1
|
Le H, Fang J, Lin J, Zhang D, Wang T, Liu Q, Yu T. Upconversion imaging through scattering media in noisy environments. OPTICS LETTERS 2025; 50:2675-2678. [PMID: 40232468 DOI: 10.1364/ol.554283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/18/2025] [Indexed: 04/16/2025]
Abstract
Imaging through strongly scattering media in noisy environments is full of challenges. To address this issue, we present an imager based on an upconversion single-photon detector. This upconversion detector shows superior noise tolerance due to sharp optical time gating, quantum mode selectivity, and parametric frequency upconversion. To demonstrate the noise tolerance of the system, we experimentally compared the performance of a near-infrared detector and an upconversion detector, focusing on the influences of integration time, noise intensity, and object surface type on imaging quality. Experimental results show that, compared with the near-infrared detector, the upconversion detector exhibits superior robustness in high-noise environments, capable of obtaining clear images through strongly scattering media with optical thickness up to 12ls and a signal-to-noise ratio of 1/400.
Collapse
|
2
|
Yan F, Zhang Q, Mutembei BM, Wang C, Alhajeri ZA, Pandit K, Zhang F, Zhang K, Yu Z, Fung KM, Elgenaid SN, Parrack P, Ali W, Hostetler CA, Milam AN, Nave B, Squires R, Martins PN, Battula NR, Potter S, Pan C, Chen Y, Tang Q. Comprehensive Evaluation of Human Donor Liver Viability with Polarization-Sensitive Optical Coherence Tomography. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.31.25321497. [PMID: 40236439 PMCID: PMC11998830 DOI: 10.1101/2025.03.31.25321497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Human liver transplantation is severely constrained by a critical shortage of donor livers, with approximately one quarter of patients on the waiting list dying due to the scarcity of viable organs. Current liver viability assessments, which rely on invasive pathological methods, are hampered by limited sampling from biopsies, particularly in marginal livers from extended criteria donors (ECD) intended to expand the donor pool. Consequently, there is a pressing need for more comprehensive and non-invasive evaluation techniques to meet the escalating demand for liver transplants. In this study, we propose the use of polarization-sensitive optical coherence tomography (PS-OCT) to perform a thorough viability evaluation across the entire surface of donor livers. PS-OCT imaging was conducted on multiple regions, achieving near-complete coverage of the liver surface, and the findings were cross-validated with histopathological evaluations. The analysis of hepatic parameters derived from pathology highlighted tissue heterogeneity. Leveraging machine learning and texture analysis, we quantified hepatic steatosis, fibrosis, inflammation, and necrosis, and established strong correlations (≥ 80%) between PS-OCT quantifications and pathological assessments. PS-OCT offers a non-invasive assessment of liver viability by quantifying hepatic parenchymal parameters across the entire donor liver, significantly complementing current pathological analysis. These results suggest that PS-OCT provides a robust, non-invasive approach to assessing donor liver viability, which could potentially decrease the discard rate of higher risk livers, thereby expanding the donor pool and reducing the inadvertent use of those livers unsuitable for transplantation.
Collapse
|
3
|
Weinberg G, Sunray E, Katz O. Noninvasive megapixel fluorescence microscopy through scattering layers by a virtual incoherent reflection matrix. SCIENCE ADVANCES 2024; 10:eadl5218. [PMID: 39565861 PMCID: PMC11578164 DOI: 10.1126/sciadv.adl5218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
Optical-resolution fluorescence imaging through and within complex samples presents a major challenge due to random light scattering, with substantial implications across multiple fields. While considerable advancements in coherent imaging through severe multiple scattering have been recently introduced by reflection matrix processing, approaches that tackle scattering in incoherent fluorescence imaging have been limited to sparse targets, require high-resolution control of the illumination or detection wavefronts, or require a very large number of measurements. Here, we present an approach that allows the adaptation of well-established reflection matrix techniques to scattering compensation in incoherent fluorescence imaging. We experimentally demonstrate that a small number of conventional wide-field fluorescence microscope images acquired under unknown random illuminations can effectively be used to construct a virtual fluorescence-based reflection matrix. Processing this matrix by an adapted matrix-based scattering compensation algorithm allows reconstructing megapixel-scale images from <150 acquired frames, without any spatial light modulators or computationally intensive processing.
Collapse
Affiliation(s)
| | | | - Ori Katz
- Institute of Applied Physics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
4
|
Yasuhiko O, Takeuchi K. Bidirectional in-silico clearing approach for deep refractive-index tomography using a sparsely sampled transmission matrix. BIOMEDICAL OPTICS EXPRESS 2024; 15:5296-5313. [PMID: 39296398 PMCID: PMC11407245 DOI: 10.1364/boe.524859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/21/2024] [Accepted: 08/04/2024] [Indexed: 09/21/2024]
Abstract
Optical diffraction tomography (ODT) enables the label-free volumetric imaging of biological specimens by mapping their three-dimensional refractive index (RI) distribution. However, the depth of imaging achievable is restricted due to spatially inhomogeneous RI distributions that induce multiple scattering. In this study, we introduce a novel ODT technique named bidirectional in-silico clearing RI tomography. This method incorporates both forward and reversed in-silico clearing. For the reversed in-silico clearing, we have integrated an ODT reconstruction framework with a transmission matrix approach, which enables RI reconstruction and wave backpropagation from the illumination side without necessitating modifications to the conventional ODT setup. Furthermore, the framework employs a sparsely sampled transmission matrix, significantly reducing the requisite number of measurements and computational expenses. Employing this proposed technique, we successfully imaged a spheroid with a thickness of 263 µm, corresponding to 11.4 scattering mean free paths. This method was successfully applied to various biological specimens, including liver and colon spheroids, demonstrating consistent imaging performance across samples with varied morphologies.
Collapse
Affiliation(s)
- Osamu Yasuhiko
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamana-ku, Hamamatsu, Shizuoka 434-8601, Japan
| | - Kozo Takeuchi
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamana-ku, Hamamatsu, Shizuoka 434-8601, Japan
| |
Collapse
|
5
|
Rosen J, Alford S, Allan B, Anand V, Arnon S, Arockiaraj FG, Art J, Bai B, Balasubramaniam GM, Birnbaum T, Bisht NS, Blinder D, Cao L, Chen Q, Chen Z, Dubey V, Egiazarian K, Ercan M, Forbes A, Gopakumar G, Gao Y, Gigan S, Gocłowski P, Gopinath S, Greenbaum A, Horisaki R, Ierodiaconou D, Juodkazis S, Karmakar T, Katkovnik V, Khonina SN, Kner P, Kravets V, Kumar R, Lai Y, Li C, Li J, Li S, Li Y, Liang J, Manavalan G, Mandal AC, Manisha M, Mann C, Marzejon MJ, Moodley C, Morikawa J, Muniraj I, Narbutis D, Ng SH, Nothlawala F, Oh J, Ozcan A, Park Y, Porfirev AP, Potcoava M, Prabhakar S, Pu J, Rai MR, Rogalski M, Ryu M, Choudhary S, Salla GR, Schelkens P, Şener SF, Shevkunov I, Shimobaba T, Singh RK, Singh RP, Stern A, Sun J, Zhou S, Zuo C, Zurawski Z, Tahara T, Tiwari V, Trusiak M, Vinu RV, Volotovskiy SG, Yılmaz H, De Aguiar HB, Ahluwalia BS, Ahmad A. Roadmap on computational methods in optical imaging and holography [invited]. APPLIED PHYSICS. B, LASERS AND OPTICS 2024; 130:166. [PMID: 39220178 PMCID: PMC11362238 DOI: 10.1007/s00340-024-08280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
Computational methods have been established as cornerstones in optical imaging and holography in recent years. Every year, the dependence of optical imaging and holography on computational methods is increasing significantly to the extent that optical methods and components are being completely and efficiently replaced with computational methods at low cost. This roadmap reviews the current scenario in four major areas namely incoherent digital holography, quantitative phase imaging, imaging through scattering layers, and super-resolution imaging. In addition to registering the perspectives of the modern-day architects of the above research areas, the roadmap also reports some of the latest studies on the topic. Computational codes and pseudocodes are presented for computational methods in a plug-and-play fashion for readers to not only read and understand but also practice the latest algorithms with their data. We believe that this roadmap will be a valuable tool for analyzing the current trends in computational methods to predict and prepare the future of computational methods in optical imaging and holography. Supplementary Information The online version contains supplementary material available at 10.1007/s00340-024-08280-3.
Collapse
Affiliation(s)
- Joseph Rosen
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 South Wood Street, Chicago, IL 60612 USA
| | - Blake Allan
- Faculty of Science Engineering and Built Environment, Deakin University, Princes Highway, Warrnambool, VIC 3280 Australia
| | - Vijayakumar Anand
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
- Optical Sciences Center and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Computing and Engineering Technologies, Optical Sciences Center, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122 Australia
| | - Shlomi Arnon
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Francis Gracy Arockiaraj
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Jonathan Art
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 South Wood Street, Chicago, IL 60612 USA
| | - Bijie Bai
- Electrical and Computer Engineering Department, Bioengineering Department, California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA USA
| | - Ganesh M. Balasubramaniam
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Tobias Birnbaum
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel VUB), Pleinlaan 2, 1050 Brussel, Belgium
- Swave BV, Gaston Geenslaan 2, 3001 Leuven, Belgium
| | - Nandan S. Bisht
- Applied Optics and Spectroscopy Laboratory, Department of Physics, Soban Singh Jeena University Campus Almora, Almora, Uttarakhand 263601 India
| | - David Blinder
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel VUB), Pleinlaan 2, 1050 Brussel, Belgium
- IMEC, Kapeldreef 75, 3001 Leuven, Belgium
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Chiba Japan
| | - Liangcai Cao
- Department of Precision Instruments, Tsinghua University, Beijing, 100084 China
| | - Qian Chen
- Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, 210094 Jiangsu China
| | - Ziyang Chen
- Fujian Provincial Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen, 361021 Fujian China
| | - Vishesh Dubey
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Karen Egiazarian
- Computational Imaging Group, Faculty of Information Technology and Communication Sciences, Tampere University, 33100 Tampere, Finland
| | - Mert Ercan
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
- Department of Physics, Bilkent University, 06800 Ankara, Turkey
| | - Andrew Forbes
- School of Physics, University of the Witwatersrand, Johannesburg, South Africa
| | - G. Gopakumar
- Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Amritapuri, Vallikavu, Kerala India
| | - Yunhui Gao
- Department of Precision Instruments, Tsinghua University, Beijing, 100084 China
| | - Sylvain Gigan
- Laboratoire Kastler Brossel, Centre National de la Recherche Scientifique (CNRS) UMR 8552, Sorbonne Universite ´, Ecole Normale Supe ´rieure-Paris Sciences et Lettres (PSL) Research University, Collège de France, 24 rue Lhomond, 75005 Paris, France
| | - Paweł Gocłowski
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | | | - Alon Greenbaum
- Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695 USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695 USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695 USA
| | - Ryoichi Horisaki
- Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan
| | - Daniel Ierodiaconou
- Faculty of Science Engineering and Built Environment, Deakin University, Princes Highway, Warrnambool, VIC 3280 Australia
| | - Saulius Juodkazis
- Optical Sciences Center and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Computing and Engineering Technologies, Optical Sciences Center, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122 Australia
- World Research Hub Initiative (WRHI), Tokyo Institute of Technology, 2-12-1, Ookayama, Tokyo, 152-8550 Japan
| | - Tanushree Karmakar
- Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005 India
| | - Vladimir Katkovnik
- Computational Imaging Group, Faculty of Information Technology and Communication Sciences, Tampere University, 33100 Tampere, Finland
| | - Svetlana N. Khonina
- IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
- Samara National Research University, 443086 Samara, Russia
| | - Peter Kner
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602 USA
| | - Vladislav Kravets
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Ravi Kumar
- Department of Physics, SRM University – AP, Amaravati, Andhra Pradesh 522502 India
| | - Yingming Lai
- Laboratory of Applied Computational Imaging, Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, Varennes, QC J3X1Pd7 Canada
| | - Chen Li
- Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695 USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695 USA
| | - Jiaji Li
- Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Research Institute (SCIRI), Nanjing, 210019 Jiangsu China
| | - Shaoheng Li
- School of Electrical and Computer Engineering, University of Georgia, Athens, GA 30602 USA
| | - Yuzhu Li
- Electrical and Computer Engineering Department, Bioengineering Department, California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA USA
| | - Jinyang Liang
- Laboratory of Applied Computational Imaging, Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, Varennes, QC J3X1Pd7 Canada
| | - Gokul Manavalan
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Aditya Chandra Mandal
- Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005 India
| | - Manisha Manisha
- Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005 India
| | - Christopher Mann
- Department of Applied Physics and Materials Science, Northern Arizona University, Flagstaff, AZ 86011 USA
- Center for Materials Interfaces in Research and Development, Northern Arizona University, Flagstaff, AZ 86011 USA
| | - Marcin J. Marzejon
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., 02-525 Warsaw, Poland
| | - Chané Moodley
- School of Physics, University of the Witwatersrand, Johannesburg, South Africa
| | - Junko Morikawa
- World Research Hub Initiative (WRHI), Tokyo Institute of Technology, 2-12-1, Ookayama, Tokyo, 152-8550 Japan
| | - Inbarasan Muniraj
- LiFE Lab, Department of Electronics and Communication Engineering, Alliance School of Applied Engineering, Alliance University, Bangalore, Karnataka 562106 India
| | - Donatas Narbutis
- Institute of Theoretical Physics and Astronomy, Faculty of Physics, Vilnius University, Sauletekio 9, 10222 Vilnius, Lithuania
| | - Soon Hock Ng
- Optical Sciences Center and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Computing and Engineering Technologies, Optical Sciences Center, Swinburne University of Technology, Hawthorn, Melbourne, VIC 3122 Australia
| | - Fazilah Nothlawala
- School of Physics, University of the Witwatersrand, Johannesburg, South Africa
| | - Jeonghun Oh
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141 South Korea
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, Bioengineering Department, California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA USA
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 South Korea
- KAIST Institute for Health Science and Technology, KAIST, Daejeon, 34141 South Korea
- Tomocube Inc., Daejeon, 34051 South Korea
| | - Alexey P. Porfirev
- IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | - Mariana Potcoava
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 South Wood Street, Chicago, IL 60612 USA
| | - Shashi Prabhakar
- Quantum Science and Technology Laboratory, Physical Research Laboratory, Navrangpura, Ahmedabad, 380009 India
| | - Jixiong Pu
- Fujian Provincial Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen, 361021 Fujian China
| | - Mani Ratnam Rai
- Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC 27695 USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695 USA
| | - Mikołaj Rogalski
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., 02-525 Warsaw, Poland
| | - Meguya Ryu
- Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (AIST), 1-1-1 Umezono, Tsukuba, 305-8563 Japan
| | - Sakshi Choudhary
- Department Chemical Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Shiva, Israel
| | - Gangi Reddy Salla
- Department of Physics, SRM University – AP, Amaravati, Andhra Pradesh 522502 India
| | - Peter Schelkens
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel VUB), Pleinlaan 2, 1050 Brussel, Belgium
- IMEC, Kapeldreef 75, 3001 Leuven, Belgium
| | - Sarp Feykun Şener
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
- Department of Physics, Bilkent University, 06800 Ankara, Turkey
| | - Igor Shevkunov
- Computational Imaging Group, Faculty of Information Technology and Communication Sciences, Tampere University, 33100 Tampere, Finland
| | - Tomoyoshi Shimobaba
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Chiba Japan
| | - Rakesh K. Singh
- Laboratory of Information Photonics and Optical Metrology, Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005 India
| | - Ravindra P. Singh
- Quantum Science and Technology Laboratory, Physical Research Laboratory, Navrangpura, Ahmedabad, 380009 India
| | - Adrian Stern
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel
| | - Jiasong Sun
- Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Research Institute (SCIRI), Nanjing, 210019 Jiangsu China
| | - Shun Zhou
- Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Research Institute (SCIRI), Nanjing, 210019 Jiangsu China
| | - Chao Zuo
- Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 Jiangsu China
- Smart Computational Imaging Research Institute (SCIRI), Nanjing, 210019 Jiangsu China
| | - Zack Zurawski
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 South Wood Street, Chicago, IL 60612 USA
| | - Tatsuki Tahara
- Applied Electromagnetic Research Center, Radio Research Institute, National Institute of Information and Communications Technology (NICT), 4-2-1 Nukuikitamachi, Koganei, Tokyo 184-8795 Japan
| | - Vipin Tiwari
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Maciej Trusiak
- Institute of Micromechanics and Photonics, Warsaw University of Technology, 8 Sw. A. Boboli St., 02-525 Warsaw, Poland
| | - R. V. Vinu
- Fujian Provincial Key Laboratory of Light Propagation and Transformation, College of Information Science and Engineering, Huaqiao University, Xiamen, 361021 Fujian China
| | - Sergey G. Volotovskiy
- IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
| | - Hasan Yılmaz
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
| | - Hilton Barbosa De Aguiar
- Laboratoire Kastler Brossel, Centre National de la Recherche Scientifique (CNRS) UMR 8552, Sorbonne Universite ´, Ecole Normale Supe ´rieure-Paris Sciences et Lettres (PSL) Research University, Collège de France, 24 rue Lhomond, 75005 Paris, France
| | - Balpreet S. Ahluwalia
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Azeem Ahmad
- Department of Physics and Technology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
6
|
Najar U, Barolle V, Balondrade P, Fink M, Boccara C, Aubry A. Harnessing forward multiple scattering for optical imaging deep inside an opaque medium. Nat Commun 2024; 15:7349. [PMID: 39187504 PMCID: PMC11347655 DOI: 10.1038/s41467-024-51619-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
As light travels through a disordered medium such as biological tissues, it undergoes multiple scattering events. This phenomenon is detrimental to in-depth optical microscopy, as it causes a drastic degradation of contrast, resolution and brightness of the resulting image beyond a few scattering mean free paths. However, the information about the inner reflectivity of the sample is not lost; only scrambled. To recover this information, a matrix approach of optical imaging can be fruitful. Here, we report on a de-scanned measurement of a high-dimension reflection matrix R via low coherence interferometry. Then, we show how a set of independent focusing laws can be extracted for each medium voxel through an iterative multi-scale analysis of wave distortions contained in R. It enables an optimal and local compensation of forward multiple scattering paths and provides a three-dimensional confocal image of the sample as the latter one had become digitally transparent. The proof-of-concept experiment is performed on a human opaque cornea and an extension of the penetration depth by a factor five is demonstrated compared to the state-of-the-art.
Collapse
Affiliation(s)
- Ulysse Najar
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
| | - Victor Barolle
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
| | - Paul Balondrade
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
| | - Mathias Fink
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
| | - Claude Boccara
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France
| | - Alexandre Aubry
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 75005, Paris, France.
| |
Collapse
|
7
|
Liu H, Wang F, Jin Y, Ma X, Li S, Bian Y, Situ G. Learning-based real-time imaging through dynamic scattering media. LIGHT, SCIENCE & APPLICATIONS 2024; 13:194. [PMID: 39152120 PMCID: PMC11329739 DOI: 10.1038/s41377-024-01569-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Imaging through dynamic scattering media is one of the most challenging yet fascinating problems in optics, with applications spanning from biological detection to remote sensing. In this study, we propose a comprehensive learning-based technique that facilitates real-time, non-invasive, incoherent imaging of real-world objects through dense and dynamic scattering media. We conduct extensive experiments, demonstrating the capability of our technique to see through turbid water and natural fog. The experimental results indicate that the proposed technique surpasses existing approaches in numerous aspects and holds significant potential for imaging applications across a broad spectrum of disciplines.
Collapse
Affiliation(s)
- Haishan Liu
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fei Wang
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Ying Jin
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Xianzheng Ma
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Siteng Li
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yaoming Bian
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Guohai Situ
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
8
|
Zhu Y, Zhu L, Lim Y, Makita S, Guo Y, Yasuno Y. Multiple scattering suppression for in vivo optical coherence tomography measurement using the B-scan-wise multi-focus averaging method. BIOMEDICAL OPTICS EXPRESS 2024; 15:4044-4064. [PMID: 39022550 PMCID: PMC11249682 DOI: 10.1364/boe.524894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 07/20/2024]
Abstract
We demonstrate a method that reduces the noise caused by multi-scattering (MS) photons in an in vivo optical coherence tomography image. This method combines a specially designed image acquisition (i.e., optical coherence tomography scan) scheme and subsequent complex signal processing. For the acquisition, multiple cross-sectional images (frames) are sequentially acquired while the depth position of the focus is altered for each frame by an electrically tunable lens. In the signal processing, the frames are numerically defocus-corrected, and complex averaged. Because of the inconsistency in the MS-photon trajectories among the different electrically tunable lens-induced defocus, this averaging reduces the MS signal. Unlike the previously demonstrated volume-wise multi-focus averaging method, our approach requires the sample to remain stable for only a brief period, approximately 70 ms, thus making it compatible with in vivo imaging. This method was validated using a scattering phantom and in vivo unanesthetized small fish samples, and was found to reduce MS noise even for unanesthetized in vivo measurement.
Collapse
Affiliation(s)
- Yiqiang Zhu
- Computational Optics Group, University of Tsukuba
, Tsukuba, Ibaraki, Japan
| | - Lida Zhu
- Computational Optics Group, University of Tsukuba
, Tsukuba, Ibaraki, Japan
| | - Yiheng Lim
- Computational Optics Group, University of Tsukuba
, Tsukuba, Ibaraki, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba
, Tsukuba, Ibaraki, Japan
| | - Yu Guo
- Computational Optics Group, University of Tsukuba
, Tsukuba, Ibaraki, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba
, Tsukuba, Ibaraki, Japan
| |
Collapse
|
9
|
Wu T, Zhang Y, Blochet B, Arjmand P, Berto P, Guillon M. Single-shot digital optical fluorescence phase conjugation through forward multiple-scattering samples. SCIENCE ADVANCES 2024; 10:eadi1120. [PMID: 38241370 PMCID: PMC10798569 DOI: 10.1126/sciadv.adi1120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024]
Abstract
Aberrations and multiple scattering in biological tissues critically distort light beams into highly complex speckle patterns. In this regard, digital optical phase conjugation (DOPC) is a promising technique enabling in-depth focusing. However, DOPC becomes challenging when using fluorescent guide stars for four main reasons: the low photon budget available, the large spectral bandwidth of the fluorescent signal, the Stokes shift between the emission and the excitation wavelength, and the absence of reference beam preventing holographic measurement. Here, we demonstrate the possibility to focus a laser beam through multiple-scattering samples by measuring speckle fields in a single acquisition step with a reference-free, high-resolution wavefront sensor. By taking advantage of the large spectral bandwidth of forward multiply scattering samples, digital fluorescence phase conjugation is achieved to focus a laser beam at the excitation wavelength while measuring the broadband speckle field arising from a micrometer-sized fluorescent bead.
Collapse
Affiliation(s)
- Tengfei Wu
- Saints-Pères Paris Institute for the Neurosciences, CNRS UMR 8003, Université Paris Cité, 45 rue des Saints-Pères, Paris 75006, France
| | - Yixuan Zhang
- Saints-Pères Paris Institute for the Neurosciences, CNRS UMR 8003, Université Paris Cité, 45 rue des Saints-Pères, Paris 75006, France
| | - Baptiste Blochet
- Saints-Pères Paris Institute for the Neurosciences, CNRS UMR 8003, Université Paris Cité, 45 rue des Saints-Pères, Paris 75006, France
| | - Payvand Arjmand
- Saints-Pères Paris Institute for the Neurosciences, CNRS UMR 8003, Université Paris Cité, 45 rue des Saints-Pères, Paris 75006, France
| | - Pascal Berto
- Saints-Pères Paris Institute for the Neurosciences, CNRS UMR 8003, Université Paris Cité, 45 rue des Saints-Pères, Paris 75006, France
- Sorbonne Université, CNRS, INSERM, Institut de la Vision, 17 Rue Moreau, Paris 75012, France
- Institut Universitaire de France (IUF), Paris 75007, France
| | - Marc Guillon
- Saints-Pères Paris Institute for the Neurosciences, CNRS UMR 8003, Université Paris Cité, 45 rue des Saints-Pères, Paris 75006, France
- Institut Universitaire de France (IUF), Paris 75007, France
| |
Collapse
|
10
|
Zhao S, Rauer B, Valzania L, Dong J, Liu R, Li F, Gigan S, de Aguiar HB. Single-pixel transmission matrix recovery via two-photon fluorescence. SCIENCE ADVANCES 2024; 10:eadi3442. [PMID: 38232161 DOI: 10.1126/sciadv.adi3442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024]
Abstract
Imaging at depth in opaque materials has long been a challenge. Recently, wavefront shaping has enabled notable advance for deep imaging. Nevertheless, most noninvasive wavefront-shaping methods require cameras, lack the sensitivity for deep imaging under weak optical signals, or can only focus on a single "guidestar." Here, we retrieve the transmission matrix (TM) noninvasively using two-photon fluorescence exploiting a single-pixel detection combined with a computational framework, allowing to achieve single-target focus on multiple guidestars spread beyond the memory effect range. In addition, if we assume that memory effect correlations exist in the TM, we are able to substantially reduce the number of measurements needed.
Collapse
Affiliation(s)
- Shupeng Zhao
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France. 24 rue Lhomond, 75005 Paris, France
- Shaanxi Province Key Laboratory for Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bernhard Rauer
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France. 24 rue Lhomond, 75005 Paris, France
| | - Lorenzo Valzania
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France. 24 rue Lhomond, 75005 Paris, France
| | - Jonathan Dong
- Biomedical Imaging Group, Ecole polytechnique fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Ruifeng Liu
- Shaanxi Province Key Laboratory for Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Fuli Li
- Shaanxi Province Key Laboratory for Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Sylvain Gigan
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France. 24 rue Lhomond, 75005 Paris, France
| | - Hilton B de Aguiar
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France. 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
11
|
Zhu L, Makita S, Tamaoki J, Zhu Y, Mukherjee P, Lim Y, Kobayashi M, Yasuno Y. Polarization-artifact reduction and accuracy improvement of Jones-matrix polarization-sensitive optical coherence tomography by multi-focus-averaging based multiple scattering reduction. BIOMEDICAL OPTICS EXPRESS 2024; 15:256-276. [PMID: 38223182 PMCID: PMC10783893 DOI: 10.1364/boe.509763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/16/2024]
Abstract
Polarization-sensitive optical coherence tomography (PS-OCT) is a promising biomedical imaging tool for the differentiation of various tissue properties. However, the presence of multiple-scattering (MS) signals can degrade the quantitative polarization measurement accuracy. We demonstrate a method to reduce MS signals and increase the measurement accuracy of Jones matrix PS-OCT. This method suppresses MS signals by averaging multiple Jones matrix volumes measured using different focal positions. The MS signals are decorrelated among the volumes by focus position modulation and are thus reduced by averaging. However, the single scattering signals are kept consistent among the focus-modulated volumes by computational refocusing. We validated the proposed method using a scattering phantom and a postmortem medaka fish. The results showed reduced artifacts in birefringence and degree-of-polarization uniformity measurements, particularly in deeper regions in the samples. This method offers a practical solution to mitigate MS-induced artifacts in PS-OCT imaging and improves quantitative polarization measurement accuracy.
Collapse
Affiliation(s)
- Lida Zhu
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Junya Tamaoki
- Department of Molecular and Developmental
Biology, Institute of Medicine, University of
Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yiqiang Zhu
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Pradipta Mukherjee
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yiheng Lim
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Makoto Kobayashi
- Department of Molecular and Developmental
Biology, Institute of Medicine, University of
Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
12
|
Li H, Yu Z, Zhong T, Lai P. Performance enhancement in wavefront shaping of multiply scattered light: a review. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11512. [PMID: 38125718 PMCID: PMC10732255 DOI: 10.1117/1.jbo.29.s1.s11512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Significance In nonballistic regime, optical scattering impedes high-resolution imaging through/inside complex media, such as milky liquid, fog, multimode fiber, and biological tissues, where confocal and multiphoton modalities fail. The significant tissue inhomogeneity-induced distortions need to be overcome and a technique referred as optical wavefront shaping (WFS), first proposed in 2007, has been becoming a promising solution, allowing for flexible and powerful light control. Understanding the principle and development of WFS may inspire exciting innovations for effective optical manipulation, imaging, stimulation, and therapy at depths in tissue or tissue-like complex media. Aim We aim to provide insights about what limits the WFS towards biomedical applications, and how recent efforts advance the performance of WFS among different trade-offs. Approach By differentiating the two implementation directions in the field, i.e., precompensation WFS and optical phase conjugation (OPC), improvement strategies are summarized and discussed. Results For biomedical applications, improving the speed of WFS is most essential in both directions, and a system-compatible wavefront modulator driven by fast apparatus is desired. In addition to that, algorithm efficiency and adaptability to perturbations/noise is of concern in precompensation WFS, while for OPC significant improvements rely heavily on integrating physical mechanisms and delicate system design for faster response and higher energy gain. Conclusions Substantial improvements in WFS implementations, from the aspects of physics, engineering, and computing, have inspired many novel and exciting optical applications that used to be optically inaccessible. It is envisioned that continuous efforts in the field can further advance WFS towards biomedical applications and guide our vision into deep biological tissues.
Collapse
Affiliation(s)
- Huanhao Li
- Hong Kong Polytechnic University, Department of Biomedical Engineering, Hong Kong, China
- Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, China
| | - Zhipeng Yu
- Hong Kong Polytechnic University, Department of Biomedical Engineering, Hong Kong, China
- Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, China
| | - Tianting Zhong
- Hong Kong Polytechnic University, Department of Biomedical Engineering, Hong Kong, China
- Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, China
| | - Puxiang Lai
- Hong Kong Polytechnic University, Department of Biomedical Engineering, Hong Kong, China
- Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, China
- Hong Kong Polytechnic University, Photonics Research Institute, Hong Kong, China
| |
Collapse
|
13
|
Murray G, Field J, Xiu M, Farah Y, Wang L, Pinaud O, Bartels R. Aberration free synthetic aperture second harmonic generation holography. OPTICS EXPRESS 2023; 31:32434-32457. [PMID: 37859047 DOI: 10.1364/oe.496083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/31/2023] [Indexed: 10/21/2023]
Abstract
Second harmonic generation (SHG) microscopy is a valuable tool for optical microscopy. SHG microscopy is normally performed as a point scanning imaging method, which lacks phase information and is limited in spatial resolution by the spatial frequency support of the illumination optics. In addition, aberrations in the illumination are difficult to remove. We propose and demonstrate SHG holographic synthetic aperture holographic imaging in both the forward (transmission) and backward (epi) imaging geometries. By taking a set of holograms with varying incident angle plane wave illumination, the spatial frequency support is increased and the input and output pupil phase aberrations are estimated and corrected - producing diffraction limited SHG imaging that combines the spatial frequency support of the input and output optics. The phase correction algorithm is computationally efficient and robust and can be applied to any set of measured field imaging data.
Collapse
|
14
|
Zhu L, Makita S, Tamaoki J, Lichtenegger A, Lim Y, Zhu Y, Kobayashi M, Yasuno Y. Multi-focus averaging for multiple scattering suppression in optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2023; 14:4828-4844. [PMID: 37791259 PMCID: PMC10545188 DOI: 10.1364/boe.493706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 10/05/2023]
Abstract
Multiple scattering is one of the main factors that limits the penetration depth of optical coherence tomography (OCT) in scattering samples. We propose a method termed multi-focus averaging (MFA) to suppress the multiple-scattering signals and improve the image contrast of OCT in deep regions. The MFA method captures multiple OCT volumes with various focal positions and averages them in complex form after correcting the varying defocus through computational refocusing. Because the multiple-scattering takes different trajectories among the different focal position configurations, this averaging suppresses the multiple-scattering signal. Meanwhile, the single-scattering takes a consistent trajectory regardless of the focal position configuration and is not suppressed. Hence, the MFA method improves the ratio between the single-scattering signal and multiple-scattering signal, resulting in an enhancement in the image contrast. A scattering phantom and a postmortem zebrafish were measured to validate the proposed method. The results showed that the contrast of intensity images of both the phantom and zebrafish were improved using the MFA method, such that they were better than the contrast provided by the standard single focus averaging method. The MFA method provides a cost-effective solution for contrast enhancement through multiple-scattering reduction in tissue imaging using OCT systems.
Collapse
Affiliation(s)
- Lida Zhu
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Junya Tamaoki
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Japan
| | - Antonia Lichtenegger
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Yiheng Lim
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yiqiang Zhu
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Makoto Kobayashi
- Department of Molecular and Developmental Biology, Institute of Medicine, University of Tsukuba, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
15
|
Untracht GR, Chen M, Wijesinghe P, Mas J, Yura HT, Marti D, Andersen PE, Dholakia K. Spatially offset optical coherence tomography: Leveraging multiple scattering for high-contrast imaging at depth in turbid media. SCIENCE ADVANCES 2023; 9:eadh5435. [PMID: 37418534 DOI: 10.1126/sciadv.adh5435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023]
Abstract
The penetration depth of optical coherence tomography (OCT) reaches well beyond conventional microscopy; however, signal reduction with depth leads to rapid degradation of the signal below the noise level. The pursuit of imaging at depth has been largely approached by extinguishing multiple scattering. However, in OCT, multiple scattering substantially contributes to image formation at depth. Here, we investigate the role of multiple scattering in OCT image contrast and postulate that, in OCT, multiple scattering can enhance image contrast at depth. We introduce an original geometry that completely decouples the incident and collection fields by introducing a spatial offset between them, leading to preferential collection of multiply scattered light. A wave optics-based theoretical framework supports our experimentally demonstrated improvement in contrast. The effective signal attenuation can be reduced by more than 24 decibels. Notably, a ninefold enhancement in image contrast at depth is observed in scattering biological samples. This geometry enables a powerful capacity to dynamically tune for contrast at depth.
Collapse
Affiliation(s)
- Gavrielle R Untracht
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Mingzhou Chen
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK
| | - Philip Wijesinghe
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK
| | - Josep Mas
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK
| | - Harold T Yura
- Electronics and Photonics Laboratory, The Aerospace Corporation, El Segundo, CA 90245, USA
| | - Dominik Marti
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Peter E Andersen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Kishan Dholakia
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK
- Centre of Light for Life and School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
16
|
Li B, Zhu L, Li B, Feng W, Lian X, Ji X. Efficient framework of solving time-gated reflection matrix for imaging through turbid medium. OPTICS EXPRESS 2023; 31:15461-15473. [PMID: 37157647 DOI: 10.1364/oe.488257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Imaging through turbid medium is a long pursuit in many research fields, such as biomedicine, astronomy and automatic vehicle, in which the reflection matrix-based method is a promising solution. However, the epi-detection geometry suffers from round-trip distortion and it is challenging to isolate the input and output aberrations in non-ideal cases due to system imperfections and measurement noises. Here, we present an efficient framework based on single scattering accumulation together with phase unwrapping that can accurately separate input and output aberrations from the noise-affected reflection matrix. We propose to only correct the output aberration while suppressing the input aberration by incoherent averaging. The proposed method is faster in convergence and more robust against noise, avoiding precise and tedious system adjustments. In both simulations and experiments, we demonstrate the diffraction-limited resolution capability under optical thickness beyond 10 scattering mean free paths, showing the potential of applications in neuroscience and dermatology.
Collapse
|
17
|
Zhang J, Mazlin V, Fei K, Boccara AC, Yuan J, Xiao P. Time-domain full-field optical coherence tomography (TD-FF-OCT) in ophthalmic imaging. Ther Adv Chronic Dis 2023; 14:20406223231170146. [PMID: 37152350 PMCID: PMC10161339 DOI: 10.1177/20406223231170146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
Ocular imaging plays an irreplaceable role in the evaluation of eye diseases. Developing cellular-resolution ophthalmic imaging technique for more accurate and effective diagnosis and pathogenesis analysis of ocular diseases is a hot topic in the cross-cutting areas of ophthalmology and imaging. Currently, ocular imaging with traditional optical coherence tomography (OCT) is limited in lateral resolution and thus can hardly resolve cellular structures. Conventional OCT technology obtains ultra-high resolution at the expense of a certain imaging range and cannot achieve full field of view imaging. In the early years, Time-domain full-field OCT (TD-FF-OCT) has been mainly used for ex vivo ophthalmic tissue studies, limited by the low speed and low full-well capacity of existing two-dimensional (2D) cameras. The recent improvements in system design opened new imaging possibilities for in vivo applications thanks to its distinctive optical properties of TD-FF-OCT such as a spatial resolution almost insensitive to aberrations, and the possibility to control the curvature of the optical slice. This review also attempts to look at the future directions of TD-FF-OCT evolution, for example, the potential transfer of the functional-imaging dynamic TD-FF-OCT from the ex vivo into in vivo use and its expected benefit in basic and clinical ophthalmic research. Through non-invasive, wide-field, and cellular-resolution imaging, TD-FF-OCT has great potential to be the next-generation imaging modality to improve our understanding of human eye physiology and pathology.
Collapse
Affiliation(s)
- Jinze Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Viacheslav Mazlin
- ESPCI Paris, PSL University, CNRS, Langevin Institute, Paris, France
| | - Keyi Fei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | | | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Jinsui Road 7, Guangzhou 510060, Guangdong, China
| | - Peng Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Jinsui Road 7, Guangzhou 510060, Guangdong, China
| |
Collapse
|
18
|
Lee YR, Kim DY, Jo Y, Kim M, Choi W. Exploiting volumetric wave correlation for enhanced depth imaging in scattering medium. Nat Commun 2023; 14:1878. [PMID: 37015941 PMCID: PMC10073116 DOI: 10.1038/s41467-023-37467-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/16/2023] [Indexed: 04/06/2023] Open
Abstract
Imaging an object embedded within a scattering medium requires the correction of complex sample-induced wave distortions. Existing approaches have been designed to resolve them by optimizing signal waves recorded in each 2D image. Here, we present a volumetric image reconstruction framework that merges two fundamental degrees of freedom, the wavelength and propagation angles of light waves, based on the object momentum conservation principle. On this basis, we propose methods for exploiting the correlation of signal waves from volumetric images to better cope with multiple scattering. By constructing experimental systems scanning both wavelength and illumination angle of the light source, we demonstrated a 32-fold increase in the use of signal waves compared with that of existing 2D-based approaches and achieved ultrahigh volumetric resolution (lateral resolution: 0.41 [Formula: see text], axial resolution: 0.60 [Formula: see text]) even within complex scattering medium owing to the optimal coherent use of the broad spectral bandwidth (225 nm).
Collapse
Affiliation(s)
- Ye-Ryoung Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea
- Department of Physics, Korea University, Seoul, 02841, Korea
- Institute of Basic Science, Korea University, Seoul, 02841, Korea
- Department of Physics, Konkuk University, Seoul, 05029, Korea
| | - Dong-Young Kim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea
- Department of Physics, Korea University, Seoul, 02841, Korea
| | - Yonghyeon Jo
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea
- Department of Physics, Korea University, Seoul, 02841, Korea
| | - Moonseok Kim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
| | - Wonshik Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea.
- Department of Physics, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
19
|
Lambert W, Cobus LA, Robin J, Fink M, Aubry A. Ultrasound Matrix Imaging-Part II: The Distortion Matrix for Aberration Correction Over Multiple Isoplanatic Patches. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:3921-3938. [PMID: 35976837 DOI: 10.1109/tmi.2022.3199483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This is the second article in a series of two which report on a matrix approach for ultrasound imaging in heterogeneous media. This article describes the quantification and correction of aberration, i.e. the distortion of an image caused by spatial variations in the medium speed-of-sound. Adaptive focusing can compensate for aberration, but is only effective over a restricted area called the isoplanatic patch. Here, we use an experimentally-recorded matrix of reflected acoustic signals to synthesize a set of virtual transducers. We then examine wave propagation between these virtual transducers and an arbitrary correction plane. Such wave-fronts consist of two components: (i) An ideal geometric wave-front linked to diffraction and the input focusing point, and; (ii) Phase distortions induced by the speed-of-sound variations. These distortions are stored in a so-called distortion matrix, the singular value decomposition of which gives access to an optimized focusing law at any point. We show that, by decoupling the aberrations undergone by the outgoing and incoming waves and applying an iterative strategy, compensation for even high-order and spatially-distributed aberrations can be achieved. After a numerical validation of the process, ultrasound matrix imaging (UMI) is applied to the in-vivo imaging of a gallbladder. A map of isoplanatic modes is retrieved and is shown to be strongly correlated with the arrangement of tissues constituting the medium. The corresponding focusing laws yield an ultrasound image with drastically improved contrast and transverse resolution. UMI thus provides a flexible and powerful route towards computational ultrasound.
Collapse
|
20
|
Lambert W, Robin J, Cobus LA, Fink M, Aubry A. Ultrasound Matrix Imaging-Part I: The Focused Reflection Matrix, the F-Factor and the Role of Multiple Scattering. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:3907-3920. [PMID: 35976836 DOI: 10.1109/tmi.2022.3199498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This is the first article in a series of two dealing with a matrix approach for aberration quantification and correction in ultrasound imaging. Advanced synthetic beamforming relies on a double focusing operation at transmission and reception on each point of the medium. Ultrasound matrix imaging (UMI) consists in decoupling the location of these transmitted and received focal spots. The response between those virtual transducers form the so-called focused reflection matrix that actually contains much more information than a confocal ultrasound image. In this paper, a time-frequency analysis of this matrix is performed, which highlights the single and multiple scattering contributions as well as the impact of aberrations in the monochromatic and broadband regimes. Interestingly, this analysis enables the measurement of the incoherent input-output point spread function at any pixel of this image. A fitting process enables the quantification of the single scattering, multiple scattering and noise components in the image. From the single scattering contribution, a focusing criterion is defined, and its evolution used to quantify the amount of aberration throughout the ultrasound image. In contrast to the state-of-the-art coherence factor, this new indicator is robust to multiple scattering and electronic noise, thereby providing a contrasted map of the focusing quality at a much better transverse resolution. After a validation of the proof-of-concept based on time-domain simulations, UMI is applied to the in-vivo study of a human calf. Beyond this specific example, UMI opens a new route for speed-of-sound and scattering quantification in ultrasound imaging.
Collapse
|
21
|
Zhang C, Xin Y, Zhu X. Multiscale and local engineering of speckle morphology through disordered media. OPTICS LETTERS 2022; 47:6029-6032. [PMID: 37219164 DOI: 10.1364/ol.474976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/25/2022] [Indexed: 05/24/2023]
Abstract
In this Letter, we prompt a novel, to the best of our knowledge, method based on transmission matrix decomposition with wavelets to engineer the speckle morphology behind disordered media. By analyzing the speckles in multiscale spaces, we experimentally realized multiscale and localized control on the speckle size, position-dependent spatial frequency, and global morphology by operating on the decomposition coefficients using different masks. Speckles with contrasting features in different parts of the fields can be generated in one step. Our experimental results demonstrate a high degree of flexibility in manipulating light in a customizable manner. This technique has stimulating prospects in correlation control and imaging under scattering conditions.
Collapse
|
22
|
Bender N, Goetschy A, Hsu CW, Yilmaz H, Palacios PJ, Yamilov A, Cao H. Coherent enhancement of optical remission in diffusive media. Proc Natl Acad Sci U S A 2022; 119:e2207089119. [PMID: 36191199 PMCID: PMC9564826 DOI: 10.1073/pnas.2207089119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
Remitted waves are used for sensing and imaging in diverse diffusive media from the Earth's crust to the human brain. Separating the source and detector increases the penetration depth of light, but the signal strength decreases rapidly, leading to a poor signal-to-noise ratio. Here, we show, experimentally and numerically, that wavefront shaping a laser beam incident on a diffusive sample enables an enhancement of remission by an order of magnitude at depths of up to 10 transport mean free paths. We develop a theoretical model which predicts the maximal remission enhancement. Our analysis reveals a significant improvement in the sensitivity of remitted waves to local changes of absorption deep inside diffusive media. This work illustrates the potential of coherent wavefront control for noninvasive diffuse wave imaging applications, such as diffuse optical tomography and functional near-infrared spectroscopy.
Collapse
Affiliation(s)
- Nicholas Bender
- Department of Applied Physics, Yale University, New Haven, CT 06520
| | - Arthur Goetschy
- École Supérieure de Physique et de Chimie Industrielles de la ville de Paris, Paris Sciences et Lettres Research University, CNRS, Institut Langevin, F-75005 Paris, France
| | - Chia Wei Hsu
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089
| | - Hasan Yilmaz
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| | - Pablo Jara Palacios
- Physics Department, Missouri University of Science & Technology, Rolla, MO 65409
| | - Alexey Yamilov
- Physics Department, Missouri University of Science & Technology, Rolla, MO 65409
| | - Hui Cao
- Department of Applied Physics, Yale University, New Haven, CT 06520
| |
Collapse
|
23
|
Jauregui-Sánchez Y, Penketh H, Bertolotti J. Tracking moving objects through scattering media via speckle correlations. Nat Commun 2022; 13:5779. [PMID: 36182942 PMCID: PMC9526741 DOI: 10.1038/s41467-022-33470-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Scattering can rapidly degrade our ability to form an optical image, to the point where only speckle-like patterns can be measured. Truly non-invasive imaging through a strongly scattering obstacle is difficult, and usually reliant on a computationally intensive numerical reconstruction. In this work we show that, by combining the cross-correlations of the measured speckle pattern at different times, it is possible to track a moving object with minimal computational effort and over a large field of view.
Collapse
Affiliation(s)
- Y Jauregui-Sánchez
- Physics and Astronomy Department, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK.
| | - H Penketh
- Physics and Astronomy Department, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK
| | - J Bertolotti
- Physics and Astronomy Department, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK
| |
Collapse
|
24
|
Brütt C, Aubry A, Gérardin B, Derode A, Prada C. Weight of single and recurrent scattering in the reflection matrix of complex media. Phys Rev E 2022; 106:025001. [PMID: 36110010 DOI: 10.1103/physreve.106.025001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
In a heterogeneous medium, the wave field can be decomposed as an infinite series known as the Born expansion. Each term of the Born expansion corresponds to a scattering order, it is thus theoretically possible to discriminate single and multiple scattering contribution to the field. Experimentally, what is actually measured is the total field in which all scattering orders interfere. Conventional imaging methods usually rely on the assumption that the multiple scattering contribution can be disregarded. In a back-scattering configuration, this assumption is valid for small depths, and begins to fail for depths larger than the scattering mean-free path ℓ_{s}. It is therefore a key issue to estimate the relative amount of single and multiple scattering in experimental data. To this end, a single-scattering estimator ρ[over ̂] computed from the reflection matrix has been introduced in order to assess the weight of single scattering in the backscattered wave field. In this paper, the meaning of this estimator is investigated and a particular attention is given to recurrent scattering. In a diffraction-limited experiment, a multiple scattering sequence is said to be recurrent if the first and last scattering events occur in the same resolution cell. Recurrent scattering is shown to be responsible for correlations between single scattering and higher scattering orders of the Born expansion, inducing a bias to the estimator ρ[over ̂] that should rather be termed confocal scattering ratio. Interestingly, a more robust estimator is built by projecting the reflection matrix in a focused basis. The argument is sustained by numerical simulations as well as ultrasonic data obtained around 1.5 MHz in a model medium made of nylon rods immersed in water. From a more general perspective, this work raises fundamental questions about the impact of recurrent scattering on wave imaging.
Collapse
Affiliation(s)
- Cécile Brütt
- Institut Langevin, ESPCI Paris, PSL University, Université Paris Cité, CNRS, 75005 Paris, France
- Safran Tech, Digital Sciences and Technologies Department, Rue des Jeunes Bois, Châteaufort, 78114 Magny-Les-Hameaux, France
| | - Alexandre Aubry
- Institut Langevin, ESPCI Paris, PSL University, Université Paris Cité, CNRS, 75005 Paris, France
| | - Benoît Gérardin
- Safran Tech, Digital Sciences and Technologies Department, Rue des Jeunes Bois, Châteaufort, 78114 Magny-Les-Hameaux, France
| | - Arnaud Derode
- Institut Langevin, ESPCI Paris, PSL University, Université Paris Cité, CNRS, 75005 Paris, France
| | - Claire Prada
- Institut Langevin, ESPCI Paris, PSL University, Université Paris Cité, CNRS, 75005 Paris, France
| |
Collapse
|
25
|
Chaumet PC, Maire G, Sentenac A. Scalar approximation of Maxwell equations: derivation and accuracy. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:1462-1467. [PMID: 36215591 DOI: 10.1364/josaa.462034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/28/2022] [Indexed: 06/16/2023]
Abstract
Replacing Maxwell equations by a scalar wave equation is often used in computational imaging to simulate the light-sample interaction. It significantly reduces the computational burden but provides field maps that are insensitive to the polarization of the incident field, provided the latter is constant throughout the sample. Here, we develop a scalar approximation that accounts for the polarization of the incident field. Comparisons with rigorous simulations show that this approach is more accurate than the classical scalar approximation with similar computational cost.
Collapse
|
26
|
Jo Y, Lee YR, Hong JH, Kim DY, Kwon J, Choi M, Kim M, Choi W. Through-skull brain imaging in vivo at visible wavelengths via dimensionality reduction adaptive-optical microscopy. SCIENCE ADVANCES 2022; 8:eabo4366. [PMID: 35895824 PMCID: PMC9328682 DOI: 10.1126/sciadv.abo4366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/13/2022] [Indexed: 05/25/2023]
Abstract
Compensation of sample-induced optical aberrations is crucial for visualizing microscopic structures deep within biological tissues. However, strong multiple scattering poses a fundamental limitation for identifying and correcting the tissue-induced aberrations. Here, we introduce a label-free deep-tissue imaging technique termed dimensionality reduction adaptive-optical microscopy (DReAM) to selectively attenuate multiple scattering. We established a theoretical framework in which dimensionality reduction of a time-gated reflection matrix can attenuate uncorrelated multiple scattering while retaining a single-scattering signal with a strong wave correlation, irrespective of sample-induced aberrations. We performed mouse brain imaging in vivo through the intact skull with the probe beam at visible wavelengths. Despite the strong scattering and aberrations, DReAM offered a 17-fold enhancement of single scattering-to-multiple scattering ratio and provided high-contrast images of neural fibers in the brain cortex with the diffraction-limited spatial resolution of 412 nanometers and a 33-fold enhanced Strehl ratio.
Collapse
Affiliation(s)
- Yonghyeon Jo
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Republic of Korea
- Department of Physics, Korea University, Seoul 02855, Republic of Korea
| | - Ye-Ryoung Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Republic of Korea
- Department of Physics, Korea University, Seoul 02855, Republic of Korea
- Institute of Basic Science, Korea University, Seoul 02841, Republic of Korea
| | - Jin Hee Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Republic of Korea
- Department of Physics, Korea University, Seoul 02855, Republic of Korea
| | - Dong-Young Kim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Republic of Korea
- Department of Physics, Korea University, Seoul 02855, Republic of Korea
| | - Junhwan Kwon
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- The Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
- Bio & Medical Health Division, Korea Testing Laboratory, 10, Chungui-ro, Jinju-si, Gyeongsangnam-do, Republic of Korea
| | - Myunghwan Choi
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- The Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Moonseok Kim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Wonshik Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Republic of Korea
- Department of Physics, Korea University, Seoul 02855, Republic of Korea
| |
Collapse
|
27
|
Yu Z, Li H, Zhong T, Lai P. Enhancing spatiotemporal focusing of light deep inside scattering media with Time-Gated Reflection Matrix. LIGHT, SCIENCE & APPLICATIONS 2022; 11:167. [PMID: 35650180 PMCID: PMC9160227 DOI: 10.1038/s41377-022-00858-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Time-gated reflection matrix (RM) has been successfully used for optical imaging deep inside scattering media. Recently, this method was extended to enhance the spatiotemporal focusing of light ultra-deep inside scattering media. This is achieved by calibrating the decomposition of the RM with the Tikhonov regularization parameter to convert multiply scattered photons that share the same time of flight with the singly scattered photons into singly scattered photons. Such a capability suggests a reshaping to the interaction mechanism between light and scattering media, which may benefit or inspire wide optical applications that desire enhanced spatiotemporal focusing of light at depths inside scattering media.
Collapse
Affiliation(s)
- Zhipeng Yu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, China
| | - Huanhao Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, China
| | - Tianting Zhong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, China
| | - Puxiang Lai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China.
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, China.
- Photonics Research Institute, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
28
|
Wang L, Fu R, Xu C, Xu M. Methods and applications of full-field optical coherence tomography: a review. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220007VR. [PMID: 35596250 PMCID: PMC9122094 DOI: 10.1117/1.jbo.27.5.050901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/28/2022] [Indexed: 05/24/2023]
Abstract
SIGNIFICANCE Full-field optical coherence tomography (FF-OCT) enables en face views of scattering samples at a given depth with subcellular resolution, similar to biopsy without the need of sample slicing or other complex preparation. This noninvasive, high-resolution, three-dimensional (3D) imaging method has the potential to become a powerful tool in biomedical research, clinical applications, and other microscopic detection. AIM Our review provides an overview of the disruptive innovations and key technologies to further improve FF-OCT performance, promoting FF-OCT technology in biomedical and other application scenarios. APPROACH A comprehensive review of state-of-the-art accomplishments in OCT has been performed. Methods to improve performance of FF-OCT systems are reviewed, including advanced phase-shift approaches for imaging speed improvement, methods of denoising, artifact reduction, and aberration correction for imaging quality optimization, innovations for imaging flux expansion (field-of-view enlargement and imaging-depth-limit extension), new implementations for multimodality systems, and deep learning enhanced FF-OCT for information mining, etc. Finally, we summarize the application status and prospects of FF-OCT in the fields of biomedicine, materials science, security, and identification. RESULTS The most worth-expecting FF-OCT innovations include combining the technique of spatial modulation of optical field and computational optical imaging technology to obtain greater penetration depth, as well as exploiting endogenous contrast for functional imaging, e.g., dynamic FF-OCT, which enables noninvasive visualization of tissue dynamic properties or intracellular motility. Different dynamic imaging algorithms are compared using the same OCT data of the colorectal cancer organoid, which helps to understand the disadvantages and advantages of each. In addition, deep learning enhanced FF-OCT provides more valuable characteristic information, which is of great significance for auxiliary diagnosis and organoid detection. CONCLUSIONS FF-OCT has not been completely exploited and has substantial growth potential. By elaborating the key technologies, performance optimization methods, and application status of FF-OCT, we expect to accelerate the development of FF-OCT in both academic and industry fields. This renewed perspective on FF-OCT may also serve as a road map for future development of invasive 3D super-resolution imaging techniques to solve the problems of microscopic visualization detection.
Collapse
Affiliation(s)
- Ling Wang
- Hangzhou DianZi University, School of Automation, Hangzhou, China
- Key Laboratory of Medical Information and 3D Biological of Zhejiang Province, Hangzhou, China
| | - Rongzhen Fu
- Hangzhou DianZi University, School of Automation, Hangzhou, China
| | - Chen Xu
- Hangzhou DianZi University, School of Automation, Hangzhou, China
| | - Mingen Xu
- Hangzhou DianZi University, School of Automation, Hangzhou, China
- Key Laboratory of Medical Information and 3D Biological of Zhejiang Province, Hangzhou, China
| |
Collapse
|
29
|
Cao J, Yang Q, Miao Y, Li Y, Qiu S, Zhu Z, Wang P, Chen Z. Enhance the delivery of light energy ultra-deep into turbid medium by controlling multiple scattering photons to travel in open channels. LIGHT, SCIENCE & APPLICATIONS 2022; 11:108. [PMID: 35462570 PMCID: PMC9035453 DOI: 10.1038/s41377-022-00795-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/01/2022] [Accepted: 04/09/2022] [Indexed: 05/24/2023]
Abstract
Multiple light scattering is considered as the major limitation for deep imaging and focusing in turbid media. In this paper, we present an innovative method to overcome this limitation and enhance the delivery of light energy ultra-deep into turbid media with significant improvement in focusing. Our method is based on a wide-field reflection matrix optical coherence tomography (RM-OCT). The time-reversal decomposition of the RM is calibrated with the Tikhonov regularization parameter in order to get more accurate reversal results deep inside the scattering sample. We propose a concept named model energy matrix, which provides a direct mapping of light energy distribution inside the scattering sample. To the best of our knowledge, it is the first time that a method to measure and quantify the distribution of beam intensity inside a scattering sample is demonstrated. By employing the inversion of RM to find the matched wavefront and shaping with a phase-only spatial light modulator, we succeeded in both focusing a beam deep (~9.6 times of scattering mean free path, SMFP) inside the sample and increasing the delivery of light energy by an order of magnitude at an ultra-deep (~14.4 SMFP) position. This technique provides a powerful tool to understand the propagation of photon in a scattering medium and opens a new way to focus light inside biological tissues.
Collapse
Affiliation(s)
- Jing Cao
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, 92612, USA
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, 570228, Hainan, China
| | - Qiang Yang
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, 92612, USA
| | - Yusi Miao
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, 92612, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Yan Li
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, 92612, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Saijun Qiu
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, 92612, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Zhikai Zhu
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, 92612, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Pinghe Wang
- China State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, 610054, Chengdu, China.
| | - Zhongping Chen
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, 92612, USA.
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
30
|
Tahir W, Wang H, Tian L. Adaptive 3D descattering with a dynamic synthesis network. LIGHT, SCIENCE & APPLICATIONS 2022; 11:42. [PMID: 35210401 PMCID: PMC8873471 DOI: 10.1038/s41377-022-00730-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/22/2022] [Accepted: 02/02/2022] [Indexed: 05/11/2023]
Abstract
Deep learning has been broadly applied to imaging in scattering applications. A common framework is to train a descattering network for image recovery by removing scattering artifacts. To achieve the best results on a broad spectrum of scattering conditions, individual "expert" networks need to be trained for each condition. However, the expert's performance sharply degrades when the testing condition differs from the training. An alternative brute-force approach is to train a "generalist" network using data from diverse scattering conditions. It generally requires a larger network to encapsulate the diversity in the data and a sufficiently large training set to avoid overfitting. Here, we propose an adaptive learning framework, termed dynamic synthesis network (DSN), which dynamically adjusts the model weights and adapts to different scattering conditions. The adaptability is achieved by a novel "mixture of experts" architecture that enables dynamically synthesizing a network by blending multiple experts using a gating network. We demonstrate the DSN in holographic 3D particle imaging for a variety of scattering conditions. We show in simulation that our DSN provides generalization across a continuum of scattering conditions. In addition, we show that by training the DSN entirely on simulated data, the network can generalize to experiments and achieve robust 3D descattering. We expect the same concept can find many other applications, such as denoising and imaging in scattering media. Broadly, our dynamic synthesis framework opens up a new paradigm for designing highly adaptive deep learning and computational imaging techniques.
Collapse
Affiliation(s)
- Waleed Tahir
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Hao Wang
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Lei Tian
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
31
|
Del Hougne P. Calibration-free speckle matrix imaging. LIGHT, SCIENCE & APPLICATIONS 2022; 11:33. [PMID: 35132057 PMCID: PMC8821616 DOI: 10.1038/s41377-022-00723-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Unknown speckle patterns can be used to image targets embedded in complex scattering media 100 times faster than previous techniques based on carefully calibrated illuminations.
Collapse
|
32
|
Yang L, Han T, Meng J, Qian S, Yang C, Liu Z, Ding Z. Optimized number of the primary singular values for image reconstruction in reflection matrix based optical coherence tomography. OPTICS EXPRESS 2022; 30:2680-2692. [PMID: 35209403 DOI: 10.1364/oe.442672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
A reflection matrix based optical coherence tomography (OCT) is recently proposed and expected to extend the imaging-depth limit twice. However, the imaging depth and hence the image quality heavily depend on the number of primary singular values considered for image reconstruction. To this regard, we propose a method based on correlation between image pairs reconstructed from different number of singular values and corresponding remainders. The obtained correlation curve and another feature curve fetched from the former are then fed to a long short-term memory (LSTM) network classifier to identify the optimized number of primary singular values for image reconstruction. Simulated targets with different combinations of filling fraction and signal-to-noise ratio (SNR) are reconstructed by the developed method as well as two current adopted methods for comparison. The results demonstrate that the proposed method is robust to recover the image with satisfactory similarity close to the reference one. To our knowledge, this is the first comprehensive study on the optimized number of the primary singular values considered for image reconstruction in reflection matrix based OCT.
Collapse
|
33
|
Disney C, Mo J, Eckersley A, Bodey A, Hoyland J, Sherratt M, Pitsillides A, Lee P, Bay B. Regional variations in discrete collagen fibre mechanics within intact intervertebral disc resolved using synchrotron computed tomography and digital volume correlation. Acta Biomater 2022; 138:361-374. [PMID: 34644611 PMCID: PMC8904373 DOI: 10.1016/j.actbio.2021.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 01/14/2023]
Abstract
Many soft tissues, such as the intervertebral disc (IVD), have a hierarchical fibrous composite structure which suffers from regional damage. We hypothesise that these tissue regions have distinct, inherent fibre structure and structural response upon loading. Here we used synchrotron computed tomography (sCT) to resolve collagen fibre bundles (∼5μm width) in 3D throughout an intact native rat lumbar IVD under increasing compressive load. Using intact samples meant that tissue boundaries (such as endplate-disc or nucleus-annulus) and residual strain were preserved; this is vital for characterising both the inherent structure and structural changes upon loading in tissue regions functioning in a near-native environment. Nano-scale displacement measurements along >10,000 individual fibres were tracked, and fibre orientation, curvature and strain changes were compared between the posterior-lateral region and the anterior region. These methods can be widely applied to other soft tissues, to identify fibre structures which cause tissue regions to be more susceptible to injury and degeneration. Our results demonstrate for the first time that highly-localised changes in fibre orientation, curvature and strain indicate differences in regional strain transfer and mechanical function (e.g. tissue compliance). This included decreased fibre reorientation at higher loads, specific tissue morphology which reduced capacity for flexibility and high strain at the disc-endplate boundary. Statement of significance The analyses presented here are applicable to many collagenous soft tissues which suffer from regional damage. We aimed to investigate regional intervertebral disc (IVD) structural and functional differences by characterising collagen fibre architecture and linking specific fibre- and tissue-level deformation behaviours. Synchrotron CT provided the first demonstration of tracking discrete fibres in 3D within an intact IVD. Detailed analysis of regions was performed using over 200k points, spaced every 8 μm along 10k individual fibres. Such comprehensive structural characterisation is significant in informing future computational models. Morphological indicators of tissue compliance (change in fibre curvature and orientation) and fibre strain measurements revealed localised and regional differences in tissue behaviour.
Collapse
|
34
|
Lee H, Yoon S, Loohuis P, Hong JH, Kang S, Choi W. High-throughput volumetric adaptive optical imaging using compressed time-reversal matrix. LIGHT, SCIENCE & APPLICATIONS 2022; 11:16. [PMID: 35027538 PMCID: PMC8758712 DOI: 10.1038/s41377-021-00705-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/10/2021] [Accepted: 12/26/2021] [Indexed: 05/02/2023]
Abstract
Deep-tissue optical imaging suffers from the reduction of resolving power due to tissue-induced optical aberrations and multiple scattering noise. Reflection matrix approaches recording the maps of backscattered waves for all the possible orthogonal input channels have provided formidable solutions for removing severe aberrations and recovering the ideal diffraction-limited spatial resolution without relying on fluorescence labeling and guide stars. However, measuring the full input-output response of the tissue specimen is time-consuming, making the real-time image acquisition difficult. Here, we present the use of a time-reversal matrix, instead of the reflection matrix, for fast high-resolution volumetric imaging of a mouse brain. The time-reversal matrix reduces two-way problem to one-way problem, which effectively relieves the requirement for the coverage of input channels. Using a newly developed aberration correction algorithm designed for the time-reversal matrix, we demonstrated the correction of complex aberrations using as small as 2% of the complete basis while maintaining the image reconstruction fidelity comparable to the fully sampled reflection matrix. Due to nearly 100-fold reduction in the matrix recording time, we could achieve real-time aberration-correction imaging for a field of view of 40 × 40 µm2 (176 × 176 pixels) at a frame rate of 80 Hz. Furthermore, we demonstrated high-throughput volumetric adaptive optical imaging of a mouse brain by recording a volume of 128 × 128 × 125 µm3 (568 × 568 × 125 voxels) in 3.58 s, correcting tissue aberrations at each and every 1 µm depth section, and visualizing myelinated axons with a lateral resolution of 0.45 µm and an axial resolution of 2 µm.
Collapse
Affiliation(s)
- Hojun Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea
- Department of Physics, Korea University, Seoul, 02841, Korea
| | - Seokchan Yoon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea
- Department of Physics, Korea University, Seoul, 02841, Korea
| | - Pascal Loohuis
- Department of Applied Mathematics, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, Netherlands
- Achmea Holding BV, Handelsweg 2, 3707 NH, Zeist, Netherlands
| | - Jin Hee Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea
| | - Sungsam Kang
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea
- Department of Physics, Korea University, Seoul, 02841, Korea
| | - Wonshik Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea.
- Department of Physics, Korea University, Seoul, 02841, Korea.
| |
Collapse
|
35
|
Wu M, Liu S, Leartprapun N, Adie S. Investigation of multiple scattering in space and spatial-frequency domains: with application to the analysis of aberration-diverse optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:7478-7499. [PMID: 35003847 PMCID: PMC8713691 DOI: 10.1364/boe.439395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 05/12/2023]
Abstract
Optical microscopy suffers from multiple scattering (MS), which limits the optical imaging depth into scattering media. We previously demonstrated aberration-diverse optical coherence tomography (AD-OCT) for MS suppression, based on the principle that for datasets acquired with different aberration states of the imaging beam, MS backgrounds become decorrelated while single scattering (SS) signals remain correlated, so that a simple coherent average can be used to enhance the SS signal over the MS background. Here, we propose a space/spatial-frequency domain analysis framework for the investigation of MS in OCT, and apply the framework to compare AD-OCT (using astigmatic beams) to standard Gaussian-beam OCT via experiments in scattering tissue phantoms. Utilizing this framework, we found that increasing the astigmatic magnitude produced a large drop in both MS background and SS signal, but the decay experienced by the MS background was larger than the SS signal. Accounting for the decay in both SS signal and MS background, the overall signal-to-background ratio (SBR) of AD-OCT was similar to the Gaussian control after about 10 coherent averages, when deeper line foci was positioned at the plane-of-interest and the line foci spacing was smaller than or equal to 80 µm. For an even larger line foci spacing of 160 µm, AD-OCT resulted in a lower SBR than the Gaussian-beam control. This work provides an analysis framework to gain deeper levels of understanding and insights for the future study of MS and MS suppression in both the space and spatial-frequency domains.
Collapse
Affiliation(s)
- Meiqi Wu
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Siyang Liu
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Nichaluk Leartprapun
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Steven Adie
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
36
|
Liu W, Zhou Z, Chen L, Luo X, Liu Y, Chen X, Wan W. Imaging through dynamical scattering media by two-photon absorption detectors. OPTICS EXPRESS 2021; 29:29972-29981. [PMID: 34614730 DOI: 10.1364/oe.433513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Imaging through a dynamical opaque scattering medium is an almost impossible task, where strong multiple light scattering from moving scatters dynamically prevents imaging formations even with state-of-art techniques like correlation imaging or adaptive optics. Meanwhile, a small number of ballistic photons can still penetrate through but require demanding detection in terms of a ultrashort time gate and high sensitivity. However, visible light is strongly scattered for most of scattering media. Here we experimentally demonstrate a non-invasive coherent imaging scheme based on two-photon absorption capable of imaging through dynamical scattering media with a length equivalent to 28 times mean free paths for single photon transport, where two-photon absorption in a conventional semiconductor photodetector when phase matching is not required works over a wide bandwidth so it can support a fast time gate down to femtosecond level, short enough to distinguish ballistic photons from scattering background, and allows accessing longer wavelengths for deeper penetration. This technique combined with successful optical coherence tomography may pave a new way for imaging through fog, storm, and rain as well as biomedical imaging applications.
Collapse
|
37
|
Dutheil L, Bocoum M, Fink M, Popoff SM, Ramaz F, Tualle JM. Fourier transform acousto-optic imaging with off-axis holographic detection. APPLIED OPTICS 2021; 60:7107-7112. [PMID: 34612995 DOI: 10.1364/ao.427181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Acousto-optic (AO) imaging is an in-depth optical imaging technique of highly scattering media. One challenging end-application for this technique is to perform imaging of living biological tissues. Indeed, because it relies on coherent illumination, AO imaging is sensitive to speckle decorrelation occurring on the millisecond time scale. Camera-based detections are well suited for in vivo imaging provided their integration time is lower than those decorrelation time scales. We present Fourier transform acousto-optic imaging combined with off-axis holography, which relies on plane waves and long-duration pulses. We demonstrate, for the first time to the best of our knowledge, a two-dimensional imaging system fully compatible with in vivo imaging prerequisites. The method is validated experimentally by performing in-depth imaging inside a multiple scattering sample.
Collapse
|
38
|
Barolle V, Scholler J, Mecê P, Chassot JM, Groux K, Fink M, Claude Boccara A, Aubry A. Manifestation of aberrations in full-field optical coherence tomography. OPTICS EXPRESS 2021; 29:22044-22065. [PMID: 34265978 DOI: 10.1364/oe.419963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/28/2021] [Indexed: 05/25/2023]
Abstract
We report on a theoretical model for image formation in full-field optical coherence tomography (FFOCT). Because the spatial incoherence of the illumination acts as a virtual confocal pinhole in FFOCT, its imaging performance is equivalent to a scanning time-gated coherent confocal microscope. In agreement with optical experiments enabling a precise control of aberrations, FFOCT is shown to have nearly twice the resolution of standard imaging at moderate aberration level. Beyond a rigorous study on the sensitivity of FFOCT with respect to aberrations, this theoretical model paves the way towards an optimized design of adaptive optics and computational tools for high-resolution and deep imaging of biological tissues.
Collapse
|
39
|
Yang X, Liu Y, Mou X, Hu T, Yuan F, Cheng E. Imaging in turbid water based on a Hadamard single-pixel imaging system. OPTICS EXPRESS 2021; 29:12010-12023. [PMID: 33984970 DOI: 10.1364/oe.421937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Underwater imaging is a challenging task because of the large amounts of noise and the scattering nature of water. Conventional optical methods cannot realize clear imaging in underwater conditions owing to the limitations of low sensitivity, geometrical aberrations, and the narrow spectrum of photoelectric detectors. By contrast, single-pixel imaging (SPI) is a promising tool for imaging in poor-visibility environments. Nevertheless, this challenge is faced even when using traditional SPI methods in highly turbid underwater environments. In this work, we propose a Hadamard single-pixel imaging (HSI) system that outperforms other imaging modes in turbid water imaging. The effects of laser power, projection rate, and water turbidity on the final image quality are systematically investigated. Results reveal that compared with the state-of-the-art SPI techniques, the proposed HSI system is more promising for underwater imaging because of its high resolution and anti-scattering capabilities.
Collapse
|
40
|
Yang W, Situ G. Recovery of the topological charge of a vortex beam propagated through a scattering layer. APPLIED OPTICS 2021; 60:B95-B99. [PMID: 33798141 DOI: 10.1364/ao.415357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Coherent vortex beams have shown great potential in many applications including information transmission under non-ideal conditions, as information can be encoded in the orbital angular momentum. However, inhomogeneity of atmosphere tends to scramble the vortex structure and give rise to speckle. It is therefore of great interest to reconstruct the topological charge of a vortex beam after it propagates through a scattering medium. Here, we propose a feasible solution for this. The proposed method measures holographically the scattered field and reconstructs the spiral phase from it by taking advantage of both the deterministic nature and the ergodicity of the scattering process. Our preliminary experiments show promising results and suggest that the proposed method can have great potential in information transmission under non-ideal conditions.
Collapse
|
41
|
Maruca S, Rehain P, Sua YM, Zhu S, Huang Y. Non-invasive single photon imaging through strongly scattering media. OPTICS EXPRESS 2021; 29:9981-9990. [PMID: 33820159 DOI: 10.1364/oe.417299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Non-invasive optical imaging through opaque and multi-scattering media remains highly desirable across many application domains. The random scattering and diffusion of light in such media inflict exponential decay and aberration, prohibiting diffraction-limited imaging. By non-interferometric few picoseconds optical gating of backscattered photons, we demonstrate single photon sensitive non-invasive 3D imaging of targets occluded by strongly scattering media with optical thicknesses reaching 9.5ls (19ls round trip). It achieves diffraction-limited imaging of a target placed 130 cm away through the opaque media, with millimeter lateral and depth resolution while requiring only one photon detection out of 50,000 probe pulses. Our single photon sensitive imaging technique does not require wavefront shaping nor computationally-intensive image reconstruction algorithms, promising practical solutions for diffraction-limited imaging through highly opaque and diffusive media with low illumination power.
Collapse
|
42
|
Kang P, Kang S, Jo Y, Ko H, Kim G, Lee YR, Choi W. Optical transfer function of time-gated coherent imaging in the presence of a scattering medium. OPTICS EXPRESS 2021; 29:3395-3405. [PMID: 33770938 DOI: 10.1364/oe.412988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Optical imaging of objects embedded within scattering media such as biological tissues suffers from the loss of resolving power. In our previous work, we proposed an approach called collective accumulation of single scattering (CASS) microscopy that attenuates this detrimental effect of multiple light scattering by combining the time-gated detection and spatial input-output correlation. In the present work, we perform a rigorous theoretical analysis on the effect of multiple light scattering to the optical transfer function of CASS microscopy. In particular, the spatial frequency-dependent signal to noise ratio (SNR) is derived depending on the intensity ratio of the single- and multiple-scattered waves. This allows us to determine the depth-dependent resolving power. We conducted experiments using a Siemens star-like target having various spatial frequency components and supported the theoretical derived SNR spectra. Our study provides a theoretical framework for understanding the effect of multiple light scattering in high-resolution and deep-tissue optical imaging.
Collapse
|
43
|
Velichko A, Villaverde EL, Croxford AJ. Local scattering ultrasound imaging. Sci Rep 2021; 11:993. [PMID: 33441728 PMCID: PMC7806797 DOI: 10.1038/s41598-020-79617-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/07/2020] [Indexed: 11/21/2022] Open
Abstract
Ultrasonic imaging is a widely used tool for detection, localisation and characterisation of material inhomogeneities with important applications in many fields. This task is particularly challenging when imaging in a complex medium, where the ultrasonic wave is scattered by the material microstructure, preventing detection and characterisation of weak targets. Fundamentally, the maximum information that can be experimentally obtained from each material region consists of a set of reflected signals for different incident waves. However, these data are not directly accessible from the raw measurements, which represent a superposition of reflections from all scatterers in the medium. Here we show, that a complete set of transmitter–receiver data encodes sufficient information in order to achieve full spatio–temporal separation of transmitter–receiver data, corresponding to different local scattering areas. We show that access to the local scattering data can provide valuable benefits for many applications. More importantly, this technique enables fundamentally new approaches, exploiting the angular distribution of the scattering amplitude and phase of each local scattering region. Here we demonstrate how the local scattering directivity can be used to build the local scattering image, releasing the full potential and richness of the transmit–receive data. As a proof of concept, we demonstrate the detection of small inclusions in various highly scattering materials using numerical and experimental examples. The described principles are very general and can be applied to any research field where the phased array technology is employed.
Collapse
Affiliation(s)
- Alexander Velichko
- Department of Mechanical Engineering, University of Bristol, Bristol, BS8 1TR, UK.
| | | | - Anthony J Croxford
- Department of Mechanical Engineering, University of Bristol, Bristol, BS8 1TR, UK
| |
Collapse
|
44
|
Kanngiesser J, Roth B. Wavefront Shaping Concepts for Application in Optical Coherence Tomography-A Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E7044. [PMID: 33316998 PMCID: PMC7763956 DOI: 10.3390/s20247044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 01/10/2023]
Abstract
Optical coherence tomography (OCT) enables three-dimensional imaging with resolution on the micrometer scale. The technique relies on the time-of-flight gated detection of light scattered from a sample and has received enormous interest in applications as versatile as non-destructive testing, metrology and non-invasive medical diagnostics. However, in strongly scattering media such as biological tissue, the penetration depth and imaging resolution are limited. Combining OCT imaging with wavefront shaping approaches significantly leverages the capabilities of the technique by controlling the scattered light field through manipulation of the field incident on the sample. This article reviews the main concepts developed so far in the field and discusses the latest results achieved with a focus on signal enhancement and imaging.
Collapse
Affiliation(s)
- Jonas Kanngiesser
- Hannoversches Zentrum für Optische Technologien, Leibniz Universität Hannover, Nienburger Straße 17, D-30167 Hannover, Germany;
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering–Innovation Across Disciplines), D-30167 Hannover, Germany
| | - Bernhard Roth
- Hannoversches Zentrum für Optische Technologien, Leibniz Universität Hannover, Nienburger Straße 17, D-30167 Hannover, Germany;
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering–Innovation Across Disciplines), D-30167 Hannover, Germany
| |
Collapse
|
45
|
Boniface A, Dong J, Gigan S. Non-invasive focusing and imaging in scattering media with a fluorescence-based transmission matrix. Nat Commun 2020; 11:6154. [PMID: 33262335 PMCID: PMC7708489 DOI: 10.1038/s41467-020-19696-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/08/2020] [Indexed: 11/16/2022] Open
Abstract
In biological microscopy, light scattering represents the main limitation to image at depth. Recently, a set of wavefront shaping techniques has been developed in order to manipulate coherent light in strongly disordered materials. The Transmission Matrix approach has shown its capability to inverse the effect of scattering and efficiently focus light. In practice, the matrix is usually measured using an invasive detector or low-resolution acoustic guide stars. Here, we introduce a non-invasive and all-optical strategy based on linear fluorescence to reconstruct the transmission matrices, to and from a fluorescent object placed inside a scattering medium. It consists in demixing the incoherent patterns emitted by the object using low-rank factorizations and phase retrieval algorithms. We experimentally demonstrate the efficiency of this method through robust and selective focusing. Additionally, from the same measurements, it is possible to exploit memory effect correlations to image and reconstruct extended objects. This approach opens up a new route towards imaging in scattering media with linear or non-linear contrast mechanisms. Light scattering represents the main limitation to image at depth in biological microscopy. The authors present a strategy to characterize light propagation in and out of a scattering medium based on linear fluorescence feedback and from the same measurements exploit memory effect correlations to image and reconstruct extended objects.
Collapse
Affiliation(s)
- Antoine Boniface
- Laboratoire Kastler Brossel, Sorbonne Université, École Normale Supérieure-Paris Sciences et Lettres (PSL) Research University, Centre National de la Recherche Scientifique (CNRS) UMR 8552, Collège de France, 24 rue Lhomond, 75005, Paris, France.
| | - Jonathan Dong
- Laboratoire Kastler Brossel, Sorbonne Université, École Normale Supérieure-Paris Sciences et Lettres (PSL) Research University, Centre National de la Recherche Scientifique (CNRS) UMR 8552, Collège de France, 24 rue Lhomond, 75005, Paris, France.,Laboratoire de Physique de l'École Normale Supérieure, Université Paris Sciences et Lettres (PSL), Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, 24 rue Lhomond, 75005, Paris, France
| | - Sylvain Gigan
- Laboratoire Kastler Brossel, Sorbonne Université, École Normale Supérieure-Paris Sciences et Lettres (PSL) Research University, Centre National de la Recherche Scientifique (CNRS) UMR 8552, Collège de France, 24 rue Lhomond, 75005, Paris, France
| |
Collapse
|
46
|
Joshi R, Krishnan G, O'Connor T, Javidi B. Signal detection in turbid water using temporally encoded polarimetric integral imaging. OPTICS EXPRESS 2020; 28:36033-36045. [PMID: 33379707 DOI: 10.1364/oe.409234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
To improve signal detection in a turbid medium, we propose temporally encoded single shot polarimetric integral imaging. An optical signal is temporally encoded using gold coded sequences and transmitted through a turbid medium. The encoded signals are captured as a sequence of elemental images by two orthogonal polarized image sensor arrays. Polarimetric and polarization difference imaging are used to suppress the partially polarized and unpolarized background noise such that only the polarized ballistic signal photons are captured at the sensor. Multidimensional integral imaging is used to obtain 4D reconstructed data, and multidimensional nonlinear correlation is performed on the reconstructed data to detect the optical signal. We compare the effectiveness of the proposed polarimetric underwater optical signal detection approach to conventional (non-polarimetric) integral imaging-based and 2D imaging-based signal detection systems. The underwater signal detection capabilities are measured through performance metrics such as receiver operating characteristic (ROC) curves, the area under the curve (AUC), and the number of detection errors. Furthermore, statistical measures, including the Kullback-Leibler divergence, signal-to-noise ratio (SNR), and peak-to-correlation energy (PCE), are also calculated to show the improved performance of the proposed system. Our experimental results show that the proposed polarimetric integral-imaging approach significantly outperforms the conventional imaging-based methods. To the best of our knowledge, this is the first report on temporally encoded single shot polarimetric integral imaging for signal detection in turbid water.
Collapse
|
47
|
Yoon S, Lee H, Hong JH, Lim YS, Choi W. Laser scanning reflection-matrix microscopy for aberration-free imaging through intact mouse skull. Nat Commun 2020; 11:5721. [PMID: 33184297 PMCID: PMC7665219 DOI: 10.1038/s41467-020-19550-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 10/14/2020] [Indexed: 11/09/2022] Open
Abstract
A mouse skull is a barrier for high-resolution optical imaging because its thick and inhomogeneous internal structures induce complex aberrations varying drastically from position to position. Invasive procedures creating either thinned-skull or open-skull windows are often required for the microscopic imaging of brain tissues underneath. Here, we propose a label-free imaging modality termed laser scanning reflection-matrix microscopy for recording the amplitude and phase maps of reflected waves at non-confocal points as well as confocal points. The proposed method enables us to find and computationally correct up to 10,000 angular modes of aberrations varying at every 10 × 10 µm2 patch in the sample plane. We realized reflectance imaging of myelinated axons in vivo underneath an intact mouse skull, with an ideal diffraction-limited spatial resolution of 450 nm. Furthermore, we demonstrated through-skull two-photon fluorescence imaging of neuronal dendrites and their spines by physically correcting the aberrations identified from the reflection matrix.
Collapse
Affiliation(s)
- Seokchan Yoon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea.,Department of Physics, Korea University, Seoul, 02855, Korea
| | - Hojun Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea.,Department of Physics, Korea University, Seoul, 02855, Korea
| | - Jin Hee Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea.,Department of Physics, Korea University, Seoul, 02855, Korea
| | - Yong-Sik Lim
- Department of Nano Science and Mechanical Engineering and Nanotechnology Research Center, Konkuk University, Chungbuk, Korea
| | - Wonshik Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Korea. .,Department of Physics, Korea University, Seoul, 02855, Korea.
| |
Collapse
|
48
|
Radford J, Lyons A, Tonolini F, Faccio D. Role of late photons in diffuse optical imaging. OPTICS EXPRESS 2020; 28:29486-29495. [PMID: 33114848 DOI: 10.1364/oe.402503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
The ability to image through turbid media, such as organic tissues, is a highly attractive prospect for biological and medical imaging. This is challenging, however, due to the highly scattering properties of tissues which scramble the image information. The earliest photons that arrive at the detector are often associated with ballistic transmission, whilst the later photons are associated with complex paths due to multiple independent scattering events and are therefore typically considered to be detrimental to the final image formation process. In this work, we report on the importance of these highly diffuse, "late" photons for computational time-of-flight diffuse optical imaging. In thick scattering materials, >80 transport mean free paths, we provide evidence that including late photons in the inverse retrieval enhances the image reconstruction quality. We also show that the late photons alone have sufficient information to retrieve images of a similar quality to early photon gated data. This result emphasises the importance in the strongly diffusive regime of fully time-resolved imaging techniques.
Collapse
|
49
|
Lindell DB, Wetzstein G. Three-dimensional imaging through scattering media based on confocal diffuse tomography. Nat Commun 2020; 11:4517. [PMID: 32908155 PMCID: PMC7481188 DOI: 10.1038/s41467-020-18346-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022] Open
Abstract
Optical imaging techniques, such as light detection and ranging (LiDAR), are essential tools in remote sensing, robotic vision, and autonomous driving. However, the presence of scattering places fundamental limits on our ability to image through fog, rain, dust, or the atmosphere. Conventional approaches for imaging through scattering media operate at microscopic scales or require a priori knowledge of the target location for 3D imaging. We introduce a technique that co-designs single-photon avalanche diodes, ultra-fast pulsed lasers, and a new inverse method to capture 3D shape through scattering media. We demonstrate acquisition of shape and position for objects hidden behind a thick diffuser (≈6 transport mean free paths) at macroscopic scales. Our technique, confocal diffuse tomography, may be of considerable value to the aforementioned applications.
Collapse
Affiliation(s)
- David B Lindell
- Department of Electrical Engineering, Stanford University, 350 Jane Stanford Way, Stanford, CA, 94305, USA.
| | - Gordon Wetzstein
- Department of Electrical Engineering, Stanford University, 350 Jane Stanford Way, Stanford, CA, 94305, USA.
| |
Collapse
|
50
|
Badon A, Barolle V, Irsch K, Boccara AC, Fink M, Aubry A. Distortion matrix concept for deep optical imaging in scattering media. SCIENCE ADVANCES 2020; 6:eaay7170. [PMID: 32923603 PMCID: PMC7455485 DOI: 10.1126/sciadv.aay7170] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 06/05/2020] [Indexed: 05/03/2023]
Abstract
In optical imaging, light propagation is affected by the inhomogeneities of the medium. Sample-induced aberrations and multiple scattering can strongly degrade the image resolution and contrast. On the basis of a dynamic correction of the incident and/or reflected wavefronts, adaptive optics has been used to compensate for those aberrations. However, it only applies to spatially invariant aberrations or to thin aberrating layers. Here, we propose a global and noninvasive approach based on the distortion matrix concept. This matrix basically connects any focusing point of the image with the distorted part of its wavefront in reflection. A singular value decomposition of the distortion matrix allows to correct for high-order aberrations and forward multiple scattering over multiple isoplanatic modes. Proof-of-concept experiments are performed through biological tissues including a turbid cornea. We demonstrate a Strehl ratio enhancement up to 2500 and recover a diffraction-limited resolution until a depth of 10 scattering mean free paths.
Collapse
Affiliation(s)
- Amaury Badon
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 1 rue Jussieu, 75005 Paris, France
| | - Victor Barolle
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 1 rue Jussieu, 75005 Paris, France
| | - Kristina Irsch
- Vision Institute/Quinze-Vingts National Eye Hospital, Sorbonne University, CNRS UMR 7210, INSERM U 068, 17 rue Moreau, 75012 Paris, France
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - A. Claude Boccara
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 1 rue Jussieu, 75005 Paris, France
| | - Mathias Fink
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 1 rue Jussieu, 75005 Paris, France
| | - Alexandre Aubry
- Institut Langevin, ESPCI Paris, PSL University, CNRS, 1 rue Jussieu, 75005 Paris, France
- Corresponding author.
| |
Collapse
|