1
|
Li X, Li W, Deng Z, Ou X, Gao F, He S, Li X, Qiu Z, Kwok RTK, Sun J, Phillips DL, Lam JWY, Guo Z, Tang BZ. Bright and Ultralong Organic Phosphorescence via Sulfonic Acid Functionalization for High-Contrast Real-Time Light-Writing Display. J Am Chem Soc 2025; 147:14198-14210. [PMID: 40195765 DOI: 10.1021/jacs.4c17142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
It is challenging to achieve room-temperature phosphorescence (RTP) in pure organics with both high efficiency and long lifetime. While much effort has been placed on discovering efficient phosphor skeletons, the importance of phosphor functionalization in enhancing the RTP performance has not received adequate attention. Herein, we demonstrate that functionalization of phosphors with sulfonic acid can ensure both bright and ultralong RTP, outperforming other substituents. The unique trigonal pyramidal structure of sulfonic acid group allows for more effective (n, π*) transitions to enhance intersystem crossing efficiency. Its highly polarized S-O bonds render strengthened hydrogen bonding interactions and a narrower confinement within the poly(vinyl alcohol) (PVA) matrix, to minimize the nonradiative dissipation. Furthermore, its excellent water solubility contributes to the outstanding transparency of PVA film (over 97%), yielding high-quality optical imaging with a high contrast ratio of 48.0 and a low blurriness of 0.24. Moreover, full-color phosphorescence with exceptional performance (ΦP, max = 37.2%, τP, max = 2.09 s) is achieved from different sulfonic acids, validating the effectiveness and universality of this strategy. By leveraging these advantages, real-time light-writing displays with sharp imaging, high sensitivity, and exceptional rewritability are demonstrated. This work not only contributes to the substituent engineering in the molecular design of phosphors but also opens new opportunities for RTP materials in the next-generation intelligent optoelectronic materials.
Collapse
Affiliation(s)
- Xin Li
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Wenlang Li
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ziqi Deng
- Department of Chemistry, The University of Hong KongHong Kong, Pokfulam, Hong Kong 999077, China
| | - Xinwen Ou
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Feng Gao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
| | - Shan He
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Xiao Li
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
| | - Zijie Qiu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
| | - Ryan T K Kwok
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jianwei Sun
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - David L Phillips
- Department of Chemistry, The University of Hong KongHong Kong, Pokfulam, Hong Kong 999077, China
| | - Jacky W Y Lam
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Zhihong Guo
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ben Zhong Tang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
| |
Collapse
|
2
|
Xu Z, Chen W, Chen K, Lin S, Wu Z, Deng G, Chen J, Tayyab M, Xiong Y, Li MD, Wang D, An Z, Tang BZ. Stimulus-Responsive Emission via Dynamic Triplet Energy Transfer in Organic Room-Temperature Phosphorescence Glass. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2418778. [PMID: 40200698 DOI: 10.1002/adma.202418778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/25/2025] [Indexed: 04/10/2025]
Abstract
Dynamic organic room-temperature phosphorescence (RTP) glasses with color tunability offer significant potential for practical applications due to their high transparency and excellent machinability. In this study, organic glasses with efficient and dynamic RTP properties are used as triplet donors, combined with commercially available chromophores as singlet/triplet acceptors, to successfully fabricate a series of host-guest doping glasses with color-tunable organic afterglow and dynamic responses to external stimuli. The energy transfer mechanisms, including triplet-to-singlet phosphorescence resonance energy transfer and Dexter-type triplet-to-triplet energy transfer, are confirmed using state-of-the-art femtosecond time-resolved transient absorption spectroscopy. These organic glasses demonstrate excellent transparency, good machinability, and dynamic responsiveness to external stimuli. The study highlights their potential applications in large-area afterglow glass fabrication, dynamic data encryption, and flexible afterglow displays. This work not only provides a simple design principle for developing novel organic glass materials with color tunability and dynamic responses but also promotes the potential applications of organic RTP materials in dynamic information encryption and flexible optoelectronics.
Collapse
Affiliation(s)
- Zixuan Xu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Wenbin Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Keyao Chen
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Songwang Lin
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zongyao Wu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Guoqing Deng
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Juncheng Chen
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Muhammad Tayyab
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yu Xiong
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, P. R. China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, 518172, P. R. China
| |
Collapse
|
3
|
Wang ZH, Liu CH, Sun HL, Zheng L, Pan M. Coordination Self-Assembly Induced Hot Exciton Fluorescence and Multi-Source Excitation Long Afterglow. Angew Chem Int Ed Engl 2025; 64:e202424795. [PMID: 39854016 DOI: 10.1002/anie.202424795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 01/26/2025]
Abstract
Metal-organic complexes with long afterglow luminescence have attracted extensive attention due to potential applications in display, sensing and information security. However, most of the metal-organic complex long afterglow materials reported so far are limited to the use of UV light as the excitation source, and the ambiguity of the structure-activity relationship makes the development of metal-organic complexes extremely limited. Herein, a series of metal-organic complexes with ultralong emission lifetime is constructed by coordination assembly of Zn(II) with three isomers. These complexes can emit afterglow when excited by UV light, blue LED, cell phone flashlight or even near-infrared light (800 nm) under ambient conditions, and the afterglow is also observed at 360 K. More interestingly, the inactivation pathway of the triplet exciton was altered by the strategy of supramolecular self-assembly, which leads to these complexes having hot exciton fluorescence (HEF) emission that is not present in the ligand. The relationship between structure and optical properties is investigated in detail by experiments and theoretical calculations. This work provides guidance for studying the modulation of optical properties by coordination interactions.
Collapse
Affiliation(s)
- Zhong-Hao Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chen-Hui Liu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hui-Li Sun
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Lin Zheng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
4
|
Sun H, Xiao Y, He Y, Wei X, Zou J, Luo Y, Wu Y, Zhao J, Au VKM, Yu T. 3D printable organic room-temperature phosphorescent materials and printed real-time sensing and display devices. Chem Sci 2025; 16:5299-5309. [PMID: 40007663 PMCID: PMC11848935 DOI: 10.1039/d5sc00316d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Polymer-based host-guest organic room-temperature phosphorescent (RTP) materials are promising candidates for new flexible electronic devices. Nowadays, the insufficient fabrication processes of polymeric RTP materials have hindered the development of these materials. Herein, we propose a strategy to realize 3D printable organic RTP materials and have successfully demonstrated real-time sensing and display devices through a Digital Light Processing (DLP) 3D printing process. We have designed and synthesized the molecules EtCzBP, PhCzBP and PhCzPM with A-D-A structures. The crucial role of strong intramolecular charge transfer (ICT) at the lowest triplet states in achieving bright photo-activated phosphorescence in polymer matrices has also been demonstrated. 3D printable RTP resins were manufactured by doping emissive guest molecules into methyl methacrylate (MMA). Based on these resins, a series of complex 3D structures and smart temperature responsive RTP performances were obtained by DLP 3D printing. Additionally, these RTP 3D structures have been applied in real-time temperature sensing and display panels for the first time. This work not only provides a guiding strategy for the design of emissive guest molecules to realize photo-activated RTP in poly(methyl methacrylate) (PMMA), but also paves the way for the development of 3D-printable real-time sensing structures and new-concept display devices.
Collapse
Affiliation(s)
- Haodong Sun
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Yuxin Xiao
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Yunfei He
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Xiaoyu Wei
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Jindou Zou
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Yuanda Luo
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Yazhang Wu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Jiaxin Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Vonika Ka-Man Au
- Department of Science and Environmental Studies, The Education University of Hong Kong 10 Lo Ping Road, New Territories Tai Po Hong Kong China
| | - Tao Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University 218 Qingyi Road Ningbo 315103 China
- Shenzhen Research Institute of Northwestern Polytechnical University 45 Gaoxin Nanjiu Road Shenzhen 518063 China
| |
Collapse
|
5
|
Liu G, Yan Z, Song Q, Sun Q, Xue S, Yang W. Pure Organic Thermally Activated Delayed Fluorescence Afterglow Polymers via Dopant Isomerization. ACS Macro Lett 2025; 14:265-271. [PMID: 39947671 DOI: 10.1021/acsmacrolett.4c00818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
N-(o-Cyanophenyl)carbazole can be dimerized at different positions, which may change excited state behaviors. Herein, 2,3'-dicyano-3,4'-di(carbazol-9-yl)biphenyl (D34C) is designed and synthesized and doped into polymers. However, we find that D34C does not exhibit room temperature phosphorescence but emits fluorescence (FL) and bright thermally activated delayed fluorescence (TADF) with lifetimes of hundreds of milliseconds, which is observed in diverse matrices such as PMMA, MBS, ABS, PS, HIPS, and SIS. The simple positional isomerization makes the abundant triplet excitons undergo only reverse intersystem crossing rather than room temperature phosphorescence (RTP) radiation, which is rather rare in organic doped polymers. Since the production of TADF afterglow requires a certain excitation time, the generally indistinguishable FL and TADF efficiencies are separated for the first time. This work not only provides novel TADF afterglow polymers with diverse mechanical properties but also will evoke the subtle design of conjugated organic molecules to dramatically change photoexcitation and emission behaviors.
Collapse
Affiliation(s)
- Guanyu Liu
- Key Laboratory of Rubber-plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, School of Polymer Science & Engineering, Qingdao University of Science &Technology, 53-Zhengzhou Road, Qingdao 266042, PR China
| | - Zixin Yan
- Key Laboratory of Rubber-plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, School of Polymer Science & Engineering, Qingdao University of Science &Technology, 53-Zhengzhou Road, Qingdao 266042, PR China
| | - Qi Song
- Key Laboratory of Rubber-plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, School of Polymer Science & Engineering, Qingdao University of Science &Technology, 53-Zhengzhou Road, Qingdao 266042, PR China
| | - Qikun Sun
- Key Laboratory of Rubber-plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, School of Polymer Science & Engineering, Qingdao University of Science &Technology, 53-Zhengzhou Road, Qingdao 266042, PR China
| | - Shanfeng Xue
- Key Laboratory of Rubber-plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, School of Polymer Science & Engineering, Qingdao University of Science &Technology, 53-Zhengzhou Road, Qingdao 266042, PR China
| | - Wenjun Yang
- Key Laboratory of Rubber-plastics of Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, School of Polymer Science & Engineering, Qingdao University of Science &Technology, 53-Zhengzhou Road, Qingdao 266042, PR China
| |
Collapse
|
6
|
Zeng XM, Wu M, Yao LY, Yang GY. Dynamic Phosphorescence Behavior of Carbene-Metal-Amide Complexes from the Perspective of Excited State Modulation. Angew Chem Int Ed Engl 2025; 64:e202419614. [PMID: 39792317 DOI: 10.1002/anie.202419614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/11/2024] [Accepted: 01/10/2025] [Indexed: 01/12/2025]
Abstract
Carbene-metal-amide (CMA) complexes have diverse applications in luminescence, imaging and sensing. In this study, we designed and synthesized a series of CMA complexes, which were subsequently doped into a PMMA host. These materials demonstrate light-induced dynamic phosphorescence, attributed to their long intrinsic triplet state lifetime (τP,int, in the μs-ms scale), high intersystem crossing (ISC) rate constant (kISC, up to 107 s-1), and bright phosphorescence. The extended τP,int, and elevated kISC facilitate efficient sensitization of singlet oxygen (1O2) under light irradiation, which is rapidly consumed by the host material, creating a localized anaerobic environment conducive to bright phosphorescence emission. The Sn-T1 process exhibits a large spin-orbital coupling matrix element (SOCME) value, while the SOCME value between T1 and S0 is comparatively smaller, resulting in a large kISC and long τP,int, Computational results indicate that the hole-electron configuration in the lowest triplet state exhibits low contributions from gold. Based on the dynamic phosphorescence properties, an encryption material capable of achieving a "burn after reading" effect was developed. This work illustrates that those phosphorescent emitters with minimal heavy atom contribution can produce dynamic phosphorescent phenomena, providing a novel strategy for designing stimuli-responsive phosphorescent materials.
Collapse
Affiliation(s)
- Xiang-Ming Zeng
- MOE Key Laboratory of Cluster Sciences, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Minjian Wu
- MOE Key Laboratory of Cluster Sciences, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Liao-Yuan Yao
- MOE Key Laboratory of Cluster Sciences, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Sciences, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| |
Collapse
|
7
|
Wang ZH, Liu CH, Zheng L, Sun HL, Guan SQ, Cao ZM, Pan M, Su CY. Promoting WLED-Excited High Temperature Long Afterglow by Orthogonally Anchoring Chromophores into 0D Metal-Organic Cages. Angew Chem Int Ed Engl 2025; 64:e202417593. [PMID: 39384546 DOI: 10.1002/anie.202417593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024]
Abstract
Afterglow materials have garnered significant interest due to distinct photophysical characteristics. However, it is still difficult to achieve long afterglow phosphorescence from organic molecules due to aggregation-caused quenching (ACQ) and energy dissipation. In addition, most materials reported so far have long afterglow emission only at room or even low temperatures, and mainly use UV light as an excitation source. In this work, we report a strategy to achieve high temperature long afterglow emission through the assembly of isolated 0D metal-organic cages (MOCs). In which, both ACQ and phosphorescence quenching effects are effectively mitigated by altering the stacking mode of organic chromophores through orthogonally anchoring into the edges of cubic MOCs. Furthermore, improvement in molecular rigidity, promotion of spin-orbit coupling and broadening of the absorption range are achieved through the MOC-engineering strategy. As a result, we successfully synthesized MOCs that can produce afterglow emission even after excitation by WLEDs at high temperatures (380 K). Moreover, the MOCs are capable of generating afterglow emissions when excited by mobile phone flashlight at room temperature. Given these features, the potential applications of MOCs in the visual identification of explosives, information encryption and multicolor display are explored.
Collapse
Affiliation(s)
- Zhong-Hao Wang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chen-Hui Liu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Lin Zheng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hui-Li Sun
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shao-Qi Guan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhong-Min Cao
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
8
|
Piao X, Wang T, Chen X, Wang G, Zhai X, Zhang K. Room-temperature phosphorescent transparent wood. Nat Commun 2025; 16:868. [PMID: 39833198 PMCID: PMC11747176 DOI: 10.1038/s41467-025-55990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Transparent wood with high transmittance and versatility has attracted great attention as an energy-saving building material. Many studies have focused on luminescent transparent wood, while the research on organic afterglow transparent wood is an interesting combination. Here, we use luminescent difluoroboron β-diketonate (BF2bdk) compounds, methyl methacrylate (MMA), delignified wood, and initiators to prepare room-temperature phosphorescent transparent wood by thermal initiation polymerization. The resultant PMMA has been found to interact with BF2bdk via dipole-dipole interactions and consequently enhance the intersystem crossing of BF2bdk excited states. The transparent wood matrix can provide a rigid environment for BF2bdk triplets and serve as oxygen barrier to suppress non-radiative decay and oxygen quenching. The prepared afterglow material has the characteristics of diverse composition, long afterglow emission lifetimes, and high photoluminescence quantum yield. This afterglow transparent wood also demonstrates potential application value in areas such as high mechanical strength, good hydrophobicity, and high cost-effectiveness.
Collapse
Affiliation(s)
- Xixi Piao
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Tengyue Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Xuefeng Chen
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Guangming Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Xiangxiang Zhai
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China
| | - Kaka Zhang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
9
|
Zhang M, Lan X, Ding M, Han C, Liu XW, Meng Z, Yu ZQ, An Z. Dynamic Organic Phosphorescence Glass by Rigid-Soft Coupling. Angew Chem Int Ed Engl 2025; 64:e202415250. [PMID: 39301990 DOI: 10.1002/anie.202415250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Organic phosphorescence glass has garnered considerable attention owing to the excellent shaping ability and photophysical behavior, but facile construction from single-component phosphors is still challenging. Herein, a rigid-soft coupling design is adopted in organic phosphors of ICO, CCO and PCO, thus preparing phosphorescence glasses through melting-quenching method to give excellent shaping ability and dynamic phosphorescence. RTP performance is significantly enhanced in the dense-structure glass, and intriguing high-temperature phosphorescence (HTP) is still observable even at 400 K. Direct patterning under UV irradiation is also achieved using photolithography technique, allowing for the creation of high-quality afterglow patterns that can be reversibly erased and rewritten. This rigid-soft conformation in organic phosphors elucidates a promising concept for achieving efficient RTP glass with wide application prospects.
Collapse
Affiliation(s)
- Meng Zhang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xiaohui Lan
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Meijuan Ding
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Chaoyi Han
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xing Wang Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Zhengong Meng
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Zhen-Qiang Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Zhongfu An
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| |
Collapse
|
10
|
Schmiedtchen M, Maisuls I, Siera H, Balszuweit J, Wölper C, Giese M, Haberhauer G, Strassert CA, Voskuhl J. In situ Cyclization of Aromatic Thioethers in Emissive Materials to Generate Phosphorescent Dibenzothiophenes. Angew Chem Int Ed Engl 2025; 64:e202414326. [PMID: 39193875 DOI: 10.1002/anie.202414326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 08/29/2024]
Abstract
In this contribution, we explored the photocyclization of thioethers to highly substituted dibenzothiophenes (DBT) using solely UV-light without any need for additives. This cost-effective, robust and environmentally friendly approach yielded phosphorescent compounds, which were characterized by X-ray crystallography and state-of-the-art photophysical methods. The resulting DBTs feature ultralong photoluminescence lifetimes and quantum yields close to unity in frozen glassy matrices. The reaction mechanism was elucidated in detail through a combination of quantum chemical calculations and experimental results, providing evidence that triplet states are involved in the cyclization process. Additionally, the photoreaction can also be induced within materials. For this purpose, the precursors were integrated into polymer films or polymer resins suitable for 3D printing. Irradiation of these polymeric objects allows motifs with ultralong phosphorescence to be irreversibly inscribed through the proceeding photocyclization. The in situ photogeneration of DBTs from aromatic thioethers overcomes the observed incompatibilities regarding solubility in polymer resins for 3D printing.
Collapse
Affiliation(s)
- Marco Schmiedtchen
- Faculty of Chemistry (Organic Chemistry), Center of Medical Biotechnology (ZMB) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, 45117, Essen, Germany
| | - Iván Maisuls
- Institute for Inorganic and Analytical Chemistry, CeNTech, CiMIC, SoN, University of Münster, Heisenbergstraße 11, 48149, Münster, Germany
| | - Hannah Siera
- Faculty of Chemistry (Organic Chemistry), Center of Medical Biotechnology (ZMB) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, 45117, Essen, Germany
| | - Jan Balszuweit
- Faculty of Chemistry (Organic Chemistry), Center of Medical Biotechnology (ZMB) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, 45117, Essen, Germany
| | - Christoph Wölper
- Faculty of Chemistry (Inorganic Chemistry), and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 5-7, 45117, Essen, Germany
| | - Michael Giese
- Faculty of Chemistry (Organic Chemistry), Center of Medical Biotechnology (ZMB) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, 45117, Essen, Germany
- GUIDEPLUS Co-Creation Lab Product Innovation, University of Duisburg-Essen, Schützenbahn 70, 45128, Essen, Germany
| | - Gebhard Haberhauer
- Faculty of Chemistry (Organic Chemistry), Center of Medical Biotechnology (ZMB) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, 45117, Essen, Germany
| | - Cristian A Strassert
- Institute for Inorganic and Analytical Chemistry, CeNTech, CiMIC, SoN, University of Münster, Heisenbergstraße 11, 48149, Münster, Germany
| | - Jens Voskuhl
- Faculty of Chemistry (Organic Chemistry), Center of Medical Biotechnology (ZMB) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstraße 7, 45117, Essen, Germany
| |
Collapse
|
11
|
Itsoponpan T, Wongkaew P, Prakanpo N, Sukthawee T, Suyoadsuk T, Promarak V. Deep Blue Emitter with a Combination of Hybridized Local and Charge Transfer Excited State and Aggregation-Induced Emission Features for Efficient Non-Doped OLED. Chempluschem 2024; 89:e202400438. [PMID: 39116088 DOI: 10.1002/cplu.202400438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 08/10/2024]
Abstract
Herein, a deep blue emitter (PI-TPB-CN) with a synergistic effect of hybridized local and charge transfer excited state (HLCT) and aggregation-induced emission (AIE) properties is successfully designed and synthesized to improve the performance of deep blue organic light-emitting diodes (OLEDs). It is constructed using a 1,2,4,5-tetraphenylbenzene (TPB) as an π-conjugated AIE core being asymmetrically functionalized with a phenanthro[9,10-d]imidazole (PI) as a weak donor (D) and a benzonitrile (CN) as an acceptor (A), thereby formulating D-π-A type fluorophore. Its HLCT and AIE properties verified by theoretical calculations, solvatochromic effects, and transient photoluminescence decay experiments, bring about a strong blue emission (452 nm) with a high photoluminescence quantum yield of 74 % in the thin film. PI-TPB-CN is successfully employed as a blue emitter in OLEDs. Non-doped OLED with the structure of ITO/HAT-CN (6 nm)/NPB (30 nm)/TCTA (10 nm)/PI-TPB-CN (30 nm)/TPBi (40 nm)/LiF (1 nm)/Al (100 nm) demonstrates excellent electroluminescence (EL) performance with blue emission (451 nm) and maximum external quantum efficiency (EQEmax) of 7.38 %. The device with a thinner layer of PI-TPB-CN (20 nm) and TPBi (30 nm) exhibits a deeper blue emission (444 nm) with CIE coordinates of (0.156, 0.096), a low turn-on voltage of 3.0 V, and EQEmax of 6.45 %.
Collapse
Affiliation(s)
- Teerapat Itsoponpan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210, Thailand
| | - Praweena Wongkaew
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210, Thailand
| | - Nipanan Prakanpo
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210, Thailand
| | - Trirath Sukthawee
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210, Thailand
| | - Taweesak Suyoadsuk
- Frontier Research Center, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210, Thailand
| | - Vinich Promarak
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210, Thailand
| |
Collapse
|
12
|
Man M, Zhao M, Lyu Y. Hole-Transporting Materials Based on a Fluorene Unit for Efficient Optoelectronic Devices. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5417. [PMID: 39597242 PMCID: PMC11595885 DOI: 10.3390/ma17225417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Solution-processable hole-transporting materials (HTMs) that form highly soluble films and thermally stable amorphous states are essential for advancing optoelectronic devices. However, the currently commercialized HTM, N,N-bis(3-methylphenyl)-N,N0-bis(phenyl)benzidine (TPD), exhibits poor solubility and limited carrier transport when spin-coated into thin films. Herein, to address these issues, a fluorenyl group was ingeniously incorporated into a series of molecules structurally similar to TPD. The resulting compounds, namely, 2,7-di-(N,N-diphenylamino)-9,9-dimethyl-9H-fluorene (DDF), 2,7-di-p-tolyl-(N,N-diphenylamino)-9,9-dimethyl-9H-fluorene (2M-DDF), and 2,7-di-tetra-p-tolyl-(N,N-diphenylamino)-9,9-dimethyl-9H-fluorene (4M-DDF), offered tunable energy levels, carrier transport, crystallinity, and steric configuration via adjustment of the number of terminal methyl groups. Owing to its satisfactory performance, 2M-DDF can serve as an effective alternative to TPD in OLED devices as well as a guest molecule in host-guest systems for long-afterglow materials. Devices incorporating 2M-DDF as the HTM, with an Alq3 emitter, achieved a maximum CE of 4.78 cd/A and a maximum L (Lmax) of 21,412 cd m-2, with a turn-on voltage (Von) of 3.8 V. The luminous efficiency of 2M-DDF was approximately five times that of TPD (4106 cd m-2). Furthermore, when 2M-DDF and TPD were utilized as guest molecules in afterglow materials, the afterglow duration of 2M-DDF (10 s) was 2.5 times that of TPD (4 s). This study provides a theoretical basis for the development of high-performance HTMs and long-afterglow materials, establishing a framework for the application of fluorene-based compounds in emerging fields such as long-afterglow materials.
Collapse
Affiliation(s)
- Maoli Man
- Hebei Petroleum University of Technology, Chengde 067000, China;
| | - Mingming Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China;
| | - Yunfei Lyu
- Hebei Petroleum University of Technology, Chengde 067000, China;
| |
Collapse
|
13
|
He Z, Huang Z, Li T, Song J, Wu J, Ma X. Achieving Tunable Monomeric TADF and Aggregated RTP via Molecular Stacking. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54742-54750. [PMID: 39324810 DOI: 10.1021/acsami.4c14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Organic emitters with both thermally activated delayed fluorescence (TADF) and room-temperature phosphorescence (RTP) have attracted widespread interest for their intriguing luminescent properties. Herein, a series of triphenylamine-substituted isoquinoline derivatives possessing monomeric TADF and aggregated RTP properties are reported. As the molecules exhibited various forms of π-π and charge transfer (CT) stacking with different intensities, inter/intramolecular CT can be meticulously modulated to achieve tunable TADF-RTP. Aggregated phosphorescence originates from intermolecular CT initiated by CT dimers, whereas monomeric TADF is facilitated by intramolecular CT enhanced by π-π dimers. Leveraging the properties of these molecules, luminescent materials with tunable TADF-RTP properties in multistates are obtained by molecular substitution position alignment, dealing with different solvents, grinding, adjusting concentration, changing polymer matrix, photoactivation, and heat treatment. This work is critical for a deeper understanding of construction and regulation of the TADF-RTP dual-channel emission, enabling the development of advanced optoelectronic devices with tailored emission properties.
Collapse
Affiliation(s)
- Zhenyi He
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, China
| | - Zizhao Huang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, China
| | - Tao Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, China
| | - Jinming Song
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, China
| | - Junfeng Wu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai 200237, China
| |
Collapse
|
14
|
Ma YJ, Xu F, Ren XY, Chen FY, Pan J, Li JH, Han SD, Wang GM. A photoinduced electron-transfer strategy for switchable fluorescence and phosphorescence in lanthanide-based coordination polymers. Chem Sci 2024:d4sc04632c. [PMID: 39391378 PMCID: PMC11462477 DOI: 10.1039/d4sc04632c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Smart optical materials with tunable fluorescence and room temperature phosphorescence (RTP) exhibit promising application prospects in the field of intelligent switches, information security, etc. Herein, a tetraimidazole derivative was grafted to one-dimensional lanthanum-diphosphonate through H-bonds, generating a coordination polymer (CP), (H4-TIBP)·[La2Li(H2-HEDP)4(H-HEDP)]·3H2O (termed La; TIBP = 3,3,5,5-tetra(imidazole-1-yl)-1,1-biphenyl; H4-HEDP = 1-hydroxyethylidene-1,1-diphosphonic acid) with a three-dimensional supramolecular structure. La shows dynamic fluorescence from blue to red and switchable monotonous yellowish-green RTP, which can be manipulated by reversible photochromism. It is worth noting that Eu3+/Tb3+-doped CPs exhibit time-resolved (red to yellow) and monotonous green afterglow, respectively, which can be attributed to multiple emissions with different decay rates. The dynamic and multicolor luminescence endows these CPs with potential for application in the domains of optical communications, multi-step encryption, and anti-counterfeiting. This work not only integrates color-adjustable fluorescence, switchable RTP, and photochromism in one material, but also realizes the manipulation of the resultant optical performances via photochromism, paving the pathway for the design and synthesis of smart optical materials.
Collapse
Affiliation(s)
- Yu-Juan Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University Qingdao Shandong 266071 P. R. China
| | - Fei Xu
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University Qingdao Shandong 266071 P. R. China
| | - Xin-Ye Ren
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University Qingdao Shandong 266071 P. R. China
| | - Fan-Yao Chen
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University Qingdao Shandong 266071 P. R. China
| | - Jie Pan
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University Qingdao Shandong 266071 P. R. China
| | - Jin-Hua Li
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University Qingdao Shandong 266071 P. R. China
| | - Song-De Han
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University Qingdao Shandong 266071 P. R. China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University Qingdao Shandong 266071 P. R. China
| |
Collapse
|
15
|
Maida MC, Sugawara N, Suzuki A, Ito M, Kubo Y. Metal ion-manipulated afterglow on rhodamine 6G derivative-doped room-temperature phosphorescent PVA films. Front Chem 2024; 12:1441452. [PMID: 39345861 PMCID: PMC11428105 DOI: 10.3389/fchem.2024.1441452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
The long-lived room-temperature phosphorescence (RTP) originating from thiophene boronate polyvinyl alcohol (PVA) has enabled the creation of metal-ion-responsive RTP films doped with spirolactam ring-containing rhodamine 6G (1). In this study, RTP-active PVA films, namely, TDB@PVA and ATB@PVA, were prepared through boronate esterification of thiophene-2,5-diboronic acid (TDB) and 5-acetylthiophene-2-boronic acid (ATB) with the diol units of PVA. The delayed emission properties were evaluated, revealing an emission band at 477 nm with a turquoise afterglow for TDB@PVA and at 510 nm with a green afterglow for ATB@PVA after UV light irradiation ceased. The photophysical properties were assessed using TD-DFT and DFT calculations at the B3LYP/cc-pVDZ level. N-(rhodamine-6G)lactam dye with a salicylimine unit (1) was doped into the RTP-based PVA films, producing a multicolored afterglow upon the addition of metal ions. This phenomenon is explained by a triplet-to-singlet Förster-type resonance energy transfer process from the cross-linked thiophene boronate in PVA to the metal-ion-activated colored form of 1. This photophysical feature finds applicability in encryption techniques. Notably, the reversible metal-ligand coordination of 1 in the PVA system enabled a write/erase information process.
Collapse
Affiliation(s)
| | | | | | | | - Yuji Kubo
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Hachioji, Japan
| |
Collapse
|
16
|
Zhou J, Tian B, Zhai Y, Wang M, Liu S, Li J, Li S, James TD, Chen Z. Photoactivated room temperature phosphorescence from lignin. Nat Commun 2024; 15:7198. [PMID: 39169019 PMCID: PMC11339440 DOI: 10.1038/s41467-024-51545-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
Sustainable photoactivated room temperature phosphorescent materials exhibit great potential but are difficult to obtain. Here, we develop photoactivated room temperature phosphorescent materials by covalently attaching lignin to polylactic acid, where lignin and polylactic acid are the chromophore and matrix, respectively. Initially the phosphorescence of the lignin is quenched by residual O2. However, the phosphorescence is switched on when the residual oxygen is consumed by the triplet excitons of lignin under continuous UV light irradiation. As such, the lifetime increases from 3.0 ms to 221.1 ms after 20 s of UV activation. Interestingly, the phosphorescence is quenched again after being kept under an atmosphere of air for 2 h in the absence of UV irradiation due to the diffusion of oxygen into the materials. Using these properties, as-developed material is successfully used as a smart anti-counterfeiting logo for a medicine bottle and for information recording.
Collapse
Affiliation(s)
- Jingyi Zhou
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, China
- International joint lab of advanced biomass materials, Northeast Forestry University, Heilongjiang Province, Harbin, China
| | - Bing Tian
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, China
- International joint lab of advanced biomass materials, Northeast Forestry University, Heilongjiang Province, Harbin, China
| | - Yingxiang Zhai
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, China
| | - Min Wang
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, China
| | - Jian Li
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, China
| | - Shujun Li
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China.
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science & Technology, Northeast Forestry University, Ministry of Education, Harbin, China.
- International joint lab of advanced biomass materials, Northeast Forestry University, Heilongjiang Province, Harbin, China.
| |
Collapse
|
17
|
Xie G, Guo N, Xue X, Yang Q, Liu X, Li H, Li H, Tao Y, Chen R, Huang W. Resonance-Induced Dynamic Triplet Exciton Population for Photoactivated Organic Ultralong Room Temperature Phosphorescence. J Am Chem Soc 2024; 146:20449-20457. [PMID: 38990700 DOI: 10.1021/jacs.4c06577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Dynamically populating triplet excitons under external stimuli is desired to develop smart optoelectronic materials, but it remains a formidable challenge. Herein, we report a resonance-induced excited state regulation strategy to dynamically modulate the triplet exciton population by introducing a self-adaptive N-C═O structure to phosphors. The developed phosphors activated under high-power ultraviolet irradiation exhibited enhanced photoactivated organic ultralong room temperature phosphorescence (PA-OURTP) with lifetimes of up to ∼500 ms. The enhanced PA-OURTP was ascribed to activated N-C═O resonance variation-induced intersystem crossing to generate excess triplet excitons. The excellent PA-OURTP performance and ultralong deactivation time under ambient conditions of the developed materials could function as a reusable recorded medium for time-sensitive information encryption through optical printing. This study provides an effective approach to dynamically regulating triplet excitons and offers valuable guidance to develop high-performance PA-OURTP materials for security printing applications.
Collapse
Affiliation(s)
- Gaozhan Xie
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Ningning Guo
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xudong Xue
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Qianxiu Yang
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xiaolong Liu
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Hui Li
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Huanhuan Li
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ye Tao
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Shanxi, Xi'an 710072, China
| |
Collapse
|
18
|
Liu M, Yang Z, Feng Z, Zhao N, Bian R, Wu J, Yang Q, Zhao S, Liu H, Yang B. Combining Functional Units to Design Organic Materials with Dynamic Room-Temperature Phosphorescence under Continuous Ultraviolet Irradiation. Molecules 2024; 29:2621. [PMID: 38893497 PMCID: PMC11173552 DOI: 10.3390/molecules29112621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Developing materials with dynamic room-temperature phosphorescence (RTP) properties is crucial for expanding the applications of organic light-emitting materials. In this study, we designed and synthesized two novel RTP molecules by combining functional units, incorporating the folded unit thianthrene into the classic luminescent cores thioxanthone or anthraquinone to construct TASO and TA2O. In this combination, the TA unit contributes to the enhancement of spin-orbit coupling (SOC), while the luminescent core governs the triplet energy level. After the strategic manipulation of SOC using the thianthrene unit, the target molecules exhibited a remarkable enhancement in RTP performance. This strategy led to the successful development of TASO and TA2O molecules with outstanding dynamic RTP properties when exposed to continuous ultraviolet irradiation, a result that can be ascribed to their efficient RTP, improved absorption ability, and oxygen-sensitive RTP properties. Leveraging the oxygen-mediated ultraviolet-radiation-induced RTP enhancement in TASO-doped polymer films, we developed a novel time-resolved detection technique for identifying phase separation in polymers with varying oxygen permeability. This research offers a promising approach for constructing materials with dynamic RTP properties.
Collapse
Affiliation(s)
- Meng Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhiqiang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhe Feng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Ningyuan Zhao
- College of Chemistry, Jilin University, Changchun 130012, China (J.W.)
| | - Ruihua Bian
- College of Chemistry, Jilin University, Changchun 130012, China (J.W.)
| | - Jinpu Wu
- College of Chemistry, Jilin University, Changchun 130012, China (J.W.)
| | - Qing Yang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Shuaiqiang Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Haichao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
19
|
Thomas H, Achenbach T, Hodgkinson IM, Spoerer Y, Kuehnert I, Dornack C, Schellhammer KS, Reineke S. Room Temperature Phosphorescence from Natural, Organic Emitters and Their Application in Industrially Compostable Programmable Luminescent Tags. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310674. [PMID: 38581239 DOI: 10.1002/adma.202310674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/21/2024] [Indexed: 04/08/2024]
Abstract
Organic semiconductors provide the potential of biodegradable technologies, but prototypes do only rarely exist. Transparent, ultrathin programmable luminescent tags (PLTs) are presented for minimalistic yet efficient information storage that are fully made from biodegradable or at least industrially compostable, ready-to-use materials (bioPLTs). As natural emitters, the quinoline alkaloids show sufficient room temperature phosphorescence when being embedded in polymer matrices with cinchonine exhibiting superior performance. Polylactic acid provides a solution for both the matrix material and the flexible substrate. Room temperature phosphorescence can be locally controlled by the oxygen concentration in the film by using Exceval as additional oxygen blocking layers. These bioPLTs exhibit all function-defining characteristics also found in their regular nonenvironmentally degradable analogs and, additionally, provide a simplified, high-contrast readout under continuous-wave illumination as a consequence of the unique luminescence properties of the natural emitter cinchonine. Limitations for flexible devices arise from limited thermal stability of the polylactic acid foil used as substrate allowing only for one writing cycle and preventing an annealing step during fabrication. Few-cycle reprogramming is possible when using the architecture of the bioPLTs on regular quartz substrates. This work realizes the versatile platform of PLTs with less harmful materials offering more sustainable use in future.
Collapse
Affiliation(s)
- Heidi Thomas
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Hermann-Krone-Bau, Nöthnitzer Str. 61, 01187, Dresden, Germany
| | - Tim Achenbach
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Hermann-Krone-Bau, Nöthnitzer Str. 61, 01187, Dresden, Germany
| | - Isla Marie Hodgkinson
- Chair of Waste Management and Circular Economy, Technische Universität Dresden, Pratzschwitzer Str. 15, 01796, Pirna, Germany
| | - Yvonne Spoerer
- Department Processing Technology, Institute of Polymer Materials, Leibniz-Institut fuer Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| | - Ines Kuehnert
- Department Processing Technology, Institute of Polymer Materials, Leibniz-Institut fuer Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| | - Christina Dornack
- Chair of Waste Management and Circular Economy, Technische Universität Dresden, Pratzschwitzer Str. 15, 01796, Pirna, Germany
| | - Karl Sebastian Schellhammer
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Hermann-Krone-Bau, Nöthnitzer Str. 61, 01187, Dresden, Germany
| | - Sebastian Reineke
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Hermann-Krone-Bau, Nöthnitzer Str. 61, 01187, Dresden, Germany
| |
Collapse
|
20
|
Yao X, Li Y, Shi H, Yu Z, Wu B, Zhou Z, Zhou C, Zheng X, Tang M, Wang X, Ma H, Meng Z, Huang W, An Z. Narrowband room temperature phosphorescence of closed-loop molecules through the multiple resonance effect. Nat Commun 2024; 15:4520. [PMID: 38806515 PMCID: PMC11133472 DOI: 10.1038/s41467-024-48856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Luminescent materials with narrowband emission show great potential for diverse applications in optoelectronics. Purely organic phosphors with room-temperature phosphorescence (RTP) have made significant success in rationally manipulating quantum efficiency, lifetimes, and colour gamut in the past years, but there is limited attention on the purity of the RTP colours. Herein we report a series of closed-loop molecules with narrowband phosphorescence by multiple resonance effect, which significantly improves the colour purity of RTP. Phosphors show narrowband phosphorescence with full width at half maxima (FWHM) of 30 nm after doping into a rigid benzophenone matrix under ambient conditions, of which the RTP efficiency reaches 51.8%. At 77 K, the FWHM of phosphorescence is only 11 nm. Meanwhile, the colour of narrowband RTP can be tuned from sky blue to green with the modification of methyl groups. Additionally, the potential applications in X-ray imaging and display are demonstrated. This work not only outlines a design principle for developing narrowband RTP materials but also makes a major step forward extending the potential applications of narrowband luminescent materials in optoelectronics.
Collapse
Affiliation(s)
- Xiaokang Yao
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Yuxin Li
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Huifang Shi
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Ze Yu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Beishen Wu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Zixing Zhou
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Chifeng Zhou
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Xifang Zheng
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Mengting Tang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Xiao Wang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Zhengong Meng
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, China
- Henan Institute of Flexible Electronics (HIFE) and School of Flexible Electronics (SoFE), Henan University, Zhengzhou, China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China.
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China.
- Henan Institute of Flexible Electronics (HIFE) and School of Flexible Electronics (SoFE), Henan University, Zhengzhou, China.
| |
Collapse
|
21
|
Gan N, Zou X, Qian Z, Lv A, Wang L, Ma H, Qian HJ, Gu L, An Z, Huang W. Stretchable phosphorescent polymers by multiphase engineering. Nat Commun 2024; 15:4113. [PMID: 38750029 PMCID: PMC11096371 DOI: 10.1038/s41467-024-47673-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/09/2024] [Indexed: 05/18/2024] Open
Abstract
Stretchable phosphorescence materials potentially enable applications in diverse advanced fields in wearable electronics. However, achieving room-temperature phosphorescence materials simultaneously featuring long-lived emission and good stretchability is challenging because it is hard to balance the rigidity and flexibility in the same polymer. Here we present a multiphase engineering for obtaining stretchable phosphorescent materials by combining stiffness and softness simultaneously in well-designed block copolymers. Due to the microphase separation, copolymers demonstrate an intrinsic stretchability of 712%, maintaining an ultralong phosphorescence lifetime of up to 981.11 ms. This multiphase engineering is generally applicable to a series of binary and ternary initiator systems with color-tunable phosphorescence in the visible range. Moreover, these copolymers enable multi-level volumetric data encryption and stretchable afterglow display. This work provides a fundamental understanding of the nanostructures and material properties for designing stretchable materials and extends the potential of phosphorescence polymers.
Collapse
Affiliation(s)
- Nan Gan
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xin Zou
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhao Qian
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Anqi Lv
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Lan Wang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Hu-Jun Qian
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Long Gu
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China.
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China.
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China.
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China.
| |
Collapse
|
22
|
Pan Z, Song J, Zhang S, Zeng P, Mei J, Qu DH. Tailoring raloxifene into single-component molecular crystals possessing multilevel stimuli-responsive room-temperature phosphorescence. Sci Bull (Beijing) 2024; 69:1237-1248. [PMID: 38458915 DOI: 10.1016/j.scib.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 03/10/2024]
Abstract
Simultaneously achieving room-temperature phosphorescence (RTP) and multiple-stimuli responsiveness in a single-component system is of significance but remains challenging. Crystallization has been recognized to be a workable strategy to fulfill the above task. However, how the molecular packing mode affects the intersystem crossing and RTP lifetime concurrently remains unclear so far. Herein, four economic small-molecular compounds, analogues of the famous drug raloxifene (RALO), are facilely synthesized and further explored as neat single-component and stimuli-responsive RTP emitters via crystallization engineering. Thanks to their simple structures and high ease to crystallize, these raloxifene analogues function as models to clarify the important role of molecular packing in the RTP and stimuli-responsiveness properties. Thorough combination of the single-crystal structure analysis and theoretical calculations clearly manifests that the tight antiparallel molecular packing mode is the key point to their RTP behaviors. Interestingly, harnessing the controllable and reversible phase transitions of the two polymorphs of RALO-OAc driven by mechanical force, solvent vapor, and heat, a single-component multilevel stimuli-responsive platform with tunable emission color is established and further exploited for optical information encryption. This work would shed light on the rational design of multi-stimuli responsive RTP systems based on single-component organics.
Collapse
Affiliation(s)
- Zhichao Pan
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Jinming Song
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Shasha Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Ping Zeng
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Ju Mei
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| |
Collapse
|
23
|
Dong M, Lv A, Zou X, Gan N, Peng C, Ding M, Wang X, Zhou Z, Chen H, Ma H, Gu L, An Z, Huang W. Polymorphism-Dependent Organic Room Temperature Phosphorescent Scintillation for X-Ray Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310663. [PMID: 38267010 DOI: 10.1002/adma.202310663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Organic phosphorescent scintillating materials have shown great potential for applications in radiography and radiation detection due to their efficient utilization of excitons. However, revealing the relationship between molecule stacking and the phosphorescent radioluminescence of scintillators is still challenging. This study reports on two phenothiazine derivatives with polymorphism-dependent phosphorescence radioluminescence. The experiments reveal that molecule stacking significantly affects the non-radiation decay of the triplet excitons of scintillators, which further determines the phosphorescence scintillation performance under X-ray irradiation. These phosphorescent scintillators exhibit high radio stability and have a low detection limit of 278 nGys-1. Additionally, the potential application of these scintillators in X-ray radiography, based on their X-ray excited radioluminescence properties, is demonstrated. These findings provide a guideline for obtaining high-performance phosphorescent scintillating materials by shedding light on the effect of crystal packing on the radioluminescence of organic molecules.
Collapse
Affiliation(s)
- Mengyang Dong
- Frontiers Science Center for Flexible Electronics, MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Anqi Lv
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xin Zou
- Frontiers Science Center for Flexible Electronics, MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Nan Gan
- Frontiers Science Center for Flexible Electronics, MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Chenxi Peng
- Frontiers Science Center for Flexible Electronics, MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Meijuan Ding
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xiao Wang
- Frontiers Science Center for Flexible Electronics, MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Zixing Zhou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Huan Chen
- Frontiers Science Center for Flexible Electronics, MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Long Gu
- Frontiers Science Center for Flexible Electronics, MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
- Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, P. R. China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| |
Collapse
|
24
|
Sk B, Hirata S. Symmetry-Breaking Triplet Excited State Enhances Red Afterglow Enabling Ubiquitous Afterglow Readout. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308897. [PMID: 38311585 PMCID: PMC11005713 DOI: 10.1002/advs.202308897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Indexed: 02/06/2024]
Abstract
Molecular vibrations are often factors that deactivate luminescence. However, if there are molecular motion elements that enhance luminescence, it may be possible to utilize molecular movement as a design guideline to enhance luminescence. Here, the authors report a large contribution of symmetry-breaking molecular motion that enhances red persistent room-temperature phosphorescence (RTP) in donor-π-donor conjugated chromophores. The deuterated form of the donor-π-donor chromophore exhibits efficient red persistent RTP with a yield of 21% and a lifetime of 1.6 s. A dynamic calculation of the phosphorescence rate constant (kp) indicates that the symmetry-breaking movement has a crucial role in selectively facilitating kp without increasing nonradiative transition from the lowest triplet excited state. Molecules exhibiting efficient red persistent RTP enable long-wavelength excitation, indicating the suitability of observing afterglow readout in a bright indoor environment with a white-light-emitting diode flashlight, greatly expanding the range of anti-counterfeiting applications that use afterglow.
Collapse
Affiliation(s)
- Bahadur Sk
- Department of Engineering ScienceThe University of Electro‐Communications1‐5‐1 Chofugaoka, ChofuTokyo182‐8585Japan
| | - Shuzo Hirata
- Department of Engineering ScienceThe University of Electro‐Communications1‐5‐1 Chofugaoka, ChofuTokyo182‐8585Japan
| |
Collapse
|
25
|
Kantelberg R, Achenbach T, Kirch A, Reineke S. In-plane oxygen diffusion measurements in polymer films using time-resolved imaging of programmable luminescent tags. Sci Rep 2024; 14:5826. [PMID: 38461364 PMCID: PMC11319630 DOI: 10.1038/s41598-024-56237-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
Oxygen diffusion properties in thin polymer films are key parameters in industrial applications from food packaging, over medical encapsulation to organic semiconductor devices and have been continuously investigated in recent decades. The established methods have in common that they require complex pressure-sensitive setups or vacuum technology and usually do not come without surface effects. In contrast, this work provides a low-cost, precise and reliable method to determine the oxygen diffusion coefficient D in bulk polymer films based on tracking the phosphorescent pattern of a programmable luminescent tag over time. Our method exploits two-dimensional image analysis of oxygen-quenched organic room-temperature phosphors in a host polymer with high spatial accuracy. It avoids interface effects and accounts for the photoconsumption of oxygen. As a role model, the diffusion coefficients of polystyrene glasses with molecular weights between 13k and 350k g/mol are determined to be in the range of (0.8-1.5) × 10-7 cm2/s, which is in good agreement with previously reported values. We finally demonstrate the reduction of the oxygen diffusion coefficient in polystyrene by one quarter upon annealing above its glass transition temperature.
Collapse
Affiliation(s)
- Richard Kantelberg
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute of Applied Physics, Technische Universität Dresden, Nöthnitzer Straße 61, 01187, Dresden, Germany
| | - Tim Achenbach
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute of Applied Physics, Technische Universität Dresden, Nöthnitzer Straße 61, 01187, Dresden, Germany
| | - Anton Kirch
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute of Applied Physics, Technische Universität Dresden, Nöthnitzer Straße 61, 01187, Dresden, Germany
- The Organic Photonics and Electronics Group, Department of Physics, Umeå University, 90187, Umeå, Sweden
| | - Sebastian Reineke
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute of Applied Physics, Technische Universität Dresden, Nöthnitzer Straße 61, 01187, Dresden, Germany.
| |
Collapse
|
26
|
Wang H, Ma H, Gan N, Qin K, Song Z, Lv A, Wang K, Ye W, Yao X, Zhou C, Wang X, Zhou Z, Yang S, Yang L, Bo C, Shi H, Huo F, Li G, Huang W, An Z. Abnormal thermally-stimulated dynamic organic phosphorescence. Nat Commun 2024; 15:2134. [PMID: 38459008 PMCID: PMC10923930 DOI: 10.1038/s41467-024-45811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/05/2024] [Indexed: 03/10/2024] Open
Abstract
Dynamic luminescence behavior by external stimuli, such as light, thermal field, electricity, mechanical force, etc., endows the materials with great promise in optoelectronic applications. Upon thermal stimulus, the emission is inevitably quenched due to intensive non-radiative transition, especially for phosphorescence at high temperature. Herein, we report an abnormal thermally-stimulated phosphorescence behavior in a series of organic phosphors. As temperature changes from 198 to 343 K, the phosphorescence at around 479 nm gradually enhances for the model phosphor, of which the phosphorescent colors are tuned from yellow to cyan-blue. Furthermore, we demonstrate the potential applications of such dynamic emission for smart dyes and colorful afterglow displays. Our results would initiate the exploration of dynamic high-temperature phosphorescence for applications in smart optoelectronics. This finding not only contributes to an in-depth understanding of the thermally-stimulated phosphorescence, but also paves the way toward the development of smart materials for applications in optoelectronics.
Collapse
Affiliation(s)
- He Wang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, China
| | - Nan Gan
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Kai Qin
- College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, China
| | - Zhicheng Song
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, China
| | - Anqi Lv
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, China
| | - Kai Wang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, China
| | - Wenpeng Ye
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, China
| | - Xiaokang Yao
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, China
| | - Chifeng Zhou
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, China
| | - Xiao Wang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, Fujian, China
| | - Zixing Zhou
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, China
| | - Shilin Yang
- College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, China
| | - Lirong Yang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, China
| | - Cuimei Bo
- College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, China
| | - Huifang Shi
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, China
| | - Gongqiang Li
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, China.
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, China.
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China.
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, Fujian, China.
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China.
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, China.
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, Fujian, China.
| |
Collapse
|
27
|
Chen K, Luo Y, Sun M, Liu C, Jia M, Fu C, Shen X, Li C, Zheng X, Pu X, Huang Y, Lu Z. Acquiring Charge-Transfer-Featured Single-Molecule Ultralong Organic Room Temperature Phosphorescence via Through-Space Electronic Coupling. Angew Chem Int Ed Engl 2024; 63:e202314447. [PMID: 37968894 DOI: 10.1002/anie.202314447] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/17/2023]
Abstract
Although long-lived triplet charge-transfer (3 CT) state with high energy level has gained significant attention, the development of organic small molecules capable of achieving such states remains a major challenge. Herein, by using the through-space electronic coupling effect, we have developed a compound, namely NIC-DMAC, which has a long-lived 3 CT state at the single-molecule level with a lifetime of 210 ms and a high energy level of up to 2.50 eV. Through a combination of experimental and computational approaches, we have elucidated the photophysical processes of NIC-DMAC, which involve sequential transitions from the first singlet excited state (S1 ) that shows a 1 CT character to the first triplet excited state (T1 ) that exhibits a local excited state feature (3 LE), and then to the second triplet excited state (T2 ) that shows a 3 CT character (i.e., S1 (1 CT)→T1 (3 LE)→T2 (3 CT)). The long lifetime and high energy level of its 3 CT state have enabled NIC-DMAC as an initiator for photocuring in double patterning applications.
Collapse
Affiliation(s)
- Kuan Chen
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yanju Luo
- Analytical & Testing Center, Sichuan University, Chengdu, 610064, China
| | - Ming Sun
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Chuanhao Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Mengjiao Jia
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Caixia Fu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xingsha Shen
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Chuan Li
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xujun Zheng
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xuemei Pu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yan Huang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Zhiyun Lu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
28
|
Yang Z, Liu H, Zhang X, Lv Y, Fu Z, Zhao S, Liu M, Zhang ST, Yang B. Photo-Responsive Dynamic Organic Room-Temperature Phosphorescence Materials Based on a Functional Unit Combination Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306784. [PMID: 37781967 DOI: 10.1002/adma.202306784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/19/2023] [Indexed: 10/03/2023]
Abstract
A rational molecular design strategy facilitates the development of a purely organic room-temperature phosphorescence (RTP) material system with precisely regulated luminescence properties, which surely promotes its functional integration and intelligent application. Here, a functional unit combination strategy is proposed to design novel RTP molecules combining a folding unit with diverse luminescent cores. The different luminescent cores are mainly responsible for tunable RTP properties, while the folding unit contributes to the spin-orbit coupling (SOC) enhancement, which makes the RTP material design as workable as the building block principle. By this strategy, a series of color/lifetime-tunable RTP materials is achieved with unique photo-responsive RTP enhancement when subjected to UV irradiation, which expands their application scenarios in reusable privacy tags, advanced "4D" encryption, and phase separation analysis of blended polymers. This work suggests a simple and effective strategy to design purely organic RTP materials with tunable color and lifetime, and also provides new application options for photo-responsive dynamic RTP materials.
Collapse
Affiliation(s)
- Zhiqiang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Haichao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Xiangyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Yingbo Lv
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Zhiyuan Fu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Shuaiqiang Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Meng Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Shi-Tong Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| |
Collapse
|
29
|
Zhang Y, Zhang W, Xia J, Xiong C, Li G, Li X, Sun P, Shi J, Tong B, Cai Z, Dong Y. Microwave-Responsive Flexible Room-Temperature Phosphorescence Materials Based on Poly(vinylidene fluoride) Polymer. Angew Chem Int Ed Engl 2023; 62:e202314273. [PMID: 37885123 DOI: 10.1002/anie.202314273] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 10/28/2023]
Abstract
The development of flexible, room-temperature phosphorescence (RTP) materials remains challenging owing to the quenching of their unstable triplet excitons via molecular motion. Therefore, a polymer matrix with Tg higher than room temperature is required to prevent polymer segment movement. In this study, a RTP material was developed by incorporating a 4-biphenylboronic acid (BPBA) phosphor into a poly(vinylidene fluoride) (PVDF) matrix (Tg =-27.1 °C), which exhibits a remarkable UV-light-dependent oxygen consumption phosphorescence with a lifetime of 1275.7 ms. The adjustable RTP performance is influenced by the crystallinity and polymorph (α, β, and γ phases) fraction of PVDF, therefore, the low Tg of the PVDF matrix enables the polymeric segmental motion upon microwave irradiation. Consequently, a reduction in the crystallinity and an increase in the α phase fraction in PVDF film induces RTP after 2.45 GHz microwave irradiation. These findings open up new avenues for constructing crystalline and phase-dependent RTP materials while demonstrating a promising approach toward microwave detection.
Collapse
Affiliation(s)
- Yongfeng Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| | - Wei Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| | - Junming Xia
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| | - Chenchen Xiong
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| | - Gengchen Li
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| | - Xiaodong Li
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| | - Peng Sun
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| | - Jianbing Shi
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| | - Bin Tong
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| | - Zhengxu Cai
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| | - Yuping Dong
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| |
Collapse
|
30
|
Li X, Li W, Liu X, Zhang M, Yu EY, Law AWK, Ou X, Zhang J, Sung HHY, Tan X, Sun J, Lam JWY, Guo Z, Tang BZ. A Photoactivatable Luminescent Motif through Ring-Flipping Isomerization for Multiple Photopatterning. J Am Chem Soc 2023. [PMID: 38051539 DOI: 10.1021/jacs.3c07478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Photoactivatable luminescent materials have garnered enormous attention in the field of intelligent responsive materials, yet their design and applications remain challenging due to the limited variety of photoactivatable motifs. In the work described herein, we discovered a new photoactivatable luminescent motif that underwent ring-flipping isomerization under UV irradiation. The emission of this motif exhibited a rapid transformation from dark yellow to bright green, accompanied by a significant enhancement of quantum yield from 1.9% to 34.2%. Experimental and theoretical studies revealed that the effective intramolecular motion (EIM) was crucial to the distinct luminescence performance between two isomers. In addition, polymers containing this motif were achieved through a one-pot alkyne polymerization, exhibiting both photofluorochromic and photo-cross-linking properties. Furthermore, multiple types of photopatterning, including luminescent encryption, fluorescent grayscale imaging, and high-resolution photolithographic patterns, were realized. This work developed a new photoactivatable luminescent motif and demonstrated its potential applications in both small molecules and macromolecules, which will help in the future design of photoactivatable luminescent materials.
Collapse
Affiliation(s)
- Xin Li
- Department of Chemistry and the Hong Kong Branch of the Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Wenlang Li
- Department of Chemistry and the Hong Kong Branch of the Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Xinyue Liu
- Department of Chemistry and the Hong Kong Branch of the Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Minjie Zhang
- Department of Chemistry and the Hong Kong Branch of the Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Eric Y Yu
- Department of Chemistry and the Hong Kong Branch of the Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Anthony W K Law
- Department of Chemistry and the Hong Kong Branch of the Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Xinwen Ou
- Department of Chemistry and the Hong Kong Branch of the Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jianyu Zhang
- Department of Chemistry and the Hong Kong Branch of the Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Herman H Y Sung
- Department of Chemistry and the Hong Kong Branch of the Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Xuefeng Tan
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, China
| | | | - Jacky W Y Lam
- Department of Chemistry and the Hong Kong Branch of the Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Zhihong Guo
- Department of Chemistry and the Hong Kong Branch of the Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ben Zhong Tang
- Department of Chemistry and the Hong Kong Branch of the Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
31
|
Badriyah EH, Hayashi K, Sk B, Takano R, Ishida T, Hirata S. Continuous Condensed Triplet Accumulation for Irradiance-Induced Anticounterfeit Afterglow. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304374. [PMID: 37897314 PMCID: PMC10754144 DOI: 10.1002/advs.202304374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/25/2023] [Indexed: 10/30/2023]
Abstract
Afterglow room-temperature emission that is independent of autofluorescence after ceasing excitation is a promising technology for state-of-the-art bioimaging and security devices. However, the low brightness of the afterglow emission is a current limitation for using such materials in a variety of applications. Herein, the continuous formation of condensed triplet excitons for brighter afterglow room-temperature phosphorescence is reported. (S)-(-)-2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl ((S)-BINAP) incorporated in a crystalline host lattice showed bright green afterglow room-temperature phosphorescence under strong excitation. The small triplet-triplet absorption cross-section of (S)-BINAP in the whole range of visible wavelengths greatly suppressed the deactivation caused by Förster resonance energy transfer from excited states of (S)-BINAP to the accumulated triplet excitons of (S)-BINAP under strong continuous excitation. The steady-state concentration of the triplet excitons for (S)-BINAP reached 2.3 × 10-2 M, producing a bright afterglow. Owing to the brighter afterglow, afterglow detection using individual particles with sizes approaching the diffraction limit in aqueous conditions and irradiance-dependent anticounterfeiting can be achieved.
Collapse
Affiliation(s)
- Ende Hopsah Badriyah
- Department of Engineering ScienceThe University of Electro‐Communications1‐5‐1 ChofugaokaChofuTokyo182–8585Japan
| | - Kikuya Hayashi
- Department of Engineering ScienceThe University of Electro‐Communications1‐5‐1 ChofugaokaChofuTokyo182–8585Japan
| | - Bahadur Sk
- Department of Engineering ScienceThe University of Electro‐Communications1‐5‐1 ChofugaokaChofuTokyo182–8585Japan
| | - Rina Takano
- Department of Engineering ScienceThe University of Electro‐Communications1‐5‐1 ChofugaokaChofuTokyo182–8585Japan
| | - Takayuki Ishida
- Department of Engineering ScienceThe University of Electro‐Communications1‐5‐1 ChofugaokaChofuTokyo182–8585Japan
| | - Shuzo Hirata
- Department of Engineering ScienceThe University of Electro‐Communications1‐5‐1 ChofugaokaChofuTokyo182–8585Japan
| |
Collapse
|
32
|
Zheng T, Yang H, Liu Y, Li Y, Huang Q, Zhang L, Li X. Mn 2+ and Sb 3+ Codoped Cs 2ZnCl 4 Metal Halide with Excitation-Wavelength-Dependent Emission for Fluorescence Anticounterfeiting. Inorg Chem 2023; 62:17352-17361. [PMID: 37803525 DOI: 10.1021/acs.inorgchem.3c02696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
In recent years, there has been a growing demand for luminescence anticounterfeiting materials that possess the properties of environmentally friendly, single-component, and multimode fluorescence. Among the materials explored, the low dimensional metal halides have gained wide attention because of unique characteristics including low toxicity, simple synthesis, good stability, and so on. Here, we synthesized Mn2+ and Sb3+ codoped Cs2ZnCl4 single crystals by a facile hydrothermal method. Under 365 nm excitation, the codoped compound exhibits dual-band emissions at 530 and 730 nm. However, under 316 nm excitation, the compound only shows one emission band from 500 to 850 nm peaking at 730 nm, while under 460 nm excitation, the emission from 500 to 650 nm with an emission peak at 530 nm can be observed. Based on the study of the photoluminescence mechanism, the green and red emissions originate from the Mn2+ located in the tetrahedron and self-trapped exciton emission of [SbCl4]- clusters, respectively. Due to the zero-dimensional structure of the Cs2ZnCl4 host, there is minimal energy transfer between these dopants. Consequently, the luminous ratios of the two emissions can be independently regulated. Except by tuning the dopant concentrations, the Cs2ZnCl4:Mn2+, Sb3+ demonstrates excitation-wavelength-dependent properties, which could emit more than two colors with the change of excitation wavelength. As a result, multimode anticounterfeiting based on Cs2ZnCl4:Mn2+, Sb3+ crystals has been designed, which aligns with the requirements of environmentally friendly, single-component, and multimode fluorescence properties.
Collapse
Affiliation(s)
- Tiancheng Zheng
- Solar Energy Conversion Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, P.R. China
| | - Huanxin Yang
- Solar Energy Conversion Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, P.R. China
| | - Yuling Liu
- Solar Energy Conversion Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, P.R. China
| | - Yue Li
- Solar Energy Conversion Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, P.R. China
| | - Qian Huang
- Solar Energy Conversion Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, P.R. China
| | - Libing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, Tianjin University, Tianjin 300354, P.R. China
| | - Xiyan Li
- Solar Energy Conversion Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Institute of Photoelectronic Thin Film Devices and Technology, Nankai University, Tianjin 300350, P.R. China
| |
Collapse
|
33
|
Zou X, Gan N, Dong M, Huo W, Lv A, Yao X, Yin C, Wang Z, Zhang Y, Chen H, Ma H, Gu L, An Z, Huang W. Narrowband Organic Afterglow via Phosphorescence Förster Resonance Energy Transfer for Multifunctional Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210489. [PMID: 37390483 DOI: 10.1002/adma.202210489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/22/2023] [Accepted: 06/29/2023] [Indexed: 07/02/2023]
Abstract
Achieving multicolor organic afterglow materials with narrowband emission and high color purity is important in various optoelectronic fields but remains a great challenge. Here, an efficient strategy is presented to obtain narrowband organic afterglow materials via Förster resonance energy transfer from long-lived phosphorescence donors to narrowband fluorescence acceptors in a polyvinyl alcohol matrix. The resulting materials exhibit narrowband emission with a full width at half maximum (FWHM) as small as 23 nm and the longest lifetime of 721.22 ms. Meanwhile, by pairing the appropriate donors and acceptors, multicolor and high color purity afterglow ranging from green to red with the maximum photoluminescence quantum yield of 67.1% are achieved. Moreover, given their long luminescence lifetime, high color purity, and flexibility, the potential applications are demonstrated in high-resolution afterglow displays and dynamic and quick information identification in low-light conditions. This work provides a facile approach for developing multicolor and narrowband afterglow materials as well as expands the features of organic afterglow.
Collapse
Affiliation(s)
- Xin Zou
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Nan Gan
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Mengyang Dong
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wenguang Huo
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Anqi Lv
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Xiaokang Yao
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Chengzhu Yin
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Ziyang Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yuanyuan Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Huan Chen
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Long Gu
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| |
Collapse
|
34
|
Xiao G, Ma YJ, Fang X, Xu C, Yan D. CO 2-responsive tunable persistent luminescence in a hydrogen-bond organized two-component ionic crystal. Chem Commun (Camb) 2023; 59:10113-10116. [PMID: 37530123 DOI: 10.1039/d3cc03265e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
A reversible CO2-responsive luminescent material was constructed by a facile hydrogen-bond self-assembly of a two-component ionic crystal. The modification of CO2 on the ionic crystal not only alternates the green afterglow, but also endows the material with inverse excitation wavelength dependence for multicolor emission.
Collapse
Affiliation(s)
- Guowei Xiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
- College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, P. R. China.
| | - Yu-Juan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Changhai Xu
- College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, P. R. China.
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
| |
Collapse
|
35
|
Wang H, Zhang Y, Zhou C, Wang X, Ma H, Yin J, Shi H, An Z, Huang W. Photoactivated organic phosphorescence by stereo-hindrance engineering for mimicking synaptic plasticity. LIGHT, SCIENCE & APPLICATIONS 2023; 12:90. [PMID: 37037811 PMCID: PMC10086021 DOI: 10.1038/s41377-023-01132-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Purely organic phosphorescent materials with dynamically tunable optical properties and persistent luminescent characteristics enable more novel applications in intelligent optoelectronics. Herein, we reported a concise and universal strategy to achieve photoactivated ultralong phosphorescence at room temperature through stereo-hindrance engineering. Such dynamically photoactivated phosphorescence behavior was ascribed to the suppression of non-radiative transitions and improvement of spin-orbit coupling (SOC) as the variation of the distorted molecular conformation by the synergistic effect of electrostatic repulsion and steric hindrance. This "trainable" phosphorescent behavior was first proposed to mimic biological synaptic plasticity, especially for unique experience-dependent plasticity, by the manipulation of pulse intensity and numbers. This study not only outlines a principle to design newly dynamic phosphorescent materials, but also broadens their utility in intelligent sensors and robotics.
Collapse
Affiliation(s)
- He Wang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211800, China
| | - Yuan Zhang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211800, China
| | - Chifeng Zhou
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211800, China
| | - Xiao Wang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211800, China
| | - Jun Yin
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, China
| | - Huifang Shi
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211800, China.
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211800, China.
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China.
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211800, China.
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China.
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
36
|
Li JA, Zhang L, Wu C, Huang Z, Li S, Zhang H, Yang Q, Mao Z, Luo S, Liu C, Shi G, Xu B. Switchable and Highly Robust Ultralong Room-Temperature Phosphorescence from Polymer-Based Transparent Films with Three-Dimensional Covalent Networks for Erasable Light Printing. Angew Chem Int Ed Engl 2023; 62:e202217284. [PMID: 36512442 DOI: 10.1002/anie.202217284] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
In this work, an efficient polymer-based organic afterglow system, which shows reversible photochromism, switchable ultralong organic phosphorescence (UOP), and prominent water and chemical resistance simultaneously, has been developed for the first time. By doping phenoxazine (PXZ) and 10-ethyl-10H-phenoxazine (PXZEt) into epoxy polymers, the resulting PXZ@EP-0.25 % and PXZEt@EP-0.25 % films show unique photoactivated UOP properties, with phosphorescence quantum yields and lifetimes up to 10.8 % and 845 ms, respectively. It is found that the steady-state luminescence and UOP of PXZ@EP-0.25 % are switchable by light irradiation and thermal annealing. Moreover, the doped films can still produce conspicuous UOP after soaking in water, strong acid and base, and organic solvents for more than two weeks, exhibiting outstanding water and chemical resistance. Inspired by these exciting results, the PXZ@EP-0.25 % has been successfully exploited as an erasable transparent film for light printing.
Collapse
Affiliation(s)
- Jian-An Li
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Letian Zhang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Chunlei Wu
- Guangzhou Huifu Research Institute Co., Ltd., Guangzhou, 510663, China
| | - Zihao Huang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Shufeng Li
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Huaqing Zhang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Qingchen Yang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Zhu Mao
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Suilian Luo
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Cong Liu
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Guang Shi
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Bingjia Xu
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
37
|
Gao M, Tian Y, Li X, Gong Y, Fang M, Yang J, Li Z. The Effect of Molecular Conformations and Simulated "Self-Doping" in Phenothiazine Derivatives on Room-Temperature Phosphorescence. Angew Chem Int Ed Engl 2023; 62:e202214908. [PMID: 36449343 DOI: 10.1002/anie.202214908] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
The research of purely organic room-temperature phosphorescence (RTP) materials has drawn great attention for their wide potential applications. Besides single-component and host-guest doping systems, the self-doping with same molecule but different conformations in one state is also a possible way to construct RTP materials, regardless of its rare investigation. In this work, twenty-four phenothiazine derivatives with two distinct molecular conformations were designed and their RTP behaviors in different states were systematically studied, with the aim to deeply understand the self-doping effect on the corresponding RTP property. While the phenothiazine derivatives with quasi-axial (ax) conformation presented better RTP performance in aggregated state, the quasi-equatorial (eq) ones were better in isolated state. Accordingly, the much promoted RTP performance was achieved in the stimulated self-doping state with ax-conformer as host and eq-one as guest, demonstrating the significant influence of self-doping on RTP effect.
Collapse
Affiliation(s)
- Mingxue Gao
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yu Tian
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Xiaoning Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yanxiang Gong
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Manman Fang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Jie Yang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China.,Department of Chemistry, Wuhan University, Wuhan, 430072, China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
38
|
Nandi RP, Kalluvettukuzhy NK, Pagidi S, Thilagar P. Molecular Persistent Room-Temperature Phosphorescence from Tetraarylaminoboranes. Inorg Chem 2023; 62:1122-1134. [PMID: 36630685 DOI: 10.1021/acs.inorgchem.2c03386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Herein, we report the synthesis, molecular structure, and optical features of tetrarylaminoboranes 1 (Mes2B-N(Ph)(C10H7)) and 2 (Mes2B-N(Ph)(C14H9)). In the solution state, 1 shows aggregation-induced emission enhancement and color switching, while 2 displays emission color switching and aggregation-caused quenching. At 77 K, frozen solutions of 1 show delayed fluorescence (DF) and phosphorescence, whereas 2 display only DF. Pristine solids of 1 and 2 showed delayed fluorescence under ambient conditions; however, crystals of both compounds show no phosphorescence under similar conditions. Polymethyl methacrylate thin films of 1 (1 wt % doping concentration) exhibit persistent room-temperature phosphorescence (pRTP) lasting for ∼0.5 s. In contrast, 2 does not show phosphorescence under similar conditions. Systematic photophysical studies and theoretical (DFT and TD-DFT) calculations are performed on these molecules to rationalize their intriguing optical characteristics.
Collapse
Affiliation(s)
- Rajendra Prasad Nandi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Neena K Kalluvettukuzhy
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sudhakar Pagidi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Pakkirisamy Thilagar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
39
|
Jovaišaitė J, Kirschner S, Raišys S, Kreiza G, Baronas P, Juršėnas S, Wagner M. Diboraanthracene-Doped Polymer Systems for Colour-Tuneable Room-Temperature Organic Afterglow. Angew Chem Int Ed Engl 2023; 62:e202215071. [PMID: 36413097 PMCID: PMC10107698 DOI: 10.1002/anie.202215071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022]
Abstract
Organic ultralong room temperature phosphorescence (RTP), or organic afterglow, is a unique phenomenon, gaining widespread attention due to its far-reaching application potential and fundamental interest. Here, two laterally expanded 9,10-dimesityl-dihydro-9,10-diboraanthracene (DBA) derivatives are demonstrated as excellent afterglow materials for red and blue-green light emission, which is traced back to persistent thermally activated delayed fluorescence and RTP. The lateral substitution of polycyclic DBA scaffold, together with weak transversal electron-donating mesityl groups, ensures the optimal molecular properties for (reverse) intersystem crossing and long-lived triplet states in a rigid poly(methyl methacrylate) matrix. The achieved afterglow emission quantum yields of up to 3 % and 15 %, afterglow lifetimes up to 0.8 s and 3.2 s and afterglow durations up to 5 s and 25 s (for red and blue-green emitters, respectively) are attributed to the properties of single molecules.
Collapse
Affiliation(s)
- Justina Jovaišaitė
- Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekis av. 3, 10257, Vilnius, Lithuania
| | - Sven Kirschner
- Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt a. Main, Germany
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - Steponas Raišys
- Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekis av. 3, 10257, Vilnius, Lithuania
| | - Gediminas Kreiza
- Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekis av. 3, 10257, Vilnius, Lithuania
| | - Paulius Baronas
- Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekis av. 3, 10257, Vilnius, Lithuania
| | - Saulius Juršėnas
- Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekis av. 3, 10257, Vilnius, Lithuania
| | - Matthias Wagner
- Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt a. Main, Germany
| |
Collapse
|
40
|
Zheng X, Han Q, Lin Q, Li C, Jiang J, Guo Q, Ye X, Yuan WZ, Liu Y, Tao X. A processable, scalable, and stable full-color ultralong afterglow system based on heteroatom-free hydrocarbon doped polymers. MATERIALS HORIZONS 2023; 10:197-208. [PMID: 36331106 DOI: 10.1039/d2mh00998f] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although room-temperature phosphorescence (RTP) organic materials are a widely-studied topic especially popular in recent decades, long-lived RTP able to fulfil broad time-resolved application requirements reliably, are still rare. Polymeric materials doped with phosphorescent chromophores generally feature high productivity and diverse applications, compared with their crystalline counterparts. This study proves that pure polycyclic aromatic hydrocarbons (PAHs) may even outperform chromophores containing hetero- or heavy-atoms. Full-color (blue, green, orange and red) polymer-PAHs with lifetimes >5000 ms under ambient conditions are constructed, which provide impressive values compared to the widely reported polymer-based RTP materials in the respective color regions. The polymer-PAHs could be fabricated on a large-scale using various methods (solution, melt and in situ polymerization), be processed into diverse forms (writing ink, fibers, films, and complex 3D architectures), and be used in a range of applications (anti-counterfeiting, information storage, and oxygen sensors). Plus their environmental (aqueous) stability makes the polymer-PAHs a promising option to expand the portfolio of organic RTPs.
Collapse
Affiliation(s)
- Xiaoxin Zheng
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Quanxiang Han
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Qinglian Lin
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Cuicui Li
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Jinke Jiang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Qing Guo
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Xin Ye
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Wang Zhang Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| | - Xutang Tao
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China.
| |
Collapse
|
41
|
Gu J, Li Z, Li Q. From single molecule to molecular aggregation science. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Huang Z, He Z, Ding B, Tian H, Ma X. Photoprogrammable circularly polarized phosphorescence switching of chiral helical polyacetylene thin films. Nat Commun 2022; 13:7841. [PMID: 36543785 PMCID: PMC9772410 DOI: 10.1038/s41467-022-35625-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The developments of pure organic room-temperature phosphorescence (RTP) materials with circularly polarized luminescence (CPL) have significantly facilitated the future integration and systemization of luminescent material in fundamental science and technological applications. Here, a type of photoinduced circularly polarized RTP materials are constructed by homogeneously dispersing phosphorescent chiral helical substituted polyacetylenes into a processable poly(methyl methacrylate) (PMMA) matrix. These substituted polyacetylenes play vital roles in the propagation of CPL and present prominently optical characteristics with high absorption and luminescent dissymmetric factors up to 0.029 (gabs) and 0.019 (glum). The oxygen consumption properties of the films under UV light irradiation endow materials with dynamic chiro-optical functionality, which can leverage of light to precisely control and manipulate the circularly polarized RTP properties with the remarkable advantages of being contactless, wireless and fatigue-resistant. Significantly, the distinct materials with dynamic properties can be used as anti-counterfeiting materials involving photoprogrammability.
Collapse
Affiliation(s)
- Zizhao Huang
- grid.28056.390000 0001 2163 4895Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237 P. R. China
| | - Zhenyi He
- grid.28056.390000 0001 2163 4895Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237 P. R. China
| | - Bingbing Ding
- grid.28056.390000 0001 2163 4895Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237 P. R. China
| | - He Tian
- grid.28056.390000 0001 2163 4895Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237 P. R. China
| | - Xiang Ma
- grid.28056.390000 0001 2163 4895Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237 P. R. China
| |
Collapse
|
43
|
Li W, Huang Q, Mao Z, He X, Ma D, Zhao J, Lam JWY, Zhang Y, Tang BZ, Chi Z. A dish-like molecular architecture for dynamic ultralong room-temperature phosphorescence through reversible guest accommodation. Nat Commun 2022; 13:7423. [PMID: 36456562 PMCID: PMC9715674 DOI: 10.1038/s41467-022-35155-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
Developing dynamic organic ultralong room-temperature phosphorescent (URTP) materials is of practical importance in various applications but remains a challenge due to the difficulty in manipulating aggregate structures. Herein, we report a dish-like molecular architecture via a bottom-up way, featuring guest-responsive dynamic URTP. Through controlling local fragment motions in the molecular architecture, fascinating dynamic URTP performances can be achieved in response to reversible accommodation of various guests, including solvents, alkyl bromides and even carbon dioxide. Large-scale regulations of phosphorescence lifetime (100-fold) and intensity (10-fold) can be realized, presenting a maximum phosphorescence efficiency and lifetime of 78.8% and 483.1 ms, respectively. Moreover, such a dish-like molecular architecture is employed for temperature-dependent multiple information encryption and visual identification of linear alkyl bromides. This work can not only deepen our understanding to construct multifunctional organic aggregates, but also facilitate the design of high-performance dynamic URTP materials and enrich their practical applications.
Collapse
Affiliation(s)
- Wenlang Li
- grid.12981.330000 0001 2360 039XPCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, China ,grid.24515.370000 0004 1937 1450Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Kowloon, 999077 Hong Kong, China
| | - Qiuyi Huang
- grid.12981.330000 0001 2360 039XPCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, China
| | - Zhu Mao
- grid.12981.330000 0001 2360 039XPCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, China
| | - Xiaoyi He
- grid.12981.330000 0001 2360 039XPCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, China
| | - Dongyu Ma
- grid.12981.330000 0001 2360 039XPCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, China
| | - Juan Zhao
- grid.12981.330000 0001 2360 039XSchool of Materials Science and Engineering, Sun Yat-sen University, 510275 Guangzhou, China
| | - Jacky W. Y. Lam
- grid.24515.370000 0004 1937 1450Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Kowloon, 999077 Hong Kong, China
| | - Yi Zhang
- grid.12981.330000 0001 2360 039XPCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, China
| | - Ben Zhong Tang
- grid.24515.370000 0004 1937 1450Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Kowloon, 999077 Hong Kong, China ,grid.511521.3School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 518172 Shenzhen, China
| | - Zhenguo Chi
- grid.12981.330000 0001 2360 039XPCFM Lab, GDHPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, 510275 Guangzhou, China
| |
Collapse
|
44
|
Li Y, Baryshnikov GV, Siddique F, Wei P, Wu H, Yi T. Vibration‐Regulated Multi‐State Long‐Lived Emission from Star‐Shaped Molecules. Angew Chem Int Ed Engl 2022; 61:e202213051. [DOI: 10.1002/anie.202213051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Yiran Li
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials Key Lab of Science and Technology of Eco-Textile Ministry of Education College of Chemistry and Chemical Engineering Donghua University Shanghai 201620 China
- State Key Laboratory of Molecular Engineering of Polymers Department of Chemistry Fudan University Shanghai 200433 China
| | - Glib V. Baryshnikov
- Laboratory of Organic Electronics Department of Science and Technology Linköping University 60174 Norrköping Sweden
| | - Farhan Siddique
- Laboratory of Organic Electronics Department of Science and Technology Linköping University 60174 Norrköping Sweden
| | - Peng Wei
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials Key Lab of Science and Technology of Eco-Textile Ministry of Education College of Chemistry and Chemical Engineering Donghua University Shanghai 201620 China
| | - Hongwei Wu
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials Key Lab of Science and Technology of Eco-Textile Ministry of Education College of Chemistry and Chemical Engineering Donghua University Shanghai 201620 China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials Key Lab of Science and Technology of Eco-Textile Ministry of Education College of Chemistry and Chemical Engineering Donghua University Shanghai 201620 China
- State Key Laboratory of Molecular Engineering of Polymers Department of Chemistry Fudan University Shanghai 200433 China
| |
Collapse
|
45
|
Zhang J, Xu S, Zhang L, Wang X, Bian Y, Tang S, Zhang R, Tao Y, Huang W, Chen R. Highly Efficient and Robust Full-Color Organic Afterglow through 2D Superlattices Embedment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206712. [PMID: 36086873 DOI: 10.1002/adma.202206712] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Purely organic afterglow (POA) originating from the slow radiative decay of stabilized triplet excited states has shown amazing potential in many fields. However, achieving highly stable POA with high phosphorescent quantum yield (PhQY) and long lifetime is still a formidable challenge owing to the intrinsically active and sensitive nature of triplet excitons. Here, triplet excitons of phosphors are protected and stabilized by embedding in tricomponent trihapto self-assembled 2D hydrogen-bonded superlattices, which not only enables deep-blue POA with high PhQY (up to 65%), ultralong lifetime (over 1300 ms) and the highest figure-of-merit at room temperature, but also achieves excellent stability capable of resisting quenching effects of oxygen, solvent, pressure, light, and heat. In addition, the POA color is tuned from deep-blue to red via efficient Förster resonance energy transfer from the deep-blue POA emitters to the fluorophores. Moreover, with the high-performance, robust, and full-color POA materials, flexible anti-counterfeit displays and direct-current (DC)-driven lifetime-encrypted color Morse Code applications are facilely realized.
Collapse
Affiliation(s)
- Jingyu Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Shen Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Longyan Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Xin Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yanfang Bian
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Senlin Tang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Runqi Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Ye Tao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shanxi, 710072, China
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
46
|
Ultralong organic phosphorescence from isolated molecules with repulsive interactions for multifunctional applications. Nat Commun 2022; 13:4890. [PMID: 35986007 PMCID: PMC9391375 DOI: 10.1038/s41467-022-32029-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 07/14/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractIntermolecular interactions, including attractive and repulsive interactions, play a vital role in manipulating functionalization of the materials from micro to macro dimensions. Despite great success in generation of ultralong organic phosphorescence (UOP) by suppressing non-radiative transitions through attractive interactions recently, there is still no consideration of repulsive interactions on UOP. Herein, we proposed a feasible approach by introducing carboxyl groups into organic phosphors, enabling formation of the intense repulsive interactions between the isolated molecules and the matrix in rigid environment. Our experimental results show a phosphor with a record lifetime and quantum efficiency up to 3.16 s and 50.0% simultaneously in film under ambient conditions. Considering the multiple functions of the flexible films, the potential applications in anti-counterfeiting, afterglow display and visual frequency indicators were demonstrated. This finding not only outlines a fundamental principle to achieve bright organic phosphorescence in film, but also expands the potential applications of UOP materials.
Collapse
|
47
|
Wang Z, Gao L, Zheng Y, Zhu Y, Zhang Y, Zheng X, Wang C, Li Y, Zhao Y, Yang C. Four‐in‐One Stimulus‐Responsive Long‐Lived Luminescent Systems Based on Pyrene‐Doped Amorphous Polymers. Angew Chem Int Ed Engl 2022; 61:e202203254. [DOI: 10.1002/anie.202203254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Zhonghao Wang
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
| | - Liang Gao
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
| | - Yan Zheng
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
| | - Yinyin Zhu
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
| | - Yongfeng Zhang
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
| | - Xian Zheng
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
| | - Chang Wang
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
| | - Youbing Li
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Chaolong Yang
- School of Materials Science and Engineering Chongqing University of Technology Chongqing 400054 China
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| |
Collapse
|
48
|
Wang C, Qu L, Chen X, Zhou Q, Yang Y, Zheng Y, Zheng X, Gao L, Hao J, Zhu L, Pi B, Yang C. Poly(arylene piperidine) Quaternary Ammonium Salts Promoting Stable Long-Lived Room-Temperature Phosphorescence in Aqueous Environment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204415. [PMID: 35731029 DOI: 10.1002/adma.202204415] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Room-temperature phosphorescence (RTP) materials have garnered considerable research attention owing to their excellent luminescence properties and potential application prospects in anti-counterfeiting, information storage, and optoelectronics. However, several RTP systems are extremely sensitive to humidity, and consequently, the realization of long-lived RTP in water remains a formidable challenge. Herein, a feasible and effective strategy is presented to achieve long-lived polymeric RTP systems, even in an aqueous environment, through doping of synthesized polymeric phosphor PBHDB into a poly(methyl methacrylate) (PMMA) matrix. Compared to the precursor polymer PBN and organic molecule HDBP, a more rigid polymer microenvironment and electrostatic interaction are formed between the PMMA matrix and polymer PBHDB, which effectively reduce the nonradiative decay rate of triplet excitons and dramatically increase the phosphorescence intensity. Specifically, the phosphorescence lifetime of the PBHDB@PMMA film (1258.62 ms) is much longer than those of PBN@PMMA (674.20 ms) and HDBP@PMMA (1.06 ms). Most importantly, a bright-green afterglow can be observed after soaking the PBHDB@PMMA film in water for more than a month. The excellent water resistance and reversible response properties endow these systems with promising potential for dynamic information encryption even in water.
Collapse
Affiliation(s)
- Chang Wang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Lunjun Qu
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xiaohong Chen
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Qian Zhou
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yan Yang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yan Zheng
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xian Zheng
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Liang Gao
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jinqiu Hao
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Lingyun Zhu
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Bingxue Pi
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Chaolong Yang
- School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
49
|
Li J, Wang X, Zhao X, Chen X, Ding S, Wu M, Zhang K. Cascade Synthesis of Luminescent Difluoroboron Diketonate Compounds for
Room‐Temperature
Organic Afterglow Materials. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Junbo Li
- College of Chemistry and Materials Science, Sichuan Normal University Chengdu 610068 China
- Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Xuepu Wang
- Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Xiaoya Zhao
- Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Xuefeng Chen
- Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Shuhui Ding
- Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Minjian Wu
- Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Kaka Zhang
- College of Chemistry and Materials Science, Sichuan Normal University Chengdu 610068 China
- Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 People's Republic of China
| |
Collapse
|
50
|
Ma Y, Shen J, Zhao J, Li J, Liu S, Liu C, Wei J, Liu S, Zhao Q. Multicolor Zinc(II)‐Coordinated Hydrazone‐Based Bistable Photoswitches for Rewritable Transparent Luminescent Labels. Angew Chem Int Ed Engl 2022; 61:e202202655. [DOI: 10.1002/anie.202202655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yun Ma
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Jiandong Shen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Jufu Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Jiangang Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Shanying Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Chenyuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Juan Wei
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 China
- College of Electronic and Optical Engineering and Microelectronics & College of Flexible Electronics (Future Technology) Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices Nanjing University of Posts and Telecommunications (NUPT) Nanjing 210023 P. R. China
| |
Collapse
|