1
|
Furlanetto F, Flegel N, Kremp M, Spear C, Fröb F, Alfonsetti M, Bohl B, Krumbiegel M, Turan S, Reis A, Lie DC, Winkler J, Falk S, Wegner M, Karow M. A novel human organoid model system reveals requirement of TCF4 for oligodendroglial differentiation. Life Sci Alliance 2025; 8:e202403102. [PMID: 40155049 PMCID: PMC11953572 DOI: 10.26508/lsa.202403102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025] Open
Abstract
Heterozygous mutations of TCF4 in humans cause Pitt-Hopkins syndrome, a neurodevelopmental disease associated with intellectual disability and brain malformations. Although most studies focus on the role of TCF4 in neural stem cells and neurons, we here set out to assess the implication of TCF4 for oligodendroglial differentiation. We discovered that both monoallelic and biallelic mutations in TCF4 result in a diminished capacity to differentiate human neural progenitor cells toward myelinating oligodendrocytes through the forced expression of the transcription factors SOX10, OLIG2, and NKX6.2. Using this experimental strategy, we established a novel organoid model, which generates oligodendroglial cells within a human neurogenic tissue-like context. Also, here we found a reduced ability of TCF4 heterozygous cells to differentiate toward oligodendroglial cells. In sum, we establish a role of human TCF4 in oligodendrocyte differentiation and provide a model system, which allows to dissect the disease etiology in a human tissue-like context.
Collapse
Affiliation(s)
- Federica Furlanetto
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nicole Flegel
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marco Kremp
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Chiara Spear
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Fröb
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Margherita Alfonsetti
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bettina Bohl
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mandy Krumbiegel
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sören Turan
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andre Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dieter C Lie
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Institute of Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sven Falk
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Wegner
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marisa Karow
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Yaman Y, Önaldi AT, Doğan Ş, Kirbaş M, Behrem S, Kal Y. Exploring the polygenic landscape of wool traits in Turkish Merinos through multi-locus GWAS approaches: middle Anatolian Merino. Sci Rep 2025; 15:10611. [PMID: 40148429 PMCID: PMC11950403 DOI: 10.1038/s41598-025-95099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
This study investigates the genetic underpinnings of wool traits, specifically fibre diameter (FD) and staple length (SL), in Middle Anatolian Merino sheep using multi-locus genome-wide association study (GWAS) approaches. Representing the first attempt to examine these polygenic traits with multi-locus methods, the analysis employed four techniques: mrMLM, FASTmrMLM, FASTmrEMMA, and ISIS EM-BLASSO. A total of 18 Quantitative Trait Nucleotides (QTNs) were identified for FD, with 7 co-detected by multiple methods, and 14 QTNs were identified for SL, with 5 co-detected by multiple methods. Post-hoc power analysis revealed high statistical power for both traits (FD: 0.95, SL: 0.91). Notably, three candidate genes-PTPN3, TCF4, and ZBTB8A-were found to be consistent with prior studies. Gene enrichment and pathway analyses reaffirmed the complex and multifactorial molecular mechanisms governing wool traits. These findings enhance our understanding of the polygenic nature of wool traits, shedding light on the intricate genetic regulation and pinpointing genomic regions potentially influencing wool physiology. By identifying specific QTNs associated with FD and SL, this research provides a foundation for elucidating the genetic mechanisms underlying these economically significant traits. Upon validation in diverse populations, these findings hold substantial promise for the application of marker-assisted selection (MAS) to improve wool traits.
Collapse
Affiliation(s)
- Yalçın Yaman
- Department of Genetics, Faculty of Veterinary Medicine, Siirt University, Siirt, 56000, Turkey.
| | - A Taner Önaldi
- Bahri Dagtas International Agricultural Research Institute, Konya, 42000, Turkey
| | - Şükrü Doğan
- Bahri Dagtas International Agricultural Research Institute, Konya, 42000, Turkey
| | - Mesut Kirbaş
- Bahri Dagtas International Agricultural Research Institute, Konya, 42000, Turkey
| | - Sedat Behrem
- Department of Genetics, Faculty of Veterinary Medicine, Aksaray University, Aksaray, 68000, Turkey
| | - Yavuz Kal
- Bahri Dagtas International Agricultural Research Institute, Konya, 42000, Turkey
| |
Collapse
|
3
|
Liang L, Zhang S, Wang Z, Zhang H, Li C, Duhe AC, Sun X, Zhong X, Kozlova A, Jamison B, Wood W, Pang ZP, Sanders AR, He X, Duan J. Single-cell multiomics of neuronal activation reveals context-dependent genetic control of brain disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638682. [PMID: 40027724 PMCID: PMC11870544 DOI: 10.1101/2025.02.17.638682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Despite hundreds of genetic risk loci identified for neuropsychiatric disorders (NPD), most causal variants/genes remain unknown. A major hurdle is that disease risk variants may act in specific biological contexts, e.g., during neuronal activation, which is difficult to study in vivo at the population level. Here, we conducted a single-cell multiomics study of neuronal activation (stimulation) in human iPSC-induced excitatory and inhibitory neurons from 100 donors, and uncovered abundant neuronal stimulation-specific causal variants/genes for NPD. We surveyed NPD-relevant transcriptomic and epigenomic landscape of neuronal activation and identified thousands of genetic variants associated with activity-dependent gene expression (i.e., eQTL) and chromatin accessibility (i.e., caQTL). These caQTL explained considerably larger proportions of NPD heritability than the eQTL. Integrating the multiomic data with GWAS further revealed NPD risk variants/genes whose effects were only detected upon stimulation. Interestingly, multiple lines of evidence support a role of activity-dependent cholesterol metabolism in NPD. Our work highlights the power of cell stimulation to reveal context-dependent "hidden" genetic effects.
Collapse
Affiliation(s)
- Lifan Liang
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Siwei Zhang
- Center for Psychiatric Genetics, Endeavor Health Research Institute, Evanston, IL 60201, USA
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, USA
| | - Zicheng Wang
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Hanwen Zhang
- Center for Psychiatric Genetics, Endeavor Health Research Institute, Evanston, IL 60201, USA
| | - Chuxuan Li
- Center for Psychiatric Genetics, Endeavor Health Research Institute, Evanston, IL 60201, USA
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra C. Duhe
- Center for Psychiatric Genetics, Endeavor Health Research Institute, Evanston, IL 60201, USA
| | - Xiaotong Sun
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Xiaoyuan Zhong
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Alena Kozlova
- Center for Psychiatric Genetics, Endeavor Health Research Institute, Evanston, IL 60201, USA
| | - Brendan Jamison
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
- Center for Psychiatric Genetics, Endeavor Health Research Institute, Evanston, IL 60201, USA
| | - Whitney Wood
- Center for Psychiatric Genetics, Endeavor Health Research Institute, Evanston, IL 60201, USA
| | - Zhiping P. Pang
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Alan R. Sanders
- Center for Psychiatric Genetics, Endeavor Health Research Institute, Evanston, IL 60201, USA
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, USA
| | - Xin He
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Jubao Duan
- Center for Psychiatric Genetics, Endeavor Health Research Institute, Evanston, IL 60201, USA
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Pang Y, Ruan X, Liu W, Hou L, Yin B, Shu P, Peng X. MicroRNA-495 Modulates Neuronal Layer Fate Determination by Targeting Tcf4. Int J Biol Sci 2024; 20:6207-6221. [PMID: 39664574 PMCID: PMC11628341 DOI: 10.7150/ijbs.94739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 10/25/2024] [Indexed: 12/13/2024] Open
Abstract
During cortical development, the differentiation potential of neural progenitor cells (NPCs) is one of the most critical steps in normal cortical formation and function. Defects in this process can lead to many brain disorders. MicroRNA dysregulation in the dorsolateral prefrontal cortex is associated with risk for a variety of developmental and psychiatric conditions. However, the molecular mechanisms underlying this process remain largely unknown. In this study, we found that microRNA-495-3p (miR-495) is expressed in NPCs of the developing mouse cerebral cortex. Furthermore, aberrant expression of miR-495 promotes the formation of superficial neurons. Our results suggest that miR-495 can target transcription factor 4 (TCF4), a gene linked to the neurodevelopmental disorder Pitt-Hopkins syndrome (PTHS), to ensure normal differentiation of NPCs in the developing cerebral cortex. Furthermore, TCF4 loss-of-function and gain-of-function experiments show opposite effects on miR-495 regulation of neural progenitor differentiation potential. Together, these results demonstrated that miR-495 regulates cortical development through TCF4 for the first time.
Collapse
Affiliation(s)
- Yunli Pang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Xiangbin Ruan
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Wei Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Lin Hou
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Bin Yin
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Pengcheng Shu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Xiaozhong Peng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing 100005, China
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
5
|
Savchenko RR, Skryabin NA. Transcription factor TCF4: structure, function, and associated diseases. Vavilovskii Zhurnal Genet Selektsii 2024; 28:770-779. [PMID: 39722673 PMCID: PMC11667571 DOI: 10.18699/vjgb-24-85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/30/2024] [Accepted: 07/23/2024] [Indexed: 12/28/2024] Open
Abstract
Our understanding of human genes - particularly their structure, functions, and regulatory mechanisms - is still limited. The biological role of approximately 20 % of human proteins has not been established yet, and the molecular functions of the known part of the proteome remain poorly understood. This hinders progress in basic and applied biological and medical sciences, especially in treating hereditary diseases, which are caused by mutations and polymorphic variants in individual genes. Therefore, it is crucial to comprehend the mechanisms of protein functioning to address this problem. This further emphasizes the importance of investigating gene functions and molecular pathogenetic pathways associated with single-gene inherited diseases. This review focuses on the TCF4 gene that encodes a transcription factor crucial for nervous system development and functioning. Pathogenic variants in this gene have been linked to a rare genetic disorder, Pitt-Hopkins syndrome, and TCF4 polymorphic variants are associated with several socially significant diseases, including various psychiatric disorders. The pathogenetic mechanisms of these conditions remain unexplored, and the knowledge about TCF4 upregulation and its target genes is limited. TCF4 can be expressed in various isoforms due to the complex structure and regulation of its gene, which complicates the investigation of the protein's functions. Here, we consider the structure and functions of the TCF4 transcription factor. We discuss its potential target genes and the possible loss-of-function pathogenetic mechanisms identified in animal and cellular models of Pitt-Hopkins syndrome. The review also examines the advantages and limitations of potential therapies for Pitt-Hopkins syndrome that are based on TCF4 dosage compensation or altering the activity of TCF4 target genes.
Collapse
Affiliation(s)
- R R Savchenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - N A Skryabin
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
6
|
Muhtaseb AW, Duan J. Modeling common and rare genetic risk factors of neuropsychiatric disorders in human induced pluripotent stem cells. Schizophr Res 2024; 273:39-61. [PMID: 35459617 PMCID: PMC9735430 DOI: 10.1016/j.schres.2022.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022]
Abstract
Recent genome-wide association studies (GWAS) and whole-exome sequencing of neuropsychiatric disorders, especially schizophrenia, have identified a plethora of common and rare disease risk variants/genes. Translating the mounting human genetic discoveries into novel disease biology and more tailored clinical treatments is tied to our ability to causally connect genetic risk variants to molecular and cellular phenotypes. When combined with the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas) nuclease-mediated genome editing system, human induced pluripotent stem cell (hiPSC)-derived neural cultures (both 2D and 3D organoids) provide a promising tractable cellular model for bridging the gap between genetic findings and disease biology. In this review, we first conceptualize the advances in understanding the disease polygenicity and convergence from the past decade of iPSC modeling of different types of genetic risk factors of neuropsychiatric disorders. We then discuss the major cell types and cellular phenotypes that are most relevant to neuropsychiatric disorders in iPSC modeling. Finally, we critically review the limitations of iPSC modeling of neuropsychiatric disorders and outline the need for implementing and developing novel methods to scale up the number of iPSC lines and disease risk variants in a systematic manner. Sufficiently scaled-up iPSC modeling and a better functional interpretation of genetic risk variants, in combination with cutting-edge CRISPR/Cas9 gene editing and single-cell multi-omics methods, will enable the field to identify the specific and convergent molecular and cellular phenotypes in precision for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Abdurrahman W Muhtaseb
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, United States of America; Department of Human Genetics, The University of Chicago, Chicago, IL 60637, United States of America
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, United States of America; Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, United States of America.
| |
Collapse
|
7
|
Doostparast Torshizi A, Truong DT, Hou L, Smets B, Whelan CD, Li S. Proteogenomic network analysis reveals dysregulated mechanisms and potential mediators in Parkinson's disease. Nat Commun 2024; 15:6430. [PMID: 39080267 PMCID: PMC11289099 DOI: 10.1038/s41467-024-50718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Parkinson's disease is highly heterogeneous across disease symptoms, clinical manifestations and progression trajectories, hampering the identification of therapeutic targets. Despite knowledge gleaned from genetics analysis, dysregulated proteome mechanisms stemming from genetic aberrations remain underexplored. In this study, we develop a three-phase system-level proteogenomic analytical framework to characterize disease-associated proteins and dysregulated mechanisms. Proteogenomic analysis identified 577 proteins that enrich for Parkinson's disease-related pathways, such as cytokine receptor interactions and lysosomal function. Converging lines of evidence identified nine proteins, including LGALS3, CSNK2A1, SMPD3, STX4, APOA2, PAFAH1B3, LDLR, HSPB1, BRK1, with potential roles in disease pathogenesis. This study leverages the largest population-scale proteomics dataset, the UK Biobank Pharma Proteomics Project, to characterize genetically-driven protein disturbances associated with Parkinson's disease. Taken together, our work contributes to better understanding of genome-proteome dynamics in Parkinson's disease and sets a paradigm to identify potential indirect mediators connected to GWAS signals for complex neurodegenerative disorders.
Collapse
Affiliation(s)
- Abolfazl Doostparast Torshizi
- Population Analytics & Insights, AI/ML, Data Science & Digital Health, Janssen Research & Development, LLC, Spring House, PA, USA.
| | - Dongnhu T Truong
- Population Analytics & Insights, AI/ML, Data Science & Digital Health, Janssen Research & Development, LLC, Spring House, PA, USA
| | - Liping Hou
- Population Analytics & Insights, AI/ML, Data Science & Digital Health, Janssen Research & Development, LLC, Spring House, PA, USA
| | - Bart Smets
- Neuroscience Data Science, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Christopher D Whelan
- Neuroscience Data Science, Janssen Research & Development, LLC, Cambridge, MA, USA
| | - Shuwei Li
- Population Analytics & Insights, AI/ML, Data Science & Digital Health, Janssen Research & Development, LLC, Spring House, PA, USA
| |
Collapse
|
8
|
Bhattacharyya N, Chai N, Hafford-Tear NJ, Sadan AN, Szabo A, Zarouchlioti C, Jedlickova J, Leung SK, Liao T, Dudakova L, Skalicka P, Parekh M, Moghul I, Jeffries AR, Cheetham ME, Muthusamy K, Hardcastle AJ, Pontikos N, Liskova P, Tuft SJ, Davidson AE. Deciphering novel TCF4-driven mechanisms underlying a common triplet repeat expansion-mediated disease. PLoS Genet 2024; 20:e1011230. [PMID: 38713708 PMCID: PMC11101122 DOI: 10.1371/journal.pgen.1011230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/17/2024] [Accepted: 03/19/2024] [Indexed: 05/09/2024] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is an age-related cause of vision loss, and the most common repeat expansion-mediated disease in humans characterised to date. Up to 80% of European FECD cases have been attributed to expansion of a non-coding CTG repeat element (termed CTG18.1) located within the ubiquitously expressed transcription factor encoding gene, TCF4. The non-coding nature of the repeat and the transcriptomic complexity of TCF4 have made it extremely challenging to experimentally decipher the molecular mechanisms underlying this disease. Here we comprehensively describe CTG18.1 expansion-driven molecular components of disease within primary patient-derived corneal endothelial cells (CECs), generated from a large cohort of individuals with CTG18.1-expanded (Exp+) and CTG 18.1-independent (Exp-) FECD. We employ long-read, short-read, and spatial transcriptomic techniques to interrogate expansion-specific transcriptomic biomarkers. Interrogation of long-read sequencing and alternative splicing analysis of short-read transcriptomic data together reveals the global extent of altered splicing occurring within Exp+ FECD, and unique transcripts associated with CTG18.1-expansions. Similarly, differential gene expression analysis highlights the total transcriptomic consequences of Exp+ FECD within CECs. Furthermore, differential exon usage, pathway enrichment and spatial transcriptomics reveal TCF4 isoform ratio skewing solely in Exp+ FECD with potential downstream functional consequences. Lastly, exome data from 134 Exp- FECD cases identified rare (minor allele frequency <0.005) and potentially deleterious (CADD>15) TCF4 variants in 7/134 FECD Exp- cases, suggesting that TCF4 variants independent of CTG18.1 may increase FECD risk. In summary, our study supports the hypothesis that at least two distinct pathogenic mechanisms, RNA toxicity and TCF4 isoform-specific dysregulation, both underpin the pathophysiology of FECD. We anticipate these data will inform and guide the development of translational interventions for this common triplet-repeat mediated disease.
Collapse
Affiliation(s)
- Nihar Bhattacharyya
- University College London Institute of Ophthalmology, London, United Kingdom
| | - Niuzheng Chai
- University College London Institute of Ophthalmology, London, United Kingdom
| | | | - Amanda N. Sadan
- University College London Institute of Ophthalmology, London, United Kingdom
| | - Anita Szabo
- University College London Institute of Ophthalmology, London, United Kingdom
| | | | - Jana Jedlickova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Szi Kay Leung
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Tianyi Liao
- University College London Institute of Ophthalmology, London, United Kingdom
| | - Lubica Dudakova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Pavlina Skalicka
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Mohit Parekh
- University College London Institute of Ophthalmology, London, United Kingdom
| | - Ismail Moghul
- University College London Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital, London, United Kingdom
| | - Aaron R. Jeffries
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Michael E. Cheetham
- University College London Institute of Ophthalmology, London, United Kingdom
| | | | - Alison J. Hardcastle
- University College London Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital, London, United Kingdom
| | - Nikolas Pontikos
- University College London Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital, London, United Kingdom
| | - Petra Liskova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Stephen J. Tuft
- University College London Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital, London, United Kingdom
| | - Alice E. Davidson
- University College London Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital, London, United Kingdom
| |
Collapse
|
9
|
Davis BA, Chen HY, Ye Z, Ostlund I, Tippani M, Das D, Sripathy SR, Wang Y, Martin JM, Shim G, Panchwagh NM, Moses RL, Farinelli F, Bohlen JF, Li M, Luikart BW, Jaffe AE, Maher BJ. TCF4 Mutations Disrupt Synaptic Function Through Dysregulation of RIMBP2 in Patient-Derived Cortical Neurons. Biol Psychiatry 2024; 95:662-675. [PMID: 37573005 PMCID: PMC10858293 DOI: 10.1016/j.biopsych.2023.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/21/2023] [Accepted: 07/14/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Genetic variation in the TCF4 (transcription factor 4) gene is associated with risk for a variety of developmental and psychiatric conditions, which includes a syndromic form of autism spectrum disorder called Pitt-Hopkins syndrome (PTHS). TCF4 encodes an activity-dependent transcription factor that is highly expressed during cortical development and in animal models has been shown to regulate various aspects of neuronal development and function. However, our understanding of how disease-causing mutations in TCF4 confer pathophysiology in a human context is lacking. METHODS To model PTHS, we differentiated human cortical neurons from human induced pluripotent stem cells that were derived from patients with PTHS and neurotypical individuals. To identify pathophysiology and disease mechanisms, we assayed cortical neurons with whole-cell electrophysiology, Ca2+ imaging, multielectrode arrays, immunocytochemistry, and RNA sequencing. RESULTS Cortical neurons derived from patients with TCF4 mutations showed deficits in spontaneous synaptic transmission, network excitability, and homeostatic plasticity. Transcriptomic analysis indicated that these phenotypes resulted in part from altered expression of genes involved in presynaptic neurotransmission and identified the presynaptic binding protein RIMBP2 as the most differentially expressed gene in PTHS neurons. Remarkably, TCF4-dependent deficits in spontaneous synaptic transmission and network excitability were rescued by increasing RIMBP2 expression in presynaptic neurons. CONCLUSIONS Taken together, these results identify TCF4 as a critical transcriptional regulator of human synaptic development and plasticity and specifically identifies dysregulation of presynaptic function as an early pathophysiology in PTHS.
Collapse
Affiliation(s)
- Brittany A Davis
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Huei-Ying Chen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Zengyou Ye
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Isaac Ostlund
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Debamitra Das
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Srinidhi Rao Sripathy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Yanhong Wang
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Jacqueline M Martin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Gina Shim
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Neel M Panchwagh
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Rebecca L Moses
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Federica Farinelli
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Joseph F Bohlen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Meijie Li
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Bryan W Luikart
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland; McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Brady J Maher
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
10
|
Yang K, Ayala-Grosso C, Bhattarai JP, Sheriff A, Takahashi T, Cristino AS, Zelano C, Ma M. Unraveling the Link between Olfactory Deficits and Neuropsychiatric Disorders. J Neurosci 2023; 43:7501-7510. [PMID: 37940584 PMCID: PMC10634556 DOI: 10.1523/jneurosci.1380-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 11/10/2023] Open
Abstract
Smell loss has caught public attention during the recent COVID-19 pandemic. Research on olfactory function in health and disease gains new momentum. Smell deficits have long been recognized as an early clinical sign associated with neuropsychiatric disorders. Here we review research on the associations between olfactory deficits and neuropathological conditions, focusing on recent progress in four areas: (1) human clinical studies of the correlations between smell deficits and neuropsychiatric disorders; (2) development of olfactory mucosa-derived tissue and cell models for studying the molecular pathologic mechanisms; (3) recent findings in brain imaging studies of structural and functional connectivity changes in olfactory pathways in neuropsychiatric disorders; and (4) application of preclinical animal models to validate and extend the findings from human subjects. Together, these studies have provided strong evidence of the link between the olfactory system and neuropsychiatric disorders, highlighting the relevance of deepening our understanding of the role of the olfactory system in pathophysiological processes. Following the lead of studies reviewed here, future research in this field may open the door to the early detection of neuropsychiatric disorders, personalized treatment approaches, and potential therapeutic interventions through nasal administration techniques, such as nasal brush or nasal spray.
Collapse
Affiliation(s)
- Kun Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Carlos Ayala-Grosso
- Unit of Cellular Therapy, Centre of Experimental Medicine, Instituto Venezolano de Investigaciones Cientificas, Caracas, 1020-A, Venezuela
- Unit of Advanced Therapies, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud, Bogotá, Colombia 111-611
| | - Janardhan P Bhattarai
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Andrew Sheriff
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, 930-0194, Japan
| | - Alexandre S Cristino
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Christina Zelano
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
11
|
Mihaljevic M, Lam M, Ayala-Grosso C, Davis-Batt F, Schretlen DJ, Ishizuka K, Yang K, Sawa A. Olfactory neuronal cells as a promising tool to realize the "druggable genome" approach for drug discovery in neuropsychiatric disorders. Front Neurosci 2023; 16:1081124. [PMID: 36967982 PMCID: PMC10038100 DOI: 10.3389/fnins.2022.1081124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/26/2022] [Indexed: 03/12/2023] Open
Abstract
"Druggable genome" is a novel concept that emphasizes the importance of using the information of genome-wide genetic studies for drug discovery and development. Successful precedents of "druggable genome" have recently emerged for some disorders by combining genomic and gene expression profiles with medical and pharmacological knowledge. One of the key premises for the success is the good access to disease-relevant tissues from "living" patients in which we may observe molecular expression changes in association with symptomatic alteration. Thus, given brain biopsies are ethically and practically difficult, the application of the "druggable genome" approach is challenging for neuropsychiatric disorders. Here, to fill this gap, we propose the use of olfactory neuronal cells (ONCs) biopsied and established via nasal biopsy from living subjects. By using candidate genes that were proposed in a study in which genetic information, postmortem brain expression profiles, and pharmacological knowledge were considered for cognition in the general population, we addressed the utility of ONCs in the "druggable genome" approach by using the clinical and cell resources of an established psychosis cohort in our group. Through this pilot effort, we underscored the chloride voltage-gated channel 2 (CLCN2) gene as a possible druggable candidate for early-stage psychosis. The CLCN2 gene expression was associated with verbal memory, but not with other dimensions in cognition, nor psychiatric manifestations (positive and negative symptoms). The association between this candidate molecule and verbal memory was also confirmed at the protein level. By using ONCs from living subjects, we now provide more specific information regarding molecular expression and clinical phenotypes. The use of ONCs also provides the opportunity of validating the relationship not only at the RNA level but also protein level, leading to the potential of functional assays in the future. Taken together, we now provide evidence that supports the utility of ONCs as a tool for the "druggable genome" approach in translational psychiatry.
Collapse
Affiliation(s)
- Marina Mihaljevic
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Max Lam
- IMH Neuropsychiatric Genomics Laboratory, Institute of Mental Health, Singapore, Singapore
- Population and Global Health, LKC Medicine, Nanyang Technological University, Singapore, Singapore
- Neurogenomic Biomarkers Laboratory, Zucker Hillside Hospital, Glen Oaks, NY, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Carlos Ayala-Grosso
- Unit of Cellular Therapy, Centre of Experimental Medicine, Instituto Venezolano de Investigaciones Cientificas IVIC, Caracas, Venezuela
| | - Finn Davis-Batt
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David J. Schretlen
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Koko Ishizuka
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kun Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Akira Sawa
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
12
|
Namkung H, Yukitake H, Fukudome D, Lee BJ, Tian M, Ursini G, Saito A, Lam S, Kannan S, Srivastava R, Niwa M, Sharma K, Zandi P, Jaaro-Peled H, Ishizuka K, Chatterjee N, Huganir RL, Sawa A. The miR-124-AMPAR pathway connects polygenic risks with behavioral changes shared between schizophrenia and bipolar disorder. Neuron 2023; 111:220-235.e9. [PMID: 36379214 PMCID: PMC10183200 DOI: 10.1016/j.neuron.2022.10.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 08/16/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022]
Abstract
Schizophrenia (SZ) and bipolar disorder (BP) are highly heritable major psychiatric disorders that share a substantial portion of genetic risk as well as their clinical manifestations. This raises a fundamental question of whether, and how, common neurobiological pathways translate their shared polygenic risks into shared clinical manifestations. This study shows the miR-124-3p-AMPAR pathway as a key common neurobiological mediator that connects polygenic risks with behavioral changes shared between these two psychotic disorders. We discovered the upregulation of miR-124-3p in neuronal cells and the postmortem prefrontal cortex from both SZ and BP patients. Intriguingly, the upregulation is associated with the polygenic risks shared between these two disorders. Seeking mechanistic dissection, we generated a mouse model that upregulates miR-124-3p in the medial prefrontal cortex. We demonstrated that the upregulation of miR-124-3p increases GRIA2-lacking calcium-permeable AMPARs and perturbs AMPAR-mediated excitatory synaptic transmission, leading to deficits in the behavioral dimensions shared between SZ and BP.
Collapse
Affiliation(s)
- Ho Namkung
- Department of Biomedical Engineering, Baltimore, MD, USA; Department of Psychiatry, Baltimore, MD, USA
| | | | | | - Brian J Lee
- Department of Psychiatry, Baltimore, MD, USA
| | | | - Gianluca Ursini
- Department of Psychiatry, Baltimore, MD, USA; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | | | - Shravika Lam
- Department of Psychiatry, Baltimore, MD, USA; Department of Neuroscience, Baltimore, MD, USA
| | - Suvarnambiga Kannan
- Department of Psychiatry, Baltimore, MD, USA; Department of Mental Health, Baltimore, MD, USA
| | | | - Minae Niwa
- Department of Psychiatry, Baltimore, MD, USA
| | - Kamal Sharma
- Department of Psychiatry, Baltimore, MD, USA; Department of Neuroscience, Baltimore, MD, USA
| | - Peter Zandi
- Department of Psychiatry, Baltimore, MD, USA; Department of Mental Health, Baltimore, MD, USA; Department of Epidemiology, Baltimore, MD, USA
| | | | | | - Nilanjan Chatterjee
- Department of Epidemiology, Baltimore, MD, USA; Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Richard L Huganir
- Department of Psychiatry, Baltimore, MD, USA; Department of Neuroscience, Baltimore, MD, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Akira Sawa
- Department of Biomedical Engineering, Baltimore, MD, USA; Department of Psychiatry, Baltimore, MD, USA; Department of Neuroscience, Baltimore, MD, USA; Department of Pharmacology, Baltimore, MD, USA; Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Mental Health, Baltimore, MD, USA.
| |
Collapse
|
13
|
Komorowski A, Murgaš M, Vidal R, Singh A, Gryglewski G, Kasper S, Wiltfang J, Lanzenberger R, Goya‐Maldonado R. Regional gene expression patterns are associated with task-specific brain activation during reward and emotion processing measured with functional MRI. Hum Brain Mapp 2022; 43:5266-5280. [PMID: 35796185 PMCID: PMC9812247 DOI: 10.1002/hbm.26001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 01/15/2023] Open
Abstract
The exploration of the spatial relationship between gene expression profiles and task-evoked response patterns known to be altered in neuropsychiatric disorders, for example depression, can guide the development of more targeted therapies. Here, we estimated the correlation between human transcriptome data and two different brain activation maps measured with functional magnetic resonance imaging (fMRI) in healthy subjects. Whole-brain activation patterns evoked during an emotional face recognition task were associated with topological mRNA expression of genes involved in cellular transport. In contrast, fMRI activation patterns related to the acceptance of monetary rewards were associated with genes implicated in cellular localization processes, metabolism, translation, and synapse regulation. An overlap of these genes with risk genes from major depressive disorder genome-wide association studies revealed the involvement of the master regulators TCF4 and PAX6 in emotion and reward processing. Overall, the identification of stable relationships between spatial gene expression profiles and fMRI data may reshape the prospects for imaging transcriptomics studies.
Collapse
Affiliation(s)
- Arkadiusz Komorowski
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH)Medical University of ViennaVienna
| | - Matej Murgaš
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH)Medical University of ViennaVienna
| | - Ramon Vidal
- Max Delbrück Center for Molecular MedicineBerlinGermany
| | - Aditya Singh
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP‐Lab), Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG)Georg‐August UniversityGoettingenGermany
| | - Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH)Medical University of ViennaVienna
- Child Study CenterYale UniversityNew HavenConnecticutUSA
| | - Siegfried Kasper
- Center for Brain ResearchMedical University of ViennaViennaAustria
| | - Jens Wiltfang
- Department of Psychiatry and PsychotherapyUniversity Medical Center Goettingen (UMG), Georg‐August UniversityGoettingenGermany
- German Center for Neurodegenerative Diseases (DZNE)GoettingenGermany
- Neurosciences and Signalling Group, Institute of Biomedicine (iBiMED), Department of Medical SciencesUniversity of AveiroAveiroPortugal
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH)Medical University of ViennaVienna
| | - Roberto Goya‐Maldonado
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP‐Lab), Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG)Georg‐August UniversityGoettingenGermany
| |
Collapse
|
14
|
Wan H, Gao W, Zhang W, Tao Z, Lu X, Chen F, Qin J. Network-based inference of master regulators in epithelial membrane protein 2-treated human RPE cells. BMC Genom Data 2022; 23:52. [PMID: 35799115 PMCID: PMC9264685 DOI: 10.1186/s12863-022-01047-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The application of cell-specific construction of transcription regulatory networks (TRNs) to identify their master regulators (MRs) in EMP2 induced vascular proliferation disorders has been largely unexplored.
Methods
Different expression gene (DEGs) analyses was processed with DESeq2 R package, for public RNA-seq transcriptome data of EMP2-treated hRPECs versus vector control (VC) or wild type (WT) hRPECs. Virtual Inference of protein activity by Enriched Regulon analysis (VIPER) was used for inferring regulator activity and ARACNE algorithm was conducted to construct TRNs and identify some MRs with DEGs from comparisons.
Results
Functional analysis of DEGs and the module analysis of TRNs demonstrated that over-expressed EMP2 leads to a significant induction in the activity of regulators next to transcription factors and other genes implicated in vasculature development, cell proliferation, and protein kinase B signaling, whereas regulators near several genes of platelet activation vascular proliferation were repressed. Among these, PDGFA, ALDH1L2, BA1AP3, ANGPT1 and ST3GAL5 were found differentially expressed and significantly activitve in EMP2-over-expressed hRPECs versus vector control under hypoxia and may thus identified as MRs for EMP2-induced lesion under hypoxia.
Conclusions
MRs obtained in this study might serve as potential biomarkers for EMP2 induced lesion under hypoxia, illustrating gene expression landscapes which might be specific for diabetic retinopathy and might provide improved understanding of the disease.
Collapse
|
15
|
Spatially resolved gene regulatory and disease-related vulnerability map of the adult Macaque cortex. Nat Commun 2022; 13:6747. [PMID: 36347848 PMCID: PMC9643508 DOI: 10.1038/s41467-022-34413-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Single cell approaches have increased our knowledge about the cell type composition of the non-human primate (NHP), but a detailed characterization of area-specific regulatory features remains outstanding. We generated single-cell transcriptomic and chromatin accessibility (single-cell ATAC) data of 358,237 cells from prefrontal cortex (PFC), primary motor cortex (M1) and primary visual cortex (V1) of adult female cynomolgus monkey brain, and integrated this dataset with Stereo-seq (spatial enhanced resolution omics-sequencing) of the corresponding cortical areas to assign topographic information to molecular states. We identified area-specific chromatin accessible sites and their targeted genes, including the cell type-specific transcriptional regulatory network associated with excitatory neurons heterogeneity. We reveal calcium ion transport and axon guidance genes related to specialized functions of PFC and M1, identified the similarities and differences between adult macaque and human oligodendrocyte trajectories, and mapped the genetic variants and gene perturbations of human diseases to NHP cortical cells. This resource establishes a transcriptomic and chromatin accessibility combinatory regulatory landscape at a single-cell and spatially resolved resolution in NHP cortex.
Collapse
|
16
|
Sirp A, Shubina A, Tuvikene J, Tamberg L, Kiir CS, Kranich L, Timmusk T. Expression of alternative transcription factor 4 mRNAs and protein isoforms in the developing and adult rodent and human tissues. Front Mol Neurosci 2022; 15:1033224. [PMID: 36407762 PMCID: PMC9666405 DOI: 10.3389/fnmol.2022.1033224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/05/2022] [Indexed: 01/25/2023] Open
Abstract
Transcription factor 4 (TCF4) belongs to the class I basic helix-loop-helix family of transcription factors (also known as E-proteins) and is vital for the development of the nervous system. Aberrations in the TCF4 gene are associated with several neurocognitive disorders such as schizophrenia, intellectual disability, post-traumatic stress disorder, depression, and Pitt-Hopkins Syndrome, a rare but severe autism spectrum disorder. Expression of the human TCF4 gene can produce at least 18 N-terminally distinct protein isoforms, which activate transcription with different activities and thus may vary in their function during development. We used long-read RNA-sequencing and western blot analysis combined with the analysis of publicly available short-read RNA-sequencing data to describe both the mRNA and protein expression of the many distinct TCF4 isoforms in rodent and human neural and nonneural tissues. We show that TCF4 mRNA and protein expression is much higher in the rodent brain compared to nonneural tissues. TCF4 protein expression is highest in the rodent cerebral cortex and hippocampus, where expression peaks around birth, and in the rodent cerebellum, where expression peaks about a week after birth. In human, highest TCF4 expression levels were seen in the developing brain, although some nonneural tissues displayed comparable expression levels to adult brain. In addition, we show for the first time that out of the many possible TCF4 isoforms, the main TCF4 isoforms expressed in the rodent and human brain and other tissues are TCF4-B, -C, -D, -A, and-I. Taken together, our isoform specific analysis of TCF4 expression in different tissues could be used for the generation of gene therapy applications for patients with TCF4-associated diseases.
Collapse
Affiliation(s)
- Alex Sirp
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Anastassia Shubina
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Jürgen Tuvikene
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia,Protobios LLC, Tallinn, Estonia
| | - Laura Tamberg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Carl Sander Kiir
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Laura Kranich
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Tõnis Timmusk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia,Protobios LLC, Tallinn, Estonia,*Correspondence: Tõnis Timmusk,
| |
Collapse
|
17
|
Abstract
How genetic and environmental risk factors interact to trigger the development of post-traumatic stress disorder (PTSD) remains largely unknown. Seah et al. model stress hypersensitivity as a potential mechanism by examining transcriptomic responses to glucocorticoids in neurons derived from individuals with PTSD.
Collapse
Affiliation(s)
- Siwei Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Alan R Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA.
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
18
|
Spironolactone alleviates schizophrenia-related reversal learning in Tcf4 transgenic mice subjected to social defeat. SCHIZOPHRENIA 2022; 8:77. [PMID: 36171421 PMCID: PMC9519974 DOI: 10.1038/s41537-022-00290-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/17/2022] [Indexed: 11/08/2022]
Abstract
AbstractCognitive deficits are a hallmark of schizophrenia, for which no convincing pharmacological treatment option is currently available. Here, we tested spironolactone as a repurposed compound in Tcf4 transgenic mice subjected to psychosocial stress. In this ‘2-hit’ gene by environment mouse (GxE) model, the animals showed schizophrenia-related cognitive deficits. We had previously shown that spironolactone ameliorates working memory deficits and hyperactivity in a mouse model of cortical excitatory/inhibitory (E/I) dysbalance caused by an overactive NRG1-ERBB4 signaling pathway. In an add-on clinical study design, we used spironolactone as adjuvant medication to the standard antipsychotic drug aripiprazole. We characterized the compound effects using our previously established Platform for Systematic Semi-Automated Behavioral and Cognitive Profiling (PsyCoP). PsyCoP is a widely applicable analysis pipeline based on the Research Domain Criteria (RDoC) framework aiming at facilitating translation into the clinic. In addition, we use dimensional reduction to analyze and visualize overall treatment effect profiles. We found that spironolactone and aripiprazole improve deficits of several cognitive domains in Tcf4tg x SD mice but partially interfere with each other’s effect in the combination therapy. A similar interaction was detected for the modulation of novelty-induced activity. In addition to its strong activity-dampening effects, we found an increase in negative valence measures as a side effect of aripiprazole treatment in mice. We suggest that repurposed drug candidates should first be tested in an adequate preclinical setting before initiating clinical trials. In addition, a more specific and effective NRG1-ERBB4 pathway inhibitor or more potent E/I balancing drug might enhance the ameliorating effect on cognition even further.
Collapse
|
19
|
Zug R, Uller T. Evolution and dysfunction of human cognitive and social traits: A transcriptional regulation perspective. EVOLUTIONARY HUMAN SCIENCES 2022; 4:e43. [PMID: 37588924 PMCID: PMC10426018 DOI: 10.1017/ehs.2022.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/11/2022] [Accepted: 09/11/2022] [Indexed: 11/07/2022] Open
Abstract
Evolutionary changes in brain and craniofacial development have endowed humans with unique cognitive and social skills, but also predisposed us to debilitating disorders in which these traits are disrupted. What are the developmental genetic underpinnings that connect the adaptive evolution of our cognition and sociality with the persistence of mental disorders with severe negative fitness effects? We argue that loss of function of genes involved in transcriptional regulation represents a crucial link between the evolution and dysfunction of human cognitive and social traits. The argument is based on the haploinsufficiency of many transcriptional regulator genes, which makes them particularly sensitive to loss-of-function mutations. We discuss how human brain and craniofacial traits evolved through partial loss of function (i.e. reduced expression) of these genes, a perspective compatible with the idea of human self-domestication. Moreover, we explain why selection against loss-of-function variants supports the view that mutation-selection-drift, rather than balancing selection, underlies the persistence of psychiatric disorders. Finally, we discuss testable predictions.
Collapse
Affiliation(s)
- Roman Zug
- Department of Biology, Lund University, Lund, Sweden
| | - Tobias Uller
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
20
|
Tissue-wide cell-specific proteogenomic modeling reveals novel candidate risk genes in autism spectrum disorders. NPJ Syst Biol Appl 2022; 8:31. [PMID: 36068227 PMCID: PMC9448731 DOI: 10.1038/s41540-022-00243-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
Autism spectrum disorders (ASD) are a set of complex neurodevelopmental diseases characterized with repetitive behavioral patterns and communication disabilities. Using a systems biology method called MAPSD (Markov Affinity-based Proteogenomic Signal Diffusion) for joint modeling of proteome dynamics and a wide array of omics datasets, we identified a list of candidate ASD risk genes. Leveraging the collected biological signals as well as a large-scale protein-protein interaction network adjusted based on single cell resolution proteome properties in four brain regions, we observed an agreement between the known and the newly identified candidate genes that are spatially enriched in neuronal cells within cerebral cortex at the protein level. Moreover, we created a detailed subcellular localization enrichment map of the known and the identified genes across 32 micro-domains and showed that neuronal cells and neuropils share the largest fraction of signal enrichment in cerebral cortex. Notably, we showed that the identified genes are among the transcriptional biomarkers of inhibitory and excitatory neurons in human frontal cortex. Intersecting the identified genes with a single cell RNA-seq data on ASD brains further evidenced that 20 candidate genes, including GRIK1, EMX2, STXBP6, and KCNJ3 are disrupted in distinct cell-types. Moreover, we showed that ASD risk genes are predominantly distributed in certain human interactome modules, and that the identified genes may act as the regulator for some of the known ASD loci. In summary, our study demonstrated how tissue-wide cell-specific proteogenomic modeling can reveal candidate genes for brain disorders that can be supported by convergent lines of evidence.
Collapse
|
21
|
Weighted Gene Coexpression Network Analysis Identifies Crucial Genes Involved in Coronary Atherosclerotic Heart Disease. DISEASE MARKERS 2022; 2022:6971238. [PMID: 35958279 PMCID: PMC9363224 DOI: 10.1155/2022/6971238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/31/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
Background Coronary atherosclerotic heart disease (CHD) is a lethal disease with an unstated pathogenic mechanism. Therefore, it is urgent to develop innovative strategies to ameliorate the outcome of CHD patients and explore novel biomarkers connected to the pathogenicity of CHD. Methods The weighted gene coexpression network analysis (WGCNA) was carried out on a coronary atherosclerosis dataset GSE90074 to determine the crucial modules and hub genes for their prospective relationship to CHD. After the different modules associated with CHD have been identified, the Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enriched pathway analyses were conducted. The protein-protein interaction (PPI) network was thereafter performed for the critical module using STRING and Cytoscape. Results The yellow module was recognized as the most critical module associated with CHD. The enriched pathways in the yellow module included those related to inflammatory response, positive regulation of extracellular signal-regulated kinase1/2 (ERK1/2) cascade, lipid catabolic process, cellular response to oxidative stress, apoptotic pathway, and NF-kappa B pathway. Further CytoHubba analysis revealed the top five hub genes (MMP14, CD28, CaMK4, RGS1, and DDAH1) associated with CHD development. Conclusions The current study provides the prognosis, novel hub genes, and signaling pathways for treating coronary atherosclerosis. However, their potential biological roles require deeper investigation.
Collapse
|
22
|
Dey KK, Gazal S, van de Geijn B, Kim SS, Nasser J, Engreitz JM, Price AL. SNP-to-gene linking strategies reveal contributions of enhancer-related and candidate master-regulator genes to autoimmune disease. CELL GENOMICS 2022; 2:100145. [PMID: 35873673 PMCID: PMC9306342 DOI: 10.1016/j.xgen.2022.100145] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 04/03/2021] [Accepted: 05/27/2022] [Indexed: 12/11/2022]
Abstract
We assess contributions to autoimmune disease of genes whose regulation is driven by enhancer regions (enhancer-related) and genes that regulate other genes in trans (candidate master-regulator). We link these genes to SNPs using several SNP-to-gene (S2G) strategies and apply heritability analyses to draw three conclusions about 11 autoimmune/blood-related diseases/traits. First, several characterizations of enhancer-related genes using functional genomics data are informative for autoimmune disease heritability after conditioning on a broad set of regulatory annotations. Second, candidate master-regulator genes defined using trans-eQTL in blood are also conditionally informative for autoimmune disease heritability. Third, integrating enhancer-related and master-regulator gene sets with protein-protein interaction (PPI) network information magnified their disease signal. The resulting PPI-enhancer gene score produced >2-fold stronger heritability signal and >2-fold stronger enrichment for drug targets, compared with the recently proposed enhancer domain score. In each case, functionally informed S2G strategies produced 4.1- to 13-fold stronger disease signals than conventional window-based strategies.
Collapse
Affiliation(s)
- Kushal K. Dey
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Steven Gazal
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Bryce van de Geijn
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Genentech, South San Francisco, CA 94080, USA
| | - Samuel Sungil Kim
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joseph Nasser
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jesse M. Engreitz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- BASE Initiative, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital, Stanford University School of Medicine, Stanford, CA 94304, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alkes L. Price
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
23
|
Kim H, Gao EB, Draper A, Berens NC, Vihma H, Zhang X, Higashi-Howard A, Ritola KD, Simon JM, Kennedy AJ, Philpot BD. Rescue of behavioral and electrophysiological phenotypes in a Pitt-Hopkins syndrome mouse model by genetic restoration of Tcf4 expression. eLife 2022; 11:e72290. [PMID: 35535852 PMCID: PMC9090324 DOI: 10.7554/elife.72290] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 04/19/2022] [Indexed: 12/14/2022] Open
Abstract
Pitt-Hopkins syndrome (PTHS) is a neurodevelopmental disorder caused by monoallelic mutation or deletion in the transcription factor 4 (TCF4) gene. Individuals with PTHS typically present in the first year of life with developmental delay and exhibit intellectual disability, lack of speech, and motor incoordination. There are no effective treatments available for PTHS, but the root cause of the disorder, TCF4 haploinsufficiency, suggests that it could be treated by normalizing TCF4 gene expression. Here, we performed proof-of-concept viral gene therapy experiments using a conditional Tcf4 mouse model of PTHS and found that postnatally reinstating Tcf4 expression in neurons improved anxiety-like behavior, activity levels, innate behaviors, and memory. Postnatal reinstatement also partially corrected EEG abnormalities, which we characterized here for the first time, and the expression of key TCF4-regulated genes. Our results support a genetic normalization approach as a treatment strategy for PTHS, and possibly other TCF4-linked disorders.
Collapse
Affiliation(s)
- Hyojin Kim
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Eric B Gao
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Adam Draper
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Noah C Berens
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Hanna Vihma
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Xinyuan Zhang
- Department of Chemistry and Biochemistry, Bates College, Lewiston, United States
| | | | | | - Jeremy M Simon
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hil, Chapel Hill, United States
| | - Andrew J Kennedy
- Department of Chemistry and Biochemistry, Bates College, Lewiston, United States
| | - Benjamin D Philpot
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hil, Chapel Hill, United States
| |
Collapse
|
24
|
Jaaro-Peled H, Landek-Salgado MA, Cascella NG, Nucifora FC, Coughlin JM, Nestadt G, Sedlak TW, Lavoie J, De Silva S, Lee S, Tajinda K, Hiyama H, Ishizuka K, Yang K, Sawa A. Sex-specific involvement of the Notch-JAG pathway in social recognition. Transl Psychiatry 2022; 12:99. [PMID: 35273151 PMCID: PMC8913639 DOI: 10.1038/s41398-022-01867-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 02/12/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Under the hypothesis that olfactory neural epithelium gene expression profiles may be useful to look for disease-relevant neuronal signatures, we examined microarray gene expression in olfactory neuronal cells and underscored Notch-JAG pathway molecules in association with schizophrenia (SZ). The microarray profiling study underscored JAG1 as the most promising candidate. Combined with further validation with real-time PCR, downregulation of NOTCH1 was statistically significant. Accordingly, we reverse-translated the significant finding from a surrogate tissue for neurons, and studied the behavioral profile of Notch1+/- mice. We found a specific impairment in social novelty recognition, whereas other behaviors, such as sociability, novel object recognition and olfaction of social odors, were normal. This social novelty recognition deficit was male-specific and was rescued by rapamycin treatment. Based on the results from the animal model, we next tested whether patients with psychosis might have male-specific alterations in social cognition in association with the expression of NOTCH1 or JAG1. In our first episode psychosis cohort, we observed a specific correlation between the expression of JAG1 and a face processing measure only in male patients. The expression of JAG1 was not correlated with any other cognitive and symptomatic scales in all subjects. Together, although we acknowledge the pioneering and exploratory nature, the present work that combines both human and animal studies in a reciprocal manner suggests a novel role for the Notch-JAG pathway in a behavioral dimension(s) related to social cognition in psychotic disorders in a male-specific manner.
Collapse
Affiliation(s)
- Hanna Jaaro-Peled
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Melissa A Landek-Salgado
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Nicola G Cascella
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Frederick C Nucifora
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jennifer M Coughlin
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Gerald Nestadt
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Thomas W Sedlak
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Joelle Lavoie
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Sarah De Silva
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Somin Lee
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Katsunori Tajinda
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hideki Hiyama
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Koko Ishizuka
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kun Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
25
|
He L, Arnold C, Thoma J, Rohde C, Kholmatov M, Garg S, Hsiao CC, Viol L, Zhang K, Sun R, Schmidt C, Janssen M, MacRae T, Huber K, Thiede C, Hébert J, Sauvageau G, Spratte J, Fluhr H, Aust G, Müller-Tidow C, Niehrs C, Pereira G, Hamann J, Tanaka M, Zaugg JB, Pabst C. CDK7/12/13 inhibition targets an oscillating leukemia stem cell network and synergizes with venetoclax in acute myeloid leukemia. EMBO Mol Med 2022; 14:e14990. [PMID: 35253392 PMCID: PMC8988201 DOI: 10.15252/emmm.202114990] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 01/04/2023] Open
Abstract
The heterogeneous response of acute myeloid leukemia (AML) to current anti‐leukemic therapies is only partially explained by mutational heterogeneity. We previously identified GPR56 as a surface marker associated with poor outcome across genetic groups, which characterizes two leukemia stem cell (LSC)‐enriched compartments with different self‐renewal capacities. How these compartments self‐renew remained unclear. Here, we show that GPR56+ LSC compartments are promoted in a complex network involving epithelial‐to‐mesenchymal transition (EMT) regulators besides Rho, Wnt, and Hedgehog (Hh) signaling. Unexpectedly, Wnt pathway inhibition increased the more immature, slowly cycling GPR56+CD34+ fraction and Hh/EMT gene expression, while Wnt activation caused opposite effects. Our data suggest that the crucial role of GPR56 lies in its ability to co‐activate these opposing signals, thus ensuring the constant supply of both LSC subsets. We show that CDK7 inhibitors suppress both LSC‐enriched subsets in vivo and synergize with the Bcl‐2 inhibitor venetoclax. Our data establish reciprocal transition between LSC compartments as a novel concept underlying the poor outcome in GPR56high AML and propose combined CDK7 and Bcl‐2 inhibition as LSC‐directed therapy in this disease.
Collapse
Affiliation(s)
- Lixiazi He
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Christian Arnold
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Judith Thoma
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Christian Rohde
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Maksim Kholmatov
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Swati Garg
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Cheng-Chih Hsiao
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Linda Viol
- Centre for Organismal Studies (COS)/Centre for Cell and Molecular Biology (ZMBH), University of Heidelberg, Heidelberg, Germany.,German Cancer Research Centre (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Kaiqing Zhang
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Rui Sun
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Christina Schmidt
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Maike Janssen
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Tara MacRae
- Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
| | - Karin Huber
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christian Thiede
- Department of Internal Medicine I, University Hospital of Dresden Carl Gustav Carus, Dresden, Germany
| | - Josée Hébert
- The Quebec Leukemia Cell Bank and Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montréal, Canada.,Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada.,Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Guy Sauvageau
- Laboratory of Molecular Genetics of Stem Cells, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada.,Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada.,Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Julia Spratte
- Department of Gynecology and Obstetrics, University Hospital Heidelberg, Heidelberg, Germany
| | - Herbert Fluhr
- Department of Gynecology and Obstetrics, University Hospital Heidelberg, Heidelberg, Germany
| | - Gabriela Aust
- Department of Surgery, Research Laboratories, Leipzig University, Leipzig, Germany
| | - Carsten Müller-Tidow
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany.,Institute of Molecular Biology (IMB), Mainz, Germany
| | - Gislene Pereira
- Centre for Organismal Studies (COS)/Centre for Cell and Molecular Biology (ZMBH), University of Heidelberg, Heidelberg, Germany.,German Cancer Research Centre (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Jörg Hamann
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg, Germany.,Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Judith B Zaugg
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Caroline Pabst
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|
26
|
Sun P, Xiao M, Chen H, Zhong Z, Jiang H, Feng X, Luo Z. A joint transcriptional regulatory network and protein activity inference analysis identifies clinically associated master regulators for biliary atresia. Front Pediatr 2022; 10:1050326. [PMID: 36440333 PMCID: PMC9691841 DOI: 10.3389/fped.2022.1050326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Biliary atresia (BA) is a devastating cholangiopathy in neonate. Transcription factors (TFs), a type of master regulators in biological processes and diseases, have been implicated in pathogenesis of BA. However, a global view of TFs and how they link to clinical presentations remain explored. Here, we perform a joint transcriptional regulatory network and protein activity inference analysis in order to investigate transcription factor activity in BA. By integration of three independent human BA liver transcriptome datasets, we identify 22 common master regulators, with 14 activated- and 8 repressed TFs. Gene targets of activated TFs are enriched in biological processes of SMAD, NF-kappaB and TGF-beta, while those of repressed TFs are related to lipid metabolism. Mining the clinical association of TFs, we identify inflammation-, fibrosis- and survival associated TFs. In particular, ZNF14 is predictive of poor survival and advanced live fibrosis. Supporting this observation, ZNF14 is positively correlated with T helper cells, cholangiocytes and hepatic stellate cells. In sum, our analysis reveals key clinically associated master regulators for BA.
Collapse
Affiliation(s)
- Panpan Sun
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Manhuan Xiao
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huadong Chen
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhihai Zhong
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hong Jiang
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xuyang Feng
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhenhua Luo
- Department of Pediatric Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
27
|
Okamoto L, Watanabe S, Deno S, Nie X, Maruyama J, Tomita M, Hatano A, Yugi K. Meta-analysis of transcriptional regulatory networks for lipid metabolism in neural cells from schizophrenia patients based on an open-source intelligence approach. Neurosci Res 2021; 175:82-97. [PMID: 34979163 DOI: 10.1016/j.neures.2021.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 01/13/2023]
Abstract
There have been a number of reports about the transcriptional regulatory networks in schizophrenia. However, most of these studies were based on a specific transcription factor or a single dataset, an approach that is inadequate to understand the diverse etiology and underlying common characteristics of schizophrenia. Here we reconstructed and compared the transcriptional regulatory network for lipid metabolism enzymes using 15 public transcriptome datasets of neural cells from schizophrenia patients. Since many of the well-known schizophrenia-related SNPs are in enhancers, we reconstructed a network including enhancer-dependent regulation and found that 53.3 % of the total number of edges (7,577 pairs) involved regulation via enhancers. By examining multiple datasets, we found common and unique transcriptional modes of regulation. Furthermore, enrichment analysis of SNPs that were connected with genes in the transcriptional regulatory networks by eQTL suggested an association with hematological cell counts and some other traits/diseases, whose relationship to schizophrenia was either not or insufficiently reported in previous studies. Based on these results, we suggest that in future studies on schizophrenia, information on genotype, comorbidities and hematological cell counts should be included, along with the transcriptome, for a more detailed genetic stratification and mechanistic exploration of schizophrenia.
Collapse
Affiliation(s)
- Lisa Okamoto
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; Institute for Advanced Biosciences, Keio University, Fujisawa, 252-0882, Japan; Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-0882, Japan
| | - Soyoka Watanabe
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; Institute for Advanced Biosciences, Keio University, Fujisawa, 252-0882, Japan
| | - Senka Deno
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; Institute for Advanced Biosciences, Keio University, Fujisawa, 252-0882, Japan; Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-0882, Japan
| | - Xiang Nie
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Junichi Maruyama
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Fujisawa, 252-0882, Japan; Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-0882, Japan
| | - Atsushi Hatano
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; Department of Omics and Systems Biology, Niigata University Graduate School of Medical and Dental Sciences, 757 Ichibancho, Asahimachi-dori, Chuo Ward, Niigata City, 951-8510, Japan
| | - Katsuyuki Yugi
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; Institute for Advanced Biosciences, Keio University, Fujisawa, 252-0882, Japan; Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; PRESTO, Japan Science and Technology Agency, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
28
|
Sirp A, Roots K, Nurm K, Tuvikene J, Sepp M, Timmusk T. Functional consequences of TCF4 missense substitutions associated with Pitt-Hopkins syndrome, mild intellectual disability, and schizophrenia. J Biol Chem 2021; 297:101381. [PMID: 34748727 PMCID: PMC8648840 DOI: 10.1016/j.jbc.2021.101381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 11/24/2022] Open
Abstract
Transcription factor 4 (TCF4) is a basic helix-loop-helix transcription factor essential for neurocognitive development. The aberrations in TCF4 are associated with neurodevelopmental disorders including schizophrenia, intellectual disability, and Pitt-Hopkins syndrome, an autism-spectrum disorder characterized by developmental delay. Several disease-associated missense mutations in TCF4 have been shown to interfere with TCF4 function, but for many mutations, the impact remains undefined. Here, we tested the effects of 12 functionally uncharacterized disease-associated missense mutations and variations in TCF4 using transient expression in mammalian cells, confocal imaging, in vitro DNA-binding assays, and reporter assays. We show that Pitt-Hopkins syndrome-associated missense mutations within the basic helix-loop-helix domain of TCF4 and a Rett-like syndrome-associated mutation in a transcription activation domain result in altered DNA-binding and transcriptional activity of the protein. Some of the missense variations found in schizophrenia patients slightly increase TCF4 transcriptional activity, whereas no effects were detected for missense mutations linked to mild intellectual disability. We in addition find that the outcomes of several disease-related mutations are affected by cell type, TCF4 isoform, and dimerization partner, suggesting that the effects of TCF4 mutations are context-dependent. Together with previous work, this study provides a basis for the interpretation of the functional consequences of TCF4 missense variants.
Collapse
Affiliation(s)
- Alex Sirp
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kaisa Roots
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kaja Nurm
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Jürgen Tuvikene
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia; Protobios LLC, Tallinn, Estonia
| | - Mari Sepp
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.
| | - Tõnis Timmusk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia; Protobios LLC, Tallinn, Estonia.
| |
Collapse
|
29
|
Zuo Y, Wei D, Zhu C, Naveed O, Hong W, Yang X. Unveiling the Pathogenesis of Psychiatric Disorders Using Network Models. Genes (Basel) 2021; 12:1101. [PMID: 34356117 PMCID: PMC8304351 DOI: 10.3390/genes12071101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/13/2023] Open
Abstract
Psychiatric disorders are complex brain disorders with a high degree of genetic heterogeneity, affecting millions of people worldwide. Despite advances in psychiatric genetics, the underlying pathogenic mechanisms of psychiatric disorders are still largely elusive, which impedes the development of novel rational therapies. There has been accumulating evidence suggesting that the genetics of complex disorders can be viewed through an omnigenic lens, which involves contextualizing genes in highly interconnected networks. Thus, applying network-based multi-omics integration methods could cast new light on the pathophysiology of psychiatric disorders. In this review, we first provide an overview of the recent advances in psychiatric genetics and highlight gaps in translating molecular associations into mechanistic insights. We then present an overview of network methodologies and review previous applications of network methods in the study of psychiatric disorders. Lastly, we describe the potential of such methodologies within a multi-tissue, multi-omics approach, and summarize the future directions in adopting diverse network approaches.
Collapse
Affiliation(s)
- Yanning Zuo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA; (Y.Z.); (D.W.); (W.H.)
- Department of Neurobiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Department of Integrative Biology and Physiology, University of California at Los Angeles, Los Angeles, CA 90095, USA; (C.Z.); (O.N.)
| | - Don Wei
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA; (Y.Z.); (D.W.); (W.H.)
- Department of Neurobiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry, Semel Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Carissa Zhu
- Department of Integrative Biology and Physiology, University of California at Los Angeles, Los Angeles, CA 90095, USA; (C.Z.); (O.N.)
| | - Ormina Naveed
- Department of Integrative Biology and Physiology, University of California at Los Angeles, Los Angeles, CA 90095, USA; (C.Z.); (O.N.)
| | - Weizhe Hong
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA; (Y.Z.); (D.W.); (W.H.)
- Department of Neurobiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Brain Research Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California at Los Angeles, Los Angeles, CA 90095, USA; (C.Z.); (O.N.)
- Brain Research Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
30
|
Limited Association between Schizophrenia Genetic Risk Factors and Transcriptomic Features. Genes (Basel) 2021; 12:genes12071062. [PMID: 34356078 PMCID: PMC8304922 DOI: 10.3390/genes12071062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
Schizophrenia is a polygenic disorder with many genomic regions contributing to schizophrenia risk. The majority of genetic variants associated with schizophrenia lie in the non-coding genome and are thought to contribute to transcriptional regulation. Extensive transcriptomic dysregulation has been detected from postmortem brain samples of schizophrenia-affected individuals. However, the relationship between schizophrenia genetic risk factors and transcriptomic features has yet to be explored. Herein, we examined whether varying gene expression features, including differentially expressed genes (DEGs), co-expression networks, and central hubness of genes, contribute to the heritability of schizophrenia. We leveraged quantitative trait loci and chromatin interaction profiles to identify schizophrenia risk variants assigned to the genes that represent different transcriptomic features. We then performed stratified linkage disequilibrium score regression analysis on these variants to estimate schizophrenia heritability enrichment for different gene expression features. Notably, DEGs and co-expression networks showed nominal heritability enrichment. This nominal association can be partly explained by cellular heterogeneity, as DEGs were associated with the genetic risk of schizophrenia in a cell type-specific manner. Moreover, DEGs were enriched for target genes of schizophrenia-associated transcription factors, suggesting that the transcriptomic signatures of schizophrenia are the result of transcriptional regulatory cascades elicited by genetic risk factors.
Collapse
|
31
|
Santos-Terra J, Deckmann I, Fontes-Dutra M, Schwingel GB, Bambini-Junior V, Gottfried C. Transcription factors in neurodevelopmental and associated psychiatric disorders: A potential convergence for genetic and environmental risk factors. Int J Dev Neurosci 2021; 81:545-578. [PMID: 34240460 DOI: 10.1002/jdn.10141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are a heterogeneous and highly prevalent group of psychiatric conditions marked by impairments in the nervous system. Their onset occurs during gestation, and the alterations are observed throughout the postnatal life. Although many genetic and environmental risk factors have been described in this context, the interactions between them challenge the understanding of the pathways associated with NDDs. Transcription factors (TFs)-a group of over 1,600 proteins that can interact with DNA, regulating gene expression through modulation of RNA synthesis-represent a point of convergence for different risk factors. In addition, TFs organize critical processes like angiogenesis, blood-brain barrier formation, myelination, neuronal migration, immune activation, and many others in a time and location-dependent way. In this review, we summarize important TF alterations in NDD and associated disorders, along with specific impairments observed in animal models, and, finally, establish hypotheses to explain how these proteins may be critical mediators in the context of genome-environment interactions.
Collapse
Affiliation(s)
- Júlio Santos-Terra
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Iohanna Deckmann
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Mellanie Fontes-Dutra
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Gustavo Brum Schwingel
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| | - Victorio Bambini-Junior
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Carmem Gottfried
- Translational Research Group in Autism Spectrum Disorders (GETTEA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,School of Pharmacology and Biomedical Sciences, University of Central Lancashire, Autism Wellbeing And Research Development (AWARD) Institute, BR-UK-CA, Preston, UK
| |
Collapse
|
32
|
Yao Y, Guo W, Zhang S, Yu H, Yan H, Zhang H, Sanders AR, Yue W, Duan J. Cell type-specific and cross-population polygenic risk score analyses of MIR137 gene pathway in schizophrenia. iScience 2021; 24:102785. [PMID: 34308291 PMCID: PMC8283158 DOI: 10.1016/j.isci.2021.102785] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/18/2021] [Accepted: 06/23/2021] [Indexed: 12/03/2022] Open
Abstract
Cell type-specific pathway-based polygenic risk scores (PRSs) may better inform disease biology and improve the precision of PRS-based clinical prediction. For microRNA-137 (MIR137), a leading neuropsychiatric risk gene and a post-transcriptional master regulator, we conducted a cell type-specific gene set PRS analysis in both European and Han Chinese schizophrenia (SZ) samples. We found that the PRS of neuronal MIR137-target genes better explains SZ risk than PRS derived from MIR137-target genes in iPSC or from the reported gene sets showing MIR137-altered expression. Compared with the PRS derived from the whole genome or the target genes of TCF4, the PRS of neuronal MIR137-target genes explained a disproportionally larger (relative to SNP number) SZ risk in the European sample, but with a more modest advantage in the Han Chinese sample. Our study demonstrated a cell type-specific polygenic contribution of MIR137-target genes to SZ risk, highlighting the value of cell type-specific pathway-based PRS analysis for uncovering disease-relevant biological features. PRS of neural MIR137 target genes better explains schizophrenia (SZ) risk variance SZ risk and SNP heritability explained by MIR137 target genes is cell type-specific MIR137 target genes explain a disproportionally larger SZ risk than genomic control PRS of MIR137 target genes better explains SZ risk in Europeans than in Han Chinese
Collapse
Affiliation(s)
- Yin Yao
- Department of Computational Biology, Life Science Institutes and School of Life Science and Human Phenomics Institute, Fudan University, Shanghai 200438, China
| | - Wei Guo
- Genetic Epidemiology Research Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Siwei Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Hao Yu
- Peking University Sixth Hospital (Institute of Mental Health), Beijing 100191, China.,National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China.,Department of Psychiatry, Jining Medical University, Jining, Shandong 272067, China.,Shandong Key Laboratory of Behavioral Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Hao Yan
- Peking University Sixth Hospital (Institute of Mental Health), Beijing 100191, China.,National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Hanwen Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Alan R Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA.,Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL 60637, USA
| | - Weihua Yue
- Peking University Sixth Hospital (Institute of Mental Health), Beijing 100191, China.,National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100191, China
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA.,Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
33
|
Doostparast Torshizi A, Duan J, Wang K. A computational method for direct imputation of cell type-specific expression profiles and cellular compositions from bulk-tissue RNA-Seq in brain disorders. NAR Genom Bioinform 2021; 3:lqab056. [PMID: 34169279 PMCID: PMC8219045 DOI: 10.1093/nargab/lqab056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/24/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
The importance of cell type-specific gene expression in disease-relevant tissues is increasingly recognized in genetic studies of complex diseases. However, most gene expression studies are conducted on bulk tissues, without examining cell type-specific expression profiles. Several computational methods are available for cell type deconvolution (i.e. inference of cellular composition) from bulk RNA-Seq data, but few of them impute cell type-specific expression profiles. We hypothesize that with external prior information such as single cell RNA-seq and population-wide expression profiles, it can be computationally tractable to estimate both cellular composition and cell type-specific expression from bulk RNA-Seq data. Here we introduce CellR, which addresses cross-individual gene expression variations to adjust the weights of cell-specific gene markers. It then transforms the deconvolution problem into a linear programming model while taking into account inter/intra cellular correlations and uses a multi-variate stochastic search algorithm to estimate the cell type-specific expression profiles. Analyses on several complex diseases such as schizophrenia, Alzheimer’s disease, Huntington’s disease and type 2 diabetes validated the efficiency of CellR, while revealing how specific cell types contribute to different diseases. In summary, CellR compares favorably against competing approaches, enabling cell type-specific re-analysis of gene expression data on bulk tissues in complex diseases.
Collapse
Affiliation(s)
- Abolfazl Doostparast Torshizi
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Dobrindt K, Zhang H, Das D, Abdollahi S, Prorok T, Ghosh S, Weintraub S, Genovese G, Powell SK, Lund A, Akbarian S, Eggan K, McCarroll S, Duan J, Avramopoulos D, Brennand KJ. Publicly Available hiPSC Lines with Extreme Polygenic Risk Scores for Modeling Schizophrenia. Complex Psychiatry 2021; 6:68-82. [PMID: 34883504 PMCID: PMC7923934 DOI: 10.1159/000512716] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/27/2020] [Indexed: 07/23/2023] Open
Abstract
Schizophrenia (SZ) is a common and debilitating psychiatric disorder with limited effective treatment options. Although highly heritable, risk for this polygenic disorder depends on the complex interplay of hundreds of common and rare variants. Translating the growing list of genetic loci significantly associated with disease into medically actionable information remains an important challenge. Thus, establishing platforms with which to validate the impact of risk variants in cell-type-specific and donor-dependent contexts is critical. Towards this, we selected and characterized a collection of 12 human induced pluripotent stem cell (hiPSC) lines derived from control donors with extremely low and high SZ polygenic risk scores (PRS). These hiPSC lines are publicly available at the California Institute for Regenerative Medicine (CIRM). The suitability of these extreme PRS hiPSCs for CRISPR-based isogenic comparisons of neurons and glia was evaluated across 3 independent laboratories, identifying 9 out of 12 meeting our criteria. We report a standardized resource of publicly available hiPSCs on which we hope to perform genome engineering and generate diverse kinds of functional data, with comparisons across studies facilitated by the use of a common set of genetic backgrounds.
Collapse
Affiliation(s)
- Kristina Dobrindt
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hanwen Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Debamitra Das
- Department of Genetic Medicine and Psychiatry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sara Abdollahi
- Department of Genetic Medicine and Psychiatry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Tim Prorok
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Sulagna Ghosh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Weintraub
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Giulio Genovese
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Samuel K. Powell
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anina Lund
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Schahram Akbarian
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kevin Eggan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Steven McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, Illinois, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, USA
| | - Dimitrios Avramopoulos
- Department of Genetic Medicine and Psychiatry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kristen J. Brennand
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
35
|
Doostparast Torshizi A, Ionita-Laza I, Wang K. Cell Type-Specific Annotation and Fine Mapping of Variants Associated With Brain Disorders. Front Genet 2020; 11:575928. [PMID: 33343624 PMCID: PMC7744805 DOI: 10.3389/fgene.2020.575928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/05/2020] [Indexed: 12/19/2022] Open
Abstract
Common genetic variants confer susceptibility to a large number of complex brain disorders. Given that such variants predominantly localize in non-coding regions of the human genome, there is a significant challenge to predict and characterize their functional consequences. More importantly, most available computational methods, generally defined as context-free methods, output prediction scores regarding the functionality of genetic variants irrespective of the context, i.e., the tissue or cell-type affected by a disease, limiting the ability to predict the functional consequences of common variants on brain disorders. In this study, we introduce a comparative multi-step pipeline to investigate the relative effectiveness of context-specific and context-free approaches to prioritize disease causal variants. As an experimental case, we focused on schizophrenia (SCZ), a debilitating neuropsychiatric disease for which a large number of susceptibility variants is identified from genome-wide association studies. We tested over two dozen available methods and examined potential associations between the cell/tissue-specific mapping scores and open chromatin accessibility, and provided a prioritized map of SCZ risk loci for in vitro or in-vivo functional analysis. We found extensive differences between context-free and tissue-specific approaches and showed how they may play complementary roles. As a proof of concept, we found a few sets of genes, through a consensus mapping of both categories, including FURIN to be among the top hits. We showed that the genetic variants in this gene and related genes collectively dysregulate gene expression patterns in stem cell-derived neurons and characterize SCZ phenotypic manifestations, while genes which were not shared among highly prioritized candidates in both approaches did not demonstrate such characteristics. In conclusion, by combining context-free and tissue-specific predictions, our pipeline enables prioritization of the most likely disease-causal common variants in complex brain disorders.
Collapse
Affiliation(s)
- Abolfazl Doostparast Torshizi
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Iuliana Ionita-Laza
- Department of Biostatistics, Columbia University, New York, NY, United States
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
36
|
Sirp A, Leite K, Tuvikene J, Nurm K, Sepp M, Timmusk T. The Fuchs corneal dystrophy-associated CTG repeat expansion in the TCF4 gene affects transcription from its alternative promoters. Sci Rep 2020; 10:18424. [PMID: 33116252 PMCID: PMC7595208 DOI: 10.1038/s41598-020-75437-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
The CTG trinucleotide repeat (TNR) expansion in Transcription factor 4 (TCF4) intron 3 is the main cause of Fuchs’ endothelial corneal dystrophy (FECD) and may confer an increased risk of developing bipolar disorder (BD). Usage of alternative 5′ exons for transcribing the human TCF4 gene results in numerous TCF4 transcripts which encode for at least 18 N-terminally different protein isoforms that vary in their function and transactivation capability. Here we studied the TCF4 region containing the CTG TNR and characterized the transcription initiation sites of the nearby downstream 5′ exons 4a, 4b and 4c. We demonstrate that these exons are linked to alternative promoters and show that the CTG TNR expansion decreases the activity of the nearby downstream TCF4 promoters in primary cultured neurons. We confirm this finding using two RNA sequencing (RNA-seq) datasets of corneal endothelium from FECD patients with expanded CTG TNR in the TCF4 gene. Furthermore, we report an increase in the expression of various other TCF4 transcripts in FECD, possibly indicating a compensatory mechanism. We conclude that the CTG TNR affects TCF4 expression in a transcript-specific manner both in neurons and in the cornea.
Collapse
Affiliation(s)
- Alex Sirp
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Kristian Leite
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.,Department of Neurology, University Medicine Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Jürgen Tuvikene
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.,Protobios LLC, 12618, Tallinn, Estonia
| | - Kaja Nurm
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Mari Sepp
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.,Center for Molecular Biology of Heidelberg University (ZMBH), 69120, Heidelberg, Germany
| | - Tõnis Timmusk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia. .,Protobios LLC, 12618, Tallinn, Estonia.
| |
Collapse
|
37
|
Shimamoto-Mitsuyama C, Nakaya A, Esaki K, Balan S, Iwayama Y, Ohnishi T, Maekawa M, Toyota T, Dean B, Yoshikawa T. Lipid Pathology of the Corpus Callosum in Schizophrenia and the Potential Role of Abnormal Gene Regulatory Networks with Reduced Microglial Marker Expression. Cereb Cortex 2020; 31:448-462. [PMID: 32924060 PMCID: PMC7727339 DOI: 10.1093/cercor/bhaa236] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Structural changes in the corpus callosum have been reported in schizophrenia; however, the underlying molecular mechanism remains unclear. As the corpus callosum is high in lipid content, we analyzed the lipid contents of the corpora callosa from 15 patients with schizophrenia and 15 age- and sex-matched controls using liquid chromatography coupled to tandem mass spectrometry and identified lipid combinations associated with schizophrenia. Real-time quantitative polymerase chain reaction analyses using extended samples (schizophrenia, n = 95; control, n = 91) showed low expression levels of lipid metabolism-related genes and their potential upstream transcription factors in schizophrenia. Subsequent pathway analysis identified a gene regulatory network where nuclear factor of activated T cells 2 (NFATC2) is placed most upstream. We also observed low gene expression levels of microglial markers, inflammatory cytokines, and colony-stimulating factor 1 receptor (CSF1R), which is known to regulate the density of microglia, in the corpus callosum in schizophrenia. The interactions between CSF1R and several genes in the presently identified gene network originating from NFATC2 have been reported. Collectively, this study provides evidence regarding lipid abnormalities in the corpora callosa of patients with schizophrenia and proposes the potential role of impaired “NFATC2-relevant gene network-microglial axis” as its underlying mechanism.
Collapse
Affiliation(s)
| | - Akihiro Nakaya
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan.,Laboratory of Genome Data Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Kayoko Esaki
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Shabeesh Balan
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Yoshimi Iwayama
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan.,Support Unit for Bio-Material Analysis, Research Resources Division, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Tetsuo Ohnishi
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Motoko Maekawa
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Tomoko Toyota
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Brian Dean
- The Florey Institute of Neuroscience and Mental Health, Howard Florey Laboratories, The University of Melbourne, Parkville, Victoria, Australia.,The Centre for Mental Health, Swinburne University, Hawthorn, Victoria, Australia
| | - Takeo Yoshikawa
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| |
Collapse
|
38
|
Doostparast Torshizi A, Duan J, Wang K. Cell-Type-Specific Proteogenomic Signal Diffusion for Integrating Multi-Omics Data Predicts Novel Schizophrenia Risk Genes. PATTERNS (NEW YORK, N.Y.) 2020; 1:100091. [PMID: 32984858 PMCID: PMC7518509 DOI: 10.1016/j.patter.2020.100091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/01/2020] [Accepted: 07/28/2020] [Indexed: 12/25/2022]
Abstract
Accumulation of diverse types of omics data on schizophrenia (SCZ) requires a systems approach to model the interplay between genome, transcriptome, and proteome. We introduce Markov affinity-based proteogenomic signal diffusion (MAPSD), a method to model intra-cellular protein trafficking paradigms and tissue-wise single-cell protein abundances. MAPSD integrates multi-omics data to amplify the signals at SCZ risk loci with small effect sizes, and reveal convergent disease-associated gene modules in the brain. We predicted a set of high-confidence SCZ risk loci followed by characterizing the subcellular localization of proteins encoded by candidate SCZ risk genes, and illustrated that most are enriched in neuronal cells in the cerebral cortex as well as Purkinje cells in the cerebellum. We demonstrated how the identified genes may be involved in neurodevelopment, how they may alter SCZ-related biological pathways, and how they facilitate drug repurposing. MAPSD is applicable in other polygenic diseases and can facilitate our understanding of disease mechanisms.
Collapse
Affiliation(s)
- Abolfazl Doostparast Torshizi
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jubao Duan
- Center for Psychiatric Genetics, North Shore University Health System, Evanston, IL 60201, USA
- Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL 60637, USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
39
|
Inglis GAS, Zhou Y, Patterson DG, Scharer CD, Han Y, Boss JM, Wen Z, Escayg A. Transcriptomic and epigenomic dynamics associated with development of human iPSC-derived GABAergic interneurons. Hum Mol Genet 2020; 29:2579-2595. [PMID: 32794569 PMCID: PMC7471504 DOI: 10.1093/hmg/ddaa150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/09/2020] [Accepted: 07/11/2020] [Indexed: 12/13/2022] Open
Abstract
GABAergic interneurons (GINs) are a heterogeneous population of inhibitory neurons that collectively contribute to the maintenance of normal neuronal excitability and network activity. Identification of the genetic regulatory elements and transcription factors that contribute toward GIN function may provide new insight into the pathways underlying proper GIN activity while also indicating potential therapeutic targets for GIN-associated disorders, such as schizophrenia and epilepsy. In this study, we examined the temporal changes in gene expression and chromatin accessibility during GIN development by performing transcriptomic and epigenomic analyses on human induced pluripotent stem cell-derived neurons at 22, 50 and 78 days (D) post-differentiation. We observed 13 221 differentially accessible regions (DARs) of chromatin that associate with temporal changes in gene expression at D78 and D50, relative to D22. We also classified families of transcription factors that are increasingly enriched at DARs during differentiation, indicating regulatory networks that likely drive GIN development. Collectively, these data provide a resource for examining the molecular networks regulating GIN functionality.
Collapse
Affiliation(s)
- George Andrew S Inglis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ying Zhou
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dillon G Patterson
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yanfei Han
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Andrew Escayg
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
40
|
Tamberg L, Jaago M, Säälik K, Sirp A, Tuvikene J, Shubina A, Kiir CS, Nurm K, Sepp M, Timmusk T, Palgi M. Daughterless, the Drosophila orthologue of TCF4, is required for associative learning and maintenance of the synaptic proteome. Dis Model Mech 2020; 13:dmm042747. [PMID: 32641419 PMCID: PMC7406316 DOI: 10.1242/dmm.042747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Mammalian transcription factor 4 (TCF4) has been linked to schizophrenia and intellectual disabilities, such as Pitt-Hopkins syndrome (PTHS). Here, we show that similarly to mammalian TCF4, fruit fly orthologue Daughterless (Da) is expressed widely in the Drosophila brain. Furthermore, silencing of da, using several central nervous system-specific Gal4 driver lines, impairs appetitive associative learning of the larvae and leads to decreased levels of the synaptic proteins Synapsin (Syn) and Discs large 1 (Dlg1), suggesting the involvement of Da in memory formation. Here, we demonstrate that Syn and dlg1 are direct target genes of Da in adult Drosophila heads, as Da binds to the regulatory regions of these genes and the modulation of Da levels alter the levels of Syn and dlg1 mRNA. Silencing of da also affects negative geotaxis of the adult flies, suggesting the impairment of locomotor function. Overall, our findings suggest that Da regulates Drosophila larval memory and adult negative geotaxis, possibly via its synaptic target genes Syn and dlg1 These behavioural phenotypes can be further used as a PTHS model to screen for therapeutics.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Laura Tamberg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Mariliis Jaago
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
- Protobios LLC, Mäealuse 4, Tallinn 12618, Estonia
| | - Kristi Säälik
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Alex Sirp
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Jürgen Tuvikene
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
- Protobios LLC, Mäealuse 4, Tallinn 12618, Estonia
| | - Anastassia Shubina
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Carl Sander Kiir
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Kaja Nurm
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Mari Sepp
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| | - Tõnis Timmusk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
- Protobios LLC, Mäealuse 4, Tallinn 12618, Estonia
| | - Mari Palgi
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, Tallinn 12618, Estonia
| |
Collapse
|
41
|
Repurposing the Dihydropyridine Calcium Channel Inhibitor Nicardipine as a Na v1.8 Inhibitor In Vivo for Pitt Hopkins Syndrome. Pharm Res 2020; 37:127. [PMID: 32529312 DOI: 10.1007/s11095-020-02853-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 06/05/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Individuals with the rare genetic disorder Pitt Hopkins Syndrome (PTHS) do not have sufficient expression of the transcription factor 4 (TCF4) which is located on chromosome 18. TCF4 is a basic helix-loop-helix E protein that is critical for the normal development of the nervous system and the brain in humans. PTHS patients lacking sufficient TCF4 frequently display gastrointestinal issues, intellectual disability and breathing problems. PTHS patients also commonly do not speak and display distinctive facial features and seizures. Recent research has proposed that decreased TCF4 expression can lead to the increased translation of the sodium channel Nav1.8. This in turn results in increased after-hyperpolarization as well as altered firing properties. We have recently identified through a drug repurposing screen an FDA approved dihydropyridine calcium antagonist nicardipine used to treat angina, which inhibited Nav1.8. METHODS We have now performed behavioral testing in groups of 10 male Tcf4(± ) PTHS mice dosing by oral gavage at 3 mg/kg once a day for 3 weeks using standard methods to assess sociability, nesting, fear conditioning, self-grooming, open field and test of force. RESULTS Nicardipine returned this spectrum of behavioral deficits in the Tcf4(± ) PTHS mouse model to WT levels and resulted in statistically significant results. CONCLUSIONS These in vivo results in the well characterized Tcf4(± ) PTHS mice may suggest the potential to test this already approved drug further in a clinical study with PTHS patients or suggest the potential for use off label under compassionate use with their physician.
Collapse
|
42
|
Identifying Cattle Breed-Specific Partner Choice of Transcription Factors during the African Trypanosomiasis Disease Progression Using Bioinformatics Analysis. Vaccines (Basel) 2020; 8:vaccines8020246. [PMID: 32456126 PMCID: PMC7350023 DOI: 10.3390/vaccines8020246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/13/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022] Open
Abstract
African Animal Trypanosomiasis (AAT) is a disease caused by pathogenic trypanosomes which affects millions of livestock every year causing huge economic losses in agricultural production especially in sub-Saharan Africa. The disease is spread by the tsetse fly which carries the parasite in its saliva. During the disease progression, the cattle are prominently subjected to anaemia, weight loss, intermittent fever, chills, neuronal degeneration, congestive heart failure, and finally death. According to their different genetic programs governing the level of tolerance to AAT, cattle breeds are classified as either resistant or susceptible. In this study, we focus on the cattle breeds N’Dama and Boran which are known to be resistant and susceptible to trypanosomiasis, respectively. Despite the rich literature on both breeds, the gene regulatory mechanisms of the underlying biological processes for their resistance and susceptibility have not been extensively studied. To address the limited knowledge about the tissue-specific transcription factor (TF) cooperations associated with trypanosomiasis, we investigated gene expression data from these cattle breeds computationally. Consequently, we identified significant cooperative TF pairs (especially DBP−PPARA and DBP−THAP1 in N’Dama and DBP−PAX8 in Boran liver tissue) which could help understand the underlying AAT tolerance/susceptibility mechanism in both cattle breeds.
Collapse
|
43
|
Borgmann-Winter KE, Wang K, Bandyopadhyay S, Torshizi AD, Blair IA, Hahn CG. The proteome and its dynamics: A missing piece for integrative multi-omics in schizophrenia. Schizophr Res 2020; 217:148-161. [PMID: 31416743 PMCID: PMC7500806 DOI: 10.1016/j.schres.2019.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/10/2019] [Accepted: 07/13/2019] [Indexed: 01/08/2023]
Abstract
The complex and heterogeneous pathophysiology of schizophrenia can be deconstructed by integration of large-scale datasets encompassing genes through behavioral phenotypes. Genome-wide datasets are now available for genetic, epigenetic and transcriptomic variations in schizophrenia, which are then analyzed by newly devised systems biology algorithms. A missing piece, however, is the inclusion of information on the proteome and its dynamics in schizophrenia. Proteomics has lagged behind omics of the genome, transcriptome and epigenome since analytic platforms were relatively less robust for proteins. There has been remarkable progress, however, in the instrumentation of liquid chromatography (LC) and mass spectrometry (MS) (LCMS), experimental paradigms and bioinformatics of the proteome. Here, we present a summary of methodological innovations of recent years in MS based proteomics and the power of new generation proteomics, review proteomics studies that have been conducted in schizophrenia to date, and propose how such data can be analyzed and integrated with other omics results. The function of a protein is determined by multiple molecular properties, i.e., subcellular localization, posttranslational modification (PTMs) and protein-protein interactions (PPIs). Incorporation of these properties poses additional challenges in proteomics and their integration with other omics; yet is a critical next step to close the loop of multi-omics integration. In sum, the recent advent of high-throughput proteome characterization technologies and novel mathematical approaches enable us to incorporate functional properties of the proteome to offer a comprehensive multi-omics based understanding of schizophrenia pathophysiology.
Collapse
Affiliation(s)
- Karin E Borgmann-Winter
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403, United States of America; Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Kai Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Sabyasachi Bandyopadhyay
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403, United States of America
| | - Abolfazl Doostparast Torshizi
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Ian A Blair
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Chang-Gyu Hahn
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403, United States of America.
| |
Collapse
|
44
|
Schoof M, Hellwig M, Harrison L, Holdhof D, Lauffer MC, Niesen J, Virdi S, Indenbirken D, Schüller U. The basic helix-loop-helix transcription factor TCF4 impacts brain architecture as well as neuronal morphology and differentiation. Eur J Neurosci 2020; 51:2219-2235. [PMID: 31919899 DOI: 10.1111/ejn.14674] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 12/13/2022]
Abstract
Germline mutations in the basic helix-loop-helix transcription factor 4 (TCF4) cause the Pitt-Hopkins syndrome (PTHS), a developmental disorder with severe intellectual disability. Here, we report findings from a new mouse model with a central nervous system-specific truncation of Tcf4 leading to severe phenotypic abnormalities. Furthermore, it allows the study of a complete TCF4 knockout in adult mice, circumventing early postnatal lethality of previously published mouse models. Our data suggest that a TCF4 truncation results in an impaired hippocampal architecture affecting both the dentate gyrus as well as the cornu ammonis. In the cerebral cortex, loss of TCF4 generates a severe differentiation delay of neural precursors. Furthermore, neuronal morphology was critically affected with shortened apical dendrites and significantly increased branching of dendrites. Our data provide novel information about the role of Tcf4 in brain development and may help to understand the mechanisms leading to intellectual deficits observed in patients suffering from PTHS.
Collapse
Affiliation(s)
- Melanie Schoof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute, Children's Cancer Center Hamburg, Hamburg, Germany
| | - Malte Hellwig
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute, Children's Cancer Center Hamburg, Hamburg, Germany
| | - Luke Harrison
- Center for Neuropathology, Ludwig-Maximilians-University, Munich, Germany
| | - Dörthe Holdhof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute, Children's Cancer Center Hamburg, Hamburg, Germany
| | - Marlen C Lauffer
- Center for Neuropathology, Ludwig-Maximilians-University, Munich, Germany
| | - Judith Niesen
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute, Children's Cancer Center Hamburg, Hamburg, Germany
| | - Sanamjeet Virdi
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Daniela Indenbirken
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute, Children's Cancer Center Hamburg, Hamburg, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
45
|
Novel Approaches for Identifying the Molecular Background of Schizophrenia. Cells 2020; 9:cells9010246. [PMID: 31963710 PMCID: PMC7017322 DOI: 10.3390/cells9010246] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/06/2020] [Accepted: 01/16/2020] [Indexed: 12/20/2022] Open
Abstract
Recent advances in psychiatric genetics have led to the discovery of dozens of genomic loci associated with schizophrenia. However, a gap exists between the detection of genetic associations and understanding the underlying molecular mechanisms. This review describes the basic approaches used in the so-called post-GWAS studies to generate biological interpretation of the existing population genetic data, including both molecular (creation and analysis of knockout animals, exploration of the transcriptional effects of common variants in human brain cells) and computational (fine-mapping of causal variability, gene set enrichment analysis, partitioned heritability analysis) methods. The results of the crucial studies, in which these approaches were used to uncover the molecular and neurobiological basis of the disease, are also reported.
Collapse
|
46
|
Duan J, Sanders AR, Gejman PV. From Schizophrenia Genetics to Disease Biology: Harnessing New Concepts and Technologies. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2019; 4:e190014. [PMID: 31555746 PMCID: PMC6760308 DOI: 10.20900/jpbs.20190014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Schizophrenia (SZ) is a severe mental disorder afflicting around 1% of the population. It is highly heritable but with complex genetics. Recent research has unraveled a plethora of risk loci for SZ. Accordingly, our conceptual understanding of SZ genetics has been rapidly evolving, from oligogenic models towards polygenic or even omnigenic models. A pressing challenge to the field, however, is the translation of the many genetic findings of SZ into disease biology insights leading to more effective treatments. Bridging this gap requires the integration of genetic findings and functional genomics using appropriate cellular models. Harnessing new technologies, such as the development of human induced pluripotent stem cells (hiPSC) and the CRISPR/Cas-based genome/epigenome editing approach are expected to change our understanding of SZ disease biology to a fundamentally higher level. Here, we discuss some new developments.
Collapse
Affiliation(s)
- Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Psychiatry and Behavioral Neurosciences, The University of Chicago, Chicago, IL 60637, USA
| | - Alan R. Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Psychiatry and Behavioral Neurosciences, The University of Chicago, Chicago, IL 60637, USA
| | - Pablo V. Gejman
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Psychiatry and Behavioral Neurosciences, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|