1
|
Azimzadeh PN, Birchenough GM, Gualbuerto NC, Pinkner JS, Tamadonfar KO, Beatty W, Hannan TJ, Dodson KW, Ibarra EC, Kim S, Schreiber HL, Janetka JW, Kau AL, Earl AM, Miller MJ, Hansson GC, Hultgren SJ. Mechanisms of uropathogenic E. coli mucosal association in the gastrointestinal tract. SCIENCE ADVANCES 2025; 11:eadp7066. [PMID: 39888987 PMCID: PMC11784811 DOI: 10.1126/sciadv.adp7066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 12/31/2024] [Indexed: 02/02/2025]
Abstract
Urinary tract infections (UTIs) are highly recurrent and frequently caused by Uropathogenic Escherichia coli (UPEC) strains that can be found in patient intestines. Seeding of the urinary tract from this intestinal reservoir likely contributes to UTI recurrence (rUTI) rates. Thus, understanding the factors that promote UPEC intestinal colonization is of critical importance to designing therapeutics to reduce rUTI incidence. Although E. coli is found in high abundance in large intestine mucus, little is known about how it is able to maintain residence in this continuously secreted hydrogel. We discovered that the FimH adhesin of type 1 pili (T1P) bound throughout the secreted mucus layers of the colon and to epithelial cells in mouse and human samples. Disruption of T1P led to reduced association with colon mucus. Notably, this mutant up-regulated flagellar production and infiltrated the protective inner mucus layer of the colon. This could explain how UPEC resists being washed off by the continuously secreted mucus layers of the colon.
Collapse
Affiliation(s)
- Philippe N. Azimzadeh
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - George M. Birchenough
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Nathaniel C. Gualbuerto
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Jerome S. Pinkner
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Kevin O. Tamadonfar
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Wandy Beatty
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Thomas J. Hannan
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Karen W. Dodson
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Enid C. Ibarra
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Seonyoung Kim
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Henry L. Schreiber
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - James W. Janetka
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Andrew L. Kau
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ashlee M. Earl
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Mark J. Miller
- Department of Internal Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gunnar C. Hansson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
2
|
Lopatto EDB, Santiago-Borges JM, Sanick DA, Malladi SK, Azimzadeh PN, Timm MW, Fox IF, Schmitz AJ, Turner JS, Ahmed SS, Ortinau L, Gualberto NC, Pinkner JS, Dodson KW, Ellebedy AH, Kau AL, Hultgren SJ. Monoclonal antibodies targeting the FimH adhesin protect against uropathogenic E. coli UTI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627638. [PMID: 39713358 PMCID: PMC11661314 DOI: 10.1101/2024.12.10.627638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
As antimicrobial resistance increases, urinary tract infections (UTIs) are expected to pose an increased burden in morbidity and expense on the healthcare system, increasing the need for alternative antibiotic-sparing treatments. Most UTIs are caused by uropathogenic Escherichia coli (UPEC), while Klebsiella pneumoniae causes a significant portion of non-UPEC UTIs. Both bacteria express type 1 pili tipped with the mannose-binding FimH adhesin critical for UTI pathogenesis. We generated and biochemically characterized 33 murine monoclonal antibodies (mAbs) to FimH. Two mAbs protected mice from E. coli UTI. Mechanistically, we show that this protection is Fc-independent and mediated by the ability of these mAbs to sterically block FimH function. Our data reveals that FimH mAbs hold promise as an antibiotic-sparing treatment strategy.
Collapse
Affiliation(s)
- Edward D. B. Lopatto
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, MO, U.S.A
- Center for Women’s Infectious Disease Research, Washington University in St Louis, St Louis, MO, U.S.A
| | - Jesús M. Santiago-Borges
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, MO, U.S.A
- Center for Women’s Infectious Disease Research, Washington University in St Louis, St Louis, MO, U.S.A
- Division of Allergy and Immunology, Department of Medicine, Washington University in St Louis, St Louis, MO, U.S.A
| | - Denise A. Sanick
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, MO, U.S.A
- Center for Women’s Infectious Disease Research, Washington University in St Louis, St Louis, MO, U.S.A
| | - Sameer Kumar Malladi
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, U.S.A
| | - Philippe N. Azimzadeh
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, MO, U.S.A
- Center for Women’s Infectious Disease Research, Washington University in St Louis, St Louis, MO, U.S.A
| | - Morgan W. Timm
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, MO, U.S.A
- Center for Women’s Infectious Disease Research, Washington University in St Louis, St Louis, MO, U.S.A
| | - Isabella F. Fox
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, U.S.A
| | - Aaron J. Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, U.S.A
| | - Jackson S. Turner
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, U.S.A
| | - Shaza Sayed Ahmed
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, U.S.A
| | - Lillian Ortinau
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, MO, U.S.A
- Center for Women’s Infectious Disease Research, Washington University in St Louis, St Louis, MO, U.S.A
- Division of Allergy and Immunology, Department of Medicine, Washington University in St Louis, St Louis, MO, U.S.A
| | - Nathaniel C. Gualberto
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, MO, U.S.A
- Center for Women’s Infectious Disease Research, Washington University in St Louis, St Louis, MO, U.S.A
| | - Jerome S. Pinkner
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, MO, U.S.A
- Center for Women’s Infectious Disease Research, Washington University in St Louis, St Louis, MO, U.S.A
| | - Karen W. Dodson
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, MO, U.S.A
- Center for Women’s Infectious Disease Research, Washington University in St Louis, St Louis, MO, U.S.A
| | - Ali H. Ellebedy
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, MO, U.S.A
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, U.S.A
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, U.S.A
| | - Andrew L. Kau
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, MO, U.S.A
- Center for Women’s Infectious Disease Research, Washington University in St Louis, St Louis, MO, U.S.A
- Division of Allergy and Immunology, Department of Medicine, Washington University in St Louis, St Louis, MO, U.S.A
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, MO, U.S.A
- Center for Women’s Infectious Disease Research, Washington University in St Louis, St Louis, MO, U.S.A
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, U.S.A
| |
Collapse
|
3
|
Bitter RM, Zimmerman MI, Summers BT, Pinkner JS, Dodson KW, Hultgren SJ, Yuan P. Structural basis for adhesin secretion by the outer-membrane usher in type 1 pili. Proc Natl Acad Sci U S A 2024; 121:e2410594121. [PMID: 39316053 PMCID: PMC11459180 DOI: 10.1073/pnas.2410594121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Gram-negative bacteria produce chaperone-usher pathway pili, which are extracellular protein fibers tipped with an adhesive protein that binds to a receptor with stereochemical specificity to determine host and tissue tropism. The outer-membrane usher protein, together with a periplasmic chaperone, assembles thousands of pilin subunits into a highly ordered pilus fiber. The tip adhesin in complex with its cognate chaperone activates the usher to allow extrusion across the outer membrane. The structural requirements to translocate the adhesin through the usher pore from the periplasm to the extracellular space remains incompletely understood. Here, we present a cryoelectron microscopy structure of a quaternary tip complex in the type 1 pilus system from Escherichia coli, which consists of the usher FimD, chaperone FimC, adhesin FimH, and the tip adapter FimF. In this structure, the usher FimD is caught in the act of secreting its cognate adhesin FimH. Comparison with previous structures depicting the adhesin either first entering or having completely exited the usher pore reveals remarkable structural plasticity of the two-domain adhesin during translocation. Moreover, a piliation assay demonstrated that the structural plasticity, enabled by a flexible linker between the two domains, is a prerequisite for adhesin translocation through the usher pore and thus pilus biogenesis. Overall, this study provides molecular details of adhesin translocation across the outer membrane and elucidates a unique conformational state adopted by the adhesin during stepwise secretion through the usher pore. This study elucidates fundamental aspects of FimH and usher dynamics critical in urinary tract infections and is leading to antibiotic-sparing therapeutics.
Collapse
Affiliation(s)
- Ryan M. Bitter
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO63110
| | - Maxwell I. Zimmerman
- Department of Pathology and Immunology, Washington University in St Louis, St Louis, MO63110
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, St Louis, MO63110
| | - Brock T. Summers
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, MO63110
| | - Jerome S. Pinkner
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University in St Louis, St Louis, MO63110
| | - Karen W. Dodson
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University in St Louis, St Louis, MO63110
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University in St Louis, St Louis, MO63110
| | - Peng Yuan
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO63110
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY10029
| |
Collapse
|
4
|
Lopatto EDB, Pinkner JS, Sanick DA, Potter RF, Liu LX, Bazán Villicaña J, Tamadonfar KO, Ye Y, Zimmerman MI, Gualberto NC, Dodson KW, Janetka JW, Hunstad DA, Hultgren SJ. Conformational ensembles in Klebsiella pneumoniae FimH impact uropathogenesis. Proc Natl Acad Sci U S A 2024; 121:e2409655121. [PMID: 39288182 PMCID: PMC11441496 DOI: 10.1073/pnas.2409655121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/01/2024] [Indexed: 09/19/2024] Open
Abstract
Klebsiella pneumoniae is an important pathogen causing difficult-to-treat urinary tract infections (UTIs). Over 1.5 million women per year suffer from recurrent UTI, reducing quality of life and causing substantial morbidity and mortality, especially in the hospital setting. Uropathogenic E. coli (UPEC) is the most prevalent cause of UTI. Like UPEC, K. pneumoniae relies on type 1 pili, tipped with the mannose-binding adhesin FimH, to cause cystitis. However, K. pneumoniae FimH is a poor binder of mannose, despite a mannose-binding pocket identical to UPEC FimH. FimH is composed of two domains that are in an equilibrium between tense (low-affinity) and relaxed (high-affinity) conformations. Substantial interdomain interactions in the tense conformation yield a low-affinity, deformed mannose-binding pocket, while domain-domain interactions are broken in the relaxed state, resulting in a high-affinity binding pocket. Using crystallography, we identified the structural basis by which domain-domain interactions direct the conformational equilibrium of K. pneumoniae FimH, which is strongly shifted toward the low-affinity tense state. Removal of the pilin domain restores mannose binding to the lectin domain, thus showing that poor mannose binding by K. pneumoniae FimH is not an inherent feature of the mannose-binding pocket. Phylogenetic analyses of K. pneumoniae genomes found that FimH sequences are highly conserved. However, we surveyed a collection of K. pneumoniae isolates from patients with long-term indwelling catheters and identified isolates that possessed relaxed higher-binding FimH variants, which increased K. pneumoniae fitness in bladder infection models, suggesting that long-term residence within the urinary tract may select for higher-binding FimH variants.
Collapse
Affiliation(s)
- Edward D. B. Lopatto
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Jerome S. Pinkner
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Denise A. Sanick
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Robert F. Potter
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO63110
| | - Lily X. Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Jesús Bazán Villicaña
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Kevin O. Tamadonfar
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Yijun Ye
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Maxwell I. Zimmerman
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Nathaniel C. Gualberto
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - Karen W. Dodson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| | - James W. Janetka
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| | - David A. Hunstad
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO63110
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
5
|
Molina JJ, Kohler KN, Gager C, Andersen MJ, Wongso E, Lucas ER, Paik A, Xu W, Donahue DL, Bergeron K, Klim A, Caparon MG, Hultgren SJ, Desai A, Ploplis VA, Flick MJ, Castellino FJ, Flores-Mireles AL. Fibrinolytic-deficiencies predispose hosts to septicemia from a catheter-associated UTI. Nat Commun 2024; 15:2704. [PMID: 38538626 PMCID: PMC10973455 DOI: 10.1038/s41467-024-46974-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Catheter-associated urinary tract infections (CAUTIs) are amongst the most common nosocomial infections worldwide and are difficult to treat partly due to development of multidrug-resistance from CAUTI-related pathogens. Importantly, CAUTI often leads to secondary bloodstream infections and death. A major challenge is to predict when patients will develop CAUTIs and which populations are at-risk for bloodstream infections. Catheter-induced inflammation promotes fibrinogen (Fg) and fibrin accumulation in the bladder which are exploited as a biofilm formation platform by CAUTI pathogens. Using our established mouse model of CAUTI, here we identified that host populations exhibiting either genetic or acquired fibrinolytic-deficiencies, inducing fibrin deposition in the catheterized bladder, are predisposed to severe CAUTI and septicemia by diverse uropathogens in mono- and poly-microbial infections. Furthermore, here we found that Enterococcus faecalis, a prevalent CAUTI pathogen, uses the secreted protease, SprE, to induce fibrin accumulation and create a niche ideal for growth, biofilm formation, and persistence during CAUTI.
Collapse
Affiliation(s)
- Jonathan J Molina
- Integrated Biomedical Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kurt N Kohler
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Christopher Gager
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Marissa J Andersen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Ellsa Wongso
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Elizabeth R Lucas
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Andrew Paik
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Wei Xu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Deborah L Donahue
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Karla Bergeron
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Aleksandra Klim
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael G Caparon
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Scott J Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alana Desai
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Urology, University of Washington Medical Center, Seattle, WA, 98133-9733, USA
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Matthew J Flick
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- UNC Blood Research Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Ana L Flores-Mireles
- Integrated Biomedical Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
6
|
Scaglione F, Minghetti P, Ambrosio F, Ernst B, Ficarra V, Gobbi M, Naber K, Schellekens H. Nature of the Interaction of Alpha-D-Mannose and Escherichia coli Bacteria, and Implications for its Regulatory Classification. A Delphi Panel European Consensus Based on Chemistry and Legal Evidence. Ther Innov Regul Sci 2023; 57:1153-1166. [PMID: 37578736 PMCID: PMC10579141 DOI: 10.1007/s43441-023-00548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/05/2023] [Indexed: 08/15/2023]
Abstract
The nature of alpha-D-mannose-natural aldohexose sugar, C-2 glucose epimer, whose intended use is for preventing urinary tract infections-in the interaction with E. coli is addressed in order to drive the issue of its regulatory classification as a medicinal product or medical device. PRISMA systematic review approach was applied; Delphi Panel method was used to target consensus on statements retrieved from evidence. Based on regulatory definitions and research evidence, the mechanism of D-mannose does not involve a metabolic or immunological action while there is uncertainty regarding the pharmacological action. Specific interaction between the product and the bacteria within the body occurs, but its nature is inert: it does not induce a direct response activating or inhibiting body processes. Moreover, the action of D-mannose takes place, even if inside the bladder, outside the epithelium on bacteria that have not yet invaded the urothelial tissue. Therefore, its mechanism of action is not directed to host structures but to structures (bacteria) external to the host's tissues. On the basis of current regulation, the uncertainty as regard a pharmacological action of alpha-D-mannose makes possible its medical device classification: new regulations and legal judgments can add further considerations. From a pharmacological perspective, research is driven versus synthetic mannosides: no further considerations are expected on alpha-D-mannose.
Collapse
Affiliation(s)
- Francesco Scaglione
- Clinical Pharmacology and Toxicology Unit -GOM Niguarda, GOM Niguarda, Piazza Ospedale Maggiore 3, 20162 Milan, Italy
| | - Paola Minghetti
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy
| | | | - Beat Ernst
- Group Molecular Pharmacy Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Vincenzo Ficarra
- Department of Human and Pediatric Pathology “Gaetano Barresi”, Urologic Section, University of Messina, Piazza Pugliatti, 1, Messina, Italy
| | - Marco Gobbi
- Laboratory of Pharmacodynamics and Pharmacokinetics, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, 20156 Milan, MI Italy
| | - Kurt Naber
- Department of Urology, Technical University of Munich, Munich, Germany
- Department of Urology, Technical University of Munich, Karl-Bickleder Str. 44C, 94315 Straubing, Germany
| | - Huub Schellekens
- Faculty of Sciences, Utrecht University, PO Box 80125, 3508 TC Utrecht, The Netherlands
| |
Collapse
|
7
|
Chen J, Dai W, Cui S, Lei W, Dai D. Screening of antigenic epitopes related to the adhesion of the avian Escherichia coli Type 1 Fimbrial Agglutinin Domain. BMC Vet Res 2023; 19:187. [PMID: 37789311 PMCID: PMC10546689 DOI: 10.1186/s12917-023-03742-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Avian Escherichia coli (E.coli) type 1 fimbriae adhere to avian tracheal epithelial cells through the FimH protein. However, the adhesion-related antigen is still unknown. The purpose of this study was to analyze the antigenicity of the type 1 fimbrial FimH protein of wild-type avian E. coli, screen antigen epitopes, and prepare monoclonal antibodies (mAbs) that can block the adhesion of avian E. coli. RESULTS In this study, the nucleic acid homologies of MG2 (O11), TS12 (O18), and YR5 (O78) with K12 were 97.7%, 99.6%, and 97.7%, respectively, and the amino acid sequence similarity reached 98.7%, 99.3%, and 98.0%, respectively. The epitopes and hydrophilicities of the FimH proteins of these three strains were similar. The more obvious lectin domain epitopes were located at FimH protein positions 111-124 and 154-162. The mAbs 7C2 and 7D8 against these two epitopes were prepared. An adhesion inhibition test showed that 7C2 and 7D8 blocked bacterial adhesion to avian tracheal epithelial cells. The mAb 7C2 against the 111-124 epitope inhibited O78 strain adhesion by 93%, and the mAb 7D8 against the 154-162 epitope inhibited O78 strain adhesion by 49%, indicating that these two epitopes are closely related to the adhesion of type 1 fimbriae. However, only the 111-124 epitope-recognizing mAb 7C2 inhibited bacterial agglutination of erythrocytes, indicating that host cell receptor binding and erythrocyte agglutination are not mediated by the same spatial locations within the FimH protein. CONCLUSIONS The results demonstrate that the mAbs 7C2 and 7D8 against FimH protein positions 111-124 and 154-162 could inhibit the adhesion of E.coli to the chicken trachea.
Collapse
Affiliation(s)
- Junhong Chen
- School of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, 210038, China
| | - Wei Dai
- School of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, 210038, China
| | - Shengling Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Weiqiang Lei
- School of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, 210038, China
| | - Dingzhen Dai
- School of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, 210038, China.
| |
Collapse
|
8
|
Languin-Cattoën O, Sterpone F, Stirnemann G. Binding site plasticity regulation of the FimH catch-bond mechanism. Biophys J 2023; 122:2744-2756. [PMID: 37264571 PMCID: PMC10397818 DOI: 10.1016/j.bpj.2023.05.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/05/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023] Open
Abstract
The bacterial fimbrial adhesin FimH is a remarkable and well-studied catch-bond protein found at the tip of E. coli type 1 pili, which allows pathogenic strains involved in urinary tract infections to bind high-mannose glycans exposed on human epithelia. The catch-bond behavior of FimH, where the strength of the interaction increases when a force is applied to separate the two partners, enables the bacteria to resist clearance when they are subjected to shear forces induced by urine flow. Two decades of experimental studies performed at the single-molecule level, as well as x-ray crystallography and modeling studies, have led to a consensus picture whereby force separates the binding domain from an inhibitor domain, effectively triggering an allosteric conformational change in the former. This force-induced allostery is thought to be responsible for an increased binding affinity at the core of the catch-bond mechanism. However, some important questions remain, the most challenging one being that the crystal structures corresponding to these two allosteric states show almost superimposable binding site geometries, which questions the molecular origin for the large difference in affinity. Using molecular dynamics with a combination of enhanced-sampling techniques, we demonstrate that the static picture provided by the crystal structures conceals a variety of binding site conformations that have a key impact on the apparent affinity. Crucially, the respective populations in each of these conformations are very different between the two allosteric states of the binding domain, which can then be related to experimental affinity measurements. We also evidence a previously unappreciated but important effect: in addition to the well-established role of the force as an allosteric regulator via domain separation, application of force tends to directly favor the high-affinity binding site conformations. We hypothesize that this additional "local" catch-bond effect could delay unbinding between the bacteria and the host cell before the "global" allosteric transition occurs, as well as stabilizing the complex even more once in the high-affinity allosteric state.
Collapse
Affiliation(s)
- Olivier Languin-Cattoën
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Cité, PSL University, Paris, France
| | - Fabio Sterpone
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Cité, PSL University, Paris, France.
| | - Guillaume Stirnemann
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Cité, PSL University, Paris, France.
| |
Collapse
|
9
|
Leusmann S, Ménová P, Shanin E, Titz A, Rademacher C. Glycomimetics for the inhibition and modulation of lectins. Chem Soc Rev 2023; 52:3663-3740. [PMID: 37232696 PMCID: PMC10243309 DOI: 10.1039/d2cs00954d] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 05/27/2023]
Abstract
Carbohydrates are essential mediators of many processes in health and disease. They regulate self-/non-self- discrimination, are key elements of cellular communication, cancer, infection and inflammation, and determine protein folding, function and life-times. Moreover, they are integral to the cellular envelope for microorganisms and participate in biofilm formation. These diverse functions of carbohydrates are mediated by carbohydrate-binding proteins, lectins, and the more the knowledge about the biology of these proteins is advancing, the more interfering with carbohydrate recognition becomes a viable option for the development of novel therapeutics. In this respect, small molecules mimicking this recognition process become more and more available either as tools for fostering our basic understanding of glycobiology or as therapeutics. In this review, we outline the general design principles of glycomimetic inhibitors (Section 2). This section is then followed by highlighting three approaches to interfere with lectin function, i.e. with carbohydrate-derived glycomimetics (Section 3.1), novel glycomimetic scaffolds (Section 3.2) and allosteric modulators (Section 3.3). We summarize recent advances in design and application of glycomimetics for various classes of lectins of mammalian, viral and bacterial origin. Besides highlighting design principles in general, we showcase defined cases in which glycomimetics have been advanced to clinical trials or marketed. Additionally, emerging applications of glycomimetics for targeted protein degradation and targeted delivery purposes are reviewed in Section 4.
Collapse
Affiliation(s)
- Steffen Leusmann
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Petra Ménová
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Elena Shanin
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
10
|
Liu J, Amaral LAN, Keten S. A new approach for extracting information from protein dynamics. Proteins 2023; 91:183-195. [PMID: 36094321 PMCID: PMC9844508 DOI: 10.1002/prot.26421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 01/19/2023]
Abstract
Increased ability to predict protein structures is moving research focus towards understanding protein dynamics. A promising approach is to represent protein dynamics through networks and take advantage of well-developed methods from network science. Most studies build protein dynamics networks from correlation measures, an approach that only works under very specific conditions, instead of the more robust inverse approach. Thus, we apply the inverse approach to the dynamics of protein dihedral angles, a system of internal coordinates, to avoid structural alignment. Using the well-characterized adhesion protein, FimH, we show that our method identifies networks that are physically interpretable, robust, and relevant to the allosteric pathway sites. We further use our approach to detect dynamical differences, despite structural similarity, for Siglec-8 in the immune system, and the SARS-CoV-2 spike protein. Our study demonstrates that using the inverse approach to extract a network from protein dynamics yields important biophysical insights.
Collapse
Affiliation(s)
- Jenny Liu
- Department of Mechanical Engineering, Northwestern University
| | - Luís A. N. Amaral
- Department of Chemical and Biological Engineering, Northwestern University
| | - Sinan Keten
- Department of Mechanical Engineering, Northwestern University
| |
Collapse
|
11
|
Tamadonfar KO, Di Venanzio G, Pinkner JS, Dodson KW, Kalas V, Zimmerman MI, Bazan Villicana J, Bowman GR, Feldman MF, Hultgren SJ. Structure-function correlates of fibrinogen binding by Acinetobacter adhesins critical in catheter-associated urinary tract infections. Proc Natl Acad Sci U S A 2023; 120:e2212694120. [PMID: 36652481 PMCID: PMC9942807 DOI: 10.1073/pnas.2212694120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/17/2022] [Indexed: 01/19/2023] Open
Abstract
Multidrug-resistant Acinetobacter baumannii infections are an urgent clinical problem and can cause difficult-to-treat nosocomial infections. During such infections, like catheter-associated urinary tract infections (CAUTI), A. baumannii rely on adhesive, extracellular fibers, called chaperone-usher pathway (CUP) pili for critical binding interactions. The A. baumannii uropathogenic strain, UPAB1, and the pan-European subclone II isolate, ACICU, use the CUP pili Abp1 and Abp2 (previously termed Cup and Prp, respectively) in tandem to establish CAUTIs, specifically to facilitate bacterial adherence and biofilm formation on the implanted catheter. Abp1 and Abp2 pili are tipped with two domain tip adhesins, Abp1D and Abp2D, respectively. We discovered that both adhesins bind fibrinogen, a critical host wound response protein that is released into the bladder upon catheterization and is subsequently deposited on the catheter. The crystal structures of the Abp1D and Abp2D receptor-binding domains were determined and revealed that they both contain a large, distally oriented pocket, which mediates binding to fibrinogen and other glycoproteins. Genetic, biochemical, and biophysical studies revealed that interactions with host proteins are governed by several critical residues in and along the edge of the binding pocket, one of which regulates the structural stability of an anterior loop motif. K34, located outside of the pocket but interacting with the anterior loop, also regulates the binding affinity of the protein. This study illuminates the mechanistic basis of the critical fibrinogen-coated catheter colonization step in A. baumannii CAUTI pathogenesis.
Collapse
Affiliation(s)
- Kevin O. Tamadonfar
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St Louis, MO63110
| | - Gisela Di Venanzio
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO63110
| | - Jerome S. Pinkner
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St Louis, MO63110
| | - Karen W. Dodson
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St Louis, MO63110
| | - Vasilios Kalas
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St Louis, MO63110
- Department of Medicine, McGaw Medical Center of Northwestern University, Chicago, IL60611
| | - Maxwell I. Zimmerman
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO63110
| | - Jesus Bazan Villicana
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St Louis, MO63110
| | - Gregory R. Bowman
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University School of Medicine, St. Louis, MO63110
| | - Mario F. Feldman
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO63110
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO63110
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St Louis, MO63110
| |
Collapse
|
12
|
Tomasek K, Leithner A, Glatzova I, Lukesch MS, Guet CC, Sixt M. Type 1 piliated uropathogenic Escherichia coli hijack the host immune response by binding to CD14. eLife 2022; 11:e78995. [PMID: 35881547 PMCID: PMC9359703 DOI: 10.7554/elife.78995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
A key attribute of persistent or recurring bacterial infections is the ability of the pathogen to evade the host's immune response. Many Enterobacteriaceae express type 1 pili, a pre-adapted virulence trait, to invade host epithelial cells and establish persistent infections. However, the molecular mechanisms and strategies by which bacteria actively circumvent the immune response of the host remain poorly understood. Here, we identified CD14, the major co-receptor for lipopolysaccharide detection, on mouse dendritic cells (DCs) as a binding partner of FimH, the protein located at the tip of the type 1 pilus of Escherichia coli. The FimH amino acids involved in CD14 binding are highly conserved across pathogenic and non-pathogenic strains. Binding of the pathogenic strain CFT073 to CD14 reduced DC migration by overactivation of integrins and blunted expression of co-stimulatory molecules by overactivating the NFAT (nuclear factor of activated T-cells) pathway, both rate-limiting factors of T cell activation. This response was binary at the single-cell level, but averaged in larger populations exposed to both piliated and non-piliated pathogens, presumably via the exchange of immunomodulatory cytokines. While defining an active molecular mechanism of immune evasion by pathogens, the interaction between FimH and CD14 represents a potential target to interfere with persistent and recurrent infections, such as urinary tract infections or Crohn's disease.
Collapse
Affiliation(s)
- Kathrin Tomasek
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | | | - Ivana Glatzova
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | | | - Calin C Guet
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Michael Sixt
- Institute of Science and Technology AustriaKlosterneuburgAustria
| |
Collapse
|
13
|
Sokurenko EV, Tchesnokova V, Interlandi G, Klevit R, Thomas WE. Neutralizing antibodies against allosteric proteins: insights from a bacterial adhesin. J Mol Biol 2022; 434:167717. [DOI: 10.1016/j.jmb.2022.167717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/15/2022]
|
14
|
Recombinant FimH Adhesin Demonstrates How the Allosteric Catch Bond Mechanism Can Support Fast and Strong Bacterial Attachment in the Absence of Shear. J Mol Biol 2022; 434:167681. [PMID: 35697293 DOI: 10.1016/j.jmb.2022.167681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022]
Abstract
The FimH protein of Escherichia coli is a model two-domain adhesin that is able to mediate an allosteric catch bond mechanism of bacterial cell attachment, where the mannose-binding lectin domain switches from an 'inactive' conformation with fast binding to mannose to an 'active' conformation with slow detachment from mannose. Because mechanical tensile force favors separation of the domains and, thus, FimH activation, it has been thought that the catch bonds can only be manifested in a fluidic shear-dependent mode of adhesion. Here, we used recombinant FimH variants with a weakened inter-domain interaction and show that a fast and sustained allosteric activation of FimH can also occur under static, non-shear conditions. Moreover, it appears that lectin domain conformational activation happens intrinsically at a constant rate, independently from its ability to interact with the pilin domain or mannose. However, the latter two factors control the rate of FimH deactivation. Thus, the allosteric catch bond mechanism can be a much broader phenomenon involved in both fast and strong cell-pathogen attachments under a broad range of hydrodynamic conditions. This concept that allostery can enable more effective receptor-ligand interactions is fundamentally different from the conventional wisdom that allostery provides a mechanism to turn binding off under specific conditions.
Collapse
|
15
|
Stsiapanava A, Xu C, Nishio S, Han L, Yamakawa N, Carroni M, Tunyasuvunakool K, Jumper J, de Sanctis D, Wu B, Jovine L. Structure of the decoy module of human glycoprotein 2 and uromodulin and its interaction with bacterial adhesin FimH. Nat Struct Mol Biol 2022; 29:190-193. [PMID: 35273390 PMCID: PMC8930769 DOI: 10.1038/s41594-022-00729-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/21/2022] [Indexed: 12/25/2022]
Abstract
Glycoprotein 2 (GP2) and uromodulin (UMOD) filaments protect against gastrointestinal and urinary tract infections by acting as decoys for bacterial fimbrial lectin FimH. By combining AlphaFold2 predictions with X-ray crystallography and cryo-EM, we show that these proteins contain a bipartite decoy module whose new fold presents the high-mannose glycan recognized by FimH. The structure rationalizes UMOD mutations associated with kidney diseases and visualizes a key epitope implicated in cast nephropathy. AlphaFold2 predictions, X-ray crystallography and cryo-EM analyses reveal how related human glycoproteins GP2 and uromodulin catch pathogenic bacteria by presenting a high-mannose glycan that acts as a decoy for fimbrial adhesin FimH.
Collapse
Affiliation(s)
- Alena Stsiapanava
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Chenrui Xu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Shunsuke Nishio
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Ling Han
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Nao Yamakawa
- US 41-UMS 2014-PLBS, Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Marta Carroni
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | | | | | | | - Bin Wu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore
| | - Luca Jovine
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden. .,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
16
|
Qin J, Wilson KA, Sarkar S, Heras B, O'Mara ML, Totsika M. Conserved FimH mutations in the global Escherichia coli ST131 multi-drug resistant lineage weaken interdomain interactions and alter adhesin function. Comput Struct Biotechnol J 2022; 20:4532-4541. [PMID: 36090810 PMCID: PMC9428848 DOI: 10.1016/j.csbj.2022.08.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/27/2022] Open
Abstract
The binding of the type 1 fimbrial adhesin FimH to mannosylated receptors is allosterically regulated to enhance the fitness of uropathogenic Escherichia coli (UPEC) during urinary tract infection (UTI). Mutations in the two FimH domains (pilin and lectin) located outside the mannose binding pocket have been shown to influence mannose binding affinity, yet the details of the allostery mechanism are not fully elucidated. Here we characterised different FimH conformational states (termed low-affinity tense and high-affinity relaxed conformations) of natural FimH variants using molecular dynamics (MD) simulation techniques and report key structural dynamics differences between them. The clinically dominant FimH30 variant from the pandemic multidrug resistant E. coli ST131 lineage contains an R166H mutation that weakens FimH interdomain interactions and allows enhanced mannose interactions with pre-existing high-affinity relaxed conformations. When expressed in an isogenic ST131 strain background, FimH30 mediated high human cell adhesion and invasion, and enhanced biofilm formation over other variants. Collectively, our computational and experimental findings support a model of FimH protein allostery that is mediated by shifts in the pre-existing conformational equilibrium of FimH, additional to the sequential step-wise process of structural perturbations transmitted from one site to another within the protein. Importantly, it is the first study to shed light into how natural mutations in a clinically dominant FimH variant influence the protein’s conformational landscape optimising its function for ST131 fitness at intestinal and extraintestinal niches.
Collapse
|
17
|
Sturov NV, Popov SV, Zhukov VA. Pathogenetic Role and Possibilities for Correction of Gut Microbiota Disorders in Urinary Tract Infections. ANTIBIOTICS AND CHEMOTHERAPY 2021; 66:100-108. [DOI: 10.37489/0235-2990-2021-66-7-8-100-108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The article presents current data on the role of gut microbiota in the development of urinary tract infections. The main pathogenetic mechanisms contributing to the chronic recurrent course of the disease, the spread of antimicrobial resistance, as well as their connection to the disorders of gut microbiota are shown. It is known that most pathogens of urinary infections originate from the gut microbiota, where they exist for a long time, forming reservoirs. The normal composition and functions of the microbiota prevent colonization of the intestine by pathogenic bacteria and reduce the risk of developing this disease. Ways of correction through diet, probiotics, as well as fecal microbiota transplantation are considered. Modulation of gut microbiota may be a promising approach in the treatment and prevention of urinary tract infections. Meanwhile, a qualitative evidence base on the effectiveness of this strategy has not been formed. Further research in this direction is required.
Collapse
|
18
|
Karan S, Garg LC, Choudhury D, Dixit A. Recombinant FimH, a fimbrial tip adhesin of Vibrio parahaemolyticus, elicits mixed T helper cell response and confers protection against Vibrio parahaemolyticus challenge in murine model. Mol Immunol 2021; 135:373-387. [PMID: 34020083 DOI: 10.1016/j.molimm.2021.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/21/2021] [Accepted: 05/09/2021] [Indexed: 11/18/2022]
Abstract
Vibrio parahaemolyticus causes vibriosis in wide range of marine organisms, and is responsible for food borne illnesses in humans through consumption of contaminated uncooked/partially cooked seafood. Continued and widespread antibiotics usage to increase the productivity has led to antibiotics resistance development. This has necessitated the need to develop alternative methods to control its infection. Use of safe and effective vaccines against the virulence factors not only protects from infection, it also minimizes antibiotic usage. The colonization of V. parahaemolyticus in the host and disease development requires several adhesins present on the cell surface, and thereby make them attractive vaccine candidates. V. parahaemolyticus produces extracellular type 1 fimbriae that have been shown to play a role in adhesion, biofilm formation and virulence. FimH is one of the minor components of the type 1 fimbriae occurring on its very tip. Being present on the cell surface, it is highly immunogenic, and can be targeted as a potential vaccine candidate. The present study describes the immunogenic and vaccine potential of recombinant V. parahaemolyticus FimH (rVpFimH) expressed in E. coli. Immunization of BALB/c mice with the rVpFimH elicited a strong mixed immune response, T-cell memory (evidenced by antibody isotyping, cytokine profiling and T-cell proliferation assay), and agglutination positive antibodies. FACS analysis and immunogold labeling showed that the polyclonal anti-rVpFimH antibodies were able to recognize the FimH on V. parahaemolyticus cells. In vivo challenge of the rVpFimH-immunized mice with 2×LD50 dose of live bacteria showed one hundred percent survival. Thus, our findings clearly demonstrate the potential of FimH as an effective vaccine candidate against V. parahaemolyticus.
Collapse
Affiliation(s)
- Sweta Karan
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Lalit C Garg
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India
| | - Devapriya Choudhury
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Aparna Dixit
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
19
|
Scaglione F, Musazzi UM, Minghetti P. Considerations on D-mannose Mechanism of Action and Consequent Classification of Marketed Healthcare Products. Front Pharmacol 2021; 12:636377. [PMID: 33762956 PMCID: PMC7982833 DOI: 10.3389/fphar.2021.636377] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/05/2021] [Indexed: 01/07/2023] Open
Abstract
Urinary tract infections (UTIs) are very common disorders that affect adult women. Indeed, 50% of all women suffer from UTIs at least one time in their lifetime; 20-40% of them experience recurrent episodes. The majority of UTIs seems to be due to uropathogenic Escherichia coli that invades urothelial cells and forms quiescent bacterial reservoirs. Recurrences of UTIs are often treated with non-prescribed antibiotics by the patients, with increased issues connected to antibiotics resistance. D-mannose, a monosaccharide that is absorbed but not metabolized by the human body, has been proposed as an alternative approach for managing UTIs since it can inhibit the bacterial adhesion to the urothelium. This manuscript discusses the mechanisms through which D-mannose acts to highlight the regulatory aspects relevant for determining the administrative category of healthcare products placed on the market. The existing literature permits to conclude that the anti-adhesive effect of D-mannose cannot be considered as a pharmacological effect and, therefore, D-mannose-based products should be classified as medical devices composed of substances.
Collapse
Affiliation(s)
- Francesco Scaglione
- Department of Oncology and Hemato-Oncology, Università Degli Studi Di Milano, Milan, Italy
- Clinical Pharmacology Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Umberto M. Musazzi
- Department of Pharmaceutical Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Paola Minghetti
- Department of Pharmaceutical Sciences, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
20
|
Liu J, Amaral L, Keten S. Conformational stability of the bacterial adhesin, FimH, with an inactivating mutation. Proteins 2021; 89:276-288. [PMID: 32989832 PMCID: PMC10623646 DOI: 10.1002/prot.26013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/16/2020] [Accepted: 08/25/2020] [Indexed: 11/08/2022]
Abstract
Allostery governing two conformational states is one of the proposed mechanisms for catch-bond behavior in adhesive proteins. In FimH, a catch-bond protein expressed by pathogenic bacteria, separation of two domains disrupts inhibition by the pilin domain. Thus, tensile force can induce a conformational change in the lectin domain, from an inactive state to an active state with high affinity. To better understand allosteric inhibition in two-domain FimH (H2 inactive), we use molecular dynamics simulations to study the lectin domain alone, which has high affinity (HL active), and also the lectin domain stabilized in the low-affinity conformation by an Arg-60-Pro mutation (HL mutant). Because ligand-binding induces an allostery-like conformational change in HL mutant, this more experimentally tractable version has been proposed as a "minimal model" for FimH. We find that HL mutant has larger backbone fluctuations than both H2 inactive and HL active, at the binding pocket and allosteric interdomain region. We use an internal coordinate system of dihedral angles to identify protein regions with differences in backbone and side chain dynamics beyond the putative allosteric pathway sites. By characterizing HL mutant dynamics for the first time, we provide additional insight into the transmission of allosteric information across the lectin domain and build upon structural and thermodynamic data in the literature to further support the use of HL mutant as a "minimal model." Understanding how to alter protein dynamics to prevent the allosteric conformational change may guide drug development to prevent infection by blocking FimH adhesion.
Collapse
Affiliation(s)
- Jenny Liu
- Mechanical Engineering Department, Northwestern University
| | - Luis Amaral
- Chemical and Biological Engineering, Northwestern University
| | - Sinan Keten
- Mechanical Engineering Department, Northwestern University
- Civil Engineering Department, Northwestern University
| |
Collapse
|
21
|
Discovery of Bacterial Fimbria-Glycan Interactions Using Whole-Cell Recombinant Escherichia coli Expression. mBio 2021; 12:mBio.03664-20. [PMID: 33622724 PMCID: PMC8545135 DOI: 10.1128/mbio.03664-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chaperone-usher (CU) fimbriae are the most abundant Gram-negative bacterial fimbriae, with 38 distinct CU fimbria types described in Escherichia coli alone. Some E. coli CU fimbriae have been well characterized and bind to specific glycan targets to confer tissue tropism. For example, type 1 fimbriae bind to α-d-mannosylated glycoproteins such as uroplakins in the bladder via their tip-located FimH adhesin, leading to colonization and invasion of the bladder epithelium. Despite this, the receptor-binding affinity of many other E. coli CU fimbria types remains poorly characterized. Here, we used a recombinant E. coli strain expressing different CU fimbriae, in conjunction with glycan array analysis comprising >300 glycans, to dissect CU fimbria receptor specificity. We initially validated the approach by demonstrating the purified FimH lectin-binding domain and recombinant E. coli expressing type 1 fimbriae bound to a similar set of glycans. This technique was then used to map the glycan binding affinity of six additional CU fimbriae, namely, P, F1C, Yqi, Mat/Ecp, K88, and K99 fimbriae. The binding affinity was determined using whole-bacterial-cell surface plasmon resonance. This work describes new information in fimbrial specificity and a rapid and scalable system to define novel adhesin-glycan interactions that underpin bacterial colonization and disease.
Collapse
|
22
|
Damalanka VC, Maddirala AR, Janetka JW. Novel approaches to glycomimetic design: development of small molecular weight lectin antagonists. Expert Opin Drug Discov 2021; 16:513-536. [PMID: 33337918 DOI: 10.1080/17460441.2021.1857721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: The direct binding of carbohydrates or those presented on glycoproteins or glycolipids to proteins is the primary effector of many biological responses. One class of carbohydrate-binding proteins, lectins are important in all forms of life. Their functions in animals include regulating cell adhesion, glycoprotein synthesis, metabolism, and mediating immune system response while in bacteria and viruses a lectin-mediated carbohydrate-protein interaction between host cells and the pathogen initiates pathogenesis of the infection.Areas covered: In this review, the authors outline the structural and functional pathogenesis of lectins from bacteria, amoeba, and humans. Mimics of a carbohydrate are referred to as glycomimetics, which are much smaller in molecular weight and are devised to mimic the key binding interactions of the carbohydrate while also allowing additional contacts with the lectin. This article emphasizes the various approaches used over the past 10-15 years in the rational design of glycomimetic ligands.Expert opinion: Medicinal chemistry efforts enabled by X-ray structural biology have identified small-molecule glycomimetic lectin antagonists that have entered or are nearing clinical trials. A common theme in these strategies is the use of biaryl ring systems to emulate the carbohydrate interactions with the lectin.
Collapse
Affiliation(s)
- Vishnu C Damalanka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis USA
| | - Amarendar Reddy Maddirala
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis USA
| | - James W Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis USA
| |
Collapse
|
23
|
McLellan LK, McAllaster MR, Kim AS, Tóthová Ľ, Olson PD, Pinkner JS, Daugherty AL, Hreha TN, Janetka JW, Fremont DH, Hultgren SJ, Virgin HW, Hunstad DA. A host receptor enables type 1 pilus-mediated pathogenesis of Escherichia coli pyelonephritis. PLoS Pathog 2021; 17:e1009314. [PMID: 33513212 PMCID: PMC7875428 DOI: 10.1371/journal.ppat.1009314] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/10/2021] [Accepted: 01/13/2021] [Indexed: 12/26/2022] Open
Abstract
Type 1 pili have long been considered the major virulence factor enabling colonization of the urinary bladder by uropathogenic Escherichia coli (UPEC). The molecular pathogenesis of pyelonephritis is less well characterized, due to previous limitations in preclinical modeling of kidney infection. Here, we demonstrate in a recently developed mouse model that beyond bladder infection, type 1 pili also are critical for establishment of ascending pyelonephritis. Bacterial mutants lacking the type 1 pilus adhesin (FimH) were unable to establish kidney infection in male C3H/HeN mice. We developed an in vitro model of FimH-dependent UPEC binding to renal collecting duct cells, and performed a CRISPR screen in these cells, identifying desmoglein-2 as a primary renal epithelial receptor for FimH. The mannosylated extracellular domain of human DSG2 bound directly to the lectin domain of FimH in vitro, and introduction of a mutation in the FimH mannose-binding pocket abolished binding to DSG2. In infected C3H/HeN mice, type 1-piliated UPEC and Dsg2 were co-localized within collecting ducts, and administration of mannoside FIM1033, a potent small-molecule inhibitor of FimH, significantly attenuated bacterial loads in pyelonephritis. Our results broaden the biological importance of FimH, specify the first renal FimH receptor, and indicate that FimH-targeted therapeutics will also have application in pyelonephritis. Urinary tract infections (UTIs) are among the most common bacterial infections in humans. While much has been discovered about how E. coli cause bladder infections, less is known about the host-pathogen interactions that underlie kidney infection (pyelonephritis). We employed recently developed mouse models to show that bacterial surface fibers called type 1 pili, which bear the adhesive protein FimH and are known to mediate E. coli binding to bladder epithelium, are also required for ascending kidney infection. We developed a cell-culture model of bacterial binding to renal collecting duct, then performed a screen using the gene-editing tool CRISPR to identify the first known FimH receptor in the kidney. This epithelial cell-surface protein, desmoglein-2, was shown to directly bind FimH, and we localized this binding to specific extracellular domains of DSG2. Further, we showed that mannosides, small-molecule FimH inhibitors currently in development to treat bladder infection, are also effective in experimental kidney infection. Our study reveals a novel host-pathogen interaction during pyelonephritis and demonstrates how this interaction may be therapeutically targeted.
Collapse
Affiliation(s)
- Lisa K. McLellan
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michael R. McAllaster
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Arthur S. Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ľubomíra Tóthová
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Patrick D. Olson
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jerome S. Pinkner
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Allyssa L. Daugherty
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Teri N. Hreha
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - James W. Janetka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Daved H. Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Herbert W. Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David A. Hunstad
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
24
|
Cramer J, Jiang X, Schönemann W, Silbermann M, Zihlmann P, Siegrist S, Fiege B, Jakob RP, Rabbani S, Maier T, Ernst B. Enhancing the enthalpic contribution of hydrogen bonds by solvent shielding. RSC Chem Biol 2020; 1:281-287. [PMID: 34458766 PMCID: PMC8341794 DOI: 10.1039/d0cb00108b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/19/2020] [Indexed: 11/21/2022] Open
Abstract
In biological systems, polar interactions are heavily burdened by high desolvation penalties resulting from strong solute-solvent interactions. As a consequence thereof, enthalpic contributions of hydrogen bonds to the free energy of binding are severely diminished. However, this effect is strongly attenuated for interactions within solvent-shielded areas of proteins. In microcalorimetric experiments, we show that the bacterial lectin FimH utilizes conformational adaptions to effectively shield its binding site from solvent. The transition into a lower dielectric environment results in an enthalpic benefit of approximately -13 kJ mol-1 for mannoside binding. However, this effect can be abrogated, if the hydrogen bond network within the binding site is disturbed by deoxygenation of the ligand. Conformational adaption leading to reduced local dielectric constants could represent a general mechanism for proteins to enable enthalpy-driven recognition of polar ligands.
Collapse
Affiliation(s)
- Jonathan Cramer
- Institute of Molecular Pharmacy, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Xiaohua Jiang
- Institute of Molecular Pharmacy, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Wojciech Schönemann
- Institute of Molecular Pharmacy, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Marleen Silbermann
- Institute of Molecular Pharmacy, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Pascal Zihlmann
- Institute of Molecular Pharmacy, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Stefan Siegrist
- Institute of Molecular Pharmacy, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Brigitte Fiege
- Institute of Molecular Pharmacy, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Roman Peter Jakob
- Institute of Structural Biology, University of Basel Klingelbergstrasse 70 4056 Basel Switzerland
| | - Said Rabbani
- Institute of Molecular Pharmacy, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Timm Maier
- Institute of Structural Biology, University of Basel Klingelbergstrasse 70 4056 Basel Switzerland
| | - Beat Ernst
- Institute of Molecular Pharmacy, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| |
Collapse
|
25
|
Adaptation of Arginine Synthesis among Uropathogenic Branches of the Escherichia coli Phylogeny Reveals Adjustment to the Urinary Tract Habitat. mBio 2020; 11:mBio.02318-20. [PMID: 32994329 PMCID: PMC7527732 DOI: 10.1128/mbio.02318-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the most common cause of human urinary tract infection (UTI). Population bottlenecks during early stages of UTI make high-throughput screens impractical for understanding clinically important later stages of UTI, such as persistence and recurrence. As UPEC is hypothesized to be adapted to these later pathogenic stages, we previously identified 29 genes evolving under positive selection in UPEC. Here, we found that 8 of these genes, including argI (which is involved in arginine biosynthesis), are important for persistence in a mouse model of UTI. Deletion of argI and other arginine synthesis genes resulted in (i) arginine auxotrophy and (ii) defects in persistent UTI. Replacement of a B2 clade argI with a non-B2 clade argI complemented arginine auxotrophy, but the resulting strain remained attenuated in its ability to cause persistent bacteriuria. Thus, argI may have a second function during UTI that is not related to simple arginine synthesis. This study demonstrates how variation in metabolic genes can impact virulence and provides insight into the mechanisms and evolution of bacterial virulence. Urinary tract infections (UTIs) are predominantly caused by uropathogenic Escherichia coli (UPEC). UPEC pathogenesis requires passage through a severe population bottleneck involving intracellular bacterial communities (IBCs) that are clonal expansions of a single invading UPEC bacterium in a urothelial superficial facet cell. IBCs occur only during acute pathogenesis. The bacteria in IBCs form the founder population that develops into persistent extracellular infections. Only a small fraction of UPEC organisms proceed through the IBC cycle, regardless of the inoculum size. This dramatic reduction in population size precludes the utility of genomic mutagenesis technologies for identifying genes important for persistence. To circumvent this bottleneck, we previously identified 29 positively selected genes (PSGs) within UPEC and hypothesized that they contribute to virulence. Here, we show that 8 of these 29 PSGs are required for fitness during persistent bacteriuria. Conversely, 7/8 of these PSG mutants showed essentially no phenotype in acute UTI. Deletion of the PSG argI leads to arginine auxotrophy. Relative to the other arg genes, argI in the B2 clade (which comprises most UPEC strains) of E. coli has diverged from argI in other E. coli clades. Replacement of argI in a UPEC strain with a non-UPEC argI allele complemented the arginine auxotrophy but not the persistent bacteriuria defect, showing that the UPEC argI allele contributes to persistent infection. These results highlight the complex roles of metabolic pathways during infection and demonstrate that evolutionary approaches can identify infection-specific gene functions downstream of population bottlenecks, shedding light on virulence and the genetic evolution of pathogenesis.
Collapse
|
26
|
Zhu Z, Chen Y, Li S, Lin H, Qin G, Cai C. Ortho-Substituted α-Phenyl Mannoside Derivatives Promoted Early-Stage Adhesion and Biofilm Formation of E. coli 83972. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21300-21310. [PMID: 32107915 DOI: 10.1021/acsami.9b17868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Prevention of catheter-associated urinary tract infection (CAUTI) over long-term usage of urinary catheters remains a great challenge. Bacterial interference using nonpathogenic bacteria, such as E. coli 83972, have been investigated in many pilot-scale clinical studies as a potentially nonantibiotic based strategy for CAUTI prevention. We have demonstrated that preforming a dense and stable biofilm of the nonpathogenic E. coli greatly enhances their capability to prevent pathogen colonization. Such nonpathogenic biofilms were formed by E. coli 83972 expressing type 1 fimbriae (fim+ E. coli 83972) on mannoside-presenting surfaces. In this work, we report the synthesis of a series of mannoside derivatives with a wide range of binding affinities, all being equipped with a handle for covalent attachment to silicone surfaces. We established a high-throughput competitive assay based on mannoside-modified particles and flow-cytometry to directly measure the binding affinity between the mannoside ligands and fim+ E. coli 83972. We demonstrated that the bacterial adhesion and biofilm formation were strongly correlated to the binding affinity of the immobilized mannoside ligands. Mass spectrometry based proteomic analysis indicated a substantial difference in the proteome of the extracellular polymeric substance (EPS) secreted by biofilms on different mannoside surfaces, which might be related to the biofilm stability.
Collapse
Affiliation(s)
- Zhiling Zhu
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Yanxin Chen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Siheng Li
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Hong Lin
- Department of Department of Computer and Mathematical Sciences, University of Houston-Downtown, Houston, Texas 77002, United States
| | - Guoting Qin
- College of Optometry, University of Houston, Houston, Texas 77204, United States
| | - Chengzhi Cai
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
27
|
Urinary tract infections: microbial pathogenesis, host-pathogen interactions and new treatment strategies. Nat Rev Microbiol 2020; 18:211-226. [PMID: 32071440 DOI: 10.1038/s41579-020-0324-0] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2020] [Indexed: 12/14/2022]
Abstract
Urinary tract infections (UTIs) are common, recurrent infections that can be mild to life-threatening. The continued emergence of antibiotic resistance, together with our increasing understanding of the detrimental effects conferred by broad-spectrum antibiotic use on the health of the beneficial microbiota of the host, has underscored the weaknesses in our current treatment paradigm for UTIs. In this Review, we discuss how recent microbiological, structural, genetic and immunological studies have expanded our understanding of host-pathogen interactions during UTI pathogenesis. These basic scientific findings have the potential to shift the strategy for UTI treatment away from broad-spectrum antibiotics targeting conserved aspects of bacterial replication towards pathogen-specific antibiotic-sparing therapeutics that target core determinants of bacterial virulence at the host-pathogen interface.
Collapse
|
28
|
Magala P, Klevit RE, Thomas WE, Sokurenko EV, Stenkamp RE. RMSD analysis of structures of the bacterial protein FimH identifies five conformations of its lectin domain. Proteins 2019; 88:593-603. [PMID: 31622514 DOI: 10.1002/prot.25840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/07/2019] [Accepted: 10/12/2019] [Indexed: 01/14/2023]
Abstract
FimH is a bacterial adhesin protein located at the tip of Escherichia coli fimbria that functions to adhere bacteria to host cells. Thus, FimH is a critical factor in bacterial infections such as urinary tract infections and is of interest in drug development. It is also involved in vaccine development and as a model for understanding shear-enhanced catch bond cell adhesion. To date, over 60 structures have been deposited in the Protein Data Bank showing interactions between FimH and mannose ligands, potential inhibitors, and other fimbrial proteins. In addition to providing insights about ligand recognition and fimbrial assembly, these structures provide insights into conformational changes in the two domains of FimH that are critical for its function. To gain further insights into these structural changes, we have superposed FimH's mannose binding lectin domain in all these structures and categorized the structures into five groups of lectin domain conformers using RMSD as a metric. Many structures also include the pilin domain, which anchors FimH to the fimbriae and regulates the conformation and function of the lectin domain. For these structures, we have also compared the relative orientations of the two domains. These structural analyses enhance our understanding of the conformational changes associated with FimH ligand binding and domain-domain interactions, including its catch bond behavior through allosteric action of force in bacterial adhesion.
Collapse
Affiliation(s)
- Pearl Magala
- Department of Biochemistry, University of Washington, Seattle, WA.,Biomolecular Structure Center, University of Washington, Seattle, WA
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, WA.,Biomolecular Structure Center, University of Washington, Seattle, WA
| | - Wendy E Thomas
- Department of Bioengineering, University of Washington, Seattle, WA
| | | | - Ronald E Stenkamp
- Department of Biochemistry, University of Washington, Seattle, WA.,Biomolecular Structure Center, University of Washington, Seattle, WA.,Department of Biological Structure, University of Washington, Seattle, WA
| |
Collapse
|
29
|
Brosey CA, Tainer JA. Evolving SAXS versatility: solution X-ray scattering for macromolecular architecture, functional landscapes, and integrative structural biology. Curr Opin Struct Biol 2019; 58:197-213. [PMID: 31204190 PMCID: PMC6778498 DOI: 10.1016/j.sbi.2019.04.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 11/27/2022]
Abstract
Small-angle X-ray scattering (SAXS) has emerged as an enabling integrative technique for comprehensive analyses of macromolecular structures and interactions in solution. Over the past two decades, SAXS has become a mainstay of the structural biologist's toolbox, supplying multiplexed measurements of molecular shape and dynamics that unveil biological function. Here, we discuss evolving SAXS theory, methods, and applications that extend the field of small-angle scattering beyond simple shape characterization. SAXS, coupled with size-exclusion chromatography (SEC-SAXS) and time-resolved (TR-SAXS) methods, is now providing high-resolution insight into macromolecular flexibility and ensembles, delineating biophysical landscapes, and facilitating high-throughput library screening to assess macromolecular properties and to create opportunities for drug discovery. Looking forward, we consider SAXS in the integrative era of hybrid structural biology methods, its potential for illuminating cellular supramolecular and mesoscale structures, and its capacity to complement high-throughput bioinformatics sequencing data. As advances in the field continue, we look forward to proliferating uses of SAXS based upon its abilities to robustly produce mechanistic insights for biology and medicine.
Collapse
Affiliation(s)
- Chris A Brosey
- Molecular and Cellular Oncology and Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| | - John A Tainer
- Molecular and Cellular Oncology and Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
30
|
Abstract
Classically, phenotype is what is observed, and genotype is the genetic makeup. Statistical studies aim to project phenotypic likelihoods of genotypic patterns. The traditional genotype-to-phenotype theory embraces the view that the encoded protein shape together with gene expression level largely determines the resulting phenotypic trait. Here, we point out that the molecular biology revolution at the turn of the century explained that the gene encodes not one but ensembles of conformations, which in turn spell all possible gene-associated phenotypes. The significance of a dynamic ensemble view is in understanding the linkage between genetic change and the gained observable physical or biochemical characteristics. Thus, despite the transformative shift in our understanding of the basis of protein structure and function, the literature still commonly relates to the classical genotype-phenotype paradigm. This is important because an ensemble view clarifies how even seemingly small genetic alterations can lead to pleiotropic traits in adaptive evolution and in disease, why cellular pathways can be modified in monogenic and polygenic traits, and how the environment may tweak protein function.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| |
Collapse
|
31
|
Tamadonfar KO, Omattage NS, Spaulding CN, Hultgren SJ. Reaching the End of the Line: Urinary Tract Infections. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0014-2019. [PMID: 31172909 PMCID: PMC11314827 DOI: 10.1128/microbiolspec.bai-0014-2019] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Indexed: 12/26/2022] Open
Abstract
Urinary tract infections (UTIs) cause a substantial health care burden. UTIs (i) are most often caused by uropathogenic Escherichia coli (UPEC), (ii) primarily affect otherwise healthy females (50% of women will have a UTI), (iii) are associated with significant morbidity and economic impact, (iv) can become chronic, and (v) are highly recurrent. A history of UTI is a significant risk factor for a recurrent UTI (rUTI). In otherwise healthy women, an acute UTI leads to a 25 to 50% chance of rUTI within months of the initial infection. Interestingly, rUTIs are commonly caused by the same strain of E. coli that led to the initial infection, arguing that there exist host-associated reservoirs, like the gastrointestinal tract and underlying bladder tissue, that can seed rUTIs. Additionally, catheter-associated UTIs (CAUTI), caused by Enterococcus and Staphylococcus as well as UPEC, represent a major health care concern. The host's response of depositing fibrinogen at the site of infection has been found to be critical to establishing CAUTI. The Drug Resistance Index, an evaluation of antibiotic resistance, indicates that UTIs have become increasingly difficult to treat since the mid-2000s. Thus, UTIs are a "canary in the coal mine," warning of the possibility of a return to the preantibiotic era, where some common infections are untreatable with available antibiotics. Numerous alternative strategies for both the prevention and treatment of UTIs are being pursued, with a focus on the development of vaccines and small-molecule inhibitors targeting virulence factors, in the hopes of reducing the burden of urogenital tract infections in an antibiotic-sparing manner.
Collapse
Affiliation(s)
- Kevin O Tamadonfar
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Natalie S Omattage
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Caitlin N Spaulding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
- Harvard University School of Public Health, Boston, MA 02115
| | - Scott J Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
- Center for Women's Infectious Disease Research, Washington University, School of Medicine, St. Louis, MO 63110
| |
Collapse
|
32
|
Comprehensive Identification of Fim-Mediated Inversions in Uropathogenic Escherichia coli with Structural Variation Detection Using Relative Entropy. mSphere 2019; 4:4/2/e00693-18. [PMID: 30971446 PMCID: PMC6458436 DOI: 10.1128/msphere.00693-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UTI is a common ailment that affects more than half of all women during their lifetime. The leading cause of UTIs is UPEC, which relies on type 1 pili to colonize and persist within the bladder during infection. The regulation of type 1 pili is remarkable for an epigenetic mechanism in which a section of DNA containing a promoter is inverted. The inversion mechanism relies on what are thought to be dedicated recombinase genes; however, the full repertoire for these recombinases is not known. We show here that there are no additional targets beyond those already identified for the recombinases in the entire genome of two UPEC strains, arguing that type 1 pilus expression itself is the driving evolutionary force for the presence of these recombinase genes. This further suggests that targeting the type 1 pilus is a rational alternative nonantibiotic strategy for the treatment of UTI. Most urinary tract infections (UTIs) are caused by uropathogenic Escherichia coli (UPEC), which depends on an extracellular organelle (type 1 pili) for adherence to bladder cells during infection. Type 1 pilus expression is partially regulated by inversion of a piece of DNA referred to as fimS, which contains the promoter for the fim operon encoding type 1 pili. fimS inversion is regulated by up to five recombinases collectively known as Fim recombinases. These Fim recombinases are currently known to regulate two other switches: the ipuS and hyxS switches. A long-standing question has been whether the Fim recombinases regulate the inversion of other switches, perhaps to coordinate expression for adhesion or virulence. We answered this question using whole-genome sequencing with a newly developed algorithm (structural variation detection using relative entropy [SVRE]) for calling structural variations using paired-end short-read sequencing. SVRE identified all of the previously known switches, refining the specificity of which recombinases act at which switches. Strikingly, we found no new inversions that were mediated by the Fim recombinases. We conclude that the Fim recombinases are each highly specific for a small number of switches. We hypothesize that the unlinked Fim recombinases have been recruited to regulate fimS, and fimS only, as a secondary locus; this further implies that regulation of type 1 pilus expression (and its role in gastrointestinal and/or genitourinary colonization) is important enough, on its own, to influence the evolution and maintenance of multiple additional genes within the accessory genome of E. coli. IMPORTANCE UTI is a common ailment that affects more than half of all women during their lifetime. The leading cause of UTIs is UPEC, which relies on type 1 pili to colonize and persist within the bladder during infection. The regulation of type 1 pili is remarkable for an epigenetic mechanism in which a section of DNA containing a promoter is inverted. The inversion mechanism relies on what are thought to be dedicated recombinase genes; however, the full repertoire for these recombinases is not known. We show here that there are no additional targets beyond those already identified for the recombinases in the entire genome of two UPEC strains, arguing that type 1 pilus expression itself is the driving evolutionary force for the presence of these recombinase genes. This further suggests that targeting the type 1 pilus is a rational alternative nonantibiotic strategy for the treatment of UTI.
Collapse
|
33
|
Schönemann W, Cramer J, Mühlethaler T, Fiege B, Silbermann M, Rabbani S, Dätwyler P, Zihlmann P, Jakob RP, Sager CP, Smieško M, Schwardt O, Maier T, Ernst B. Improvement of Aglycone π-Stacking Yields Nanomolar to Sub-nanomolar FimH Antagonists. ChemMedChem 2019; 14:749-757. [PMID: 30710416 DOI: 10.1002/cmdc.201900051] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Indexed: 11/08/2022]
Abstract
Antimicrobial resistance has become a serious concern for the treatment of urinary tract infections. In this context, an anti-adhesive approach targeting FimH, a bacterial lectin enabling the attachment of E. coli to host cells, has attracted considerable interest. FimH can adopt a low/medium-affinity state in the absence and a high-affinity state in the presence of shear forces. Until recently, mostly the high-affinity state has been investigated, despite the fact that a therapeutic antagonist should bind predominantly to the low-affinity state. In this communication, we demonstrate that fluorination of biphenyl α-d-mannosides leads to compounds with perfect π-π stacking interactions with the tyrosine gate of FimH, yielding low nanomolar to sub-nanomolar KD values for the low- and high-affinity states, respectively. The face-to-face alignment of the perfluorinated biphenyl group of FimH ligands and Tyr48 was confirmed by crystal structures as well as 1 H,15 N-HSQC NMR analysis. Finally, fluorination improves pharmacokinetic parameters predictive for oral availability.
Collapse
Affiliation(s)
- Wojciech Schönemann
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Jonathan Cramer
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Tobias Mühlethaler
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Brigitte Fiege
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Marleen Silbermann
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Said Rabbani
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Philipp Dätwyler
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Pascal Zihlmann
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Roman P Jakob
- Department Biozentrum, Focal Area Structural Biology, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland
| | - Christoph P Sager
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Martin Smieško
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Oliver Schwardt
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Timm Maier
- Department Biozentrum, Focal Area Structural Biology, University of Basel, Klingelbergstrasse 70, 4056, Basel, Switzerland
| | - Beat Ernst
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| |
Collapse
|
34
|
Hospenthal MK, Waksman G. The Remarkable Biomechanical Properties of the Type 1 Chaperone-Usher Pilus: A Structural and Molecular Perspective. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0010-2018. [PMID: 30681068 PMCID: PMC11588285 DOI: 10.1128/microbiolspec.psib-0010-2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Indexed: 01/02/2023] Open
Abstract
Chaperone-usher (CU) pili are long, supramolecular protein fibers tethered to the surface of numerous bacterial pathogens. These virulence factors function primarily in bacterial adhesion to host tissues, but they also mediate biofilm formation. Type 1 and P pili of uropathogenic Escherichia coli (UPEC) are the two best-studied CU pilus examples, and here we primarily focus on the former. UPEC can be transmitted to the urinary tract by fecal shedding. It can then ascend up the urinary tract and cause disease by invading and colonizing host tissues of the bladder, causing cystitis, and the kidneys, causing pyelonephritis. FimH is the subunit displayed at the tip of type 1 pili and mediates adhesion to mannosylated host cells via a unique catch-bond mechanism. In response to shear forces caused by urine flow, FimH can transition from a low-affinity to high-affinity binding mode. This clever allosteric mechanism allows UPEC cells to remain tightly attached during periods of urine flow, while loosening their grip to allow dissemination through the urinary tract during urine stasis. Moreover, the bulk of a CU pilus is made up of the rod, which can reversibly uncoil in response to urine flow to evenly spread the tensile forces over the entire pilus length. We here explore the novel structural and mechanistic findings relating to the type 1 pilus FimH catch-bond and rod uncoiling and explain how they function together to enable successful attachment, spread, and persistence in the hostile urinary tract.
Collapse
Affiliation(s)
- Manuela K Hospenthal
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London WC1E 7HX, United Kingdom
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London WC1E 7HX, United Kingdom
| |
Collapse
|
35
|
Sauer MM, Jakob RP, Luber T, Canonica F, Navarra G, Ernst B, Unverzagt C, Maier T, Glockshuber R. Binding of the Bacterial Adhesin FimH to Its Natural, Multivalent High-Mannose Type Glycan Targets. J Am Chem Soc 2018; 141:936-944. [PMID: 30543411 DOI: 10.1021/jacs.8b10736] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multivalent carbohydrate-lectin interactions at host-pathogen interfaces play a crucial role in the establishment of infections. Although competitive antagonists that prevent pathogen adhesion are promising antimicrobial drugs, the molecular mechanisms underlying these complex adhesion processes are still poorly understood. Here, we characterize the interactions between the fimbrial adhesin FimH from uropathogenic Escherichia coli strains and its natural high-mannose type N-glycan binding epitopes on uroepithelial glycoproteins. Crystal structures and a detailed kinetic characterization of ligand-binding and dissociation revealed that the binding pocket of FimH evolved such that it recognizes the terminal α(1-2)-, α(1-3)-, and α(1-6)-linked mannosides of natural high-mannose type N-glycans with similar affinity. We demonstrate that the 2000-fold higher affinity of the domain-separated state of FimH compared to its domain-associated state is ligand-independent and consistent with a thermodynamic cycle in which ligand-binding shifts the association equilibrium between the FimH lectin and the FimH pilin domain. Moreover, we show that a single N-glycan can bind up to three molecules of FimH, albeit with negative cooperativity, so that a molar excess of accessible N-glycans over FimH on the cell surface favors monovalent FimH binding. Our data provide pivotal insights into the adhesion properties of uropathogenic Escherichia coli strains to their target receptors and a solid basis for the development of effective FimH antagonists.
Collapse
Affiliation(s)
- Maximilian M Sauer
- Institute of Molecular Biology & Biophysics , ETH Zurich , Otto-Stern-Weg 5 , CH-8093 Zurich , Switzerland
| | - Roman P Jakob
- Biozentrum , University of Basel , Klingelbergstrasse 50/70 , CH-4056 Basel , Switzerland
| | - Thomas Luber
- Bioorganische Chemie , University of Bayreuth , D-95440 Bayreuth , Germany
| | - Fabia Canonica
- Institute of Molecular Biology & Biophysics , ETH Zurich , Otto-Stern-Weg 5 , CH-8093 Zurich , Switzerland
| | - Giulio Navarra
- Department of Pharmaceutical Sciences , University of Basel , Klingelbergstrasse 50 , CH-4056 Basel , Switzerland
| | - Beat Ernst
- Department of Pharmaceutical Sciences , University of Basel , Klingelbergstrasse 50 , CH-4056 Basel , Switzerland
| | - Carlo Unverzagt
- Bioorganische Chemie , University of Bayreuth , D-95440 Bayreuth , Germany
| | - Timm Maier
- Biozentrum , University of Basel , Klingelbergstrasse 50/70 , CH-4056 Basel , Switzerland
| | - Rudi Glockshuber
- Institute of Molecular Biology & Biophysics , ETH Zurich , Otto-Stern-Weg 5 , CH-8093 Zurich , Switzerland
| |
Collapse
|
36
|
Languin-Cattoën O, Melchionna S, Derreumaux P, Stirnemann G, Sterpone F. Three Weaknesses for Three Perturbations: Comparing Protein Unfolding Under Shear, Force, and Thermal Stresses. J Phys Chem B 2018; 122:11922-11930. [PMID: 30444631 DOI: 10.1021/acs.jpcb.8b08711] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The perturbation of a protein conformation by a physiological fluid flow is crucial in various biological processes including blood clotting and bacterial adhesion to human tissues. Investigating such mechanisms by computer simulations is thus of great interest, but it requires development of ad hoc strategies to mimic the complex hydrodynamic interactions acting on the protein from the surrounding flow. In this study, we apply the Lattice Boltzmann Molecular Dynamics (LBMD) technique built on the implicit solvent coarse-grained model for protein Optimized Potential for Efficient peptide structure Prediction (OPEP) and a mesoscopic representation of the fluid solvent, to simulate the unfolding of a small globular cold-shock protein in shear flow and to compare it to the unfolding mechanisms caused either by mechanical or thermal perturbations. We show that each perturbation probes a specific weakness of the protein and causes the disruption of the native fold along different unfolding pathways. Notably, the shear flow and the thermal unfolding exhibit very similar pathways, while because of the directionality of the perturbation, the unfolding under force is quite different. For force and thermal disruption of the native state, the coarse-grained simulations are compared to all-atom simulations in explicit solvent, showing an excellent agreement in the explored unfolding mechanisms. These findings encourage the use of LBMD based on the OPEP model to investigate how a flow can affect the function of larger proteins, for example, in catch-bond systems.
Collapse
Affiliation(s)
- Olivier Languin-Cattoën
- Laboratoire de Biochimie Théorique , CNRS, Institut de Biologie Physico-Chimique, Sorbonne Paris Cité, PSL University , 13 rue Pierre et Marie Curie , 75005 Paris , France
| | | | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique , CNRS, Institut de Biologie Physico-Chimique, Sorbonne Paris Cité, PSL University , 13 rue Pierre et Marie Curie , 75005 Paris , France
| | - Guillaume Stirnemann
- Laboratoire de Biochimie Théorique , CNRS, Institut de Biologie Physico-Chimique, Sorbonne Paris Cité, PSL University , 13 rue Pierre et Marie Curie , 75005 Paris , France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique , CNRS, Institut de Biologie Physico-Chimique, Sorbonne Paris Cité, PSL University , 13 rue Pierre et Marie Curie , 75005 Paris , France
| |
Collapse
|
37
|
Structure-Function Analysis of the Curli Accessory Protein CsgE Defines Surfaces Essential for Coordinating Amyloid Fiber Formation. mBio 2018; 9:mBio.01349-18. [PMID: 30018113 PMCID: PMC6050966 DOI: 10.1128/mbio.01349-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Curli amyloid fibers are produced as part of the extracellular biofilm matrix and are composed primarily of the major structural subunit CsgA. The CsgE chaperone facilitates the secretion of CsgA through CsgG by forming a cap at the base of the nonameric CsgG outer membrane pore. We elucidated a series of finely tuned nonpolar and charge-charge interactions that facilitate the oligomerization of CsgE and its ability to transport unfolded CsgA to CsgG for translocation. CsgE oligomerization in vitro is temperature dependent and is disrupted by mutations in the W48 and F79 residues. Using nuclear magnetic resonance (NMR), we identified two regions of CsgE involved in the CsgE-CsgA interaction: a head comprising a positively charged patch centered around R47 and a stem comprising a negatively charged patch containing E31 and E85. Negatively charged residues in the intrinsically disordered N- and C-terminal "tails" were not implicated in this interaction. Head and stem residues were mutated and interrogated using in vivo measurements of curli production and in vitro amyloid polymerization assays. The R47 head residue of CsgE is required for stabilization of CsgA- and CsgE-mediated curli fiber formation. Mutation of the E31 and E85 stem residues to positively charged side chains decreased CsgE-mediated curli fiber formation but increased CsgE-mediated stabilization of CsgA. No single-amino-acid substitutions in the head, stem, or tail regions affected the ability of CsgE to cap the CsgG pore as determined by a bile salt sensitivity assay. These mechanistic insights into the directed assembly of functional amyloids in extracellular biofilms elucidate possible targets for biofilm-associated bacterial infections.IMPORTANCE Curli represent a class of functional amyloid fibers produced by Escherichia coli and other Gram-negative bacteria that serve as protein scaffolds in the extracellular biofilm matrix. Despite the lack of sequence conservation among different amyloidogenic proteins, the structural and biophysical properties of functional amyloids such as curli closely resemble those of amyloids associated with several common neurodegenerative diseases. These parallels are underscored by the observation that certain proteins and chemicals can prevent amyloid formation by the major curli subunit CsgA and by alpha-synuclein, the amyloid-forming protein found in Lewy bodies during Parkinson's disease. CsgA subunits are targeted to the CsgG outer membrane pore by CsgE prior to secretion and assembly into fibers. Here, we use biophysical, biochemical, and genetic approaches to elucidate a mechanistic understanding of CsgE function in curli biogenesis.
Collapse
|
38
|
Structure-based discovery of glycomimetic FmlH ligands as inhibitors of bacterial adhesion during urinary tract infection. Proc Natl Acad Sci U S A 2018; 115:E2819-E2828. [PMID: 29507247 PMCID: PMC5866590 DOI: 10.1073/pnas.1720140115] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Treatment of bacterial infections is becoming a serious clinical challenge due to the global dissemination of multidrug antibiotic resistance, necessitating the search for alternative treatments to disarm the virulence mechanisms underlying these infections. Uropathogenic Escherichia coli (UPEC) employs multiple chaperone-usher pathway pili tipped with adhesins with diverse receptor specificities to colonize various host tissues and habitats. For example, UPEC F9 pili specifically bind galactose or N-acetylgalactosamine epitopes on the kidney and inflamed bladder. Using X-ray structure-guided methods, virtual screening, and multiplex ELISA arrays, we rationally designed aryl galactosides and N-acetylgalactosaminosides that inhibit the F9 pilus adhesin FmlH. The lead compound, 29β-NAc, is a biphenyl N-acetyl-β-galactosaminoside with a Ki of ∼90 nM, representing a major advancement in potency relative to the characteristically weak nature of most carbohydrate-lectin interactions. 29β-NAc binds tightly to FmlH by engaging the residues Y46 through edge-to-face π-stacking with its A-phenyl ring, R142 in a salt-bridge interaction with its carboxylate group, and K132 through water-mediated hydrogen bonding with its N-acetyl group. Administration of 29β-NAc in a mouse urinary tract infection (UTI) model significantly reduced bladder and kidney bacterial burdens, and coadministration of 29β-NAc and mannoside 4Z269, which targets the type 1 pilus adhesin FimH, resulted in greater elimination of bacteria from the urinary tract than either compound alone. Moreover, FmlH specifically binds healthy human kidney tissue in a 29β-NAc-inhibitable manner, suggesting a key role for F9 pili in human kidney colonization. Thus, these glycoside antagonists of FmlH represent a rational antivirulence strategy for UPEC-mediated UTI treatment.
Collapse
|
39
|
Sterpone F, Derreumaux P, Melchionna S. Molecular Mechanism of Protein Unfolding under Shear: A Lattice Boltzmann Molecular Dynamics Study. J Phys Chem B 2018; 122:1573-1579. [PMID: 29328657 DOI: 10.1021/acs.jpcb.7b10796] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteins are marginally stable soft-matter entities that can be disrupted using a variety of perturbative stresses, including thermal, chemical, or mechanical ones. Fluid under extreme flow conditions is a possible route to probe the weakness of biomolecules and collect information on the molecular cohesive interactions that secure their stability. Moreover, in many cases, physiological flow triggers the functional response of specialized proteins as occurring in blood coagulation or cell adhesion. We deploy the Lattice Boltzmann molecular dynamics technique based on the coarse-grained model for protein OPEP to study the mechanism of protein unfolding under Couette flow. Our simulations provide a clear view of how structural elements of the proteins are affected by shear, and for the simple study case, the β-hairpin, we exploited the analogy to pulling experiments to quantify the mechanical forces acting on the protein under shear.
Collapse
Affiliation(s)
- Fabio Sterpone
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité , 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité , 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | |
Collapse
|
40
|
Rabbani S, Fiege B, Eris D, Silbermann M, Jakob RP, Navarra G, Maier T, Ernst B. Conformational switch of the bacterial adhesin FimH in the absence of the regulatory domain: Engineering a minimalistic allosteric system. J Biol Chem 2018; 293:1835-1849. [PMID: 29180452 PMCID: PMC5798311 DOI: 10.1074/jbc.m117.802942] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/23/2017] [Indexed: 11/06/2022] Open
Abstract
For many biological processes such as ligand binding, enzymatic catalysis, or protein folding, allosteric regulation of protein conformation and dynamics is fundamentally important. One example is the bacterial adhesin FimH, where the C-terminal pilin domain exerts negative allosteric control over binding of the N-terminal lectin domain to mannosylated ligands on host cells. When the lectin and pilin domains are separated under shear stress, the FimH-ligand interaction switches in a so-called catch-bond mechanism from the low- to high-affinity state. So far, it has been assumed that the pilin domain is essential for the allosteric propagation within the lectin domain that would otherwise be conformationally rigid. To test this hypothesis, we generated mutants of the isolated FimH lectin domain and characterized their thermodynamic, kinetic, and structural properties using isothermal titration calorimetry, surface plasmon resonance, nuclear magnetic resonance, and X-ray techniques. Intriguingly, some of the mutants mimicked the conformational and kinetic behaviors of the full-length protein and, even in absence of the pilin domain, conducted the cross-talk between allosteric sites and the mannoside-binding pocket. Thus, these mutants represent a minimalistic allosteric system of FimH, useful for further mechanistic studies and antagonist design.
Collapse
Affiliation(s)
- Said Rabbani
- From the Department of Pharmaceutical Sciences, Pharmacenter of the University of Basel, Klingelbergstrasse 50 and
| | - Brigitte Fiege
- From the Department of Pharmaceutical Sciences, Pharmacenter of the University of Basel, Klingelbergstrasse 50 and
| | - Deniz Eris
- From the Department of Pharmaceutical Sciences, Pharmacenter of the University of Basel, Klingelbergstrasse 50 and
| | - Marleen Silbermann
- From the Department of Pharmaceutical Sciences, Pharmacenter of the University of Basel, Klingelbergstrasse 50 and
| | - Roman Peter Jakob
- the Department Biozentrum, Focal Area Structural Biology, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Giulio Navarra
- From the Department of Pharmaceutical Sciences, Pharmacenter of the University of Basel, Klingelbergstrasse 50 and
| | - Timm Maier
- the Department Biozentrum, Focal Area Structural Biology, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Beat Ernst
- From the Department of Pharmaceutical Sciences, Pharmacenter of the University of Basel, Klingelbergstrasse 50 and
| |
Collapse
|
41
|
Kaiser TM, Kell SA, Kusumoto H, Shaulsky G, Bhattacharya S, Epplin MP, Strong KL, Miller EJ, Cox BD, Menaldino DS, Liotta DC, Traynelis SF, Burger PB. The Bioactive Protein-Ligand Conformation of GluN2C-Selective Positive Allosteric Modulators Bound to the NMDA Receptor. Mol Pharmacol 2018; 93:141-156. [PMID: 29242355 PMCID: PMC5767683 DOI: 10.1124/mol.117.110940] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022] Open
Abstract
N-methyl-d-aspartate (NMDA) receptors are ligand-gated, cation-selective channels that mediate a slow component of excitatory synaptic transmission. Subunit-selective positive allosteric modulators of NMDA receptor function have therapeutically relevant effects on multiple processes in the brain. A series of pyrrolidinones, such as PYD-106, that selectively potentiate NMDA receptors that contain the GluN2C subunit have structural determinants of activity that reside between the GluN2C amino terminal domain and the GluN2C agonist binding domain, suggesting a unique site of action. Here we use molecular biology and homology modeling to identify residues that line a candidate binding pocket for GluN2C-selective pyrrolidinones. We also show that occupancy of only one site in diheteromeric receptors is required for potentiation. Both GluN2A and GluN2B can dominate the sensitivity of triheteromeric receptors to eliminate the actions of pyrrolidinones, thus rendering this series uniquely sensitive to subunit stoichiometry. We experimentally identified NMR-derived conformers in solution, which combined with molecular modeling allows the prediction of the bioactive binding pose for this series of GluN2C-selective positive allosteric modulators of NMDA receptors. These data advance our understanding of the site and nature of the ligand-protein interaction for GluN2C-selective positive allosteric modulators for NMDA receptors.
Collapse
Affiliation(s)
- Thomas M Kaiser
- Department of Chemistry, Emory University, Atlanta, Georgia (T.M.K., S.A.K., M.P.E., K.L.S., E.J.M., B.D.C., D.S.M., D.C.L., P.B.B.); and Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (H.K., G.S., S.B., S.F.T.)
| | - Steven A Kell
- Department of Chemistry, Emory University, Atlanta, Georgia (T.M.K., S.A.K., M.P.E., K.L.S., E.J.M., B.D.C., D.S.M., D.C.L., P.B.B.); and Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (H.K., G.S., S.B., S.F.T.)
| | - Hirofumi Kusumoto
- Department of Chemistry, Emory University, Atlanta, Georgia (T.M.K., S.A.K., M.P.E., K.L.S., E.J.M., B.D.C., D.S.M., D.C.L., P.B.B.); and Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (H.K., G.S., S.B., S.F.T.)
| | - Gil Shaulsky
- Department of Chemistry, Emory University, Atlanta, Georgia (T.M.K., S.A.K., M.P.E., K.L.S., E.J.M., B.D.C., D.S.M., D.C.L., P.B.B.); and Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (H.K., G.S., S.B., S.F.T.)
| | - Subhrajit Bhattacharya
- Department of Chemistry, Emory University, Atlanta, Georgia (T.M.K., S.A.K., M.P.E., K.L.S., E.J.M., B.D.C., D.S.M., D.C.L., P.B.B.); and Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (H.K., G.S., S.B., S.F.T.)
| | - Matthew P Epplin
- Department of Chemistry, Emory University, Atlanta, Georgia (T.M.K., S.A.K., M.P.E., K.L.S., E.J.M., B.D.C., D.S.M., D.C.L., P.B.B.); and Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (H.K., G.S., S.B., S.F.T.)
| | - Katie L Strong
- Department of Chemistry, Emory University, Atlanta, Georgia (T.M.K., S.A.K., M.P.E., K.L.S., E.J.M., B.D.C., D.S.M., D.C.L., P.B.B.); and Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (H.K., G.S., S.B., S.F.T.)
| | - Eric J Miller
- Department of Chemistry, Emory University, Atlanta, Georgia (T.M.K., S.A.K., M.P.E., K.L.S., E.J.M., B.D.C., D.S.M., D.C.L., P.B.B.); and Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (H.K., G.S., S.B., S.F.T.)
| | - Bryan D Cox
- Department of Chemistry, Emory University, Atlanta, Georgia (T.M.K., S.A.K., M.P.E., K.L.S., E.J.M., B.D.C., D.S.M., D.C.L., P.B.B.); and Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (H.K., G.S., S.B., S.F.T.)
| | - David S Menaldino
- Department of Chemistry, Emory University, Atlanta, Georgia (T.M.K., S.A.K., M.P.E., K.L.S., E.J.M., B.D.C., D.S.M., D.C.L., P.B.B.); and Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (H.K., G.S., S.B., S.F.T.)
| | - Dennis C Liotta
- Department of Chemistry, Emory University, Atlanta, Georgia (T.M.K., S.A.K., M.P.E., K.L.S., E.J.M., B.D.C., D.S.M., D.C.L., P.B.B.); and Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (H.K., G.S., S.B., S.F.T.)
| | - Stephen F Traynelis
- Department of Chemistry, Emory University, Atlanta, Georgia (T.M.K., S.A.K., M.P.E., K.L.S., E.J.M., B.D.C., D.S.M., D.C.L., P.B.B.); and Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (H.K., G.S., S.B., S.F.T.)
| | - Pieter B Burger
- Department of Chemistry, Emory University, Atlanta, Georgia (T.M.K., S.A.K., M.P.E., K.L.S., E.J.M., B.D.C., D.S.M., D.C.L., P.B.B.); and Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (H.K., G.S., S.B., S.F.T.)
| |
Collapse
|
42
|
Abstract
Escherichia coli bacterial cells produce multiple types of adhesion pili that mediate cell-cell and cell-host attachments. These pili (also called 'fimbriae') are large biopolymers that are comprised of subunits assembled via a sophisticated micro-machinery into helix-like structures that are anchored in the bacterial outer membrane. They are commonly essential for initiation of disease and thus provide a potential target for antibacterial prevention and treatment. To develop new therapeutics for disease prevention and treatment we need to understand the molecular mechanisms and the direct role of adhesion pili during pathogenesis. These helix-like pilus structures possess fascinating and unique biomechanical properties that have been thoroughly investigated using high-resolution imaging techniques, force spectroscopy and fluid flow chambers. In this chapter, we first discuss the structure of pili and the micro-machinery responsible for the assembly process. Thereafter, we present methods for measurement of the biomechanics of adhesion pili, including optical tweezers. Data demonstrate unique biomechanical properties of pili that allow bacteria to sustain binding during in vivo fluid shear forces. We thereafter summarize the current biomechanical findings related to adhesion pili and show that pili biomechanical properties are niche-specific. That is, the data suggest that there is an organ-specific adaptation of pili that facilitates infection of the bacteria's target tissue. Thus, pilus biophysical properties are an important part of Escherichia coli pathogenesis, allowing bacteria to overcome hydrodynamic challenges in diverse environments.
Collapse
Affiliation(s)
| | - Esther Bullitt
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA.
| | | |
Collapse
|
43
|
Multi-scale simulations of biological systems using the OPEP coarse-grained model. Biochem Biophys Res Commun 2017; 498:296-304. [PMID: 28917842 DOI: 10.1016/j.bbrc.2017.08.165] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/31/2017] [Indexed: 12/14/2022]
Abstract
Biomolecules are complex machines that are optimized by evolution to properly fulfill or contribute to a variety of biochemical tasks in the cellular environment. Computer simulations based on quantum mechanics and atomistic force fields have been proven to be a powerful microscope for obtaining valuable insights into many biological, physical, and chemical processes. Many interesting phenomena involve, however, a time scale and a number of degrees of freedom, notably if crowding is considered, that cannot be explored at an atomistic resolution. To bridge the gap between reality and simulation, many different advanced computational techniques and coarse-grained (CG) models have been developed. Here, we report some applications of the CG OPEP protein model to amyloid fibril formation, the response of catch-bond proteins to two types of fluid flow, and interactive simulations to fold peptides with well-defined 3D structures or with intrinsic disorder.
Collapse
|
44
|
Spaulding CN, Klein RD, Ruer S, Kau AL, Schreiber HL, Cusumano ZT, Dodson KW, Pinkner JS, Fremont DH, Janetka JW, Remaut H, Gordon JI, Hultgren SJ. Selective depletion of uropathogenic E. coli from the gut by a FimH antagonist. Nature 2017; 546:528-532. [PMID: 28614296 PMCID: PMC5654549 DOI: 10.1038/nature22972] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/22/2017] [Indexed: 12/19/2022]
Abstract
Urinary tract infections (UTI) caused by uropathogenic E. coli (UPEC) affect 150 million people annually1,2. Despite effective antibiotic therapy, 30–50% of patients experience recurrent UTI (rUTI)1. Additionally, the growing prevelance of UPEC resistant to last-line antibiotic treatments, and more recently carbapenems and colistin, make UTIs a prime example of the antibiotic-resistance crisis and emphasize the need for new approaches to treat and prevent bacterial infections3–5. UPEC strains establish reservoirs in the gut from which they are shed in the feces, can colonize the peri-urethral area or vagina and subsequently ascend through the urethra to the urinary tract, where they cause UTI6. UPEC isolates encode up to 16 distinct chaperone-usher pathway (CUP) pili and each pilus type likely enables colonization of a habitat in the host or environment7. For example, the type 1 pilus adhesin, FimH, binds mannose on the bladder surface, mediating bladder colonization. However, little is known regarding the mechanisms underlying UPEC persistence in the gut5. Using a mouse model, we found that F17-like and type 1 pili promote intestinal colonization and show distinct binding to epithelial cells distributed along colonic crypts. Phylogenomic and structural analyses reveal that F17-like pili are closely related to pilus types carried by intestinal pathogens, but are restricted to extra-intestinal pathogenic E. coli. Moreover, we show that targeting FimH with a high-affinity inhibitor, mannoside M4284, reduces intestinal colonization of genetically diverse UPEC isolates, while simultaneously treating UTI, without significantly disrupting the the structural configuration of the gut microbiota. By selectively depleting the intestinal UPEC reservoir, mannosides could significantly reduce the rate of UTI and rUTI.
Collapse
Affiliation(s)
- Caitlin N Spaulding
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, Missouri 63110, USA.,Center for Women's Infectious Disease Research (CWIDR), Washington University in St Louis, St Louis, Missouri 63110, USA
| | - Roger D Klein
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, Missouri 63110, USA.,Center for Women's Infectious Disease Research (CWIDR), Washington University in St Louis, St Louis, Missouri 63110, USA
| | - Ségolène Ruer
- Structural and Molecular Microbiology, VIB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Andrew L Kau
- Center for Women's Infectious Disease Research (CWIDR), Washington University in St Louis, St Louis, Missouri 63110, USA.,Department of Medicine, Washington University in St Louis, St Louis, Missouri 63110, USA
| | - Henry L Schreiber
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, Missouri 63110, USA.,Center for Women's Infectious Disease Research (CWIDR), Washington University in St Louis, St Louis, Missouri 63110, USA.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Zachary T Cusumano
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, Missouri 63110, USA.,Center for Women's Infectious Disease Research (CWIDR), Washington University in St Louis, St Louis, Missouri 63110, USA
| | - Karen W Dodson
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, Missouri 63110, USA.,Center for Women's Infectious Disease Research (CWIDR), Washington University in St Louis, St Louis, Missouri 63110, USA
| | - Jerome S Pinkner
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, Missouri 63110, USA.,Center for Women's Infectious Disease Research (CWIDR), Washington University in St Louis, St Louis, Missouri 63110, USA
| | - Daved H Fremont
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, Missouri 63110, USA.,Department of Pathology and Immunology, Washington University in St Louis, St Louis, Missouri 63110, USA.,Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, St Louis, Missouri 63110, USA
| | - James W Janetka
- Center for Women's Infectious Disease Research (CWIDR), Washington University in St Louis, St Louis, Missouri 63110, USA.,Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, St Louis, Missouri 63110, USA
| | - Han Remaut
- Structural and Molecular Microbiology, VIB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jeffrey I Gordon
- Center for Genome Sciences and Systems Biology, Washington University in St Louis, St Louis, Missouri 63110, USA.,Center for Gut Microbiome and Nutrition Research, Washington University in St Louis, St Louis, Missouri 63110, USA
| | - Scott J Hultgren
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, Missouri 63110, USA.,Center for Women's Infectious Disease Research (CWIDR), Washington University in St Louis, St Louis, Missouri 63110, USA
| |
Collapse
|
45
|
Mydock-McGrane LK, Hannan TJ, Janetka JW. Rational design strategies for FimH antagonists: new drugs on the horizon for urinary tract infection and Crohn's disease. Expert Opin Drug Discov 2017; 12:711-731. [PMID: 28506090 DOI: 10.1080/17460441.2017.1331216] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The bacterial adhesin FimH is a virulence factor and an attractive therapeutic target for urinary tract infection (UTI) and Crohn's Disease (CD). Located on type 1 pili of uropathogenic E. coli (UPEC), the FimH adhesin plays an integral role in the pathogenesis of UPEC. Recent efforts have culminated in the development of small-molecule mannoside FimH antagonists that target the mannose-binding lectin domain of FimH, inhibiting its function and preventing UPEC from binding mannosylated host cells in the bladder, thereby circumventing infection. Areas covered: The authors describe the structure-guided design of mannoside ligands, and review the structural biology of the FimH lectin domain. Additionally, they discuss the lead optimization of mannosides for therapeutic application in UTI and CD, and describe various assays used to measure mannoside potency in vitro and mouse models used to determine efficacy in vivo. Expert opinion: To date, mannoside optimization has led to a diverse set of small-molecule FimH antagonists with oral bioavailability. With clinical trials already initiated in CD and on the horizon for UTI, it is the authors, opinion that mannosides will be a 'first-in-class' treatment strategy for UTI and CD, and will pave the way for treatment of other Gram-negative bacterial infections.
Collapse
Affiliation(s)
| | | | - James W Janetka
- b Department of Biochemistry and Molecular Biophysics , Washington University School of Medicine , Saint Louis , MO , USA
| |
Collapse
|