1
|
Bhatnagar S, Tse WL, Yoneta H, Nakao Y, Aoyagi H. Chemiluminescent and fluorescent properties of extracellular red pigment from Talaromyces purpureogenus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 268:113178. [PMID: 40378430 DOI: 10.1016/j.jphotobiol.2025.113178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/10/2025] [Accepted: 05/05/2025] [Indexed: 05/18/2025]
Abstract
Talaromyces purpureogenus is an attractive option for natural pigment production owing to its ability to produce large amounts of water-soluble extracellular red pigments. Recently, natural pigments have been used to develop halochromic biosensing applications, in which the colour change acts as a signal in response to a stimulus; however, the shelf-life and signal generation ability of packaging employing natural pigments maybe suboptimal because of potential reactions with environmental factors. Therefore, this study aimed to develop an alternative method for producing measurable signals from pigments. For this, the chemiluminescent and fluorescent properties of the pigments were explored. The pigment exhibited luminescence when exposed to hydrogen peroxide, which was affected by the reactant concentration, pH levels, and incubation time. Moreover, a rapid signal enhancement exceeding eight-fold was developed by adding luminol. The fluorescence spectrum was strongly affected by pH, with alkaline pH markedly increasing the fluorescence. Fluorescence was also found to be dependent on incubation time, with the maximum signal obtained at pH 12 and 72 h (∼16-fold increase over 0 h), and a model for the increase in fluorescence with time was developed (0.90 < R2 < 0.99). The identification of pigment components confirmed the presence of atrorosin R, which had an isochromene/isoquinoline ring, and elucidated the planar structure of this pigment. These findings may aid in developing novel biosensors utilising fungal azaphilone pigments.
Collapse
Affiliation(s)
- Sharad Bhatnagar
- Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba 305-8572, Ibaraki, Japan
| | - Wai Lam Tse
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Haruhiko Yoneta
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Yoichi Nakao
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hideki Aoyagi
- Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba 305-8572, Ibaraki, Japan; Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1-1-1, Tennodai, Tsukuba 305-8572, Ibaraki, Japan; Tsukuba Institute for Advanced Research (TIAR), University of Tsukuba, 1-1-1, Tennodai, 305-8577, Japan.
| |
Collapse
|
2
|
Diaz R, Bermudes D. Spore-Derived Isolates from a Single Basidiocarp of Bioluminescent Omphalotus olivascens Reveal Multifaceted Phenotypic and Physiological Variations. Microorganisms 2025; 13:59. [PMID: 39858827 PMCID: PMC11767467 DOI: 10.3390/microorganisms13010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
The fungal genus Omphalotus is noted for its bioluminescence and the production of biologically active secondary metabolites. We isolated 47 fungal strains of Omphalotus olivascens germinated from spores of a single mushroom. We first noted a high degree of variation in the outward appearances in radial growth and pigmentation among the cultures. Radial growth rates fell into at least five distinct categories, with only slower-growing isolates obtained compared with the parental dikaryon. Scanning UV-vis spectroscopy of liquid-grown cultures showed variation in pigmentation in both the absorption intensity and peak absorption wavelengths, indicating that some isolates vary from the parental strain in both pigment concentration and composition. Bioluminescence intensity was observed to have isolates with both greater and lesser intensities, while the increased emission in response to caffeic acid was inversely proportional to the unstimulated output. Under UV illumination, the media of the parental strain was observed to be brightly fluorescent, which was not due to the pigment, while the isolates also varied from greater to lesser intensity and in their peak emission. At least three separate fluorescent bands were observed by gel electrophoresis from one of the cultures, while only one was observed in others. In a subset of the cultures, fluorescence intensity varied significantly in response to casamino acids. None of this subset produced an antibiotic effective against Staphylococcus aureus, and only the haploids, but not the parental heterokaryon, produced an antibiotic consistent with illudin M effective against Mycobacterium smegmatis. This same subset produced an anticancer agent that was highly potent against MDA-MB-468 breast cancer tumor cells. We interpret these variations in haploids as significant in altering Omphalotus physiology and its production of secondary metabolites, which may in turn alter their ecology and life cycle, and could be further applied to studying fungal physiologies and facilitate linking them to their genetic underpinnings.
Collapse
Affiliation(s)
- Rudy Diaz
- Los Angeles Mycological Society, Los Angeles, CA 90025, USA;
| | - David Bermudes
- Department of Biology, College of Science and Math, California State University, Northridge, CA 91330, USA
| |
Collapse
|
3
|
Perry BA, Desjardin DE, Stevani CV. Diversity, Distribution, and Evolution of Bioluminescent Fungi. J Fungi (Basel) 2024; 11:19. [PMID: 39852438 PMCID: PMC11766655 DOI: 10.3390/jof11010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/26/2025] Open
Abstract
All known bioluminescent fungi are basidiomycetes belonging to the Agaricales. They emit 520-530 nm wavelength light 24 h per day in a circadian rhythm. The number of known bioluminescent fungi has more than doubled in the past 15 years from 64 to 132 species. We currently recognize five distinct lineages of bioluminescent Agaricales belonging to the Omphalotaceae (18 species), Physalacriaceae (14), Mycenaceae (96), Lucentipes lineage (3), and Cyphellopsidaceae (1). They are distributed across the globe with the highest diversity occurring on woody or leafy substrates in subtropical closed canopy forests with high plant diversity. With the caveat that most regions of the world have not been extensively sampled for bioluminescent fungi, the areas with the most known species are Japan (36), South America (30), North America (27), Malesia, South Asia, and Southeast Asia (26), Europe (23), Central America (21), China (13), Africa (10), Australasia, Papua New Guinea, and New Caledonia (11), and the Pacific Islands (5). Recent studies have elucidated the biochemical and genetic pathways of fungal bioluminescence and suggest the phenomenon originated a single time early in the evolution of the Agaricales. Multiple independent evolutionary losses explain the absence of luminescence in many species found within the five lineages and in the majority of Agaricales.
Collapse
Affiliation(s)
- Brian A. Perry
- Department of Biological Sciences, California State University East Bay, Hayward, CA 94542, USA
| | - Dennis E. Desjardin
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA;
| | - Cassius V. Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
| |
Collapse
|
4
|
Amaral DT, Kaplan RA, Takishita TKE, de Souza DR, Oliveira AG, Rosa SP. Glowing wonders: exploring the diversity and ecological significance of bioluminescent organisms in Brazil. Photochem Photobiol Sci 2024; 23:1373-1392. [PMID: 38733516 DOI: 10.1007/s43630-024-00590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
Bioluminescence, the emission of light by living organisms, is a captivating and widespread phenomenon with diverse ecological functions. This comprehensive review explores the biodiversity, mechanisms, ecological roles, and conservation challenges of bioluminescent organisms in Brazil, a country known for its vast and diverse ecosystems. From the enchanting glow of fireflies and glow-in-the-dark mushrooms to the mesmerizing displays of marine dinoflagellates and cnidarians, Brazil showcases a remarkable array of bioluminescent species. Understanding the biochemical mechanisms and enzymes involved in bioluminescence enhances our knowledge of their evolutionary adaptations and ecological functions. However, habitat loss, climate change, and photopollution pose significant threats to these bioluminescent organisms. Conservation measures, interdisciplinary collaborations, and responsible lighting practices are crucial for their survival. Future research should focus on identifying endemic species, studying environmental factors influencing bioluminescence, and developing effective conservation strategies. Through interdisciplinary collaborations, advanced technologies, and increased funding, Brazil can unravel the mysteries of its bioluminescent biodiversity, drive scientific advancements, and ensure the long-term preservation of these captivating organisms.
Collapse
Affiliation(s)
- Danilo T Amaral
- Centro de Ciências Naturais E Humanas, Universidade Federal Do ABC (UFABC), Santo André, São Paulo, Brazil.
- Programa de Pós Graduação Em Biotecnociência, Universidade Federal Do ABC (UFABC), Avenida Dos Estados, Bloco A, Room 504-3. ZIP 09210-580, Santo André, São Paulo, 5001, Brazil.
| | - Rachel A Kaplan
- Department of Chemistry and Biochemistry, Yeshiva University, 245 Lexington Avenue, New York, NY, 10016, USA
| | | | - Daniel R de Souza
- Laboratório de Estudos Avançados Em Jornalismo, Universidade Estadual de Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Anderson G Oliveira
- Department of Chemistry and Biochemistry, Yeshiva University, 245 Lexington Avenue, New York, NY, 10016, USA
| | - Simone Policena Rosa
- Instituto de Recursos Naturais (IRN), Universidade Federal de Itajubá (UNIFEI), Itajubá, MG, Brazil
| |
Collapse
|
5
|
Petushkov VN, Vavilov MV, Khokhlova AN, Zagitova RI, Belozerova OA, Shcheglov AS, Kovalchuk SI, Tsarkova AS, Rodionova NS, Yampolsky IV, Dubinnyi MA. Henlea earthworm bioluminescence comprises violet-blue BRET from tryptophan 2-carboxylate to deazaflavin cofactor. Biochem Biophys Res Commun 2024; 708:149787. [PMID: 38537527 DOI: 10.1016/j.bbrc.2024.149787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
We recently identified the deazaflavin cofactor as a light emitter in novel bioluminescence (BL) system from Siberian earthworms Henlea sp. (Petushkov et al., 2023, Org. Biomol. Chem. 21:415-427). In the present communication we compared in vitro BL spectra in the absence and in the presence of the cofactor and found a wavelength shift from 420 to 476 nm. This violet-blue BRET to deazaflavin cofactor (acceptor of photonless transfer) masks the actual oxyluciferin as an emitter (BRET donor) in the novel BL system. The best candidate for that masked chromophore is tryptophan 2-carboxylate (T2C) found previously as a building block in some natural products isolated from Henlea sp. (Dubinnyi et al., 2020, ChemSelect 5:13155-13159). We synthesized T2C and acetyl-T2C, verified their presence in earthworms by nanoflow-HRMS, explored spectral properties of excitation and emission spectra and found a chain of excitation/emission maxima with a perfect potential for BRET: 300 nm (excitation of T2C) - 420 nm (emission of T2C) - 420 nm (excitation of deazaflavin) - 476 nm (emission of deazaflavin, BL). An array of natural products with T2C chromophore are present in BL earthworms as candidates for novel oxyluciferin. We demonstrated for the Henlea BL that the energy of the excited state of the T2C chromophore is transferred by the Förster mechanism and then emitted by deazaflavin (BRET), similarly to known examples: aequorin-GFP in Aequorea victoria and antenna proteins in bacterial BL systems (lumazine from Photobacterium and yellow fluorescent protein from Vibrio fischeri strain Y1).
Collapse
Affiliation(s)
- Valentin N Petushkov
- Institute of Biophysics, Krasnoyarsk Research Center, Siberian Branch, Russian Academy of Sciences, 50/50 Akademgorodok, 660036, Krasnoyarsk, Russia.
| | - Matvey V Vavilov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia; Faculty of Biology and Biotechnology, National Research University Higher School of Economics, 33k4 Profsoyuznaya str., Moscow, 117418, Russia
| | - Anastasia N Khokhlova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia; Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1 bld. 3, Moscow, 119991у, Russia
| | - Renata I Zagitova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
| | - Olga A Belozerova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
| | - Aleksandr S Shcheglov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia; Pirogov Russian National Research Medical University, 1 Ostrovityanova str, Moscow, 117997, Russia
| | - Sergey I Kovalchuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
| | - Aleksandra S Tsarkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
| | - Natalia S Rodionova
- Institute of Biophysics, Krasnoyarsk Research Center, Siberian Branch, Russian Academy of Sciences, 50/50 Akademgorodok, 660036, Krasnoyarsk, Russia
| | - Ilia V Yampolsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia; Pirogov Russian National Research Medical University, 1 Ostrovityanova str, Moscow, 117997, Russia
| | - Maxim A Dubinnyi
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia; Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russia.
| |
Collapse
|
6
|
Gorman J, Hart SM, John T, Castellanos MA, Harris D, Parsons MF, Banal JL, Willard AP, Schlau-Cohen GS, Bathe M. Sculpting photoproducts with DNA origami. Chem 2024; 10:1553-1575. [PMID: 38827435 PMCID: PMC11138899 DOI: 10.1016/j.chempr.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Natural light-harvesting systems spatially organize densely packed dyes in different configurations to either transport excitons or convert them into charge photoproducts, with high efficiency. In contrast, artificial photosystems like organic solar cells and light-emitting diodes lack this fine structural control, limiting their efficiency. Thus, biomimetic multi-dye systems are needed to organize dyes with the sub-nanometer spatial control required to sculpt resulting photoproducts. Here, we synthesize 11 distinct perylene diimide (PDI) dimers integrated into DNA origami nanostructures and identify dimer architectures that offer discrete control over exciton transport versus charge separation. The large structural-space and site-tunability of origami uniquely provides controlled PDI dimer packing to form distinct excimer photoproducts, which are sensitive to interdye configurations. In the future, this platform enables large-scale programmed assembly of dyes mimicking natural systems to sculpt distinct photophysical products needed for a broad range of optoelectronic devices, including solar energy converters and quantum information processors.
Collapse
Affiliation(s)
- Jeffrey Gorman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- These authors contributed equally
| | - Stephanie M. Hart
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- These authors contributed equally
| | - Torsten John
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maria A. Castellanos
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dvir Harris
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Molly F. Parsons
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James L. Banal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adam P. Willard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Lead contact
| |
Collapse
|
7
|
Schramm S, Weiß D. Bioluminescence - The Vibrant Glow of Nature and its Chemical Mechanisms. Chembiochem 2024; 25:e202400106. [PMID: 38469601 DOI: 10.1002/cbic.202400106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Bioluminescence, the mesmerizing natural phenomenon where living organisms produce light through chemical reactions, has long captivated scientists and laypersons alike, offering a rich tapestry of insights into biological function, ecology, evolution as well as the underlying chemistry. This comprehensive introductory review systematically explores the phenomenon of bioluminescence, addressing its historical context, geographic dispersion, and ecological significance with a focus on their chemical mechanisms. Our examination begins with terrestrial bioluminescence, discussing organisms from different habitats. We analyze thefireflies of Central Europe's meadows and the fungi in the Atlantic rainforest of Brazil. Additionally, we inspect bioluminescent species in New Zealand, specifically river-dwelling snails and mosquito larvae found in Waitomo Caves. Our exploration concludes in the Siberian Steppes, highlighting the area's luminescent insects and annelids. Transitioning to the marine realm, the second part of this review examines marine bioluminescent organisms. We explore this phenomenon in deep-sea jellyfish and their role in the ecosystem. We then move to Toyama Bay, Japan, where seasonal bioluminescence of dinoflagellates and ostracods present a unique case study. We also delve into the bacterial world, discussing how bioluminescent bacteria contribute to symbiotic relationships. For each organism, we contextualize its bioluminescence, providing details about its discovery, ecological function, and geographical distribution. A special focus lies on the examination of the underlying chemical mechanisms that enables these biological light displays. Concluding this review, we present a series of practical bioluminescence and chemiluminescence experiments, providing a resource for educational demonstrations and student research projects. Our goal with this review is to provide a summary of bioluminescence across the diverse ecological contexts, contributing to the broader understanding of this unique biological phenomenon and its chemical mechanisms serving researchers new to the field, educators and students alike.
Collapse
Affiliation(s)
- Stefan Schramm
- University of Applied Sciences Dresden (HTW Dresden), Friedrich-List-Platz 1, 01069, Dresden, Germany
| | - Dieter Weiß
- Institut für Organische und Makromolekulare Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 10, 07743, Jena, Germany
| |
Collapse
|
8
|
Dunuweera AN, Dunuweera SP, Ranganathan K. A Comprehensive Exploration of Bioluminescence Systems, Mechanisms, and Advanced Assays for Versatile Applications. Biochem Res Int 2024; 2024:8273237. [PMID: 38347947 PMCID: PMC10861286 DOI: 10.1155/2024/8273237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/10/2023] [Accepted: 01/21/2024] [Indexed: 02/15/2024] Open
Abstract
Bioluminescence has been a fascinating natural phenomenon of light emission from living creatures. It happens when the enzyme luciferase facilitates the oxidation of luciferin, resulting in the creation of an excited-state species that emits light. Although there are many bioluminescent systems, few have been identified. D-luciferin-dependent systems, coelenterazine-dependent systems, Cypridina luciferin-based systems, tetrapyrrole-based luciferins, bacterial bioluminescent systems, and fungal bioluminescent systems are natural bioluminescent systems. Since different bioluminescence systems, such as various combinations of luciferin-luciferase pair reactions, have different light emission wavelengths, they benefit industrial applications such as drug discovery, protein-protein interactions, in vivo imaging in small animals, and controlling neurons. Due to the expression of luciferase and easy permeation of luciferin into most cells and tissues, bioluminescence assays are applied nowadays with modern technologies in most cell and tissue types. It is a versatile technique in a variety of biomedical research. Furthermore, there are some investigated blue-sky research projects, such as bioluminescent plants and lamps. This review article is mainly based on the theory of diverse bioluminescence systems and their past, present, and future applications.
Collapse
Affiliation(s)
| | | | - K. Ranganathan
- Department of Botany, University of Jaffna, Jaffna 40000, Sri Lanka
| |
Collapse
|
9
|
Quan Z, Ohmiya Y, Liu YJ. Chemical Mechanism of Fireworm Bioluminescence - A Theoretical Proposition. J Phys Chem A 2023; 127:10851-10859. [PMID: 38103213 DOI: 10.1021/acs.jpca.3c07409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Odontosyllis undecimdonta is a marine worm, commonly known as a fireworm, that exhibits bluish-green bioluminescence (BL). The luciferin (L) and oxyluciferin (OL) during fireworm BL have been experimentally identified in vitro. The L and OL are the respective starting point and ending point of a series of complicated chemical reactions in the BL. However, the chemical mechanism of the fireworm BL remains largely unknown. Before the experiments provided strong evidence for the mechanism, based on our previously successful studies on several bioluminescent systems, we theoretically proposed the chemical mechanism of the fireworm BL in this article. By means of the spin-flip and time-dependent density functional calculations, we clearly described the complete process from L to OL: under the catalysis of luciferase, L undergoes deprotonation and reacts with 3O2 to form a dioxetanone anion via the single-electron transfer mechanism; the dioxetanone anion decomposes into the OL at the first singlet excited state (S1) by the gradually reversible charge-transfer-induced luminescence mechanism; and the S1-OL emits light and deexcites to OL in the ground state.
Collapse
Affiliation(s)
- Zhuo Quan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yoshihiro Ohmiya
- Osaka Institute of Technology (OIT), 5-16-1 Ohmiya, Asahi-ku, Osaka 535-8585, Japan
| | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
10
|
Silva-Filho AGS, Mombert A, Nascimento CC, Nóbrega BB, Soares DMM, Martins AGS, Domingos AHR, Santos I, Della-Torre OHP, Perry BA, Desjardin DE, Stevani CV, Menolli N. Eoscyphella luciurceolata gen. and sp. nov. (Agaricomycetes) Shed Light on Cyphellopsidaceae with a New Lineage of Bioluminescent Fungi. J Fungi (Basel) 2023; 9:1004. [PMID: 37888262 PMCID: PMC10608165 DOI: 10.3390/jof9101004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/22/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
During nocturnal field expeditions in the Brazilian Atlantic Rainforest, an unexpected bioluminescent fungus with reduced form was found. Based on morphological data, the taxon was first identified as belonging to the cyphelloid genus Maireina, but in our phylogenetic analyses, Maireina was recovered and confirmed as a paraphyletic group related to genera Merismodes and Cyphellopsis. Maireina filipendula, Ma. monacha, and Ma. subsphaerospora are herein transferred to Merismodes. Based upon morphological and molecular characters, the bioluminescent cyphelloid taxon is described as the new genus Eoscyphella, characterized by a vasiform to urceolate basidiomata, subglobose to broadly ellipsoid basidiospores, being pigmented, weakly to densely encrusted external hyphae, regularly bi-spored basidia, unclamped hyphae, and an absence of both conspicuous long external hairs and hymenial cystidia. Phylogenetic analyses based on ITS rDNA and LSU rDNA support the proposal of the new genus and confirm its position in Cyphellopsidaceae. Eoscyphella luciurceolata represents a new lineage of bioluminescent basidiomycetes with reduced forms.
Collapse
Affiliation(s)
- Alexandre G. S. Silva-Filho
- IFungiLab, Departamento de Ciências da Natureza e Matemática (DCM), Subárea de Biologia (SAB), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), Campus São Paulo (SPO), São Paulo 01109-010, SP, Brazil; (A.G.S.S.-F.); (C.C.N.)
| | | | - Cristiano C. Nascimento
- IFungiLab, Departamento de Ciências da Natureza e Matemática (DCM), Subárea de Biologia (SAB), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), Campus São Paulo (SPO), São Paulo 01109-010, SP, Brazil; (A.G.S.S.-F.); (C.C.N.)
| | - Bianca B. Nóbrega
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil;
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil;
| | - Douglas M. M. Soares
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil;
| | - Ana G. S. Martins
- Instituto de Pesquisa da Biodiversidade (IPBio), Iporanga 18330-000, SP, Brazil; (A.G.S.M.); (A.H.R.D.); (I.S.); (O.H.P.D.-T.)
| | - Adão H. R. Domingos
- Instituto de Pesquisa da Biodiversidade (IPBio), Iporanga 18330-000, SP, Brazil; (A.G.S.M.); (A.H.R.D.); (I.S.); (O.H.P.D.-T.)
| | - Isaias Santos
- Instituto de Pesquisa da Biodiversidade (IPBio), Iporanga 18330-000, SP, Brazil; (A.G.S.M.); (A.H.R.D.); (I.S.); (O.H.P.D.-T.)
| | - Olavo H. P. Della-Torre
- Instituto de Pesquisa da Biodiversidade (IPBio), Iporanga 18330-000, SP, Brazil; (A.G.S.M.); (A.H.R.D.); (I.S.); (O.H.P.D.-T.)
| | - Brian A. Perry
- Department of Biological Sciences, California State University, East Bay, Hayward, CA 94542, USA;
| | - Dennis E. Desjardin
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA;
| | - Cassius V. Stevani
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil;
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil;
| | - Nelson Menolli
- IFungiLab, Departamento de Ciências da Natureza e Matemática (DCM), Subárea de Biologia (SAB), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), Campus São Paulo (SPO), São Paulo 01109-010, SP, Brazil; (A.G.S.S.-F.); (C.C.N.)
| |
Collapse
|
11
|
Wang Q, Hu Z, Li Z, Liu T, Bian G. Exploring the Application and Prospects of Synthetic Biology in Engineered Living Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305828. [PMID: 37677048 DOI: 10.1002/adma.202305828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/05/2023] [Indexed: 09/09/2023]
Abstract
At the intersection of synthetic biology and materials science, engineered living materials (ELMs) exhibit unprecedented potential. Possessing unique "living" attributes, ELMs represent a significant paradigm shift in material design, showcasing self-organization, self-repair, adaptability, and evolvability, surpassing conventional synthetic materials. This review focuses on reviewing the applications of ELMs derived from bacteria, fungi, and plants in environmental remediation, eco-friendly architecture, and sustainable energy. The review provides a comprehensive overview of the latest research progress and emerging design strategies for ELMs in various application fields from the perspectives of synthetic biology and materials science. In addition, the review provides valuable references for the design of novel ELMs, extending the potential applications of future ELMs. The investigation into the synergistic application possibilities amongst different species of ELMs offers beneficial reference information for researchers and practitioners in this field. Finally, future trends and development challenges of synthetic biology for ELMs in the coming years are discussed in detail.
Collapse
Affiliation(s)
- Qiwen Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Center of Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhehui Hu
- Center of Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, 430071, China
| | - Zhixuan Li
- Center of Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tiangang Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Guangkai Bian
- Center of Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
12
|
Mujawar A, Phadte P, Palkina KA, Markina NM, Mohammad A, Thakur BL, Sarkisyan KS, Balakireva AV, Ray P, Yamplosky I, De A. Triple Reporter Assay: A Non-Overlapping Luciferase Assay for the Measurement of Complex Macromolecular Regulation in Cancer Cells Using a New Mushroom Luciferase-Luciferin Pair. SENSORS (BASEL, SWITZERLAND) 2023; 23:7313. [PMID: 37687774 PMCID: PMC10490530 DOI: 10.3390/s23177313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023]
Abstract
This study demonstrates the development of a humanized luciferase imaging reporter based on a recently discovered mushroom luciferase (Luz) from Neonothopanus nambi. In vitro and in vivo assessments showed that human-codon-optimized Luz (hLuz) has significantly higher activity than native Luz in various cancer cell types. The potential of hLuz in non-invasive bioluminescence imaging was demonstrated by human tumor xenografts subcutaneously and by the orthotopic lungs xenograft in immunocompromised mice. Luz enzyme or its unique 3OH-hispidin substrate was found to be non-cross-reacting with commonly used luciferase reporters such as Firefly (FLuc2), Renilla (RLuc), or nano-luciferase (NLuc). Based on this feature, a non-overlapping, multiplex luciferase assay using hLuz was envisioned to surpass the limitation of dual reporter assay. Multiplex reporter functionality was demonstrated by designing a new sensor construct to measure the NF-κB transcriptional activity using hLuz and utilized in conjunction with two available constructs, p53-NLuc and PIK3CA promoter-FLuc2. By expressing these constructs in the A2780 cell line, we unveiled a complex macromolecular regulation of high relevance in ovarian cancer. The assays performed elucidated the direct regulatory action of p53 or NF-κB on the PIK3CA promoter. However, only the multiplexed assessment revealed further complexities as stabilized p53 expression attenuates NF-κB transcriptional activity and thereby indirectly influences its regulation on the PIK3CA gene. Thus, this study suggests the importance of live cell multiplexed measurement of gene regulatory function using more than two luciferases to address more realistic situations in disease biology.
Collapse
Affiliation(s)
- Aaiyas Mujawar
- Molecular Functional Imaging Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai 410210, India; (A.M.); (A.M.)
- Faculty of Life Science, Homi Bhabha National Institute, Mumbai 400094, India; (P.P.); (B.L.T.); (P.R.)
| | - Pratham Phadte
- Faculty of Life Science, Homi Bhabha National Institute, Mumbai 400094, India; (P.P.); (B.L.T.); (P.R.)
- Imaging Cell Signalling and Therapeutics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai 410210, India
| | - Ksenia A. Palkina
- Institute of Bioorganic Chemistry (IBCh), Russian Academy of Sciences, Moscow 119991, Russia; (K.A.P.); (N.M.M.); (K.S.S.); (A.V.B.)
- Planta LLC, Bolshoi Boulevard, 42 Street 1, Moscow 121205, Russia
| | - Nadezhda M. Markina
- Institute of Bioorganic Chemistry (IBCh), Russian Academy of Sciences, Moscow 119991, Russia; (K.A.P.); (N.M.M.); (K.S.S.); (A.V.B.)
- Planta LLC, Bolshoi Boulevard, 42 Street 1, Moscow 121205, Russia
| | - Ameena Mohammad
- Molecular Functional Imaging Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai 410210, India; (A.M.); (A.M.)
| | - Bhushan L. Thakur
- Faculty of Life Science, Homi Bhabha National Institute, Mumbai 400094, India; (P.P.); (B.L.T.); (P.R.)
- Imaging Cell Signalling and Therapeutics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai 410210, India
| | - Karen S. Sarkisyan
- Institute of Bioorganic Chemistry (IBCh), Russian Academy of Sciences, Moscow 119991, Russia; (K.A.P.); (N.M.M.); (K.S.S.); (A.V.B.)
- Synthetic Biology Group, MRC London Institute of Medical Sciences, London W12 0NN, UK
| | - Anastasia V. Balakireva
- Institute of Bioorganic Chemistry (IBCh), Russian Academy of Sciences, Moscow 119991, Russia; (K.A.P.); (N.M.M.); (K.S.S.); (A.V.B.)
- Planta LLC, Bolshoi Boulevard, 42 Street 1, Moscow 121205, Russia
| | - Pritha Ray
- Faculty of Life Science, Homi Bhabha National Institute, Mumbai 400094, India; (P.P.); (B.L.T.); (P.R.)
- Imaging Cell Signalling and Therapeutics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai 410210, India
| | - Ilia Yamplosky
- Institute of Bioorganic Chemistry (IBCh), Russian Academy of Sciences, Moscow 119991, Russia; (K.A.P.); (N.M.M.); (K.S.S.); (A.V.B.)
| | - Abhijit De
- Molecular Functional Imaging Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai 410210, India; (A.M.); (A.M.)
- Faculty of Life Science, Homi Bhabha National Institute, Mumbai 400094, India; (P.P.); (B.L.T.); (P.R.)
| |
Collapse
|
13
|
Oba Y, Hosaka K. The Luminous Fungi of Japan. J Fungi (Basel) 2023; 9:615. [PMID: 37367550 DOI: 10.3390/jof9060615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Luminous fungi have long attracted public attention in Japan, from old folklore and fiction to current tourism, children's toys, games, and picture books. At present, 25 species of luminous fungi have been discovered in Japan, which correspond to approximately one-fourth of the globally recognized species. This species richness is arguably due to the abundant presence of mycophiles looking to find new mushroom species and a tradition of night-time activities, such as firefly watching, in Japan. Bioluminescence, a field of bioscience focused on luminous organisms, has long been studied by many Japanese researchers, including the biochemistry and chemistry of luminous fungi. A Japanese Nobel Prize winner, Osamu Shimomura (1928-2018), primarily focused on the bioluminescence system of luminous fungi in the latter part of his life, and total elucidation of the mechanism was finally accomplished by an international research team with representatives from Russia, Brazil, and Japan in 2018. In this review, we focused on multiple aspects related to luminous fungi of Japan, including myth, taxonomy, and modern sciences.
Collapse
Affiliation(s)
- Yuichi Oba
- Department of Environmental Biology, Chubu University, Kasugai 487-8501, Aichi, Japan
| | - Kentaro Hosaka
- Department of Botany, National Museum of Nature and Science, Tsukuba 305-0005, Ibaraki, Japan
| |
Collapse
|
14
|
Zheng P, Ge J, Ji J, Zhong J, Chen H, Luo D, Li W, Bi B, Ma Y, Tong W, Han L, Ma S, Zhang Y, Wu J, Zhao Y, Pan R, Fan P, Lu M, Du H. Metabolic engineering and mechanical investigation of enhanced plant autoluminescence. PLANT BIOTECHNOLOGY JOURNAL 2023. [PMID: 37155328 PMCID: PMC10363767 DOI: 10.1111/pbi.14068] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
The fungal bioluminescence pathway (FBP) was identified from glowing fungi, which releases self-sustained visible green luminescence. However, weak bioluminescence limits the potential application of the bioluminescence system. Here, we screened and characterized a C3'H1 (4-coumaroyl shikimate/quinate 3'-hydroxylase) gene from Brassica napus, which efficiently converts p-coumaroyl shikimate to caffeic acid and hispidin. Simultaneous expression of BnC3'H1 and NPGA (null-pigment mutant in A. nidulans) produces more caffeic acid and hispidin as the natural precursor of luciferin and significantly intensifies the original fungal bioluminescence pathway (oFBP). Thus, we successfully created enhanced FBP (eFBP) plants emitting 3 × 1011 photons/min/cm2 , sufficient to illuminate its surroundings and visualize words clearly in the dark. The glowing plants provide sustainable and bio-renewable illumination for the naked eyes, and manifest distinct responses to diverse environmental conditions via caffeic acid biosynthesis pathway. Importantly, we revealed that the biosynthesis of caffeic acid and hispidin in eFBP plants derived from the sugar pathway, and the inhibitors of the energy production system significantly reduced the luminescence signal rapidly from eFBP plants, suggesting that the FBP system coupled with the luciferin metabolic flux functions in an energy-driven way. These findings lay the groundwork for genetically creating stronger eFBP plants and developing more powerful biological tools with the FBP system.
Collapse
Affiliation(s)
- Peng Zheng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Jieyu Ge
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiayi Ji
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jingling Zhong
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Hongyu Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Daren Luo
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Wei Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Bo Bi
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Yongjun Ma
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Wanghui Tong
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Leiqin Han
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Siqi Ma
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yuqi Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Westlake Laboratory of Life Sciences and Biomedicine, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jianping Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Westlake Laboratory of Life Sciences and Biomedicine, Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yanqiu Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Ronghui Pan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Pengxiang Fan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mengzhu Lu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Hao Du
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Patil SR, Mirjoy M. Mathew, Abhijeet V. Patil, Ramesh N. Zarmekar, Pankaj R. Lad, Grenville Dcosta. Photographic evidence of bioluminescent mushroom Mycena chlorophos (Mycenaceae) from Goa. JOURNAL OF THREATENED TAXA 2023. [DOI: 10.11609/jott.8109.15.3.22924-22926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
Abstract
This study provides photographic evidence of presence of species of glowing mushroom Mycena chlorophos in Goa. The species was observed in buffer area of Bhagwan Mahavir Wildlife Sanctuary.
Collapse
|
16
|
Pi S, Luo Y, Liu YJ. Thorough Understanding of Bioluminophore Production in Bacterial Bioluminescence. J Phys Chem A 2022; 126:6604-6616. [DOI: 10.1021/acs.jpca.2c04311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shuangqi Pi
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yanling Luo
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
17
|
Liu YJ. Understanding the complete bioluminescence cycle from a multiscale computational perspective: A review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Wang W, Tasset A, Pyatnitskiy I, Mohamed HG, Taniguchi R, Zhou R, Rana M, Lin P, Capocyan SLC, Bellamkonda A, Chase Sanders W, Wang H. Ultrasound triggered organic mechanoluminescence materials. Adv Drug Deliv Rev 2022; 186:114343. [PMID: 35580814 PMCID: PMC10202817 DOI: 10.1016/j.addr.2022.114343] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/05/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022]
Abstract
Ultrasound induced organic mechanoluminescence materials have become one of the focal topics in wireless light sources since they exhibit high spatiotemporal resolution, biocompatibility and excellent tissue penetration depth. These properties promote great potential in ultrahigh sensitive bioimaging with no background noise and noninvasive nanodevices. Recent advances in chemistry, nanotechnology and biomedical research are revolutionizing ultrasound induced organic mechanoluminescence. Herein, we try to summarize some recent researches in ultrasound induced mechanoluminescence that use various materials design strategies based on the molecular conformational changes and cycloreversion reaction. Practical applications, like noninvasive bioimaging and noninvasive optogenetics, are also presented and prospected.
Collapse
Affiliation(s)
- Wenliang Wang
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Aaron Tasset
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Ilya Pyatnitskiy
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Heba G Mohamed
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Rayna Taniguchi
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Richard Zhou
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Manini Rana
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Peter Lin
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Sam Lander C Capocyan
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Arjun Bellamkonda
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - W Chase Sanders
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Huiliang Wang
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
19
|
Magalhães C, Esteves da Silva JCG, Pinto da Silva L. Theoretical Study of the Thermolysis Reaction and Chemiexcitation of Coelenterazine Dioxetanes. J Phys Chem A 2022; 126:3486-3494. [PMID: 35612291 PMCID: PMC9776548 DOI: 10.1021/acs.jpca.2c01835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Coelenterazine and other imidazopyrazinones are important bioluminescent substrates widespread in marine species and can be found in eight phyla of luminescent organisms. Light emission from these systems is caused by the formation and subsequent thermolysis of a dioxetanone intermediate, whose decomposition allows for efficient chemiexcitation to singlet excited states. Interestingly, some studies have also reported the involvement of unexpected dioxetane intermediates in the chemi- and bioluminescent reactions of Coelenterazine, albeit with little information on the underlying mechanisms of these new species. Herein, we have employed a theoretical approach based on density functional theory to study for the first time the thermolysis reaction and chemiexcitation profile of two Coelenterazine dioxetanes. We have found that the thermolysis reactions of these species are feasible but with relevant energetic differences. More importantly, we found that the singlet chemiexcitation profiles of these dioxetanes are significantly less efficient than the corresponding dioxetanones. Furthermore, we identified triplet chemiexcitation pathways for the Coelenterazine dioxetanes. Given this, the chemiexcitation of these dioxetanes should lead only to minimal luminescence. Thus, our theoretical investigation of these systems indicates that the thermolysis of these dioxetanes should only provide "dark" pathways for the formation of nonluminescent degradation products of the chemi- and bioluminescent reactions of Coelenterazine and other imidazopyrazinones.
Collapse
Affiliation(s)
- Carla
M. Magalhães
- Chemistry
Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Joaquim C. G. Esteves da Silva
- Chemistry
Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre 687, 4169-007 Porto, Portugal,LACOMEPHI,
GreenUPorto, Department of Geosciences, Environment and Territorial
Planning, Faculty of Sciences of University
of Porto (FCUP), Rua
do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Luís Pinto da Silva
- Chemistry
Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Faculty of Sciences of University of Porto (FCUP), Rua do Campo Alegre 687, 4169-007 Porto, Portugal,LACOMEPHI,
GreenUPorto, Department of Geosciences, Environment and Territorial
Planning, Faculty of Sciences of University
of Porto (FCUP), Rua
do Campo Alegre 687, 4169-007 Porto, Portugal,
| |
Collapse
|
20
|
Ronzhin NO, Posokhina ED, Mogilnaya OA, Bondar VS. Finding the Light Emission Stimulator of Neonothopanus nambi Basidiomycete and Studying Its Properties. DOKL BIOCHEM BIOPHYS 2022; 503:80-84. [PMID: 35538283 DOI: 10.1134/s1607672922020120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/23/2022]
Abstract
A stimulator of light emission of the fungus was found in an aqueous extract from mycelium of the luminous basidiomycete Neonothopanus nambi after its treatment with β-glucosidase. The addition of the extract to the luminous mycelium increases the level of light emission from several times to 1.5 orders of magnitude or more. The luminescence stimulator is a low-molecular-weight thermostable compound: it is detected in the permeate after filtering the extract through a 10-kDa cutoff membrane and it retains the stimulating effect after heat treatment at 100°C for 5 min. In the absorption spectrum of the aqueous sample of the stimulator, two main peaks are observed in the shortwave region (205 and 260 nm) and a shoulder in the range of 350-370 nm can be seen. The luminescence stimulator exhibits blue fluorescence with an emission maximum at 440 nm when excited at 360 nm. It was established that the luminescence-stimulating component is not a substrate (or its precursor) of the luminescent system of the N. nambi fungus.
Collapse
Affiliation(s)
- N O Ronzhin
- Institute of Biophysics, Federal Research Center "Krasnoyarsk Scientific Center", Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia.
| | - E D Posokhina
- Institute of Biophysics, Federal Research Center "Krasnoyarsk Scientific Center", Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia
| | - O A Mogilnaya
- Institute of Biophysics, Federal Research Center "Krasnoyarsk Scientific Center", Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia
| | - V S Bondar
- Institute of Biophysics, Federal Research Center "Krasnoyarsk Scientific Center", Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia
| |
Collapse
|
21
|
Patil SR, Yadav SV. Photographic record of Armillaria mellea a bioluminescent fungi from Lonavala in Western Ghats, India. JOURNAL OF THREATENED TAXA 2022. [DOI: 10.11609/jott.7677.14.2.20692-20694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Armillaria mellea is a bioluminescent fungus from the Basidiomycota division. The previous known record of the fungus is from Bhimashankar Wildlife Sanctuary. This paper provides data and photographic evidence of Armillaria mellea in Lonavala.
Collapse
|
22
|
Yang X, Qin X, Ji H, Du L, Li M. Constructing firefly luciferin bioluminescence probes for in vivo imaging. Org Biomol Chem 2022; 20:1360-1372. [PMID: 35080225 DOI: 10.1039/d1ob01940f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Bioluminescence imaging (BLI) is a widely applied visual approach for real-time detecting many physiological and pathological processes in a variety of biological systems. Based on the caging strategy, lots of bioluminescent probes have been well developed. While the targets react with recognizable groups, caged luciferins liberate luciferase substrates, which react with luciferase generating a bioluminescent response. Among the various bioluminescent systems, the most widely utilized bioluminescent system is the firefly luciferin system. The H and carboxylic acid of luciferin are critically caged sites. The introduced self-immolative linker extends the applications of probes. Firefly luciferin system probes have been successfully applied for analyzing physiological processes, monitoring the environment, diagnosing diseases, screening candidate drugs, and evaluating the therapeutic effect. Here, we systematically review the general design strategies of firefly luciferin bioluminescence probes and their applications. Bioluminescence probes provide a new approach for facilitating investigation in a diverse range of fields. It inspires us to explore more robust light emission luciferin and novel design strategies to develop bioluminescent probes.
Collapse
Affiliation(s)
- Xingye Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Xiaojun Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Huimin Ji
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
23
|
Gregor C. Imaging of Autonomous Bioluminescence Emission From Single Mammalian Cells. Methods Mol Biol 2022; 2524:163-172. [PMID: 35821470 DOI: 10.1007/978-1-0716-2453-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The bioluminescent visualization of individual mammalian cells usually requires the addition of a luciferin substrate. This chapter describes the microscopic imaging of single cells by their bioluminescence (BL) emission generated without an external luciferin. Imaging is based on the expression of codon-optimized lux (co lux) genes and does not require manipulation of the cells apart from transfection. Due to the high brightness of the co lux system, light emission from single cells can be observed continuously for many hours using a specialized microscope.
Collapse
Affiliation(s)
- Carola Gregor
- Department of Optical Nanoscopy, Institut für Nanophotonik Göttingen e.V, Göttingen, Germany.
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
24
|
Schramm S, Weiß D. Biolumineszenz – Teil 1: Terrestrische Biolumineszenz. CHEM UNSERER ZEIT 2021. [DOI: 10.1002/ciuz.202000081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Stefan Schramm
- Institut für Organische und Makromolekulare Chemie Friedrich‐Schiller Universität Jena Humboldtstraße 10 07743 Jena Deutschland
- Merck KGaA Frankfurter Straße 250 64293 Darmstadt Deutschland
| | - Dieter Weiß
- Institut für Organische und Makromolekulare Chemie Friedrich‐Schiller Universität Jena Humboldtstraße 10 07743 Jena Deutschland
| |
Collapse
|
25
|
Srinivasan P, Griffin NM, Thakur D, Joshi P, Nguyen-Le A, McCotter S, Jain A, Saeidi M, Kulkarni P, Eisdorfer JT, Rothman J, Montell C, Theogarajan L. An Autonomous Molecular Bioluminescent Reporter (AMBER) for Voltage Imaging in Freely Moving Animals. Adv Biol (Weinh) 2021; 5:e2100842. [PMID: 34761564 PMCID: PMC8858017 DOI: 10.1002/adbi.202100842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/08/2021] [Indexed: 11/12/2022]
Abstract
Genetically encoded reporters have greatly increased our understanding of biology. While fluorescent reporters have been widely used, photostability and phototoxicity have hindered their use in long-term experiments. Bioluminescence overcomes some of these challenges but requires the addition of an exogenous luciferin limiting its use. Using a modular approach, Autonomous Molecular BioluminEscent Reporter (AMBER), an indicator of membrane potential is engineered. Unlike other bioluminescent systems, AMBER is a voltage-gated luciferase coupling the functionalities of the Ciona voltage-sensing domain (VSD) and bacterial luciferase, luxAB. When co-expressed with the luciferin-producing genes, AMBER reversibly switches the bioluminescent intensity as a function of membrane potential. Using biophysical and biochemical methods, it is shown that AMBER switches its enzymatic activity from an OFF to an ON state as a function of the membrane potential. Upon depolarization, AMBER switches from a low to a high enzymatic activity state, showing a several-fold increase in the bioluminescence output (ΔL/L). AMBER in the pharyngeal muscles and mechanosensory touch neurons of Caenorhabditis elegans is expressed. Using the compressed sensing approach, the electropharingeogram of the C. elegans pharynx is reconstructed, validating the sensor in vivo. Thus, AMBER represents the first fully genetically encoded bioluminescent reporter without requiring exogenous luciferin addition.
Collapse
Affiliation(s)
- Prasanna Srinivasan
- Department of Electrical and Computer Engineering, University of California Santa Barbara, CA 93106
- Center for Bioengineering, Institute for Collaborative Biotechnologies, University of California Santa Barbara, CA 93106
| | - Nicole M Griffin
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, 93106, USA
- Center for Bioengineering, Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, 93106, USA
| | - Dhananjay Thakur
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, CA 93106
- The Neuroscience Research Institute, University of California Santa Barbara, CA 93106
| | - Pradeep Joshi
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, CA 93106
| | - Alex Nguyen-Le
- Department of Electrical and Computer Engineering, University of California Santa Barbara, CA 93106
- Current address: Department of Electrical Engineering, University of Pennsylvania, Philadelphia, PA
| | - Sean McCotter
- Department of Electrical and Computer Engineering, University of California Santa Barbara, CA 93106
| | - Akshar Jain
- Department of Electrical and Computer Engineering, University of California Santa Barbara, CA 93106
| | - Mitra Saeidi
- Department of Electrical and Computer Engineering, University of California Santa Barbara, CA 93106
| | - Prajakta Kulkarni
- Department of Electrical and Computer Engineering, University of California Santa Barbara, CA 93106
| | - Jaclyn T. Eisdorfer
- College of Creative Studies,University of California Santa Barbara, CA 93106 Current address: Dept. of Bioengineering, Temple University, Philadelphia, PA 19122
| | - Joel Rothman
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, CA 93106
| | - Craig Montell
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, CA 93106
- The Neuroscience Research Institute, University of California Santa Barbara, CA 93106
| | - Luke Theogarajan
- Department of Electrical and Computer Engineering, University of California Santa Barbara, CA 93106
- Center for Bioengineering, Institute for Collaborative Biotechnologies, University of California Santa Barbara, CA 93106
| |
Collapse
|
26
|
Metabolomics of the wild mushroom Gymnopilus imperialis (Agaricomycetes, Basidiomycota) by UHPLC-HRMS/MS analysis and molecular network. Fungal Biol 2021; 126:132-138. [DOI: 10.1016/j.funbio.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/11/2021] [Accepted: 11/15/2021] [Indexed: 11/23/2022]
|
27
|
Nóbrega BB, Soares DMM, Zamuner CK, Stevani CV. Optimized methodology for obtention of high-yield and -quality RNA from the mycelium of the bioluminescent fungus Neonothopanus gardneri. J Microbiol Methods 2021; 191:106348. [PMID: 34699864 DOI: 10.1016/j.mimet.2021.106348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Neonothopanus gardneri, also known as coconut flower mushroom (flor-de-coco), is a Brazilian bioluminescent basidiomycete found in Palm Forest, a transitional biome between the Amazonian Forest and Caatinga (Savanna-like vegetation) in Northeast Brazil, especially in Piauí State. Recent advances toward the elucidation of fungal bioluminescence have contributed to the discovery of four genes (hisps, h3h, luz and cph) involved with the bioluminescence process, the so-called Caffeic Acid Cycle (CAC) and to develop biotechnological applications such autoluminescent tobacco plants and luciferase-based reporter genes. High-yield and -quality RNA-extraction methods are required for most of these purposes. Herein, four methods for RNA isolation from the mycelium of N. gardneri were evaluated: RNeasy® kit (QIAGEN), TRI+, TRI18G+, and TRI26G+. Highest RNA yield was observed for TRI18G+ and TRI26G+ methods, an increase of ~130% in comparison to the RNeasy® method and of ~40% to the TRI+ protocol. All the RNA samples showed good purity and integrity, except by gDNA contamination in RNA samples produced with the RNeasy® method. High quality of RNA samples was confirmed by successful cDNA synthesis and PCR amplification of the coding sequence of h3h gene, responsible for the hydroxylation of the precursor of fungal luciferin (3-hydroxyhispidin). Similarly, RT-qPCR amplification of ef-tu gene, related to the protein biosynthesis in the cell, was demonstrated from RNA samples. This is the first report of a reproducible, time-saving and low-cost optimized method for isolation of high-quality and -yield, DNA-free RNA from a bioluminescent fungus, but that can also be useful for other basidiomycetes.
Collapse
Affiliation(s)
- Bianca B Nóbrega
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil; Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Douglas M M Soares
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| | - Caio K Zamuner
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Cassius V Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
28
|
Bioluminescence and Photoreception in Unicellular Organisms: Light-Signalling in a Bio-Communication Perspective. Int J Mol Sci 2021; 22:ijms222111311. [PMID: 34768741 PMCID: PMC8582858 DOI: 10.3390/ijms222111311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Bioluminescence, the emission of light catalysed by luciferases, has evolved in many taxa from bacteria to vertebrates and is predominant in the marine environment. It is now well established that in animals possessing a nervous system capable of integrating light stimuli, bioluminescence triggers various behavioural responses and plays a role in intra- or interspecific visual communication. The function of light emission in unicellular organisms is less clear and it is currently thought that it has evolved in an ecological framework, to be perceived by visual animals. For example, while it is thought that bioluminescence allows bacteria to be ingested by zooplankton or fish, providing them with favourable conditions for growth and dispersal, the luminous flashes emitted by dinoflagellates may have evolved as an anti-predation system against copepods. In this short review, we re-examine this paradigm in light of recent findings in microorganism photoreception, signal integration and complex behaviours. Numerous studies show that on the one hand, bacteria and protists, whether autotrophs or heterotrophs, possess a variety of photoreceptors capable of perceiving and integrating light stimuli of different wavelengths. Single-cell light-perception produces responses ranging from phototaxis to more complex behaviours. On the other hand, there is growing evidence that unicellular prokaryotes and eukaryotes can perform complex tasks ranging from habituation and decision-making to associative learning, despite lacking a nervous system. Here, we focus our analysis on two taxa, bacteria and dinoflagellates, whose bioluminescence is well studied. We propose the hypothesis that similar to visual animals, the interplay between light-emission and reception could play multiple roles in intra- and interspecific communication and participate in complex behaviour in the unicellular world.
Collapse
|
29
|
Tsarkova AS. Luciferins Under Construction: A Review of Known Biosynthetic Pathways. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.667829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bioluminescence, or the ability of a living organism to generate visible light, occurs as a result of biochemical reaction where enzyme, known as a luciferase, catalyzes the oxidation of a small-molecule substrate, known as luciferin. This advantageous trait has independently evolved dozens of times, with current estimates ranging from the most conservative 40, based on the biochemical diversity found across bioluminescence systems (Haddock et al., 2010) to 100, taking into account the physiological mechanisms involved in the behavioral control of light production across a wide range of taxa (Davis et al., 2016; Verdes and Gruber, 2017; Bessho-Uehara et al., 2020a; Lau and Oakley, 2021). Chemical structures of ten biochemically unrelated luciferins and several luciferase gene families have been described; however, a full biochemical pathway leading to light emission has been elucidated only for two: bacterial and fungal bioluminescence systems. Although the recent years have been marked by extraordinary discoveries and promising breakthroughs in understanding the molecular basis of multiple bioluminescence systems, the mechanisms of luciferin biosynthesis for many organisms remain almost entirely unknown. This article seeks to provide a succinct overview of currently known luciferins’ biosynthetic pathways.
Collapse
|
30
|
Beregovaya KA, Myshkina NM, Chepurnykh TV, Kotlobay AA, Purtov KV, Petushkov VN, Rodionova NS, Yampolsky IV. Rational Design and Mutagenesis of Fungal Luciferase from Neonothopanus nambi. DOKL BIOCHEM BIOPHYS 2021; 496:14-17. [PMID: 33689067 DOI: 10.1134/s1607672921010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 11/23/2022]
Abstract
The recently described bioluminescent system from fungi has great potential for developing highly efficient tools for biomedical research. Luciferase enzyme is one of the most crucial components of this system. The luciferase from Neonothopanus nambi fungus belongs to the novel still undescribed protein family. The structure data for this protein is almost absent. A detailed study of the N. nambi luciferase properties is necessary for the improvement of analytical methods based on the fungal bioluminescent system. Here we present the positions of key amino acid residues and their effect on enzyme function described using bioinformatic and experimental approaches. These results are useful for further fungal luciferase structure determination.
Collapse
Affiliation(s)
- K A Beregovaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - N M Myshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - T V Chepurnykh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - A A Kotlobay
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - K V Purtov
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia.
| | - V N Petushkov
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
| | - N S Rodionova
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
| | - I V Yampolsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
31
|
Paul CE, Eggerichs D, Westphal AH, Tischler D, van Berkel WJH. Flavoprotein monooxygenases: Versatile biocatalysts. Biotechnol Adv 2021; 51:107712. [PMID: 33588053 DOI: 10.1016/j.biotechadv.2021.107712] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/27/2021] [Accepted: 02/06/2021] [Indexed: 12/13/2022]
Abstract
Flavoprotein monooxygenases (FPMOs) are single- or two-component enzymes that catalyze a diverse set of chemo-, regio- and enantioselective oxyfunctionalization reactions. In this review, we describe how FPMOs have evolved from model enzymes in mechanistic flavoprotein research to biotechnologically relevant catalysts that can be applied for the sustainable production of valuable chemicals. After a historical account of the development of the FPMO field, we explain the FPMO classification system, which is primarily based on protein structural properties and electron donor specificities. We then summarize the most appealing reactions catalyzed by each group with a focus on the different types of oxygenation chemistries. Wherever relevant, we report engineering strategies that have been used to improve the robustness and applicability of FPMOs.
Collapse
Affiliation(s)
- Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Daniel Eggerichs
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| |
Collapse
|
32
|
Wang MY, Liu YJ. Chemistry in Fungal Bioluminescence: A Theoretical Study from Luciferin to Light Emission. J Org Chem 2021; 86:1874-1881. [DOI: 10.1021/acs.joc.0c02788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ming-Yu Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
33
|
Syed AJ, Anderson JC. Applications of bioluminescence in biotechnology and beyond. Chem Soc Rev 2021; 50:5668-5705. [DOI: 10.1039/d0cs01492c] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bioluminescent probes have hugely benefited from the input of synthetic chemistry and protein engineering. Here we review the latest applications of these probes in biotechnology and beyond, with an eye on current limitations and future directions.
Collapse
Affiliation(s)
- Aisha J. Syed
- Department of Chemistry
- University College London
- London
- UK
| | | |
Collapse
|
34
|
Ke HM, Lee HH, Lin CYI, Liu YC, Lu MR, Hsieh JWA, Chang CC, Wu PH, Lu MJ, Li JY, Shang G, Lu RJH, Nagy LG, Chen PY, Kao HW, Tsai IJ. Mycena genomes resolve the evolution of fungal bioluminescence. Proc Natl Acad Sci U S A 2020; 117:31267-31277. [PMID: 33229585 PMCID: PMC7733832 DOI: 10.1073/pnas.2010761117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mushroom-forming fungi in the order Agaricales represent an independent origin of bioluminescence in the tree of life; yet the diversity, evolutionary history, and timing of the origin of fungal luciferases remain elusive. We sequenced the genomes and transcriptomes of five bonnet mushroom species (Mycena spp.), a diverse lineage comprising the majority of bioluminescent fungi. Two species with haploid genome assemblies ∼150 Mb are among the largest in Agaricales, and we found that a variety of repeats between Mycena species were differentially mediated by DNA methylation. We show that bioluminescence evolved in the last common ancestor of mycenoid and the marasmioid clade of Agaricales and was maintained through at least 160 million years of evolution. Analyses of synteny across genomes of bioluminescent species resolved how the luciferase cluster was derived by duplication and translocation, frequently rearranged and lost in most Mycena species, but conserved in the Armillaria lineage. Luciferase cluster members were coexpressed across developmental stages, with the highest expression in fruiting body caps and stipes, suggesting fruiting-related adaptive functions. Our results contribute to understanding a de novo origin of bioluminescence and the corresponding gene cluster in a diverse group of enigmatic fungal species.
Collapse
Affiliation(s)
- Huei-Mien Ke
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Hsin-Han Lee
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chan-Yi Ivy Lin
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Yu-Ching Liu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Min R Lu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 106, Taiwan
| | - Jo-Wei Allison Hsieh
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 106, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Chiung-Chih Chang
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Pei-Hsuan Wu
- Master Program for Plant Medicine and Good Agricultural Practice, National Chung Hsing University, Taichung 402, Taiwan
| | - Meiyeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Jeng-Yi Li
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Gaus Shang
- Department of Biotechnology, Ming Chuan University, Taoyuan 333, Taiwan
| | - Rita Jui-Hsien Lu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110
| | - László G Nagy
- Synthetic and Systems Biology Unit, Biological Research Centre, 6726 Szeged, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, 1117 Hungary
| | - Pao-Yang Chen
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 106, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Hsiao-Wei Kao
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Isheng Jason Tsai
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan;
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
35
|
Garcia-Iriepa C, Marazzi M, Navizet I. The role of CO 2 detachment in fungal bioluminescence: thermally vs. excited state induced pathways. Phys Chem Chem Phys 2020; 22:26787-26795. [PMID: 33211036 DOI: 10.1039/d0cp05037g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Different fungi lineages are known to emit light on Earth, mainly in tropical climates. Although the preparation of bioluminescent cell-free extracts allowed one to characterize the enzymatic requirements, the molecular mechanism underlying luminescence is still largely unknown and is based on the experimental putative assumption that a high-energy intermediate should be formed by reaction with O2 and formation of an endoperoxide. Here, we aim at determining, through state-of-the-art multiconfigurational quantum chemistry, the full mechanistic landscape leading from the endoperoxide to the emitting species, envisaging different possible pathways and proposing their viability. Especially, thermal CO2 detachment followed by excited-state peroxide opening (thermal-chemiluminescence) can compete with a parallel pathway, i.e., first excited-state endoperoxide opening, followed by CO2 detachment on the same excited-state (excited state-chemiluminescence). Clear differences in the energy supplies, as well as the possibility to directly populate the emitting species from the intersection seam between ground and excited states, land credence to a kinetically efficient thermal-chemiluminescent pathway, establishing for the first time a detailed description of fungal bioluminescence.
Collapse
Affiliation(s)
- Cristina Garcia-Iriepa
- Laboratoire Modélisation et Simulation Multi Échelle (MSME) UMR 8208, CNRS, UPEC, UPEM, Université Paris-Est, F-77454 Marne-la-Vallée, France
| | | | | |
Collapse
|
36
|
Dubinnyi MA, Ivanov IA, Rodionova NS, Kovalchuk SI, Kaskova ZM, Petushkov VN. α‐C‐Mannosyltryptophan is a Structural Analog of the Luciferin from Bioluminescent Siberian Earthworm
Henlea sp
. ChemistrySelect 2020. [DOI: 10.1002/slct.202003075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Maxim A. Dubinnyi
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry, Russian academy of Sciences GSP-7 Miklukho-Maklaya str., 16/10 117997 Moscow Russia
| | - Igor A. Ivanov
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry, Russian academy of Sciences GSP-7 Miklukho-Maklaya str., 16/10 117997 Moscow Russia
| | - Natalia S. Rodionova
- Institute of Biophysics Krasnoyarsk Research Center Siberian Branch Russian Academy of Sciences Akademgorodok 660036 Krasnoyarsk Russia
| | - Sergey I. Kovalchuk
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry, Russian academy of Sciences GSP-7 Miklukho-Maklaya str., 16/10 117997 Moscow Russia
| | - Zinaida M. Kaskova
- Shemyakin-Ovchinnikov Institute of bioorganic chemistry, Russian academy of Sciences GSP-7 Miklukho-Maklaya str., 16/10 117997 Moscow Russia
- Pirogov Russian National Research Medical University 1 Ostrovityanova st. 117997 Moscow Russia
| | - Valentin N. Petushkov
- Institute of Biophysics Krasnoyarsk Research Center Siberian Branch Russian Academy of Sciences Akademgorodok 660036 Krasnoyarsk Russia
| |
Collapse
|
37
|
Zhou X, Mehta S, Zhang J. Genetically Encodable Fluorescent and Bioluminescent Biosensors Light Up Signaling Networks. Trends Biochem Sci 2020; 45:889-905. [PMID: 32660810 PMCID: PMC7502535 DOI: 10.1016/j.tibs.2020.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Abstract
Cell signaling networks are intricately regulated in time and space to determine the responses and fates of cells to different cues. Genetically encodable fluorescent and bioluminescent biosensors enable the direct visualization of these spatiotemporal signaling dynamics within the native biological context, and have therefore become powerful molecular tools whose unique benefits are being used to address challenging biological questions. We first review the basis of biosensor design and remark on recent technologies that are accelerating biosensor development. We then discuss a few of the latest advances in the development and application of genetically encodable fluorescent and bioluminescent biosensors that have led to scientific or technological breakthroughs.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
38
|
Tong Y, Trajkovic M, Savino S, van Berkel WJH, Fraaije MW. Substrate binding tunes the reactivity of hispidin 3-hydroxylase, a flavoprotein monooxygenase involved in fungal bioluminescence. J Biol Chem 2020; 295:16013-16022. [PMID: 32917724 DOI: 10.1074/jbc.ra120.014996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/10/2020] [Indexed: 11/06/2022] Open
Abstract
Fungal bioluminescence was recently shown to depend on a unique oxygen-dependent system of several enzymes. However, the identities of the enzymes did not reveal the full biochemical details of this process, as the enzymes do not bear resemblance to those of other luminescence systems, and thus the properties of the enzymes involved in this fascinating process are still unknown. Here, we describe the characterization of the penultimate enzyme in the pathway, hispidin 3-hydroxylase, from the luminescent fungus Mycena chlorophos (McH3H), which catalyzes the conversion of hispidin to 3-hydroxyhispidin. 3-Hydroxyhispidin acts as a luciferin substrate in luminescent fungi. McH3H was heterologously expressed in Escherichia coli and purified by affinity chromatography with a yield of 100 mg/liter. McH3H was found to be a single component monomeric NAD(P)H-dependent FAD-containing monooxygenase having a preference for NADPH. Through site-directed mutagenesis, based on a modeled structure, mutant enzymes were created that are more efficient with NADH. Except for identifying the residues that tune cofactor specificity, these engineered variants may also help in developing new hispidin-based bioluminescence applications. We confirmed that addition of hispidin to McH3H led to the formation of 3-hydroxyhispidin as sole aromatic product. Rapid kinetic analysis revealed that reduction of the flavin cofactor by NADPH is boosted by hispidin binding by nearly 100-fold. Similar to other class A flavoprotein hydroxylases, McH3H did not form a stable hydroperoxyflavin intermediate. These data suggest a mechanism by which the hydroxylase is tuned for converting hispidin into the fungal luciferin.
Collapse
Affiliation(s)
- Yapei Tong
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Milos Trajkovic
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Simone Savino
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
39
|
Ventura FF, Mendes LF, Oliveira AG, Bazito RC, Bechara EJH, Freire RS, Stevani CV. Evaluation of Phenolic Compound Toxicity Using a Bioluminescent Assay with the Fungus Gerronema viridilucens. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1558-1565. [PMID: 32367555 DOI: 10.1002/etc.4740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/18/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Basidiomycetes (phylum Basidiomycota) are filamentous fungi characterized by the exogenous formation of spores on a club-shaped cell called a basidium that are often formed on complex fruiting bodies (mushrooms). Many basidiomycetes serve an important role in recycling lignocellulosic material to higher trophic levels, and some show symbiotic relationships with plants. All known bioluminescent fungi are mushroom-forming basidiomycetes in the order Agaricales. Hence, the disruption of the basidiomycete community can entirely compromise the carbon cycle in nature from fungi to higher trophic levels. The fungus Gerronema viridilucens was used in the present study to investigate the toxicity of a phenolic compound series based on the inhibition of its bioluminescence. The median effect concentration (EC50) obtained from curves of bioluminescence inhibition versus log [phenolic compound] showed that 2,4,6-trichlorophenol was the most toxic compound in the series. The log EC50 values of all phenolic compounds were then used for the prediction of their toxicity. The univariate correlation of log EC50 values obtained from 6 different phenolic compounds was stronger with the dissociation constant (pKa ) than with 1-octanol/water partition coefficient (KOW ). Nevertheless, the toxicity can be better predicted by using both parameters, suggesting that the phenol-driven uncoupling of fungus mitochondrial adenosine triphosphate synthesis is the origin of phenolic compound toxicity to the test fungus. Environ Toxicol Chem 2020;39:1558-1565. © 2020 SETAC.
Collapse
Affiliation(s)
- Fernanda F Ventura
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Fundação Jorge Duprat Figueiredo de Segurança e Medicina do Trabalho, São Paulo, São Paulo, Brazil
| | - Luiz F Mendes
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Bioativos Group, Santana do Parnaíba, São Paulo, Brazil
| | - Anderson G Oliveira
- Departamento de Oceanografia Física, Química e Geológica, Instituto Oceanográfico, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Reinaldo C Bazito
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Etelvino J H Bechara
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Renato S Freire
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Cassius V Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
40
|
García-Iriepa C, Losantos R, Fernández-Martínez D, Sampedro D, Navizet I. Fungal Light Emitter: Understanding Its Chemical Nature and pH-Dependent Emission in Water Solution. J Org Chem 2020; 85:5503-5510. [PMID: 32202422 DOI: 10.1021/acs.joc.0c00246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fungal bioluminescence is a fascinating natural process, standing out for the continuous conversion of chemical energy into light. The structure of fungal oxyluciferin (light emitter) was proposed in 2017, being different and more complex than other oxyluciferins. The complexity of fungal oxyluciferin arises from diverse equilibria such as keto/enol tautomerization or deprotonation equilibria of four titratable groups. For this reason, still some crucial details of its structure remain unexplored. To obtain further structural information, a combined experimental and computational study of natural and three synthetic fungal oxyluciferin analogues has been performed. Here, we state the most stable chemical form of fungal oxyluciferin regarding its keto and enol tautomers, in the ground and excited states. We propose the (3Z,5E)-6-(3,4-dihydroxyphenyl)-4-hydroxy-2-oxohexa-3,5-dienoic acid form as the light emitter (fluorescent state) in water solution. Moreover, we show that chemical modifications on fungal oxyluciferin can affect the relative stability of the conformers. Furthermore, we show the clear effect of pH on emission. General conclusions about the role of these titratable groups in emission modulation have been drawn, such as the key role of dihydroxyphenyl deprotonation. This study is key to further analyze the properties of fungal bioluminescence and propose novel synthetic analogues.
Collapse
Affiliation(s)
- Cristina García-Iriepa
- Laboratoire Modélisation et Simulation Multi Échelle (MSME) UMR 8208, CNRS, UPEC, UPEM, Université Paris-Est, F-77454 Marne-la-Vallée, France.,Departamento de Quı́mica Analı́tica, Quı́mica Fı́sica e Ingenierı́a Quı́mica, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.,Department of Chemistry, Centro de Investigación en Sı́ntesis Quı́mica (CISQ), Universidad de La Rioja, Madre de Dios 53, E-26006 Logroño, Spain
| | - Raúl Losantos
- Department of Chemistry, Centro de Investigación en Sı́ntesis Quı́mica (CISQ), Universidad de La Rioja, Madre de Dios 53, E-26006 Logroño, Spain
| | - Diana Fernández-Martínez
- Department of Chemistry, Centro de Investigación en Sı́ntesis Quı́mica (CISQ), Universidad de La Rioja, Madre de Dios 53, E-26006 Logroño, Spain
| | - Diego Sampedro
- Department of Chemistry, Centro de Investigación en Sı́ntesis Quı́mica (CISQ), Universidad de La Rioja, Madre de Dios 53, E-26006 Logroño, Spain
| | - Isabelle Navizet
- Laboratoire Modélisation et Simulation Multi Échelle (MSME) UMR 8208, CNRS, UPEC, UPEM, Université Paris-Est, F-77454 Marne-la-Vallée, France.,MSME, Univ Gustave Eiffel, UPEC, CNRS, F-77454 Marne-la-Vallée, France
| |
Collapse
|
41
|
Adams ST, Miller SC. Enzymatic promiscuity and the evolution of bioluminescence. FEBS J 2020; 287:1369-1380. [PMID: 31828943 PMCID: PMC7217382 DOI: 10.1111/febs.15176] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/26/2019] [Accepted: 12/10/2019] [Indexed: 01/18/2023]
Abstract
Bioluminescence occurs when an enzyme, known as a luciferase, oxidizes a small-molecule substrate, known as a luciferin. Nature has evolved multiple distinct luciferases and luciferins independently, all of which accomplish the impressive feat of light emission. One of the best-known examples of bioluminescence is exhibited by fireflies, a class of beetles that use d-luciferin as their substrate. The evolution of bioluminescence in beetles is thought to have emerged from ancestral fatty acyl-CoA synthetase (ACS) enzymes present in all insects. This theory is supported by multiple lines of evidence: Beetle luciferases share high sequence identity with these enzymes, often retain ACS activity, and some ACS enzymes from nonluminous insects can catalyze bioluminescence from synthetic d-luciferin analogues. Recent sequencing of firefly genomes and transcriptomes further illuminates how the duplication of ACS enzymes and subsequent diversification drove the evolution of bioluminescence. These genetic analyses have also uncovered candidate enzymes that may participate in luciferin metabolism. With the publication of the genomes and transcriptomes of fireflies and related insects, we are now better positioned to dissect and learn from the evolution of bioluminescence in beetles.
Collapse
Affiliation(s)
- Spencer T. Adams
- Department of Biochemistry and Molecular Pharmacology, University of
Massachusetts Medical School, Worcester, MA 01605 USA
| | - Stephen C. Miller
- Department of Biochemistry and Molecular Pharmacology, University of
Massachusetts Medical School, Worcester, MA 01605 USA
| |
Collapse
|
42
|
Kotlobay AA, Kaskova ZM, Yampolsky IV. Palette of Luciferases: Natural Biotools for New Applications in Biomedicine. Acta Naturae 2020; 12:15-27. [PMID: 32742724 PMCID: PMC7385095 DOI: 10.32607/actanaturae.10967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/29/2020] [Indexed: 12/30/2022] Open
Abstract
Optoanalytical methods based on using genetically encoded bioluminescent enzymes, luciferases, allow one to obtain highly sensitive signals, are non-invasive, and require no external irradiation. Bioluminescence is based on the chemical reaction of oxidation of a low-molecular-weight substrate (luciferin) by atmospheric oxygen, which is catalyzed by an enzyme (luciferase). Relaxation of the luciferin oxidation product from its excited state is accompanied by a release of a quantum of light, which can be detected as an analytical signal. The ability to express luciferase genes in various heterological systems and high quantum yields of luminescence reactions have made these tools rather popular in biology and medicine. Among several naturally available luciferases, a few have been found to be useful for practical application. Luciferase size, the wavelength of its luminescence maximum, enzyme thermostability, optimal pH of the reaction, and the need for cofactors are parameters that may differ for luciferases from different groups of organisms, and this fact directly affects the choice of the application area for each enzyme. It is quite important to overview the whole range of currently available luciferases based on their biochemical properties before choosing one bioluminescent probe suitable for a specific application.
Collapse
Affiliation(s)
- A. A. Kotlobay
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - Z. M. Kaskova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| | - I. V. Yampolsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| |
Collapse
|
43
|
Khakhar A, Starker CG, Chamness JC, Lee N, Stokke S, Wang C, Swanson R, Rizvi F, Imaizumi T, Voytas DF. Building customizable auto-luminescent luciferase-based reporters in plants. eLife 2020; 9:52786. [PMID: 32209230 PMCID: PMC7164954 DOI: 10.7554/elife.52786] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/24/2020] [Indexed: 01/09/2023] Open
Abstract
Bioluminescence is a powerful biological signal that scientists have repurposed as a reporter for gene expression in plants and animals. However, there are downsides associated with the need to provide a substrate to these reporters, including its high cost and non-uniform tissue penetration. In this work we reconstitute a fungal bioluminescence pathway (FBP) in planta using a composable toolbox of parts. We demonstrate that the FBP can create luminescence across various tissues in a broad range of plants without external substrate addition. We also show how our toolbox can be used to deploy the FBP in planta to build auto-luminescent reporters for the study of gene-expression and hormone fluxes. A low-cost imaging platform for gene expression profiling is also described. These experiments lay the groundwork for future construction of programmable auto-luminescent plant traits, such as light driven plant-pollinator interactions or light emitting plant-based sensors.
Collapse
Affiliation(s)
- Arjun Khakhar
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - Colby G Starker
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - James C Chamness
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - Nayoung Lee
- Department of Biology, University of Washington, Seattle, United States
| | - Sydney Stokke
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - Cecily Wang
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - Ryan Swanson
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - Furva Rizvi
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, United States
| | - Daniel F Voytas
- Department Genetics, Cell Biology, & Development, University of Minnesota, Minneapolis, United States.,Center for Precision Plant Genomics, University of Minnesota, St. Paul, United States
| |
Collapse
|
44
|
Yeh HW, Ai HW. Development and Applications of Bioluminescent and Chemiluminescent Reporters and Biosensors. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:129-150. [PMID: 30786216 PMCID: PMC6565457 DOI: 10.1146/annurev-anchem-061318-115027] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Although fluorescent reporters and biosensors have become indispensable tools in biological and biomedical fields, fluorescence measurements require external excitation light, thereby limiting their use in thick tissues and live animals. Bioluminescent reporters and biosensors may potentially overcome this hurdle because they use enzyme-catalyzed exothermic biochemical reactions to generate excited-state emitters. This review first introduces the development of bioluminescent reporters, and next, their applications in sensing biological changes in vitro and in vivo as biosensors. Lastly, we discuss chemiluminescent sensors that produce photons in the absence of luciferases. This review aims to explore fundamentals and experimental insights and to emphasize the yet-to-be-reached potential of next-generation luminescent reporters and biosensors.
Collapse
Affiliation(s)
- Hsien-Wei Yeh
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, and Department of Chemistry, University of Virginia, Charlottesville, Virginia 22908, USA;
| | - Hui-Wang Ai
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, and Department of Chemistry, University of Virginia, Charlottesville, Virginia 22908, USA;
| |
Collapse
|
45
|
Bubyrev AI, Tsarkova AS, Kaskova ZM. Optimization of Fungal Luciferin Synthesis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s106816201902002x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Osipova ZM, Shcheglov AS, Yampolsky IV. Bioluminescent imaging: new opportunities. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2018. [DOI: 10.24075/brsmu.2018.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Modern biomedical research technologies actively use bioimaging for studying cells, tissues and whole organisms. Multicolor bioimaging is applied when simultaneous observation of different events at the molecular and cellular level is needed. Bioluminescent imaging methods are the most sensitive, however, their use for multicolor labeling is complicated due to the insufficient number of available uciferin-luciferase pairs. Having a number of advantages compared to previously studied bioluminescent systems, the new bioluminescence systems of higher fungi and marine polychaete Odontosyllis could become a useful expansion of the bioimaging toolbox.
Collapse
Affiliation(s)
- ZM Osipova
- Biomolecular Chemistry Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow; Laboratory of Natural Compounds Chemistry, Pirogov Russian National Research Medical University, Moscow
| | - AS Shcheglov
- Biomolecular Chemistry Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow; Laboratory of Natural Compounds Chemistry, Pirogov Russian National Research Medical University, Moscow
| | - IV Yampolsky
- Biomolecular Chemistry Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow; Laboratory of Natural Compounds Chemistry, Pirogov Russian National Research Medical University, Moscow
| |
Collapse
|
47
|
Abstract
We present identification of the luciferase and enzymes of the biosynthesis of a eukaryotic luciferin from fungi. Fungi possess a simple bioluminescent system, with luciferin being only two enzymatic steps from well-known metabolic pathways. The expression of genes from the fungal bioluminescent pathway is not toxic to eukaryotic cells, and the luciferase can be easily co-opted to bioimaging applications. With the fungal system being a genetically encodable bioluminescent system from eukaryotes, it is now possible to create artificially bioluminescent eukaryotes by expression of three genes. The fungal bioluminescent system represents an example of molecular evolution of a complex ecological trait and with molecular details reported in the paper, will allow additional research into ecological significance of fungal bioluminescence. Bioluminescence is found across the entire tree of life, conferring a spectacular set of visually oriented functions from attracting mates to scaring off predators. Half a dozen different luciferins, molecules that emit light when enzymatically oxidized, are known. However, just one biochemical pathway for luciferin biosynthesis has been described in full, which is found only in bacteria. Here, we report identification of the fungal luciferase and three other key enzymes that together form the biosynthetic cycle of the fungal luciferin from caffeic acid, a simple and widespread metabolite. Introduction of the identified genes into the genome of the yeast Pichia pastoris along with caffeic acid biosynthesis genes resulted in a strain that is autoluminescent in standard media. We analyzed evolution of the enzymes of the luciferin biosynthesis cycle and found that fungal bioluminescence emerged through a series of events that included two independent gene duplications. The retention of the duplicated enzymes of the luciferin pathway in nonluminescent fungi shows that the gene duplication was followed by functional sequence divergence of enzymes of at least one gene in the biosynthetic pathway and suggests that the evolution of fungal bioluminescence proceeded through several closely related stepping stone nonluminescent biochemical reactions with adaptive roles. The availability of a complete eukaryotic luciferin biosynthesis pathway provides several applications in biomedicine and bioengineering.
Collapse
|
48
|
Magalhães CM, Esteves da Silva JCG, Pinto da Silva L. Comparative study of the chemiluminescence of coelenterazine, coelenterazine-e and Cypridina luciferin with an experimental and theoretical approach. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 190:21-31. [PMID: 30453161 DOI: 10.1016/j.jphotobiol.2018.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/05/2018] [Accepted: 11/12/2018] [Indexed: 01/22/2023]
Abstract
Imidazopyrazinone is a typical scaffold present in marine bioluminescence, in which thermal energy is converted into excitation energy in an enzyme-catalyzed reaction. In fact, the imidazopyrazinone scaffold is a common link among organisms of eight phyla. The characterization of the light emission mechanism is essential for the development of future applications in bioimaging, bioanalysis and biomedicine. Herein, we have studied the chemiluminescent reaction of three commercially-available imidazopyrazinones (Cypridina luciferin, Coelenterazine and Coelenterazine-e) in several aprotic solvents at different pH. We have found that at acidic pH only DMF and DMSO consistently present high light emission, while chemiluminescence in other solvents is negligible. We have attributed this to the inability of most solvents to allow for the deprotonation of the imidazopyrazinone core, thereby preventing the oxygenation step. We have also observed that increasing the pH of the solution leads to the inhibition of chemiluminescence, which we attributed to the deprotonation of the dioxetanone intermediate, as the neutral species is the one associated with efficient chemiexcitation. We have also observed that the pKa of dioxetanone increases with the dielectric constant of the medium. Finally, our work indicated that the chemiexcitation yield increases with increasing polarity of the medium, due to a reduced transition dipole moment associated with S0 → S1 transition.
Collapse
Affiliation(s)
- Carla M Magalhães
- Chemistry Research Unit (CIQUP), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal; Master in Oncology, Institute of Biomedical Sciences Abel Salazar - University of Porto (ICBAS-UP), Porto, Portugal
| | - Joaquim C G Esteves da Silva
- LACOMEPHI, GreenUP, Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences of University of Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal; Chemistry Research Unit (CIQUP), Environment and Territorial Planning, Faculty of Sciences of University of Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal
| | - Luís Pinto da Silva
- Chemistry Research Unit (CIQUP), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal; LACOMEPHI, GreenUP, Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences of University of Porto, R. Campo Alegre 687, 4169-007 Porto, Portugal.
| |
Collapse
|
49
|
Bioluminescence expression during the transition from mycelium to mushroom in three North American Armillaria and Desarmillaria species. Fungal Biol 2018; 122:1064-1068. [PMID: 30342622 DOI: 10.1016/j.funbio.2018.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/19/2018] [Accepted: 08/28/2018] [Indexed: 11/23/2022]
Abstract
Unlike most bioluminescent fungi, mycelia of Armillaria and Desarmillaria are constitutively bioluminescent while mature mushrooms are not. The absence of the luciferin, 3-hydroxyhispidin, and its precursor hispidin in mature mushrooms have been proposed to explain the lack of bioluminescence from Armillaria mushrooms. Using three North American species, A. gallica, A. mellea and D. tabescens (syn., Armillaria tabescens), we documented a decline in luminescence of ten fold during the transition from mycelia to, immature mushrooms (i.e., pins) for the two Armillaria species. As pins matured, luminescence declined by an additional two or three orders of magnitude. Lower initial luminescence of D. tabescens mycelia declined to negligible levels during mushroom development. Further, light production was localized in the gills and lower stipe of A. mellea mushrooms. The decline in luminescence during mushroom formation was reversed by addition of hispidin to stipe or gills which significantly enhanced luminescence by one and three orders of magnitude, respectively. We conclude that the modulation of Armillaria and Desarmillaria luminescence is achieved by luciferin availability early in mushroom development. However, since the temporal regulation of bioluminescence differs between Armillaria species and other genera, we conclude that bioluminescence in Armillaria is under unique selective pressures.
Collapse
|
50
|
Teranishi K. Trans-3-hydroxyhispidin is not an actual bioluminescence substrate in pileus gills of the luminous fungus Mycena chlorophos. Biochem Biophys Res Commun 2018; 504:190-195. [PMID: 30172376 DOI: 10.1016/j.bbrc.2018.08.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
Mycena chlorophos is a species of molecular oxygen-dependent bioluminescent fungus, and its pileus gills emit bright green light. The chemical mechanisms underlying this bioluminescence phenomenon are not yet understood. An enzyme (luciferase) producing light from trans-3-hydroxyhispidin is present in M. chlorophos pileus gills. However, it is unclear whether trans-3-hydroxyhispidin is an actual bioluminescence substrate (luciferin) in the natural bioluminescence of M. chlorophos. In the present study, this question is resolved. It was clearly demonstrated that the trans-3-hydroxyhispidin analog trans-3-hydroxybisnoryangonin significantly inhibited the artificial luminescence induced by the addition of trans-3-hydroxyhispidin to living pileus gills but did not inhibit natural bioluminescence in living pileus gills. This inhibition was due to the reaction of trans-3-hydroxybisnoryangonin with luciferase for trans-3-hydroxyhispidin. Even though trans-4-aminocinnamic acid is known to inhibit natural bioluminescence in living pileus gills, in the present study, trans-4-aminocinnamic acid did not influence the artificial luminescence via trans-3-hydroxyhispidin in the presence of luciferase for trans-3-hydroxyhispidin. These inconsistencies between the natural bioluminescence and the artificial luminescence of trans-3-hydroxyhispidin indicate that trans-3-hydroxyhispidin is not an actual luciferin in natural bioluminescence. Trans-3,4-dihydroxycinnamic acid is generally known to be an intermediate in trans-3-hydroxyhispidin biosynthesis. The artificial luminescence induced by the addition of trans-3,4-dihydroxycinnamic acid to living pileus gills was not inhibited by trans-3-hydroxybisnoryangonin. Therefore, trans-3,4-dihydroxycinnamic acid does not contribute to the luminescence involving trans-3-hydroxyhispidin in living pileus gills.
Collapse
Affiliation(s)
- Katsunori Teranishi
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|