, Zhuhai, 518900, Guangdong, China
| | - MariaLynn Jaeger
- College of Science and Mathematics, Southwest Baptist University, 1600 University Avenue, Bolivar, Missouri 65613, USA
| | - Averi Walker
- College of Science and Mathematics, Southwest Baptist University, 1600 University Avenue, Bolivar, Missouri 65613, USA
| | - Daniel Wei
- University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA
| | - Katie Leiker
- College of Science and Mathematics, Southwest Baptist University, 1600 University Avenue, Bolivar, Missouri 65613, USA
| | - Tao Weitao
- College of Science and Mathematics, Southwest Baptist University, 1600 University Avenue, Bolivar, Missouri 65613, USA
| |
Collapse
|
35
|
Jägle S, Busch H, Freihen V, Beyes S, Schrempp M, Boerries M, Hecht A. SNAIL1-mediated downregulation of FOXA proteins facilitates the inactivation of transcriptional enhancer elements at key epithelial genes in colorectal cancer cells. PLoS Genet 2017; 13:e1007109. [PMID: 29155818 PMCID: PMC5714381 DOI: 10.1371/journal.pgen.1007109] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 12/04/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023] Open
Abstract
Phenotypic conversion of tumor cells through epithelial-mesenchymal transition (EMT) requires massive gene expression changes. How these are brought about is not clear. Here we examined the impact of the EMT master regulator SNAIL1 on the FOXA family of transcription factors which are distinguished by their particular competence to induce chromatin reorganization for the activation of transcriptional enhancer elements. We show that the expression of SNAIL1 and FOXA genes is anticorrelated in transcriptomes of colorectal tumors and cell lines. In cellular EMT models, ectopically expressed Snail1 directly represses FOXA1 and triggers downregulation of all FOXA family members, suggesting that loss of FOXA expression promotes EMT. Indeed, cells with CRISPR/Cas9-induced FOXA-deficiency acquire mesenchymal characteristics. Furthermore, ChIP-seq data analysis of FOXA chromosomal distribution in relation to chromatin structural features which characterize distinct states of transcriptional activity, revealed preferential localization of FOXA factors to transcriptional enhancers at signature genes that distinguish epithelial from mesenchymal colon tumors. To validate the significance of this association, we investigated the impact of FOXA factors on structure and function of enhancers at the CDH1, CDX2 and EPHB3 genes. FOXA-deficiency and expression of dominant negative FOXA2 led to chromatin condensation at these enhancer elements. Site-directed mutagenesis of FOXA binding sites in reporter gene constructs and by genome-editing in situ impaired enhancer activity and completely abolished the active chromatin state of the EPHB3 enhancer. Conversely, expression of FOXA factors in cells with inactive CDX2 and EPHB3 enhancers led to chromatin opening and de novo deposition of the H3K4me1 and H3K27ac marks. These findings establish the pioneer function of FOXA factors at enhancer regions of epithelial genes and demonstrate their essential role in maintaining enhancer structure and function. Thus, by repressing FOXA family members, SNAIL1 targets transcription factors at strategically important positions in gene-regulatory hierarchies, which may facilitate transcriptional reprogramming during EMT. Cancer patient mortality is overwhelmingly due to distant organ metastases. Epithelial-mesenchymal transition is a process thought to facilitate local invasion and dissemination of cancer cells, thereby promoting metastasis. The conversion of epithelial cells into mesenchymal, fibroblast-like cells requires profound gene expression changes. A few transcription factors like SNAIL1 can initiate these changes, but are unlikely to be solely responsible for all of them. In our study we asked, whether destabilization of epithelial gene expression programs could involve FOXA transcription factors. FOXA factors represent a special subgroup of regulatory proteins, so-called pioneer factors, with unique roles in the activation of transcriptional enhancers which are key regulatory DNA elements that orchestrate spatio-temporal gene expression. In a model of colorectal cancer we found that SNAIL1 represses FOXA factors, and demonstrate that FOXA factors are associated with enhancer elements at epithelial signature genes. Indeed, FOXA factors are sufficient to initiate enhancer activation and necessary to maintain their activity. Our findings indicate that SNAIL1 induces pervasive repression of epithelial genes through a hierarchical scheme of alterations in transcription factor expression which may be applicable to other instances of cell fate changes and transcriptional reprogramming.
Collapse
Affiliation(s)
- Sabine Jägle
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hauke Busch
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Vivien Freihen
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sven Beyes
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Monika Schrempp
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Hecht
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
36
|
Mori H, Chen JQ, Cardiff RD, Pénzváltó Z, Hubbard NE, Schuetter L, Hovey RC, Trott JF, Borowsky AD. Pathobiology of the 129:Stat1 -/- mouse model of human age-related ER-positive breast cancer with an immune infiltrate-excluded phenotype. Breast Cancer Res 2017; 19:102. [PMID: 28865492 PMCID: PMC5581425 DOI: 10.1186/s13058-017-0892-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 08/07/2017] [Indexed: 01/05/2023] Open
Abstract
Background Stat1 gene-targeted knockout mice (129S6/SvEvTac-Stat1tm1Rds) develop estrogen receptor-positive (ER+), luminal-type mammary carcinomas at an advanced age. There is evidence for both host environment as well as tumor cell-intrinsic mechanisms to initiate tumorigenesis in this model. In this report, we summarize details of the systemic and mammary pathology at preneoplastic and tumor-bearing time points. In addition, we investigate tumor progression in the 129:Stat1−/− host compared with wild-type 129/SvEv, and we describe the immune cell reaction to the tumors. Methods Mice housed and treated according to National Institutes of Health guidelines and Institutional Animal Care and Use Committee-approved methods were evaluated by histopathology, and their tissues were subjected to immunohistochemistry with computer-assisted quantitative image analysis. Tumor cell culture and conditioned media from cell culture were used to perform macrophage (RAW264.7) cell migration assays, including the 129:Stat1−/−-derived SSM2 cells as well as control Met1 and NDL tumor cells and EpH4 normal cells. Results Tumorigenesis in 129:Stat1−/− originates from a population of FoxA1+ large oval pale cells that initially appear and accumulate along the mammary ducts in segments or regions of the gland prior to giving rise to mammary intraepithelial neoplasias. Progression to invasive carcinoma is accompanied by a marked local stromal and immune cell response composed predominantly of T cells and macrophages. In conditioned media experiments, cells derived from 129:Stat1−/− tumors secrete both chemoattractant and chemoinhibitory factors, with greater attraction in the extracellular vesicular fraction and inhibition in the soluble fraction. The result appears to be recruitment of the immune reaction to the periphery of the tumor, with exclusion of immune cell infiltration into the tumor. Conclusions 129:Stat1−/− is a unique model for studying the critical origins and risk reduction strategies in age-related ER+ breast cancer. In addition, it can be used in preclinical trials of hormonal and targeted therapies as well as immunotherapies. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0892-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hidetoshi Mori
- Center for Comparative Medicine, University of California at Davis, Davis, CA, USA
| | - Jane Q Chen
- Center for Comparative Medicine, University of California at Davis, Davis, CA, USA
| | - Robert D Cardiff
- Center for Comparative Medicine, University of California at Davis, Davis, CA, USA.,Department of Pathology and Laboratory Medicine, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Zsófia Pénzváltó
- Center for Comparative Medicine, University of California at Davis, Davis, CA, USA
| | - Neil E Hubbard
- Center for Comparative Medicine, University of California at Davis, Davis, CA, USA
| | - Louis Schuetter
- Center for Comparative Medicine, University of California at Davis, Davis, CA, USA
| | - Russell C Hovey
- Department of Animal Science, University of California at Davis, Davis, CA, USA
| | - Josephine F Trott
- Department of Animal Science, University of California at Davis, Davis, CA, USA
| | - Alexander D Borowsky
- Center for Comparative Medicine, University of California at Davis, Davis, CA, USA. .,Department of Pathology and Laboratory Medicine, School of Medicine, University of California at Davis, Sacramento, CA, USA.
| |
Collapse
|
37
|
Zhang W, Duan N, Song T, Li Z, Zhang C, Chen X. The Emerging Roles of Forkhead Box (FOX) Proteins in Osteosarcoma. J Cancer 2017; 8:1619-1628. [PMID: 28775781 PMCID: PMC5535717 DOI: 10.7150/jca.18778] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/27/2017] [Indexed: 12/22/2022] Open
Abstract
Osteosarcoma is the most common bone cancer primarily occurring in children and young adults. Over the past few years, the deregulation of a superfamily transcription factors, known as forkhead box (FOX) proteins, has been demonstrated to contribute to the pathogenesis of osteosarcoma. Molecular mechanism studies have demonstrated that FOX family proteins participate in a variety of signaling pathways and that their expression can be regulated by multiple factors. The dysfunction of FOX genes can alter osteosarcoma cell differentiation, metastasis and progression. In this review, we summarized the evidence that FOX genes play direct or indirect roles in the development and progression of osteosarcoma, and evaluated the emerging role of FOX proteins as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Wentao Zhang
- Department of Orthopaedics, Xi'an Hong-Hui Hospital affiliated to medical college of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710054
| | - Ning Duan
- Department of Orthopaedics, Xi'an Hong-Hui Hospital affiliated to medical college of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710054
| | - Tao Song
- Department of Orthopaedics, Xi'an Hong-Hui Hospital affiliated to medical college of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710054
| | - Zhong Li
- Department of Orthopaedics, Xi'an Hong-Hui Hospital affiliated to medical college of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710054
| | - Caiguo Zhang
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Xun Chen
- Department of Orthopaedics, Xi'an Hong-Hui Hospital affiliated to medical college of Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710054
| |
Collapse
|
38
|
Li H, Chen L, Zhang M, Zhang B. Foxa1 gene and protein in developing rat eccrine sweat glands. J Mol Histol 2017; 48:1-7. [PMID: 27787633 DOI: 10.1007/s10735-016-9700-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/19/2016] [Indexed: 02/05/2023]
Abstract
To investigate the development of eccrine sweat glands and the expression of Foxa1 genes and proteins in the course of development, the footpads from E15.5 to E21.5, P1-P12, P14, P21, P28 and P56 rats were subjected to immunofluorescence staining of FoxA1 and double immunofluorescence staining of K14/α-SMA, FoxA1/K7 and FoxA1/α-SMA, and were processed for Foxa1 gene detection by RT-qPCR. The results showed that rat eccrine sweat gland germs was first observed emerging from the basal layer of epidermis at E19.5, and then elongated downward into the dermis, forming straight ducts by E21.5. Early development of the secretory segments appeared at P1. The Foxa1 gene was not expressed in rat footpads until P2, but from P2 to P5, its expression up-regulated sharply, and thereafter maintained at a high level until adulthood. FoxA1 protein was first observed at P6 in eccrine sweat glands, four days after initial detection of Foxa1 gene transcripts. In skin, FoxA1-positive cells were present exclusively in secretory coils, with 95% being K7-positive secretory cells and 5% being α-SMA-positive myoepithelial cells. We conclude that Foxa1 can be used as a marker of eccrine sweat glands in skin and also as a marker of secretory coils, and Foxa1 is related to the development of secretory coils.
Collapse
Affiliation(s)
- Haihong Li
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China.
- Research Center for Translational Medicine, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China.
| | - Liyun Chen
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| | - Mingjun Zhang
- Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| | - Bingna Zhang
- Research Center for Translational Medicine, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| |
Collapse
|
39
|
Zinovyeva MV, Kuzmich AI, Monastyrskaya GS, Sverdlov ED. The role of FOXA subfamily factors in embryonic development and carcinogenesis of the pancreas. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2017. [DOI: 10.3103/s0891416816030113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|