1
|
Hamazaki Y, Akuta H, Suzuki H, Tanabe H, Ichiyanagi K, Imamura T, Imamura M. Generation and characterization of induced pluripotent stem cells of small apes. Front Cell Dev Biol 2025; 13:1536947. [PMID: 40177132 PMCID: PMC11961953 DOI: 10.3389/fcell.2025.1536947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
Small apes (family Hylobatidae), encompassing gibbons and siamangs, occupy a pivotal evolutionary position within the hominoid lineage, bridging the gap between great apes and catarrhine monkeys. Although they possess distinctive genomic and phenotypic features-such as rapid chromosomal rearrangements and adaptations for brachiation-functional genomic studies on small apes have been hindered by the limited availability of biological samples and developmental models. Here, we address this gap by successfully reprogramming primary skin fibroblasts from three small ape species: lar gibbons (Hylobates lar), Abbott's gray gibbons (Hylobates abbotti), and siamangs (Symphalangus syndactylus). Using Sendai virus-based stealth RNA vectors, we generated 31 reprogrammed cell lines, five of which were developed into transgene-free induced pluripotent stem cells. These iPSCs displayed canonical features of primed pluripotency, both morphologically and molecularly, consistent with other primate iPSCs. Directed differentiation experiments confirmed the capacity of the small ape iPSCs to generate cells representing all three germ layers. In particular, their successful differentiation into limb bud mesoderm cells underscores their utility in investigating the molecular and developmental mechanisms unique to small ape forelimb evolution. Transcriptomic profiling of small ape iPSCs revealed significant upregulation of pluripotency-associated genes, alongside elevated expression of transposable elements. Remarkably, LAVA retrotransposons-a class of elements specific to small apes-exhibited particularly high expression levels in these cells. Comparative transcriptomic analyses with iPSCs from humans, great apes, and macaques identified evolutionary trends and clade-specific gene expression signatures. These signatures highlighted processes linked to genomic stability and cell death, providing insights into small ape-specific adaptations. This study positions small ape iPSCs as a transformative tool for advancing functional genomics and evolutionary developmental biology. By facilitating detailed investigations into hominoid genome evolution and phenotypic diversification, this system bridges critical gaps in comparative research, enabling deeper exploration of the genetic and cellular underpinnings of small ape-specific traits.
Collapse
Affiliation(s)
- Yusuke Hamazaki
- Molecular Biology Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Japan
| | - Hiroto Akuta
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Hikaru Suzuki
- Laboratory of Genome and Epigenome Dynamics, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hideyuki Tanabe
- Research Center for Integrative Evolutionary Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Kenji Ichiyanagi
- Laboratory of Genome and Epigenome Dynamics, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takuya Imamura
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Masanori Imamura
- Molecular Biology Section, Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Japan
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
2
|
Hutchinson AM, Appeltant R, Burdon T, Bao Q, Bargaje R, Bodnar A, Chambers S, Comizzoli P, Cook L, Endo Y, Harman B, Hayashi K, Hildebrandt T, Korody ML, Lakshmipathy U, Loring JF, Munger C, Ng AHM, Novak B, Onuma M, Ord S, Paris M, Pask AJ, Pelegri F, Pera M, Phelan R, Rosental B, Ryder OA, Sukparangsi W, Sullivan G, Tay NL, Traylor-Knowles N, Walker S, Weberling A, Whitworth DJ, Williams SA, Wojtusik J, Wu J, Ying QL, Zwaka TP, Kohler TN. Advancing stem cell technologies for conservation of wildlife biodiversity. Development 2024; 151:dev203116. [PMID: 39382939 PMCID: PMC11491813 DOI: 10.1242/dev.203116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Wildlife biodiversity is essential for healthy, resilient and sustainable ecosystems. For biologists, this diversity also represents a treasure trove of genetic, molecular and developmental mechanisms that deepen our understanding of the origins and rules of life. However, the rapid decline in biodiversity reported recently foreshadows a potentially catastrophic collapse of many important ecosystems and the associated irreversible loss of many forms of life on our planet. Immediate action by conservationists of all stripes is required to avert this disaster. In this Spotlight, we draw together insights and proposals discussed at a recent workshop hosted by Revive & Restore, which gathered experts to discuss how stem cell technologies can support traditional conservation techniques and help protect animal biodiversity. We discuss reprogramming, in vitro gametogenesis, disease modelling and embryo modelling, and we highlight the prospects for leveraging stem cell technologies beyond mammalian species.
Collapse
Affiliation(s)
| | - Ruth Appeltant
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Tom Burdon
- The Roslin Institute, RDSVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Qiuye Bao
- IMCB-ESCAR, A*STAR, 61 Biopolis Drive, Proteos, 138673Singapore
| | | | - Andrea Bodnar
- Gloucester Marine Genomics Institute, 417 Main St, Gloucester, MA 01930, USA
| | - Stuart Chambers
- Brightfield Therapeutics, South San Francisco, CA 94080, USA
| | - Pierre Comizzoli
- Smithsonian National Zoo and Conservation Biology Institute, 3001 Connecticut Ave., NW Washington, DC 20008, USA
| | - Laura Cook
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Yoshinori Endo
- University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Bob Harman
- Vet-Stem Inc. & Personalized Stem Cells, Inc., 14261 Danielson Street, Poway, CA 92064, USA
| | | | - Thomas Hildebrandt
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Marisa L. Korody
- San Diego Zoo Wildlife Alliance, 2920 Zoo Dr, San Diego, CA 92101, USA
| | - Uma Lakshmipathy
- Thermo Fisher Scientific, 168 Third Avenue, Waltham, MA 02451, USA
| | - Jeanne F. Loring
- The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Clara Munger
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Alex H. M. Ng
- GC Therapeutics, 610 Main St., North Cambridge, MA 02139, USA
| | - Ben Novak
- Revive & Restore, 1505 Bridgeway, Suite 203, Sausalito, CA 94965, USA
| | - Manabu Onuma
- National Institute for Environmental Studies, 16-2 Onogawa, City of Tsukuba, Ibaraki 305-8506, Japan
| | - Sara Ord
- Colossal Biosciences, 1401 Lavaca St, Unit #155 Austin, TX 78701, USA
| | - Monique Paris
- IBREAM (Institute for Breeding Rare and Endangered African Mammals), Edinburgh EH3 6AT, UK
| | | | - Francisco Pelegri
- University of Wisconsin-Madison, 500 Lincoln Dr, Madison, WI 53706, USA
| | - Martin Pera
- Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Ryan Phelan
- Revive & Restore, 1505 Bridgeway, Suite 203, Sausalito, CA 94965, USA
| | - Benyamin Rosental
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Center for Regenerative Medicine and Stem Cells, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Oliver A. Ryder
- San Diego Zoo Wildlife Alliance, 2920 Zoo Dr, San Diego, CA 92101, USA
| | - Woranop Sukparangsi
- Department of Biology, Faculty of Science, Burapha University, 169 Long-Had Bangsaen Rd, Saen Suk, Chon Buri District, Chon Buri 20131, Thailand
| | - Gareth Sullivan
- Department of Pediatric Research, Oslo University Hospital, P.O. Box 4950 Nydalen, N-0424 Oslo, Norway
- School of Medicine, University of St Andrews, North Haugh, St Andrews KY16 9TF, UK
| | | | - Nikki Traylor-Knowles
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami,4600, Rickenbacker Cswy, Key Biscayne, FL 33149, USA
| | - Shawn Walker
- ViaGen Pets & Equine, PO Box 1119, Cedar Park, TX 78613, USA
| | | | - Deanne J. Whitworth
- University of Queensland, Sir Fred Schonell Drive, Brisbane, Queensland, 4072, Australia
| | | | - Jessye Wojtusik
- Omaha's Henry Doorly Zoo & Aquarium, 3701 S 10th St, Omaha, NE 68107, USA
| | - Jun Wu
- University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Qi-Long Ying
- Keck School of Medicine of University of Southern California, 1975 Zonal Ave, Los Angeles, CA 90033, USA
| | - Thomas P. Zwaka
- Department of Cell, Developmental, and Regenerative Biology, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Timo N. Kohler
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
3
|
Harper JM. Primary Cell Culture as a Model System for Evolutionary Molecular Physiology. Int J Mol Sci 2024; 25:7905. [PMID: 39063147 PMCID: PMC11277064 DOI: 10.3390/ijms25147905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Primary cell culture is a powerful model system to address fundamental questions about organismal physiology at the cellular level, especially for species that are difficult, or impossible, to study under natural or semi-natural conditions. Due to their ease of use, primary fibroblast cultures are the dominant model system, but studies using both somatic and germ cells are also common. Using these models, genome evolution and phylogenetic relationships, the molecular and biochemical basis of differential longevities among species, and the physiological consequences of life history evolution have been studied in depth. With the advent of new technologies such as gene editing and the generation of induced pluripotent stem cells (iPSC), the field of molecular evolutionary physiology will continue to expand using both descriptive and experimental approaches.
Collapse
Affiliation(s)
- James M Harper
- Department of Biological Sciences, Sam Houston State University, 1900 Avenue I, Huntsville, TX 77341, USA
| |
Collapse
|
4
|
Wu Y, Wang C, Fan X, Ma Y, Liu Z, Ye X, Shen C, Wu C. The impact of induced pluripotent stem cells in animal conservation. Vet Res Commun 2024; 48:649-663. [PMID: 38228922 DOI: 10.1007/s11259-024-10294-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
It is widely acknowledged that we are currently facing a critical tipping point with regards to global extinction, with human activities driving us perilously close to the brink of a devastating sixth mass extinction. As a promising option for safeguarding endangered species, induced pluripotent stem cells (iPSCs) hold great potential to aid in the preservation of threatened animal populations. For endangered species, such as the northern white rhinoceros (Ceratotherium simum cottoni), supply of embryos is often limited. After the death of the last male in 2019, only two females remained in the world. IPSC technology offers novel approaches and techniques for obtaining pluripotent stem cells (PSCs) from rare and endangered animal species. Successful generation of iPSCs circumvents several bottlenecks that impede the development of PSCs, including the challenges associated with establishing embryonic stem cells, limited embryo sources and immune rejection following embryo transfer. To provide more opportunities and room for growth in our work on animal welfare, in this paper we will focus on the progress made with iPSC lines derived from endangered and extinct species, exploring their potential applications and limitations in animal welfare research.
Collapse
Affiliation(s)
- Yurou Wu
- School of Pharmacy/School of Modem Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Chengwei Wang
- School of Pharmacy/School of Modem Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Xinyun Fan
- School of Pharmacy/School of Modem Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Yuxiao Ma
- Department of Biology, New York University, New York, NY, USA
| | - Zibo Liu
- School of Pharmacy/School of Modem Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Xun Ye
- School of Pharmacy/School of Modem Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Chongyang Shen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.
| | - Chunjie Wu
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu Univesity of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.
- Sichuan Engineering Research Center for Endangered Medicinal Animals, Chengdu, China.
| |
Collapse
|
5
|
Matsuya S, Fujino K, Imai H, Kusakabe KT, Fujii W, Kano K. Establishment of African pygmy mouse induced pluripotent stem cells using defined doxycycline inducible transcription factors. Sci Rep 2024; 14:3204. [PMID: 38331995 PMCID: PMC10853177 DOI: 10.1038/s41598-024-53687-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/03/2024] [Indexed: 02/10/2024] Open
Abstract
Mus minutoides is one of the smallest mammals worldwide; however, the regulatory mechanisms underlying its dwarfism have not been examined. Therefore, we aimed to establish M. minutoides induced pluripotent stem cells (iPSCs) using the PiggyBac transposon system for applications in developmental engineering. The established M. minutoides iPSCs were found to express pluripotency markers and could differentiate into neurons. Based on in vitro differentiation analysis, M. minutoides iPSCs formed embryoid bodies expressing marker genes in all three germ layers. Moreover, according to the in vivo analysis, these cells contributed to the formation of teratoma and development of chimeric mice with Mus musculus. Overall, the M. minutoides iPSCs generated in this study possess properties that are comparable to or closely resemble those of naïve pluripotent stem cells (PSCs). These findings suggest these iPSCs have potential utility in various analytical applications, including methods for blastocyst completion.
Collapse
Affiliation(s)
- Sumito Matsuya
- Laboratory of Developmental Biology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Kaoru Fujino
- Laboratory of Developmental Biology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi Prefecture, 7538511, Japan
| | - Hiroyuki Imai
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan
| | - Ken Takeshi Kusakabe
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Wataru Fujii
- Laboratory of Biomedical Science, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan.
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | - Kiyoshi Kano
- Laboratory of Developmental Biology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan.
- Laboratory of Developmental Biology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi Prefecture, 7538511, Japan.
- Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan.
| |
Collapse
|
6
|
Allen BL, Bobier C, Dawson S, Fleming PJS, Hampton J, Jachowski D, Kerley GIH, Linnell JDC, Marnewick K, Minnie L, Muthersbaugh M, O'Riain MJ, Parker D, Proulx G, Somers MJ, Titus K. Why humans kill animals and why we cannot avoid it. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165283. [PMID: 37406694 DOI: 10.1016/j.scitotenv.2023.165283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/22/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Killing animals has been a ubiquitous human behaviour throughout history, yet it is becoming increasingly controversial and criticised in some parts of contemporary human society. Here we review 10 primary reasons why humans kill animals, discuss the necessity (or not) of these forms of killing, and describe the global ecological context for human killing of animals. Humans historically and currently kill animals either directly or indirectly for the following reasons: (1) wild harvest or food acquisition, (2) human health and safety, (3) agriculture and aquaculture, (4) urbanisation and industrialisation, (5) invasive, overabundant or nuisance wildlife control, (6) threatened species conservation, (7) recreation, sport or entertainment, (8) mercy or compassion, (9) cultural and religious practice, and (10) research, education and testing. While the necessity of some forms of animal killing is debatable and further depends on individual values, we emphasise that several of these forms of animal killing are a necessary component of our inescapable involvement in a single, functioning, finite, global food web. We conclude that humans (and all other animals) cannot live in a way that does not require animal killing either directly or indirectly, but humans can modify some of these killing behaviours in ways that improve the welfare of animals while they are alive, or to reduce animal suffering whenever they must be killed. We encourage a constructive dialogue that (1) accepts and permits human participation in one enormous global food web dependent on animal killing and (2) focuses on animal welfare and environmental sustainability. Doing so will improve the lives of both wild and domestic animals to a greater extent than efforts to avoid, prohibit or vilify human animal-killing behaviour.
Collapse
Affiliation(s)
- Benjamin L Allen
- University of Southern Queensland, Institute for Life Sciences and the Environment, Toowoomba, Queensland 4350, Australia; Centre for African Conservation Ecology, Nelson Mandela University, Gqeberha 6034, South Africa.
| | - Christopher Bobier
- Department of Theology and Philosophy, Saint Mary's University of Minnesota, Winona, MN, USA
| | - Stuart Dawson
- Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute, Murdoch University, Perth, Western Australia 6150, Australia; Department of Primary Industries and Regional Development, South Perth, Western Australia 6151, Australia
| | - Peter J S Fleming
- University of Southern Queensland, Institute for Life Sciences and the Environment, Toowoomba, Queensland 4350, Australia; Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia; Vertebrate Pest Research Unit, New South Wales Department of Primary Industries, Orange Agricultural Institute, Orange, New South Wales 2800, Australia
| | - Jordan Hampton
- Terrestrial Ecosystem Science and Sustainability, Harry Butler Institute, Murdoch University, Perth, Western Australia 6150, Australia; Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville 3052, Victoria, Australia
| | - David Jachowski
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC, USA
| | - Graham I H Kerley
- Centre for African Conservation Ecology, Nelson Mandela University, Gqeberha 6034, South Africa
| | - John D C Linnell
- Norwegian Institute of Nature Research, Vormstuguveien 40, 2624 Lillehammer, Norway; Inland Norway University of Applied Sciences, Department of Forestry and Wildlife Management, Anne Evenstads vei 80, NO-2480 Koppang, Norway
| | - Kelly Marnewick
- Department of Nature Conservation, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Liaan Minnie
- Centre for African Conservation Ecology, Nelson Mandela University, Gqeberha 6034, South Africa; School of Biology and Environmental Sciences, University of Mpumalanga, Mbombela 1200, South Africa
| | - Mike Muthersbaugh
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC, USA
| | - M Justin O'Riain
- Institute for Communities and Wildlife in Africa, Department of Biological Sciences, University of Cape Town, Upper Campus, Rondebosch 7700, South Africa
| | - Dan Parker
- School of Biology and Environmental Sciences, University of Mpumalanga, Mbombela 1200, South Africa
| | - Gilbert Proulx
- Alpha Wildlife Research & Management Ltd, Sherwood Park, Alberta T8H 1W3, Canada
| | - Michael J Somers
- Mammal Research Institute, Centre for Invasion Biology, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Keifer Titus
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC, USA
| |
Collapse
|
7
|
Yoshimatsu S, Nakajima M, Sonn I, Natsume R, Sakimura K, Nakatsukasa E, Sasaoka T, Nakamura M, Serizawa T, Sato T, Sasaki E, Deng H, Okano H. Attempts for deriving extended pluripotent stem cells from common marmoset embryonic stem cells. Genes Cells 2023; 28:156-169. [PMID: 36530170 DOI: 10.1111/gtc.13000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Extended pluripotent stem cells (EPSCs) derived from mice and humans showed an enhanced potential for chimeric formation. By exploiting transcriptomic approaches, we assessed the differences in gene expression profile between extended EPSCs derived from mice and humans, and those newly derived from the common marmoset (marmoset; Callithrix jacchus). Although the marmoset EPSC-like cells displayed a unique colony morphology distinct from murine and human EPSCs, they displayed a pluripotent state akin to embryonic stem cells (ESCs), as confirmed by gene expression and immunocytochemical analyses of pluripotency markers and three-germ-layer differentiation assay. Importantly, the marmoset EPSC-like cells showed interspecies chimeric contribution to mouse embryos, such as E6.5 blastocysts in vitro and E6.5 epiblasts in vivo in mouse development. Also, we discovered that the perturbation of gene expression of the marmoset EPSC-like cells from the original ESCs resembled that of human EPSCs. Taken together, our multiple analyses evaluated the efficacy of the method for the derivation of marmoset EPSCs.
Collapse
Affiliation(s)
- Sho Yoshimatsu
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Mayutaka Nakajima
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Iki Sonn
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Rie Natsume
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ena Nakatsukasa
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Toshikuni Sasaoka
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Mari Nakamura
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Serizawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Tsukika Sato
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Erika Sasaki
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan.,Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kanagawa, Japan
| | - Hongkui Deng
- Stem Cell Research Center, Peking University, Beijing, China
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
8
|
Turnover of mammal sex chromosomes in the Sry-deficient Amami spiny rat is due to male-specific upregulation of Sox9. Proc Natl Acad Sci U S A 2022; 119:e2211574119. [PMID: 36442104 PMCID: PMC9894122 DOI: 10.1073/pnas.2211574119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mammalian sex chromosomes are highly conserved, and sex is determined by SRY on the Y chromosome. Two exceptional rodent groups in which some species lack a Y chromosome and Sry offer insights into how novel sex genes can arise and replace Sry, leading to sex chromosome turnover. However, intensive study over three decades has failed to reveal the identity of novel sex genes in either of these lineages. We here report our discovery of a male-specific duplication of an enhancer of Sox9 in the Amami spiny rat Tokudaia osimensis, in which males and females have only a single X chromosome (XO/XO) and the Y chromosome and Sry are completely lost. We performed a comprehensive survey to detect sex-specific genomic regions in the spiny rat. Sex-related genomic differences were limited to a male-specific duplication of a 17-kb unit located 430 kb upstream of Sox9 on an autosome. Hi-C analysis using male spiny rat cells showed the duplicated region has potential chromatin interaction with Sox9. The duplicated unit harbored a 1,262-bp element homologous to mouse enhancer 14 (Enh14), a candidate Sox9 enhancer that is functionally redundant in mice. Transgenic reporter mice showed that the spiny rat Enh14 can function as an embryonic testis enhancer in mice. Embryonic gonads of XX mice in which Enh14 was replaced by the duplicated spiny rat Enh14 showed increased Sox9 expression and decreased Foxl2 expression. We propose that male-specific duplication of this Sox9 enhancer substituted for Sry function, defining a novel Y chromosome in the spiny rat.
Collapse
|
9
|
Sandoval AGW, Maden M, Bates LE, Silva JC. Tumor suppressors inhibit reprogramming of African spiny mouse ( Acomys) fibroblasts to induced pluripotent stem cells. Wellcome Open Res 2022; 7:215. [PMID: 36060301 PMCID: PMC9437536 DOI: 10.12688/wellcomeopenres.18034.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 12/15/2022] Open
Abstract
Background: The African spiny mouse ( Acomys) is an emerging mammalian model for scar-free regeneration, and further study of Acomys could advance the field of regenerative medicine. Isolation of pluripotent stem cells from Acomys would allow for development of transgenic or chimeric animals and in vitro study of regeneration; however, the reproductive biology of Acomys is not well characterized, complicating efforts to derive embryonic stem cells. Thus, we sought to generate Acomys induced pluripotent stem cells (iPSCs) by reprogramming somatic cells back to pluripotency. Methods: To generate Acomys iPSCs, we attempted to adapt established protocols developed in Mus. We utilized a PiggyBac transposon system to genetically modify Acomys fibroblasts to overexpress the Yamanaka reprogramming factors as well as mOrange fluorescent protein under the control of a doxycycline-inducible TetON operon system. Results: Reprogramming factor overexpression caused Acomys fibroblasts to undergo apoptosis or senescence. When SV40 Large T antigen (SV40 LT) was added to the reprogramming cocktail, Acomys cells were able to dedifferentiate into pre-iPSCs. Although use of 2iL culture conditions induced formation of colonies resembling Mus PSCs, these Acomys iPS-like cells lacked pluripotency marker expression and failed to form embryoid bodies. An EOS-GiP system was unsuccessful in selecting for bona fide Acomys iPSCs; however, inclusion of Nanog in the reprogramming cocktail along with 5-azacytidine in the culture medium allowed for generation of Acomys iPSC-like cells with increased expression of several naïve pluripotency markers. Conclusions: There are significant roadblocks to reprogramming Acomys cells, necessitating future studies to determine Acomys-specific reprogramming factor and/or culture condition requirements. The requirement for SV40 LT during Acomys dedifferentiation may suggest that tumor suppressor pathways play an important role in Acomys regeneration and that Acomys may possess unreported cancer resistance.
Collapse
Affiliation(s)
- Aaron Gabriel W. Sandoval
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- Department of Biology & UF Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Malcolm Maden
- Department of Biology & UF Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Lawrence E. Bates
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Jose C.R. Silva
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| |
Collapse
|
10
|
Nichols J, Lima A, Rodríguez TA. Cell competition and the regulative nature of early mammalian development. Cell Stem Cell 2022; 29:1018-1030. [PMID: 35803224 DOI: 10.1016/j.stem.2022.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mammalian embryo exhibits a remarkable plasticity that allows it to correct for the presence of aberrant cells, adjust its growth so that its size is in accordance with its developmental stage, or integrate cells of another species to form fully functional organs. Here, we will discuss the contribution that cell competition, a quality control that eliminates viable cells that are less fit than their neighbors, makes to this plasticity. We will do this by reviewing the roles that cell competition plays in the early mammalian embryo and how they contribute to ensure normal development of the embryo.
Collapse
Affiliation(s)
- Jennifer Nichols
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK; Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK.
| | - Ana Lima
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| | - Tristan A Rodríguez
- National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
11
|
Kano M, Mizutani E, Homma S, Masaki H, Nakauchi H. Xenotransplantation and interspecies organogenesis: current status and issues. Front Endocrinol (Lausanne) 2022; 13:963282. [PMID: 35992127 PMCID: PMC9388829 DOI: 10.3389/fendo.2022.963282] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
Pancreas (and islet) transplantation is the only curative treatment for type 1 diabetes patients whose β-cell functions have been abolished. However, the lack of donor organs has been the major hurdle to save a large number of patients. Therefore, transplantation of animal organs is expected to be an alternative method to solve the serious shortage of donor organs. More recently, a method to generate organs from pluripotent stem cells inside the body of other species has been developed. This interspecies organ generation using blastocyst complementation (BC) is expected to be the next-generation regenerative medicine. Here, we describe the recent advances and future prospects for these two approaches.
Collapse
Affiliation(s)
- Mayuko Kano
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eiji Mizutani
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Laboratory of Stem Cell Therapy, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shota Homma
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Hideki Masaki
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- *Correspondence: Hiromitsu Nakauchi, ; Hideki Masaki,
| | - Hiromitsu Nakauchi
- Stem Cell Therapy Laboratory, Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Hiromitsu Nakauchi, ; Hideki Masaki,
| |
Collapse
|
12
|
Zheng C, Ballard EB, Wu J. The road to generating transplantable organs: from blastocyst complementation to interspecies chimeras. Development 2021; 148:dev195792. [PMID: 34132325 PMCID: PMC10656466 DOI: 10.1242/dev.195792] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Growing human organs in animals sounds like something from the realm of science fiction, but it may one day become a reality through a technique known as interspecies blastocyst complementation. This technique, which was originally developed to study gene function in development, involves injecting donor pluripotent stem cells into an organogenesis-disabled host embryo, allowing the donor cells to compensate for missing organs or tissues. Although interspecies blastocyst complementation has been achieved between closely related species, such as mice and rats, the situation becomes much more difficult for species that are far apart on the evolutionary tree. This is presumably because of layers of xenogeneic barriers that are a result of divergent evolution. In this Review, we discuss the current status of blastocyst complementation approaches and, in light of recent progress, elaborate on the keys to success for interspecies blastocyst complementation and organ generation.
Collapse
Affiliation(s)
- Canbin Zheng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Emily B. Ballard
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
13
|
Yoshimatsu S, Nakajima M, Iguchi A, Sanosaka T, Sato T, Nakamura M, Nakajima R, Arai E, Ishikawa M, Imaizumi K, Watanabe H, Okahara J, Noce T, Takeda Y, Sasaki E, Behr R, Edamura K, Shiozawa S, Okano H. Non-viral Induction of Transgene-free iPSCs from Somatic Fibroblasts of Multiple Mammalian Species. Stem Cell Reports 2021; 16:754-770. [PMID: 33798453 PMCID: PMC8072067 DOI: 10.1016/j.stemcr.2021.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/19/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are capable of providing an unlimited source of cells from all three germ layers and germ cells. The derivation and usage of iPSCs from various animal models may facilitate stem cell-based therapy, gene-modified animal production, and evolutionary studies assessing interspecies differences. However, there is a lack of species-wide methods for deriving iPSCs, in particular by means of non-viral and non-transgene-integrating (NTI) approaches. Here, we demonstrate the iPSC derivation from somatic fibroblasts of multiple mammalian species from three different taxonomic orders, including the common marmoset (Callithrix jacchus) in Primates, the dog (Canis lupus familiaris) in Carnivora, and the pig (Sus scrofa) in Cetartiodactyla, by combinatorial usage of chemical compounds and NTI episomal vectors. Interestingly, the fibroblasts temporarily acquired a neural stem cell-like state during the reprogramming. Collectively, our method, robustly applicable to various species, holds a great potential for facilitating stem cell-based research using various animals in Mammalia.
Collapse
Affiliation(s)
- Sho Yoshimatsu
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan; Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan.
| | - Mayutaka Nakajima
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Aozora Iguchi
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Tsukasa Sanosaka
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Tsukika Sato
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Mari Nakamura
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Ryusuke Nakajima
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Eri Arai
- Department of Pathology, School of Medicine, Keio University, Tokyo, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Kent Imaizumi
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Hirotaka Watanabe
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Junko Okahara
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan; Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kanagawa, Japan
| | - Toshiaki Noce
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Yuta Takeda
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Erika Sasaki
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan; Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kanagawa, Japan
| | - Rüdiger Behr
- Research Platform Degenerative Diseases, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Kazuya Edamura
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Seiji Shiozawa
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan.
| |
Collapse
|
14
|
Zheng C, Hu Y, Sakurai M, Pinzon-Arteaga CA, Li J, Wei Y, Okamura D, Ravaux B, Barlow HR, Yu L, Sun HX, Chen EH, Gu Y, Wu J. Cell competition constitutes a barrier for interspecies chimerism. Nature 2021; 592:272-276. [PMID: 33508854 PMCID: PMC11163815 DOI: 10.1038/s41586-021-03273-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/21/2021] [Indexed: 01/30/2023]
Abstract
Cell competition involves a conserved fitness-sensing process during which fitter cells eliminate neighbouring less-fit but viable cells1. Cell competition has been proposed as a surveillance mechanism to ensure normal development and tissue homeostasis, and has also been suggested to act as a barrier to interspecies chimerism2. However, cell competition has not been studied in an interspecies context during early development owing to the lack of an in vitro model. Here we developed an interspecies pluripotent stem cell (PSC) co-culture strategy and uncovered a previously unknown mode of cell competition between species. Interspecies competition between PSCs occurred in primed but not naive pluripotent cells, and between evolutionarily distant species. By comparative transcriptome analysis, we found that genes related to the NF-κB signalling pathway, among others, were upregulated in less-fit 'loser' human cells. Genetic inactivation of a core component (P65, also known as RELA) and an upstream regulator (MYD88) of the NF-κB complex in human cells could overcome the competition between human and mouse PSCs, thereby improving the survival and chimerism of human cells in early mouse embryos. These insights into cell competition pave the way for the study of evolutionarily conserved mechanisms that underlie competitive cell interactions during early mammalian development. Suppression of interspecies PSC competition may facilitate the generation of human tissues in animals.
Collapse
Affiliation(s)
- Canbin Zheng
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yingying Hu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China
| | - Masahiro Sakurai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carlos A Pinzon-Arteaga
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jie Li
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China
| | - Yulei Wei
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute, Jiangmen, China
| | - Daiji Okamura
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Benjamin Ravaux
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Haley Rose Barlow
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Leqian Yu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hai-Xi Sun
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China
| | - Elizabeth H Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ying Gu
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
15
|
Blastocyst complementation using Prdm14-deficient rats enables efficient germline transmission and generation of functional mouse spermatids in rats. Nat Commun 2021; 12:1328. [PMID: 33637711 PMCID: PMC7910474 DOI: 10.1038/s41467-021-21557-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/29/2021] [Indexed: 02/06/2023] Open
Abstract
Murine animal models from genetically modified pluripotent stem cells (PSCs) are essential for functional genomics and biomedical research, which require germline transmission for the establishment of colonies. However, the quality of PSCs, and donor-host cell competition in chimeras often present strong barriers for germline transmission. Here, we report efficient germline transmission of recalcitrant PSCs via blastocyst complementation, a method to compensate for missing tissues or organs in genetically modified animals via blastocyst injection of PSCs. We show that blastocysts from germline-deficient Prdm14 knockout rats provide a niche for the development of gametes originating entirely from the donor PSCs without any detriment to somatic development. We demonstrate the potential of this approach by creating PSC-derived Pax2/Pax8 double mutant anephric rats, and rescuing germline transmission of a PSC carrying a mouse artificial chromosome. Furthermore, we generate mouse PSC-derived functional spermatids in rats, which provides a proof-of-principle for the generation of xenogenic gametes in vivo. We believe this approach will become a useful system for generating PSC-derived germ cells in the future.
Collapse
|
16
|
Hayashi K, Galli C, Diecke S, Hildebrandt TB. Artificially produced gametes in mice, humans and other species. Reprod Fertil Dev 2021; 33:91-101. [PMID: 38769675 DOI: 10.1071/rd20265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
The production of gametes from pluripotent stem cells in culture, also known as invitro gametogenesis, will make an important contribution to reproductive biology and regenerative medicine, both as a unique tool for understanding germ cell development and as an alternative source of gametes for reproduction. Invitro gametogenesis was developed using mouse pluripotent stem cells but is increasingly being applied in other mammalian species, including humans. In principle, the entire process of germ cell development is nearly reconstitutable in culture using mouse pluripotent stem cells, although the fidelity of differentiation processes and the quality of resultant gametes remain to be refined. The methodology in the mouse system is only partially applicable to other species, and thus it must be optimised for each species. In this review, we update the current status of invitro gametogenesis in mice, humans and other animals, and discuss challenges for further development of this technology.
Collapse
Affiliation(s)
- Katsuhiko Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-0054, Japan; and Corresponding author
| | - Cesare Galli
- Avantea, Laboratory of Reproductive Technologies, 26100 Cremona, Italy; and Fondazione Avantea, 26100 Cremona, Italy
| | - Sebastian Diecke
- Max-Delbrueck-Center for Molecular Medicine, 13092 Berlin, Germany
| | - Thomas B Hildebrandt
- Leibniz Institute for Zoo and Wildlife Research, D-10315 Berlin, Germany; and Freie Universität Berlin, D-14195 Berlin, Germany
| |
Collapse
|
17
|
Gavin-Plagne L, Perold F, Osteil P, Voisin S, Moreira SC, Combourieu Q, Saïdou V, Mure M, Louis G, Baudot A, Buff S, Joly T, Afanassieff M. Insights into Species Preservation: Cryobanking of Rabbit Somatic and Pluripotent Stem Cells. Int J Mol Sci 2020; 21:ijms21197285. [PMID: 33023104 PMCID: PMC7582889 DOI: 10.3390/ijms21197285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are obtained by genetically reprogramming adult somatic cells via the overexpression of specific pluripotent genes. The resulting cells possess the same differentiation properties as blastocyst-stage embryonic stem cells (ESCs) and can be used to produce new individuals by embryonic complementation, nuclear transfer cloning, or in vitro fertilization after differentiation into male or female gametes. Therefore, iPSCs are highly valuable for preserving biodiversity and, together with somatic cells, can enlarge the pool of reproductive samples for cryobanking. In this study, we subjected rabbit iPSCs (rbiPSCs) and rabbit ear tissues to several cryopreservation conditions with the aim of defining safe and non-toxic slow-freezing protocols. We compared a commercial synthetic medium (STEM ALPHA.CRYO3) with a biological medium based on fetal bovine serum (FBS) together with low (0-5%) and high (10%) concentrations of dimethyl sulfoxide (DMSO). Our data demonstrated the efficacy of a CRYO3-based medium containing 4% DMSO for the cryopreservation of skin tissues and rbiPSCs. Specifically, this medium provided similar or even better biological results than the commonly used freezing medium composed of FBS and 10% DMSO. The results of this study therefore represent an encouraging first step towards the use of iPSCs for species preservation.
Collapse
Affiliation(s)
- Lucie Gavin-Plagne
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute U 1208, USC 1361, F-69500 Bron, France; (L.G.-P.); (F.P.); (P.O.); (S.V.); (S.C.M.); (Q.C.); (V.S.); (M.M.)
- Univ Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UPSP ICE 2016.A104, F-69280 Marcy l’Etoile, France; (S.B.); (T.J.)
| | - Florence Perold
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute U 1208, USC 1361, F-69500 Bron, France; (L.G.-P.); (F.P.); (P.O.); (S.V.); (S.C.M.); (Q.C.); (V.S.); (M.M.)
| | - Pierre Osteil
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute U 1208, USC 1361, F-69500 Bron, France; (L.G.-P.); (F.P.); (P.O.); (S.V.); (S.C.M.); (Q.C.); (V.S.); (M.M.)
| | - Sophie Voisin
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute U 1208, USC 1361, F-69500 Bron, France; (L.G.-P.); (F.P.); (P.O.); (S.V.); (S.C.M.); (Q.C.); (V.S.); (M.M.)
| | - Synara Cristina Moreira
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute U 1208, USC 1361, F-69500 Bron, France; (L.G.-P.); (F.P.); (P.O.); (S.V.); (S.C.M.); (Q.C.); (V.S.); (M.M.)
| | - Quitterie Combourieu
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute U 1208, USC 1361, F-69500 Bron, France; (L.G.-P.); (F.P.); (P.O.); (S.V.); (S.C.M.); (Q.C.); (V.S.); (M.M.)
| | - Véronique Saïdou
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute U 1208, USC 1361, F-69500 Bron, France; (L.G.-P.); (F.P.); (P.O.); (S.V.); (S.C.M.); (Q.C.); (V.S.); (M.M.)
| | - Magali Mure
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute U 1208, USC 1361, F-69500 Bron, France; (L.G.-P.); (F.P.); (P.O.); (S.V.); (S.C.M.); (Q.C.); (V.S.); (M.M.)
| | - Gérard Louis
- Univ Paris, Université Descartes Paris V, LVTS, Inserm UMRS 1148, F-75018 Paris, France; (G.L.); (A.B.)
| | - Anne Baudot
- Univ Paris, Université Descartes Paris V, LVTS, Inserm UMRS 1148, F-75018 Paris, France; (G.L.); (A.B.)
| | - Samuel Buff
- Univ Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UPSP ICE 2016.A104, F-69280 Marcy l’Etoile, France; (S.B.); (T.J.)
| | - Thierry Joly
- Univ Lyon, Université Claude Bernard Lyon 1, VetAgro Sup, UPSP ICE 2016.A104, F-69280 Marcy l’Etoile, France; (S.B.); (T.J.)
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA-Lyon, UPSP ICE 2016.A104, F-69007 Lyon, France
| | - Marielle Afanassieff
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, INRAE, Stem Cell and Brain Research Institute U 1208, USC 1361, F-69500 Bron, France; (L.G.-P.); (F.P.); (P.O.); (S.V.); (S.C.M.); (Q.C.); (V.S.); (M.M.)
- Correspondence: ; Tel.: +33-472-913-458
| |
Collapse
|
18
|
Praxedes ÉA, Bressan FF, Fernandes Pereira A. A Comparative Approach of Cellular Reprogramming in the Rodentia Order. Cell Reprogram 2020; 22:227-235. [PMID: 32780598 DOI: 10.1089/cell.2020.0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cellular reprogramming mainly involves induction of reactivation of genes responsible for nuclear plasticity, a process that can be performed in vitro through production of cloned embryos by somatic cell nuclear transfer or by induction of cells into the pluripotent state through exogenous transcription factor expression. While these techniques are already well known and utilized in mice and rats, their application in other rodent species would be greatly beneficial, especially for conservation purposes. Within the diverse Rodentia order, wild species stand out as they play an important role in balancing the ecosystem by facilitating seed diversion, soil aeration, and consequently, reforestation. Many of these species are currently approaching extinction, and application of techniques, such as nuclear reprogramming, aimed at species conservation and multiplication and to produce stem cells is of interest. Thus, in this review, we aimed to present the evolution and success of nuclear reprogramming, mainly highlighting its potential application for the conservation of wild rodents.
Collapse
Affiliation(s)
- Érika Almeida Praxedes
- Laboratory of Animal Biotechnology, Federal Rural University of the Semi-Arid Region, Mossoró, Brazil
| | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | | |
Collapse
|
19
|
Saragusty J, Ajmone-Marsan P, Sampino S, Modlinski JA. Reproductive biotechnology and critically endangered species: Merging in vitro gametogenesis with inner cell mass transfer. Theriogenology 2020; 155:176-184. [PMID: 32702562 DOI: 10.1016/j.theriogenology.2020.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/16/2023]
Abstract
A fifth of mammalian species face the risk of extinction. A variety of stresses, and lack of sufficient resources and political endorsement, mean thousands of further extinctions in the coming years. Once a species has declined to a mere few individuals, in situ efforts seem insufficient to prevent its extinction. Here we propose a roadmap to overcome some of the current roadblocks and facilitate rejuvenation of such critically endangered species. We suggest combining two advanced assisted reproductive technologies to accomplish this task. The first is the generation of gametes from induced pluripotent stem cells, already demonstrated in mice. The second is to 'trick' the immunological system of abundant species' surrogate mothers into believing it carries conceptus of its own species. This can be achieved by transferring the inner cell mass (ICM) of the endangered species into a trophoblastic vesicle derived from the foster mother's species. Such synthesis of reproductive biotechnologies, in association with in situ habitat conservation and societal changes, holds the potential to restore diversity and accelerate the production of animals in the most endangered species on Earth.
Collapse
Affiliation(s)
- Joseph Saragusty
- Laboratory of Embryology, Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy.
| | - Paolo Ajmone-Marsan
- Department of Animal Science, Food and Nutrition - DIANA, Nutrigenomics and Proteomics Research Center - PRONUTRIGEN, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Silvestre Sampino
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Jacek A Modlinski
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| |
Collapse
|
20
|
Kanwal S, Guo X, Ward C, Volpe G, Qin B, Esteban MA, Bao X. Role of Long Non-coding RNAs in Reprogramming to Induced Pluripotency. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:16-25. [PMID: 32445708 PMCID: PMC7393543 DOI: 10.1016/j.gpb.2019.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/25/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022]
Abstract
The generation of induced pluripotent stem cells through somatic cell reprogramming requires a global reorganization of cellular functions. This reorganization occurs in a multi-phased manner and involves a gradual revision of both the epigenome and transcriptome. Recent studies have shown that the large-scale transcriptional changes observed during reprogramming also apply to long non-coding RNAs (lncRNAs), a type of traditionally neglected RNA species that are increasingly viewed as critical regulators of cellular function. Deeper understanding of lncRNAs in reprogramming may not only help to improve this process but also have implications for studying cell plasticity in other contexts, such as development, aging, and cancer. In this review, we summarize the current progress made in profiling and analyzing the role of lncRNAs in various phases of somatic cell reprogramming, with emphasis on the re-establishment of the pluripotency gene network and X chromosome reactivation.
Collapse
Affiliation(s)
- Shahzina Kanwal
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (3)Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (4)Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Xiangpeng Guo
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (3)Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (4)Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Carl Ward
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (3)Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (4)Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Giacomo Volpe
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (3)Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (4)Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Baoming Qin
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (3)Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (5)Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Miguel A Esteban
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (3)Laboratory of RNA, Chromatin, and Human Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (4)Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China; (6)Institute for Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xichen Bao
- (1)Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Guangzhou 511436, China; (2)Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (4)Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China; (7)Laboratory of RNA Molecular Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
21
|
Imai H, Kusakabe KT, Kiso Y, Hattori S, Kai C, Ono E, Kano K. Induction of pluripotency in mammalian fibroblasts by cell fusion with mouse embryonic stem cells. Biochem Biophys Res Commun 2019; 521:24-30. [PMID: 31635800 DOI: 10.1016/j.bbrc.2019.10.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cell fusion is a phenomenon that is observed in various tissues in vivo, resulting in acquisition of physiological functions such as liver regeneration. Fused cells such as hybridomas have also been produced artificially in vitro. Furthermore, it has been reported that cellular reprogramming can be induced by cell fusion with stem cells. METHODS Fused cells between mammalian fibroblasts and mouse embryonic stem cells were produced by electrofusion methods. The phenotypes of each cell lines were analyzed after purifying the fused cells. RESULTS Colonies which are morphologically similar to mouse embryonic stem cells were observed in fused cells of rabbit, bovine, and zebra fibroblasts. RT-PCR analysis revealed that specific pluripotent marker genes that were never expressed in each mammalian fibroblast were strongly induced in the fused cells, which indicated that fusion with mouse embryonic stem cells can trigger reprogramming and acquisition of pluripotency in various mammalian somatic cells. CONCLUSIONS Our results can help elucidate the mechanism of pluripotency maintenance and the establishment of highly reprogrammed pluripotent stem cells in various mammalian species.
Collapse
Affiliation(s)
- Hiroyuki Imai
- Department of Biomedicine, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Ken Takeshi Kusakabe
- Laboratory of Veterinary Anatomy, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Yasuo Kiso
- Laboratory of Veterinary Anatomy, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Shosaku Hattori
- Amami Laboratory of Injurious Animals, Institute of Medical Science, The University of Tokyo, Kagoshima, Japan
| | - Chieko Kai
- Amami Laboratory of Injurious Animals, Institute of Medical Science, The University of Tokyo, Kagoshima, Japan
| | - Etsuro Ono
- Department of Biomedicine, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Kiyoshi Kano
- Laboratory of Veterinary Developmental Biology, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.
| |
Collapse
|
22
|
Borges AA, Santos MVDO, Nascimento LE, Lira GPDO, Praxedes ÉA, Oliveira MFD, Silva AR, Pereira AF. Production of collared peccary (Pecari tajacu Linnaeus, 1758) parthenogenic embryos following different oocyte chemical activation and in vitro maturation conditions. Theriogenology 2019; 142:320-327. [PMID: 31711691 DOI: 10.1016/j.theriogenology.2019.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/13/2019] [Accepted: 10/13/2019] [Indexed: 02/09/2023]
Abstract
To optimize the protocols for assisted reproductive techniques (ARTs) in collared peccary (Pecari tajacu Linnaeus, 1758), we evaluated various conditions for oocyte in vitro maturation (IVM) and chemical activation. Initially, we assessed the IVM rates, cumulus-oocyte complex (COC) quality, and oocyte morphometry in the absence or presence of epidermal growth factor (EGF). There was no difference between the COCs matured in absence or presence of EGF for the expansion of cumulus cells (97.6% ± 1.2 vs. 100% ± 0.0), presence of first polar body (65.9% ± 1.2 vs. 70.5% ± 1.8), nuclear status in second metaphase (62.5% ± 11.6 vs. 68.4% ± 4.9), cytoplasmic maturation (100.0% ± 0.7 vs. 75.0% ± 0.7), reactive oxygen species levels (0.5 ± 0.2 vs. 0.3 ± 0.1), and mitochondrial membrane potential (1.1 ± 0.2 vs. 1.1 ± 0.1). However, the zona pellucida thickness of matured COCs was reduced in the presence of EGF. Thus, the EGF group was used for further experiments. The oocytes were artificially activated with ionomycin and four secondary activator combinations [6-dimethylaminopurine (6D), 6D and cytochalasin B (6D + CB), cycloheximide (CHX), and CHX and CB (CHX + CB)]. The effect of immature COCs based on cumulus cell layers and cytoplasm homogeneity (GI and GII or GIII COCs) on embryonic development and quality was evaluated. There was no difference in the cleavage rates among the groups of secondary activators. The cleavage rates of embryos derived from GI/GII and GIII COCs were greater than 72.2% and 25.0%, respectively. Moreover, treatment with CHX showed a reduction in the cleavage rate of embryos derived from GIII COCs when compared to the cleavage rate of embryos derived from GI/GII COCs (P < 0.05). Nevertheless, higher rates of blastocyst/total GI and GII COCs were observed in the 6D group (27.6% ± 0.3) compared to CHX group (6.9% ± 0.3). Additionally, only 6D treatment resulted in the production of embryos derived from GIII COCs (25.0% ± 0.2). The percentage of the ICM/total cell ratio was also greater in blastocysts derived from 6D (42.5% ± 19.0), 6D + CB (37.9% ± 21.9), and CHX + CB (43.8% ± 19.6) groups when compared to CHX (3.6% ± 0.1) group. Thus, the combination of ionomycin and 6D could produce collared peccary embryos by activation of both GI/GII COCs and GIII COCs. These optimized IVM conditions using EGF and chemical activation using ionomycin and 6D in collared peccaries form the first steps for establishing ARTs to conserve this species.
Collapse
Affiliation(s)
- Alana Azevedo Borges
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid, Mossoro, RN, Brazil
| | | | | | | | - Érika Almeida Praxedes
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid, Mossoro, RN, Brazil
| | - Moacir Franco de Oliveira
- Laboratory of Applied Animal Morphophysiology, Federal Rural University of Semi-Arid, Mossoro, RN, Brazil
| | - Alexandre Rodrigues Silva
- Laboratory of Animal Germplasm Conservation, Federal Rural University of Semi-Arid, Mossoro, RN, Brazil
| | | |
Collapse
|
23
|
Sexual dimorphism in brain transcriptomes of Amami spiny rats (Tokudaia osimensis): a rodent species where males lack the Y chromosome. BMC Genomics 2019; 20:87. [PMID: 30683046 PMCID: PMC6347839 DOI: 10.1186/s12864-019-5426-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Background Brain sexual differentiation is sculpted by precise coordination of steroid hormones during development. Programming of several brain regions in males depends upon aromatase conversion of testosterone to estrogen. However, it is not clear the direct contribution that Y chromosome associated genes, especially sex-determining region Y (Sry), might exert on brain sexual differentiation in therian mammals. Two species of spiny rats: Amami spiny rat (Tokudaia osimensis) and Tokunoshima spiny rat (T. tokunoshimensis) lack a Y chromosome/Sry, and these individuals possess an XO chromosome system in both sexes. Both Tokudaia species are highly endangered. To assess the neural transcriptome profile in male and female Amami spiny rats, RNA was isolated from brain samples of adult male and female spiny rats that had died accidentally and used for RNAseq analyses. Results RNAseq analyses confirmed that several genes and individual transcripts were differentially expressed between males and females. In males, seminal vesicle secretory protein 5 (Svs5) and cytochrome P450 1B1 (Cyp1b1) genes were significantly elevated compared to females, whereas serine (or cysteine) peptidase inhibitor, clade A, member 3 N (Serpina3n) was upregulated in females. Many individual transcripts elevated in males included those encoding for zinc finger proteins, e.g. zinc finger protein X-linked (Zfx). Conclusions This method successfully identified several genes and transcripts that showed expression differences in the brain of adult male and female Amami spiny rat. The functional significance of these findings, especially differential expression of transcripts encoding zinc finger proteins, in this unusual rodent species remains to be determined. Electronic supplementary material The online version of this article (10.1186/s12864-019-5426-6) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Abstract
Human pluripotent stem (PS) cells can be isolated from preimplantation embryos or by reprogramming of somatic cells or germline progenitors. Human PS cells are considered the "holy grail" of regenerative medicine because they have the potential to form all cell types of the adult body. Because of their similarity to humans, nonhuman primate (NHP) PS cells are also important models for studying human biology and disease, as well as for developing therapeutic strategies and test bed for cell replacement therapy. This chapter describes adjusted methods for cultivation of PS cells from different primate species, including African green monkey, rhesus monkey, chimpanzee, and human. Supplementation of E8 medium and inhibitors of the Tankyrase and GSK3 kinases to various primate PS cell media reduce line-dependent predisposition for spontaneous differentiation in conventional PS cell cultures. We provide methods for basic characterization of primate PS cell lines, which include immunostaining for pluripotency markers such as OCT4 and TRA-1-60, as well as in vivo teratoma formation assay. We provide methods for generating alternative PS cells including region-selective primed PS cells, two different versions of naïve-like cells, and recently reported extended pluripotent stem (EPS) cells. These derivations are achieved by acclimation of conventional PS cells to target media, episomal reprogramming of somatic cells, or resetting conventional PS cells to a naïve-like state by overexpression of KLF2 and NANOG. We also provide methods for isolation of PS cells from human blastocysts. We describe how to generate interspecies primate-mouse chimeras at the blastocyst and postimplantation embryo stages. Systematic evaluation of the chimeric competency of human and primate PS cells will aid in efforts to overcome species barriers and achieve higher grade chimerism in postimplantation conceptuses that could enable organ-specific enrichment of human xenogeneic PS cell derivatives in large animals such as pigs and sheep.
Collapse
Affiliation(s)
| | - Masahiro Sakurai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
25
|
Tsutsumi R, Tran MP, Cooper KL. Changing While Staying the Same: Preservation of Structural Continuity During Limb Evolution by Developmental Integration. Integr Comp Biol 2018; 57:1269-1280. [PMID: 28992070 DOI: 10.1093/icb/icx092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
More than 150 years since Charles Darwin published "On the Origin of Species", gradual evolution by natural selection is still not fully reconciled with the apparent sudden appearance of complex structures, such as the bat wing, with highly derived functions. This is in part because developmental genetics has not yet identified the number and types of mutations that accumulated to drive complex morphological evolution. Here, we consider the experimental manipulations in laboratory model systems that suggest tissue interdependence and mechanical responsiveness during limb development conceptually reduce the genetic complexity required to reshape the structure as a whole. It is an exciting time in the field of evolutionary developmental biology as emerging technical approaches in a variety of non-traditional laboratory species are on the verge of filling the gaps between theory and evidence to resolve this sesquicentennial debate.
Collapse
Affiliation(s)
- Rio Tsutsumi
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0380, USA
| | - Mai P Tran
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0380, USA
| | - Kimberly L Cooper
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0380, USA
| |
Collapse
|
26
|
Taketo T. iPSCs from an Endangered Mammalian Species Could Elucidate the Mechanism of Sex Determination with Evolutionary Y Chromosome Loss. Bioessays 2018; 40:e1800059. [PMID: 29709073 DOI: 10.1002/bies.201800059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Teruko Taketo
- Research Institute of the McGill University Health Centre, Department of Surgery, Montreal, Quebec H4A3J1, Canada
| |
Collapse
|
27
|
Honda A. Applying iPSCs for Preserving Endangered Species and Elucidating the Evolution of Mammalian Sex Determination. Bioessays 2018; 40:e1700152. [DOI: 10.1002/bies.201700152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 02/28/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Arata Honda
- Institute of Laboratory AnimalsKyoto University Graduate School of MedicineYoshidakonoe‐cho, Sakyo‐ku, Kyoto 606‐8501Japan
- RIKEN BioResource CenterTsukuba, Ibaraki305‐0074Japan
| |
Collapse
|
28
|
Ryder OA, Onuma M. Viable Cell Culture Banking for Biodiversity Characterization and Conservation. Annu Rev Anim Biosci 2018; 6:83-98. [DOI: 10.1146/annurev-animal-030117-014556] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Because living cells can be saved for indefinite periods, unprecedented opportunities for characterizing, cataloging, and conserving biological diversity have emerged as advanced cellular and genetic technologies portend new options for preventing species extinction. Crucial to realizing the potential impacts of stem cells and assisted reproductive technologies on biodiversity conservation is the cryobanking of viable cell cultures from diverse species, especially those identified as vulnerable to extinction in the near future. The advent of in vitro cell culture and cryobanking is reviewed here in the context of biodiversity collections of viable cell cultures that represent the progress and limitations of current efforts. The prospects for incorporating collections of frozen viable cell cultures into efforts to characterize the genetic changes that have produced the diversity of species on Earth and contribute to new initiatives in conservation argue strongly for a global network of facilities for establishing and cryobanking collections of viable cells.
Collapse
Affiliation(s)
- Oliver A. Ryder
- San Diego Institute for Conservation Research, San Diego Zoo Global, Escondido, California 92027-7000, USA
| | - Manabu Onuma
- Ecological Risk Assessment and Control Section, Center for Environmental Biology and Ecosystem, National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| |
Collapse
|
29
|
Matveevsky S, Kolomiets O, Bogdanov A, Hakhverdyan M, Bakloushinskaya I. Chromosomal Evolution in Mole Voles Ellobius (Cricetidae, Rodentia): Bizarre Sex Chromosomes, Variable Autosomes and Meiosis. Genes (Basel) 2017; 8:E306. [PMID: 29099806 PMCID: PMC5704219 DOI: 10.3390/genes8110306] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 11/16/2022] Open
Abstract
This study reports on extensive experimental material covering more than 30 years of studying the genetics of mole voles. Sex chromosomes of Ellobius demonstrate an extraordinary case of mammalian sex chromosomes evolution. Five species of mole voles own three types of sex chromosomes; typical for placentals: XY♂/XX♀; and atypical X0♂/X0♀; or XX♂/XX♀. Mechanisms of sex determination in all Ellobius species remain enigmatic. It was supposed that the Y chromosome was lost twice and independently in subgenera Bramus and Ellobius. Previous to the Y being lost, the X chromosome in distinct species obtained some parts of the Y chromosome, with or without Sry, and accumulated one or several copies of the Eif2s3y gene. Along with enormous variations of sex chromosomes, genes of sex determination pathway and autosomes, and five mole vole species demonstrate ability to establish different meiotic mechanisms, which stabilize their genetic systems and make it possible to overcome the evolutionary deadlocks.
Collapse
Affiliation(s)
- Sergey Matveevsky
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Oxana Kolomiets
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Alexey Bogdanov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| | | | - Irina Bakloushinskaya
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| |
Collapse
|