1
|
Luo W, Zhou J, Liang F, Chou X, Peng Z, Tan W, Yu Z, Wan H. The GPR4 antagonist NE 52-QQ57 prevents ox-LDL-induced cellular senescence by promoting the expression of SIRT1. Genes Genomics 2025:10.1007/s13258-024-01610-x. [PMID: 40208484 DOI: 10.1007/s13258-024-01610-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/12/2024] [Indexed: 04/11/2025]
Abstract
BACKGROUND Cell senescence-associated endothelia dysfunction is a vital point in the pathological progression of atherosclerosis (AS). G-protein coupled receptor 4 (GPR4) is a proton-sensing receptor involved in developing endothelial dysfunction. OBJECTIVE In this study, we investigated the protective role of NE 52-QQ57, a GPR4 inhibitor in endothelial cell senescence induced using an oxidized low-density lipoprotein (ox-LDL). We also unravel the underlying molecular mechanism of NE 52-QQ57 as a therapeutic agent. METHODS Endothelial cell senescence model was established using human aortic endothelial cells (HAECs) stimulated with ox-LDL. The expression levels of GPR4, p53, p16, and sirtuin1 (SIRT1) were evaluated using real-time PCR and western blot assays. ROS production was determined using dihydroethidium (DHE) staining. Further, interleukin-6 (IL-6) and monocyte chemotactic protein 1 (MCP-1) secretion and expression were determined using ELISA and real-time PCR analysis, respectively. Finally, β-galactosidase (SA-β-Gal) staining associated with cell senescence, telomerase activity, and cell cycle assay were used to determine the state of cell senescence. RESULTS Firstly, GPR4 was found to be upregulated in the ox-LDL-stimulated HAECs. We also identified elevated ROS, IL-6, and MCP-1 levels induced by ox-LDL and significantly abrogated by NE 52-QQ57 treatment. Second, a reversal in SA-β-Gal activity, telomerase activity, and G0/G1 proportion, with an upregulation in p53 and p16 expressions was observed on NE 52-QQ57 treatment in the ox-LDL induced model. Lastly, the decreased expression level of SIRT1 was extremely elevated by NE 52-QQ57. Notably, the inhibitory effect of NE 52-QQ57 against ox-LDL-induced cell senescence was abolished by the SIRT1 inhibitor EX-527. CONCLUSION The GPR4 antagonist NE 52-QQ57 might prevent cellular senescence by promoting the expression of SIRT1.
Collapse
Affiliation(s)
- Wei Luo
- Department of Cardiology, The First Affiliated Hospital of University of South China, No. 69, Chuanshan Road, Shigu District, Hengyang, 421001, Hunan, China
| | - Jiming Zhou
- Department of Cardiology, The First Affiliated Hospital of University of South China, No. 69, Chuanshan Road, Shigu District, Hengyang, 421001, Hunan, China
| | - Feng Liang
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan, China
| | - Xianghui Chou
- Department of Cardiology, The First Affiliated Hospital of University of South China, No. 69, Chuanshan Road, Shigu District, Hengyang, 421001, Hunan, China
| | - Zhengliang Peng
- Department of Emergency, The First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan, China
| | - Weihua Tan
- Department of Emergency, The First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan, China
| | - Ziying Yu
- Department of Emergency, The First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan, China
| | - Huan Wan
- Department of Cardiology, The First Affiliated Hospital of University of South China, No. 69, Chuanshan Road, Shigu District, Hengyang, 421001, Hunan, China.
| |
Collapse
|
2
|
Yuan S, Xu N, Yang J, Yuan B. Emerging role of PES1 in disease: A promising therapeutic target? Gene 2025; 932:148896. [PMID: 39209183 DOI: 10.1016/j.gene.2024.148896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/31/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Pescadillo ribosomal biogenesis factor 1 (PES1), a nucleolar protein initially identified in zebrafish, plays an important role in embryonic development and ribosomal biogenesis. Notably, PES1 has been found to be overexpressed in a number of cancer types, where it contributes to tumorigenesis and cancer progression by promoting cell proliferation, suppressing cellular senescence, modulating the tumor microenvironment (TME) and promoting drug resistance in cancer cells. Moreover, recent emerging evidence suggests that PES1 expression is significantly elevated in the livers of Type 2 diabetes mellitus (T2DM) and obese patients, indicating its involvement in the pathogenesis of metabolic diseases through lipid metabolism regulation. In this review, we present the structural characteristics and biological functions of PES1, as well as complexes in which PES1 participates. Furthermore, we comprehensively summarize the multifaceted role of PES1 in various diseases and the latest insights into its underlying molecular mechanisms. Finally, we discuss the potential clinical translational perspectives of targeting PES1, highlighting its promising as a therapeutic intervention and treatment target.
Collapse
Affiliation(s)
- Siyu Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Nuo Xu
- First School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Jing Yang
- Experimental Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei 230032, China.
| | - Bin Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
3
|
Zhang W, Li Z, Lun X, Guo Y. Telomerase-Responsive CRISPR System-Regulated Nanobomb for Triggering Research on Telomerase "Self-Detonation". ACS APPLIED MATERIALS & INTERFACES 2025; 17:725-738. [PMID: 39679901 DOI: 10.1021/acsami.4c18859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Targeting tumor markers is one of the most important approaches to tumor therapy, and the "suicide" pattern of tumor marker response is a very challenging study. Telomerase, as one of the key factors associated with human longevity and cancer progression, is considered to be an emerging biomarker for cancer diagnosis. The targeted drug delivery nanobomb─BIBR1532@HSN/FQDNA/MUC1 aptamer (B@HDA) is prepared in this study based on hollow silica nanoparticles (HSN) and CRISPR systems. Amino-modified FQDNA and amino-modified MUC1 aptamer are covalently attached to the surface of carboxyl-functionalized HSN. The modified MUC1 aptamer directs the nanobomb to specifically target breast cancer cells (MCF-7) and FQDNA sequesters the telomerase inhibitor (BIBR1532) within the HSN. Telomerase primers (TPs) is recognized by the highly expressed telomerase in MCF-7 cells and is elongated to form DNA substrates. The substrate pairs with crRNA bases to effectively activate CRISPR-Cas12a. The activated CRISPR-Cas12a precisely cut FQDNA, releasing BIBR1532, which inhibits telomerase activity. This strategy achieves telomerase "suicide". The nanobomb described above has the following advantages. (1) The "closing" effect of FQDNA contributes to reducing the nonspecific release of BIBR1532. (2) B@HDA, combined with CRISPR, regulates mitochondrial dysfunction and cell senescence in MCF-7 cells. (3) In the tumor-bearing mouse model, B@HDA, combined with CRISPR, exhibits good biocompatibility and an obvious tumor ablation effect on MCF-7 tumors, suggesting potential application prospects across a wide range of cancer cell lines. In summary, the proposed nanobomb provides a tunable switch approach for the specific inhibition of telomerase and the reduction of tumor cell growth, representing a promising avenue for promoting senescence and treating cancer.
Collapse
Affiliation(s)
- Wenyue Zhang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Ziyi Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaoli Lun
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yingshu Guo
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
4
|
Zhao H, Cao N, Liu Q, Zhang Y, Jin R, Lai H, Zheng L, Zhang H, Zhu Y, Ma Y, Yang Z, Wu Z, Li W, Liu Y, Cheng L, Chen Y. Inhibition of the E3 ligase UBR5 stabilizes TERT and protects vascular organoids from oxidative stress. J Transl Med 2024; 22:1080. [PMID: 39609696 PMCID: PMC11605888 DOI: 10.1186/s12967-024-05887-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Excessive oxidative stress is known to cause endothelial dysfunction and drive cardiovascular diseases (CVD). While telomerase reverse transcriptase (TERT) shows protective effects against oxidative stress in rodents and is associated to human flow-mediated dilation in CVD, its regulatory mechanisms in human vascular systems under pathological oxidative stress require further investigation. METHODS Human induced pluripotent stem cells (hiPSCs) were used to create vascular organoids (VOs). These VOs and human umbilical vein endothelial cells (HUVECs) were subjected to oxidative stress through both hydrogen peroxide (H2O2) and oxidized low-density lipoprotein (oxLDL) models. The effects of TERT overexpression by inhibition of the ubiquitin protein ligase E3 component N-recognin 5 (UBR5) on reactive oxygen species (ROS)-induced vascular injury and cellular senescence were assessed using neovascular sprouting assays, senescence-associated β-galactosidase (SA-β-Gal) staining, and senescence-associated secretory phenotype (SASP) assays. RESULTS ROS significantly impaired VO development and endothelial progenitor cell (EPC) angiogenesis, evidenced by reduced neovascular sprouting and increased senescence markers, including elevated SA-β-Gal activity and SASP-related cytokine levels. Overexpression of TERT counteracted these effects, restoring VO development and EPC function. Immunoprecipitation-mass spectrometry identified UBR5 as a critical TERT regulator, facilitating its degradation. Inhibition of UBR5 stabilized TERT, improving VO angiogenic capacity, and reducing SA-β-Gal activity and SASP cytokine levels. CONCLUSIONS Inhibiting UBR5 stabilizes TERT, which preserves EPC angiogenic capacity, reduces VO impairment, and delays endothelial cell senescence under oxidative stress. These findings highlight the potential of targeting UBR5 to enhance vascular health in oxidative stress-related conditions.
Collapse
Affiliation(s)
- Haijing Zhao
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, 100037, People's Republic of China
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Nian Cao
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, 100037, People's Republic of China
| | - Qi Liu
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Yingyue Zhang
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, 100037, People's Republic of China
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Rui Jin
- Beijing Institute of Biotechnology, Beijing, 100850, People's Republic of China
| | - Huiying Lai
- Department of Clinical Laboratory, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Li Zheng
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Honghong Zhang
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, 100037, People's Republic of China
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Yue Zhu
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, 100037, People's Republic of China
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Yuhan Ma
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Zengao Yang
- School of Medicine, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Zhengfeng Wu
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, 100037, People's Republic of China
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Weini Li
- Department of Biomedical Science, Cedars-Sinai Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Yuqi Liu
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, 100037, People's Republic of China.
- National Key Laboratory of Kidney Diseases, Beijing, 100853, People's Republic of China.
- Department of Cardiology, National Clinical Research Center of Geriatric Disease, Beijing, 100853, People's Republic of China.
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Beijing, 100853, People's Republic of China.
| | - Long Cheng
- The Key Laboratory of Geriatrics, Institute of Geriatric Medicine, Beijing Institute of Geriatrics, Chinese Academy of Medical Sciences, Beijing Hospital/National Centre of Gerontology of National Health Commission, Beijing, 100730, People's Republic of China.
- Beijing Institute of Biotechnology, Beijing, 100850, People's Republic of China.
| | - Yundai Chen
- Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, 100037, People's Republic of China.
| |
Collapse
|
5
|
Koo ASH, Jia W, Kim SH, Scalf M, Boos CE, Chen Y, Wang D, Voter AF, Bajaj A, Smith LM, Keck JL, Bakkenist CJ, Guo L, Tibbetts RS. Alternative splicing modulates chromatin interactome and phase separation of the RIF1 C-terminal domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.619708. [PMID: 39553946 PMCID: PMC11565852 DOI: 10.1101/2024.10.29.619708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
RIF1 (RAP1 interacting factor) fulfills diverse roles in DNA double-strand break repair, DNA replication, and nuclear organization. RIF1 is expressed as two splice variants, RIF1-Long (RIF1-L) and RIF1-Short (RIF1-S), from the alternative splicing (AS) of Exon 32 (Ex32) which encodes a 26 aa Ser/Lys-rich cassette peptide in the RIF1 C-terminal domain (CTD). Here we demonstrate that Ex32 inclusion was repressed by DNA damage and oncogenesis but peaked at G2/M phase of the cell cycle. Ex32 splice-in was catalyzed by positive regulators including SRSF1, which bound to Ex32 directly, and negative regulators such as PTBP1 and SRSF3. Isoform proteomics revealed enhanced association of RIF1-L with MDC1, whose recruitment to IR-induced foci was strengthened by RIF1-L. RIF1-L and RIF1-S also exhibited unique phase separation and chromatin-binding characteristics that were regulated by CDK1-dependent CTD phosphorylation. These combined findings suggest that regulated AS affects multiple aspects of RIF1 function in genome protection and organization.
Collapse
Affiliation(s)
- Adenine Si-Hui Koo
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705, USA
| | - Weiyan Jia
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705, USA
| | - Sang Hwa Kim
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705, USA
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA
| | - Claire E. Boos
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA
| | - Yuhong Chen
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - Demin Wang
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Andrew F. Voter
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, 420 Henry Mall, Madison, WI 53706, USA
| | - Aditya Bajaj
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, 420 Henry Mall, Madison, WI 53706, USA
| | | | - Lin Guo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Randal S. Tibbetts
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705, USA
| |
Collapse
|
6
|
Yu P, Qu N, Zhu R, Hu J, Han P, Wu J, Tan L, Gan H, He C, Fang C, Lei Y, Li J, He C, Lan F, Shi X, Wei W, Wang Y, Ji Q, Yu FX, Wang YL. TERT accelerates BRAF mutant-induced thyroid cancer dedifferentiation and progression by regulating ribosome biogenesis. SCIENCE ADVANCES 2023; 9:eadg7125. [PMID: 37647391 PMCID: PMC10468137 DOI: 10.1126/sciadv.adg7125] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/27/2023] [Indexed: 09/01/2023]
Abstract
TERT reactivation occurs frequently in human malignancies, especially advanced cancers. However, in vivo functions of TERT reactivation in cancer progression and the underlying mechanism are not fully understood. In this study, we expressed TERT and/or active BRAF (BRAF V600E) specifically in mouse thyroid epithelium. While BRAF V600E alone induced papillary thyroid cancer (PTC), coexpression of BRAF V600E and TERT resulted in poorly differentiated thyroid carcinoma (PDTC). Spatial transcriptome analysis revealed that tumors from mice coexpressing BRAF V600E and TERT were highly heterogeneous, and cell dedifferentiation was positively correlated with ribosomal biogenesis. Mechanistically, TERT boosted ribosomal RNA (rRNA) expression and protein synthesis by interacting with multiple proteins involved in ribosomal biogenesis. Furthermore, we found that CX-5461, an rRNA transcription inhibitor, effectively blocked proliferation and induced redifferentiation of thyroid cancer. Thus, TERT promotes thyroid cancer progression by inducing cancer cell dedifferentiation, and ribosome inhibition represents a potential strategy to treat TERT-reactivated cancers.
Collapse
Affiliation(s)
- Pengcheng Yu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ning Qu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiaqian Hu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peizhen Han
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiahao Wu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Licheng Tan
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hualei Gan
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Cong He
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chuantao Fang
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yubin Lei
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Li
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenxi He
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fei Lan
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao Shi
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenjun Wei
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qinghai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Long Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Yang R, Han Y, Guan X, Hong Y, Meng J, Ding S, Long Q, Yi W. Regulation and clinical potential of telomerase reverse transcriptase (TERT/hTERT) in breast cancer. Cell Commun Signal 2023; 21:218. [PMID: 37612721 PMCID: PMC10463831 DOI: 10.1186/s12964-023-01244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/23/2023] [Indexed: 08/25/2023] Open
Abstract
Telomerase reverse transcriptase (TERT/hTERT) serves as the pivotal catalytic subunit of telomerase, a crucial enzyme responsible for telomere maintenance and human genome stability. The high activation of hTERT, observed in over 90% of tumors, plays a significant role in tumor initiation and progression. An in-depth exploration of hTERT activation mechanisms in cancer holds promise for advancing our understanding of the disease and developing more effective treatment strategies. In breast cancer, the expression of hTERT is regulated by epigenetic, transcriptional, post-translational modification mechanisms and DNA variation. Besides its canonical function in telomere maintenance, hTERT exerts non-canonical roles that contribute to disease progression through telomerase-independent mechanisms. This comprehensive review summarizes the regulatory mechanisms governing hTERT in breast cancer and elucidates the functional implications of its activation. Given the overexpression of hTERT in most breast cancer cells, the detection of hTERT and its associated molecules are potential for enhancing early screening and prognostic evaluation of breast cancer. Although still in its early stages, therapeutic approaches targeting hTERT and its regulatory molecules show promise as viable strategies for breast cancer treatment. These methods are also discussed in this paper. Video Abstract.
Collapse
Affiliation(s)
- Ruozhu Yang
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Yi Han
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Xinyu Guan
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Yue Hong
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Jiahao Meng
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China
| | - Shirong Ding
- Department of Oncology, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
| | - Qian Long
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
| | - Wenjun Yi
- Department of General Surgery, the Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, 410011, China.
| |
Collapse
|
8
|
Ying S, Li P, Wang J, Chen K, Zou Y, Dai M, Xu K, Feng G, Zhang C, Jiang H, Li W, Zhang Y, Zhou Q. tRF-Gln-CTG-026 ameliorates liver injury by alleviating global protein synthesis. Signal Transduct Target Ther 2023; 8:144. [PMID: 37015921 PMCID: PMC10073094 DOI: 10.1038/s41392-023-01351-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 04/06/2023] Open
Abstract
tsRNAs (tRNA-derived small RNAs), as products of the stress response, exert considerable influence on stress response and injury regulation. However, it remains largely unclear whether tsRNAs can ameliorate liver injury. Here, we demonstrate the roles of tsRNAs in alleviating liver injury by utilizing the loss of NSun2 (NOP2/Sun domain family, member 2) as a tsRNAs-generating model. Mechanistically, the loss of NSun2 reduces methyluridine-U5 (m5U) and cytosine-C5 (m5C) of tRNAs, followed by the production of various tsRNAs, especially Class I tsRNAs (tRF-1s). Through further screening, we show that tRF-Gln-CTG-026 (tG026), the optimal tRF-1, ameliorates liver injury by repressing global protein synthesis through the weakened association between TSR1 (pre-rRNA-processing protein TSR1 homolog) and pre-40S ribosome. This study indicates the potential of tsRNA-reduced global protein synthesis in liver injury and repair, suggesting a potential therapeutic strategy for liver injury.
Collapse
Affiliation(s)
- Sunyang Ying
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengcheng Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, Northeast Agricultural University of China, Harbin, 150030, China
| | - Jiaqiang Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kaiqiong Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Moyu Dai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Changjian Zhang
- Central Laboratory of the Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| |
Collapse
|
9
|
Ma N, Hua R, Yang Y, Liu ZC, Pan J, Yu BY, Sun YF, Xie D, Wang Y, Li ZG. PES1 reduces CD8 + T cell infiltration and immunotherapy sensitivity via interrupting ILF3-IL15 complex in esophageal squamous cell carcinoma. J Biomed Sci 2023; 30:20. [PMID: 36959575 PMCID: PMC10037800 DOI: 10.1186/s12929-023-00912-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/11/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Although immune checkpoint blockade (ICB) therapy has brought survival benefits to patients with specific cancer types, most of cancer patients remain refractory to the ICB therapy, which is largely attributed to the immunosuppressive tumor microenvironment. Thereby, it is urgent to profile key molecules and signal pathways responsible for modification of tumor microenvironment. METHODS Multiple databases of esophageal squamous cell carcinoma (ESCC) were integratively analyzed to screen candidate genes responsible for infiltration of CD8+ T cells. Expression of pescadillo ribosomal biogenesis factor 1 (PES1) in clinical ESCC samples was examined by qRT-PCR, western blotting, and immunohistochemistry. The mechanisms of PES1 were investigated via RNA sequencing and mass spectrometry followed by immunoprecipitation and proximity ligation assay. The clinical and therapeutic significance of PES1 in ESCC was comprehensively investigated using ESCC cells and mouse model. RESULTS PES1 was significantly upregulated and correlated with poor prognosis in ESCC patients. PES1 knockdown decreased ESCC cell growth in vitro and in vivo and enhanced the efficacy of ICB therapy in mouse model, which was established through subcutaneous inoculation with ESCC cells. Analyses on RNA sequencing and mass spectrometry suggested that PES1 expression was negatively correlated with IL15 and ILF3 was one of the PES1-associated proteins. It has been known that ILF3 interacts with and stabilizes IL15 mRNA to increase IL15 protein level. Our data further indicated that PES1 interfered with the interaction between ILF3 and IL15 mRNA and impaired ILF3-mediated stabilization of IL15 mRNA, which eventually reduced the protein level of IL15. Interestingly, the inhibitory effect of ICB therapy boosted by PES1 knockdown dramatically antagonized by knockdown of IL15, which suppressed the tumor-infiltrated CD8+ T cells in ESCC. Finally, we confirmed the relationships among PES1, IL15, and CD8+ T cell infiltration in 10 locally advanced ESCC patients receiving ICB neoadjuvant therapy and demonstrated that ICB therapy would be more effective in those with low expression of PES1. CONCLUSIONS Altogether, our findings herein provided novel insights on biological function and clinical significance of PES1 and suggested that high expression of PES1 could suppress ILF3-IL15 axis-mediated immunosurveillance and promote resistance to ICB through restraining tumor-infiltrated CD8+ T cells.
Collapse
Affiliation(s)
- Ning Ma
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Hua
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Chao Liu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Pan
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo-Yao Yu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Feng Sun
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yan Wang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Zhi-Gang Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Jin R, Niu C, Wu F, Zhou S, Han T, Zhang Z, Li E, Zhang X, Xu S, Wang J, Tian S, Chen W, Ye Q, Cao C, Cheng L. DNA damage contributes to age-associated differences in SARS-CoV-2 infection. Aging Cell 2022; 21:e13729. [PMID: 36254583 PMCID: PMC9741512 DOI: 10.1111/acel.13729] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is known to disproportionately affect older individuals. How aging processes affect SARS-CoV-2 infection and disease progression remains largely unknown. Here, we found that DNA damage, one of the hallmarks of aging, promoted SARS-CoV-2 infection in vitro and in vivo. SARS-CoV-2 entry was facilitated by DNA damage caused by extrinsic genotoxic stress or telomere dysfunction and hampered by inhibition of the DNA damage response (DDR). Mechanistic analysis revealed that DDR increased expression of angiotensin-converting enzyme 2 (ACE2), the primary receptor of SARS-CoV-2, by activation of transcription factor c-Jun. Importantly, in vivo experiment using a mouse-adapted viral strain also verified the significant roles of DNA damage in viral entry and severity of infection. Expression of ACE2 was elevated in the older human and mice tissues and positively correlated with γH2AX, a DNA damage biomarker, and phosphorylated c-Jun (p-c-Jun). Finally, nicotinamide mononucleotide (NMN) and MDL-800, which promote DNA repair, alleviated SARS-CoV-2 infection and disease severity in vitro and in vivo. Taken together, our data provide insights into the age-associated differences in SARS-CoV-2 infection and a novel approach for antiviral intervention.
Collapse
Affiliation(s)
- Rui Jin
- Beijing Institute of BiotechnologyBeijingChina
| | - Chang Niu
- College of Life SciencesCapital Normal UniversityBeijingChina
| | - Fengyun Wu
- College of Life SciencesCapital Normal UniversityBeijingChina
| | - Sixin Zhou
- Department of SurgeryChinese PLA General HospitalBeijingChina
| | - Tao Han
- BaYi Children's Hospital, the Seventh Medical CenterChinese PLA General HospitalBeijingChina
| | - Zhe Zhang
- Beijing Institute of BiotechnologyBeijingChina
| | - Entao Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research InstituteChinese Academy of Agricultural SciencesChangchunChina
| | - Xiaona Zhang
- College of Life SciencesCapital Normal UniversityBeijingChina
| | - Shanrong Xu
- School of Life ScienceAnqing Normal UniversityAnqingChina
| | - Jiadong Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Institute of Systems BiomedicinePeking University Health Science CenterBeijingChina
| | - Shen Tian
- College of Life SciencesCapital Normal UniversityBeijingChina
| | - Wei Chen
- Beijing Institute of BiotechnologyBeijingChina
| | - Qinong Ye
- Beijing Institute of BiotechnologyBeijingChina
| | - Cheng Cao
- Beijing Institute of BiotechnologyBeijingChina
| | - Long Cheng
- Beijing Institute of BiotechnologyBeijingChina
| |
Collapse
|
11
|
Integrative Proteomics and Transcriptomics Profiles of the Oviduct Reveal the Prolificacy-Related Candidate Biomarkers of Goats ( Capra hircus) in Estrous Periods. Int J Mol Sci 2022; 23:ijms232314888. [PMID: 36499219 PMCID: PMC9737051 DOI: 10.3390/ijms232314888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The oviduct is a dynamic reproductive organ for mammalian reproduction and is required for gamete storage, maturation, fertilization, and early embryonic development, and it directly affects fecundity. However, the molecular regulation of prolificacy occurring in estrous periods remain poorly understood. This study aims to gain a better understanding of the genes involved in regulating goat fecundity in the proteome and transcriptome levels of the oviducts. Twenty female Yunshang black goats (between 2 and 3 years old, weight 52.22 ± 0.43 kg) were divided into high- and low-fecundity groups in the follicular (FH and FL, five individuals per group) and luteal (LH and LL, five individuals per group) phases, respectively. The DIA-based high-resolution mass spectrometry (MS) method was used to quantify proteins in twenty oviducts. A total of 5409 proteins were quantified, and Weighted gene co-expression network analysis (WGCNA) determined that the tan module was highly associated with the high-fecundity trait in the luteal phase, and identified NUP107, ANXA11, COX2, AKP13, and ITF140 as hub proteins. Subsequently, 98 and 167 differentially abundant proteins (DAPs) were identified in the FH vs. FL and LH vs. LL comparison groups, respectively. Parallel reaction monitoring (PRM) was used to validate the results of the proteomics data, and the hub proteins were analyzed with Western blot (WB). In addition, biological adhesion and transporter activity processes were associated with oviductal function, and several proteins that play roles in oviductal communication with gametes or embryos were identified, including CAMSAP3, ITGAM, SYVN1, EMG1, ND5, RING1, CBS, PES1, ELP3, SEC24C, SPP1, and HSPA8. Correlation analysis of proteomics and transcriptomic revealed that the DAPs and differentially expressed genes (DEGs) are commonly involved in the metabolic processes at the follicular phase; they may prepare the oviductal microenvironment for gamete reception; and the MAP kinase activity, estrogen receptor binding, and angiotensin receptor binding terms were enriched in the luteal phase, which may be actively involved in reproductive processes. By generating the proteome data of the oviduct at two critical phases and integrating transcriptome analysis, we uncovered novel aspects of oviductal gene regulation of fecundity and provided a reference for other mammals.
Collapse
|
12
|
Zhang N, Sun Y, Wang T, Xu X, Cao M. Enabling factor for cancer hallmark acquisition: Small nucleolar RNA host gene 17. Front Oncol 2022; 12:974939. [PMID: 36185210 PMCID: PMC9515549 DOI: 10.3389/fonc.2022.974939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
The role of long non-coding RNA (lncRNA) in human tumors has gradually received increasing attention in recent years. Particularly, the different functions of lncRNAs in different subcellular localizations have been widely investigated. The upregulation of lncRNA small nucleolar RNA host gene 17 (SNHG17) has been observed in various human tumors. Growing evidence has proved that SNHG17 plays a tumor-promoting role in tumorigenesis and development. This paper describes the molecular mechanisms by which SNHG17 contributes to tumor formation and development. The different functions of SNHG17 in various subcellular localizations are also emphasized: its function in the cytoplasm as a competing endogenous RNA (ceRNA), its action in the nucleus as a transcriptional coactivator, and its function through the polycomb repressive complex 2 (PRC2)-dependent epigenetic modifications that regulate transcriptional processes. Finally, the correlation between SNHG17 and human tumors is summarized. Its potential as a novel prognostic and diagnostic biomarker for cancer is explored especially.
Collapse
Affiliation(s)
- Ningzhi Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuanyuan Sun
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tuo Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xinyuan Xu
- Medical Affairs Department, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mengru Cao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- *Correspondence: Mengru Cao,
| |
Collapse
|
13
|
Subcellular Localization Prediction of Human Proteins Using Multifeature Selection Methods. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3288527. [PMID: 36132086 PMCID: PMC9484878 DOI: 10.1155/2022/3288527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022]
Abstract
Subcellular localization attempts to assign proteins to one of the cell compartments that performs specific biological functions. Finding the link between proteins, biological functions, and subcellular localization is an effective way to investigate the general organization of living cells in a systematic manner. However, determining the subcellular localization of proteins by traditional experimental approaches is difficult. Here, protein–protein interaction networks, functional enrichment on gene ontology and pathway, and a set of proteins having confirmed subcellular localization were applied to build prediction models for human protein subcellular localizations. To build an effective predictive model, we employed a variety of robust machine learning algorithms, including Boruta feature selection, minimum redundancy maximum relevance, Monte Carlo feature selection, and LightGBM. Then, the incremental feature selection method with random forest and support vector machine was used to discover the essential features. Furthermore, 38 key features were determined by integrating results of different feature selection methods, which may provide critical insights into the subcellular location of proteins. Their biological functions of subcellular localizations were discussed according to recent publications. In summary, our computational framework can help advance the understanding of subcellular localization prediction techniques and provide a new perspective to investigate the patterns of protein subcellular localization and their biological importance.
Collapse
|
14
|
Wang R, Li J, Zhang C, Guan X, Qin B, Jin R, Qin L, Xu S, Zhang X, Liu R, Ye Q, Cheng L. Lactate Dehydrogenase B Is Required for Pancreatic Cancer Cell Immortalization Through Activation of Telomerase Activity. Front Oncol 2022; 12:821620. [PMID: 35669414 PMCID: PMC9163669 DOI: 10.3389/fonc.2022.821620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Telomerase activity is elevated in most cancer cells and is required for telomere length maintenance and immortalization of cancer cells. Glucose metabolic reprogramming is a hallmark of cancer and accompanied with increased expression of key metabolic enzymes. Whether these enzymes influence telomerase activity and cell immortalization remains unclear. In the current study, we screened metabolic enzymes using telomerase activity assay and identified lactate dehydrogenase B (LDHB) as a regulator of telomerase activity. Sodium lactate and sodium pyruvate did not influence telomerase activity, indicating LDHB regulates telomerase activity independent of its metabolism regulating function. Further studies revealed that LDHB directly interacted with TERT and regulated the interaction between TERT and TERC. Additionally, long-term knockdown of LDHB inhibited cancer cell growth and induced cell senescence in vitro and in vivo. Higher LDHB expression was detected in pancreatic cancer tissues compared with that in adjacent normal tissues and expression of LDHB correlated negatively with prognosis. Thus, we identified LDHB as the first glucose metabolic enzyme contributing to telomerase activity and pancreatic cancer cell immortalization.
Collapse
Affiliation(s)
- Ruiguan Wang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- Department of Hepatobiliary Surgery, the Eight Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Jiangbo Li
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Changjian Zhang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
- Senior Department of Otolaryngology-Head & Neck Surgery, the Sixth Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xin Guan
- Strategic Support Force Medical Center, Beijing, China
| | - Boyu Qin
- Department of Medical Oncology, the First Medical Centre, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Rui Jin
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Lingmei Qin
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Shanrong Xu
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
- School of Life Science, Anqing Normal University, Anqing, China
| | - Xiaona Zhang
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Rong Liu
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- Department of Hepatobiliary Surgery, the Eight Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Long Cheng, ; Qinong Ye, ; Rong Liu,
| | - Qinong Ye
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
- *Correspondence: Long Cheng, ; Qinong Ye, ; Rong Liu,
| | - Long Cheng
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
- *Correspondence: Long Cheng, ; Qinong Ye, ; Rong Liu,
| |
Collapse
|
15
|
Okamoto T, Natsume Y, Doi M, Nosato H, Iwaki T, Yamanaka H, Yamamoto M, Kawachi H, Noda T, Nagayama S, Sakanashi H, Yao R. Integration of human inspection and AI-based morphological typing of PDOs reveals inter-patient heterogeneity of colorectal cancer. Cancer Sci 2022; 113:2693-2703. [PMID: 35585758 PMCID: PMC9357621 DOI: 10.1111/cas.15396] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022] Open
Abstract
Colorectal cancer (CRC) is a heterogenous disease, and patients have differences in therapeutic response. However, the mechanisms underlying inter-patient heterogeneity in the response to chemotherapeutic agents remain to be elucidated, and molecular tumor characteristics are required to select patients for specific therapies. Patient-derived organoids (PDOs) established from CRCs recapitulate various biological characteristics of tumor tissues, including cellular heterogeneity and the response to chemotherapy. PDOs established from CRCs exhibit various morphologies, but there are no criteria for defining these morphologies, which hampers the analysis of their biological significance. Here, we developed an artificial intelligence (AI)-based classifier to categorize PDOs based on microscopic images according to their similarity in appearance and classified tubular adenocarcinoma-derived PDOs into six types. Transcriptome analysis identified differential expression of genes related to cell adhesion in some of the morphological types. Genes involved in ribosome biogenesis were also differentially expressed and were most highly expressed in morphological types exhibiting CRC stem cell properties. We identified an RNA polymerase I inhibitor, CX-5641, to be an upstream regulator of these type-specific gene sets. Notably, PDO types with increased expression of genes involved in ribosome biogenesis were resistant to CX-5461 treatment. Taken together, these results uncover the biological significance of the morphology of PDOs and provide novel indicators by which to categorize CRCs. Therefore, the AI-based classifier is a useful tool to support PDO-based cancer research.
Collapse
Affiliation(s)
- Takuya Okamoto
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.,Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuko Natsume
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Motomichi Doi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Hirokazu Nosato
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Toshiyuki Iwaki
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Hitomi Yamanaka
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Mayuko Yamamoto
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Hiroshi Kawachi
- Division of Pathology, Cancer Institute; Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tetsuo Noda
- Director's office, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Satoshi Nagayama
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Surgery, Uji-Tokushukai Medical Center, Kyoto, Japan
| | - Hidenori Sakanashi
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Ryoji Yao
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| |
Collapse
|
16
|
Natural Product Library Screens Identify Sanguinarine Chloride as a Potent Inhibitor of Telomerase Expression and Activity. Cells 2022; 11:cells11091485. [PMID: 35563795 PMCID: PMC9104802 DOI: 10.3390/cells11091485] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/12/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Reverse transcriptase hTERT is essential to telomerase function in stem cells, as well as in 85–90% of human cancers. Its high expression in stem cells or cancer cells has made telomerase/hTERT an attractive therapeutic target for anti-aging and anti-tumor applications. In this study, we screened a natural product library containing 800 compounds using an endogenous hTERT reporter. Eight candidates have been identified, in which sanguinarine chloride (SC) and brazilin (Braz) were selected due to their leading inhibition. SC could induce an acute and strong suppressive effect on the expression of hTERT and telomerase activity in multiple cancer cells, whereas Braz selectively inhibited telomerase in certain types of cancer cells. Remarkably, SC long-term treatment could cause telomere attrition and cell growth retardation, which lead to senescence features in cancer cells, such as the accumulation of senescence-associated β-galactosidase (SA-β-gal)-positive cells, the upregulation of p16/p21/p53 pathways and telomere dysfunction-induced foci (TIFs). Additionally, SC exhibited excellent capabilities of anti-tumorigenesis, both in vitro and in vivo. In the mechanism, the compound down-regulated several active transcription factors including p65, a subunit of NF-κB complex, and reintroducing p65 could alleviate its suppression of the hTERT/telomerase. Moreover, SC could directly bind hTERT and inhibit telomerase activity in vitro. In conclusion, we identified that SC not only down-regulates the hTERT gene’s expression, but also directly affects telomerase/hTERT. The dual function makes this compound an attractive drug candidate for anti-tumor therapy.
Collapse
|
17
|
Chen Y, Liu Z, Chen H, Huang X, Huang X, Lei Y, Liang Q, Wei J, Zhang Q, Guo X, Huang Q. p53 SUMOylation Mediates AOPP-Induced Endothelial Senescence and Apoptosis Evasion. Front Cardiovasc Med 2022; 8:795747. [PMID: 35187108 PMCID: PMC8850781 DOI: 10.3389/fcvm.2021.795747] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/30/2021] [Indexed: 12/14/2022] Open
Abstract
The aging of endothelial cells plays a critical role in the development of age-related vascular disease. We established a model of endothelial premature senescence by application of Advanced oxidation protein products (AOPPs) modified bovine serum albumin (AOPP-BSA) in human umbilical vein endothelial cells (HUVECs). This cellular senescence was accompanied with endothelial barrier dysfunction and angiogenesis impairment. It was further revealed that these senescent HUVECs underwent apoptosis evasion and the receptor for advanced glycation endproducts (RAGE) played a role in these processes. The AOPP-induced senescence was regulated by the state of autophagy in HUVECs. We further proved that AOPP-BSA attenuated the autophagy of HUVECs, led to p53 SUMOylation at K386, resulting in endothelial senescence. We also established the animal model of vascular senescence by using ApoE−/− mice fed with high-fat diet plus daily injection of AOPP-BSA to verify the role of p53 SUMOylation in vascular senescence. Combined with intraperitoneal injection of rapamycin, the effect of autophagy on AOPP-induced p53 SUMOylation was also confirmed in vivo. Our data indicates that p53 SUMOylation at K386 plays an important role in AOPP-induced endothelial senescence and apoptosis evasion, suggesting that p53 K386 SUMOylation may serve as a potential therapeutic target in protecting against vascular senescence.
Collapse
Affiliation(s)
- Yanjia Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhuanhua Liu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hongyu Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xingfu Huang
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxia Huang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yang Lei
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qing Liang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiayi Wei
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qin Zhang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaohua Guo
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qiaobing Huang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Qiaobing Huang
| |
Collapse
|
18
|
Li YZ, Zhang C, Pei JP, Zhang WC, Zhang CD, Dai DQ. The functional role of Pescadillo ribosomal biogenesis factor 1 in cancer. J Cancer 2022; 13:268-277. [PMID: 34976188 PMCID: PMC8692700 DOI: 10.7150/jca.58982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Tumors are neogrowths formed by the growth of normal cells or tissues through complex mechanisms under the influence of many factors. The occurrence and development of tumors are affected by many factors. Pescadillo ribosomal biogenesis factor 1 (PES1) has been identified as a cancer-related gene. The study of these genes may open up new avenues for early diagnosis, treatment and prognosis of tumors. As a nucleolar protein and part of the Pes1/Bop1/WDR12 (PeBoW) complex, PES1 is involved in ribosome biogenesis and DNA replication. Many studies have shown that high expression of PES1 is often closely related to the occurrence, proliferation, invasion, metastasis, prognosis and sensitivity to chemotherapeutics of various human malignant tumors through a series of molecular mechanisms and signaling pathways. The molecules that regulate the expression of PES1 include microRNA (miRNA), circular RNA (circRNA), c-Jun, bromodomain-containing protein 4 (BRD4) and nucleolar phosphoprotein B23. However, the detailed pathogenic mechanisms of PES1 overexpression in human malignancies remains unclear. This article summarizes the role of PES1 in the carcinogenesis, prognosis and treatment of multiple tumors, and introduces the molecular mechanisms and signal transduction pathways related to PES1.
Collapse
Affiliation(s)
- Yong-Zhi Li
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Cheng Zhang
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Jun-Peng Pei
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Wan-Chuan Zhang
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Chun-Dong Zhang
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.,Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Dong-Qiu Dai
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.,Cancer Center, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| |
Collapse
|
19
|
Shen LJ, Sun HW, Chai YY, Jiang QY, Zhang J, Li WM, Xin SJ. The Disassociation of the A20/HSP90 Complex via Downregulation of HSP90 Restores the Effect of A20 Enhancing the Sensitivity of Hepatocellular Carcinoma Cells to Molecular Targeted Agents. Front Oncol 2022; 11:804412. [PMID: 34976842 PMCID: PMC8714928 DOI: 10.3389/fonc.2021.804412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
NF-κB (nuclear factor κB) is a regulator of hepatocellular cancer (HCC)-related inflammation and enhances HCC cells' resistance to antitumor therapies by promoting cell survival and anti-apoptosis processes. In the present work, we demonstrate that A20, a dominant-negative regulator of NF-κB, forms a complex with HSP90 (heat-shock protein 90) and causes the disassociation of the A20/HSP90 complex via downregulation of HSP90. This process restores the antitumor activation of A20. In clinical specimens, the expression level of A20 did not relate with the outcome in patients receiving sorafenib; however, high levels of HSP90 were associated with poor outcomes in these patients. A20 interacted with and formed complexes with HSP90. Knockdown of HSP90 and treatment with an HSP90 inhibitor disassociated the A20/HSP90 complex. Overexpression of A20 alone did not affect HCC cells. Downregulation of HSP90 combined with A20 overexpression restored the effect of A20. Overexpression of A20 repressed the expression of pro-survival and anti-apoptosis-related factors and enhanced HCC cells' sensitivity to sorafenib. These results suggest that interactions with HSP90 could be potential mechanisms of A20 inactivation and disassociation of the A20/HSP90 complex and could serve as a novel strategy for HCC treatment.
Collapse
Affiliation(s)
- Li-Jun Shen
- Medical School of Chinese People's Liberation Army (PLA), Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Division 8, Department of Hepatology, Senior Department of Hepatology, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Hui-Wei Sun
- Senior Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yan-Yao Chai
- Senior Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Qi-Yu Jiang
- Senior Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Jian Zhang
- Department of Patient Management, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Wen-Ming Li
- Department of Emergency Medicine, Handan Central Hospital, Handan, Hebei Province, China
| | - Shao-Jie Xin
- Medical School of Chinese People's Liberation Army (PLA), Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Division 6, Department of Hepatology, Senior Department of Hepatology, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
20
|
Zhou J, Lu Y, Jia Y, Lu J, Jiang Z, Chen K. Ketogenic diet ameliorates lipid dysregulation in type 2 diabetic mice by downregulating hepatic pescadillo 1. Mol Med 2022; 28:1. [PMID: 34979900 PMCID: PMC8722053 DOI: 10.1186/s10020-021-00429-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Background Previous reports implied a possible link between PES1 and lipid metabolism. However, the role of PES1 in regulating T2DM related lipid metabolism and the effect of ketogenic diet (KD) on PES1 have not been reported. The aim of present study is to explore the role of PES1 in effects of KD on diabetic mice and its mediated mechanism. Methods Male C57BL/6J and KKAy mice were fed with standard diet (SD) and KD, respectively. Simultaneously, McArdle 7777 cells were treated by β-hydroxybutyric acid (β-HB), Pes1 siRNA or Pes1 overexpression plasmid, respectively. Additionally, liver-conditional knockout (CKO) of Pes1 in vivo was applied. Results Hepatic PES1 expression in diabetic mice was markedly increased, which was suppressed by KD feeding with an accompanying reduction of hepatic and plasma triglycerides (TG). In mice with CKO of Pes1, the protein levels of p300, SREBP1c, FASN, SCD1, Caspase1, NLRP3 and GSDMD were dramatically downregulated in livers, and the plasma and hepatic TG, IL-1β and IL-18 were decreased as well. The similar outcomes were also observed in β-HB and Pes1 knockdown treated hepatocytes. By contrast, Pes1 overexpression in cultured hepatocytes showed that these levels were significantly enhanced, which were, however reduced under β-HB treatment. Mechanistically, we discovered that β-HB decreased CHOP binding to the Pes1 promoters, resulting in the downregulation of PES1, thereby reducing PES1 binding to p300 and Caspase1 promoters. The inhibition of p300 and Caspase1 expression elicited the dramatic suppression of acetylation of SREBP1c via its interaction with p300, and the decreased GSDMD levels. Besides, knockdown of Caspase1 also alleviated the TG levels in cultured hepatocytes. Conclusion KD may improve lipid dysregulation in type 2 diabetic mice by downregulating hepatic PES1 expression. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00429-6.
Collapse
Affiliation(s)
- Jielin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yao Lu
- Department of Anesthesiology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yajing Jia
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jing Lu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Zhengxuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital, Anhui Medical University, Hefei, 230021, Anhui, China.
| | - Keyang Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China. .,Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
21
|
Single-Run Catalysis and Kinetic Control of Human Telomerase Holoenzyme. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1371:109-129. [PMID: 34962637 DOI: 10.1007/5584_2021_676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Genome stability in eukaryotic cells relies on proper maintenance of telomeres at the termini of linear chromosomes. Human telomerase holoenzyme is required for maintaining telomere stability in a majority of proliferative human cells, making it essential for control of cell division and aging, stem cell maintenance, and development and survival of tumor or cancer. A dividing human cell usually contains a limited number of active telomerase holoenzymes. Recently, we discovered that a human telomerase catalytic site undergoes catalysis-dependent shut-off and an inactive site can be reactivated by cellular fractions containing human intracellular telomerase-activating factors (hiTAFs). Such ON-OFF control of human telomerase activity suggests a dynamic switch between inactive and active pools of the holoenzymes. In this review, we will link the ON-OFF control to the thermodynamic and kinetic properties of human telomerase holoenzymes, and discuss its potential contributions to the maintenance of telomere length equilibrium. This treatment suggests probabilistic fluctuations in the number of active telomerase holoenzymes as well as the number of telomeres that are extended in a limited number of cell cycles, and may be an important component of a fully quantitative model for the dynamic control of telomerase activities and telomere lengths in different types of eukaryotic cells.
Collapse
|
22
|
Bian Z, Zhou M, Cui K, Yang F, Cao Y, Sun S, Liu B, Gong L, Li J, Wang X, Li C, Yao S, Yin Y, Huang S, Fei B, Huang Z. SNHG17 promotes colorectal tumorigenesis and metastasis via regulating Trim23-PES1 axis and miR-339-5p-FOSL2-SNHG17 positive feedback loop. J Exp Clin Cancer Res 2021; 40:360. [PMID: 34782005 PMCID: PMC8591805 DOI: 10.1186/s13046-021-02162-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/30/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Small nucleolar RNA host gene (SNHG) long noncoding RNAs (lncRNAs) are frequently dysregulated in human cancers and involved in tumorigenesis and progression. SNHG17 has been reported as a candidate oncogene in several cancer types, however, its regulatory role in colorectal cancer (CRC) is unclear. METHODS SNHG17 expression in multiple CRC cohorts was assessed by RT-qPCR or bioinformatic analyses. Cell viability was evaluated using Cell Counting Kit-8 (CCK-8) and colony formation assays. Cell mobility and invasiveness were assessed by Transwell assays. Tumor xenograft and metastasis models were applied to confirm the effects of SNHG17 on CRC tumorigenesis and metastasis in vivo. Immunohistochemistry staining was used to measure protein expression in cancer tissues. RNA pull-down, RNA immunoprecipitation, chromatin immunoprecipitation, and dual luciferase assays were used to investigate the molecular mechanism of SNHG17 in CRC. RESULTS Using multiple cohorts, we confirmed that SNHG17 is aberrantly upregulated in CRC and correlated with poor survival. In vitro and in vivo functional assays indicated that SNHG17 facilitates CRC proliferation and metastasis. SNHG17 impedes PES1 degradation by inhibiting Trim23-mediated ubiquitination of PES1. SNHG17 upregulates FOSL2 by sponging miR-339-5p, and FOSL2 transcription activates SNHG17 expression, uncovering a SNHG17-miR-339-5p-FOSL2-SNHG17 positive feedback loop. CONCLUSIONS We identified SNHG17 as an oncogenic lncRNA in CRC and identified abnormal upregulation of SNHG17 as a prognostic risk factor for CRC. Our mechanistic investigations demonstrated, for the first time, that SNHG17 promotes tumor growth and metastasis through two different regulatory mechanisms, SNHG17-Trim23-PES1 axis and SNHG17-miR-339-5p-FOSL2-SNHG17 positive feedback loop, which may be exploited for CRC therapy.
Collapse
Affiliation(s)
- Zehua Bian
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Mingyue Zhou
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Kaisa Cui
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Fan Yang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Yulin Cao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Shengbai Sun
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Bingxin Liu
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Liang Gong
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jiuming Li
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xue Wang
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Chaoqun Li
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Surui Yao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Yuan Yin
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Bojian Fei
- Department of Surgical Oncology, Affiliated Hospital of Jiangnan University, 200 Hui He Road, Wuxi, 214062, Jiangsu, China.
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China.
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
23
|
Zhu L, Liu Y, Wu X, Ren Y, Zhang Q, Ren L, Guo Y. Cerebroprotein hydrolysate-I protects senescence-induced by D-galactose in PC12 cells and mice. Food Sci Nutr 2021; 9:3722-3731. [PMID: 34262731 PMCID: PMC8269606 DOI: 10.1002/fsn3.2333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/14/2021] [Accepted: 05/01/2021] [Indexed: 11/25/2022] Open
Abstract
Cerebroprotein hydrolysate-I (CH-I),a mixture of peptides extracted from porcine brain tissue,has shown a neuroprotective effect, but its role in brain senescence is unclear. In the present study, we established a senescence model of PC12 cells and mice to investigate the effect of CH-I on brain senescence via JAK2/STAT3 pathway. The results showed that CH-I could improve cell viability, inhibit the apoptosis of cells, and reduce the senescence-positive cells induced by D-galactose. In vivo, CH-I improved the learning ability and memory of aging mice, reduced neuronal damage in mice hippocampus. Mechanism studies showed that CH-I could adjust BDNF protein expressions, activate JAK2/STAT3 pathway, and finally enhance telomerase activity. All these findings indicated that CH-I showed a neuroprotective effect against brain senescence. These results might provide further reference and support for the application of CH-I in delaying aging.
Collapse
Affiliation(s)
- Lin Zhu
- Institute of Cerebrovascular DiseasesTaishan Scholars Construction Project Excellent Innovative Team of Shandong ProvinceMedical Research CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yingjuan Liu
- Institute of Cerebrovascular DiseasesTaishan Scholars Construction Project Excellent Innovative Team of Shandong ProvinceMedical Research CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Xiaolin Wu
- Institute of Cerebrovascular DiseasesTaishan Scholars Construction Project Excellent Innovative Team of Shandong ProvinceMedical Research CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yuqian Ren
- Institute of Cerebrovascular DiseasesTaishan Scholars Construction Project Excellent Innovative Team of Shandong ProvinceMedical Research CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Qinghua Zhang
- Department of NeurologyShandong Second Provincial General HospitalJinanChina
| | - Leiming Ren
- Institute of Chinese Integrative MedicineHebei Medical UniversityShijiazhuangChina
| | - Yunliang Guo
- Institute of Cerebrovascular DiseasesTaishan Scholars Construction Project Excellent Innovative Team of Shandong ProvinceMedical Research CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
24
|
The Protein Landscape of Chronic Lymphocytic Leukemia (CLL). Blood 2021; 138:2514-2525. [PMID: 34189564 DOI: 10.1182/blood.2020009741] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 06/09/2021] [Indexed: 11/20/2022] Open
Abstract
Many functional consequences of mutations on tumor phenotypes in chronic lymphocytic leukemia (CLL) are unknown. This may be in part due to a scarcity of information on the proteome of CLL. We profiled the proteome of 117 CLL patient samples with data-independent acquisition mass spectrometry (DIA-MS) and integrated the results with genomic, transcriptomic, ex vivo drug response and clinical outcome data. We found trisomy 12, IGHV mutational status, mutated SF3B1, trisomy 19, del(17)(p13), del(11)(q22.3), mutated DDX3X, and MED12 to influence protein expression (FDR < 5%). Trisomy 12 and IGHV status were the major determinants of protein expression variation in CLL as shown by principal component analysis (1055 and 542 differentially expressed proteins, FDR=5%). Gene set enrichment analyses of CLL with trisomy 12 implicated BCR/PI3K/AKT signaling as a tumor driver. These findings were supported by analyses of protein abundance buffering and protein complex formation, which identified limited protein abundance buffering and an upregulated protein complex involved in BCR, AKT, MAPK and PI3K signaling in trisomy 12 CLL. A survey of proteins associated with trisomy 12/IGHV-independent drug response linked STAT2 protein expression with response to kinase inhibitors including BTK and MEK inhibitors. STAT2 was upregulated in U-CLL, trisomy 12 CLL and required for chemokine/cytokine signaling (interferon response). This study highlights the importance of protein abundance data as a non-redundant layer of information in tumor biology, and provides a protein expression reference map for CLL.
Collapse
|
25
|
Wang X, Wang C, Guan J, Chen B, Xu L, Chen C. Progress of Breast Cancer basic research in China. Int J Biol Sci 2021; 17:2069-2079. [PMID: 34131406 PMCID: PMC8193257 DOI: 10.7150/ijbs.60631] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most commonly diagnosed and the most lethal cancer in females both in China and worldwide. Currently, the origin of cancer stem cells, the heterogeneity of cancer cells, the mechanism of cancer metastasis and drug resistance are the most important issues that need to be addressed. Chinese investigators have recently made new discoveries in basic breast cancer researches, especially regarding cancer stem cells, cancer metabolism, and microenvironments. These efforts have led to a deeper understanding of drug resistance and metastasis and have also indicated new biomarkers and therapeutic targets. These findings emphasized the importance of the cancer stem cells for targeted therapy. In this review, we summarized the latest important findings in this field in China.
Collapse
Affiliation(s)
- Xuerong Wang
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chao Wang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, China
| | - Jiaheng Guan
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Lin Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
26
|
Wang R, Li J, Jin R, Ye Q, Cheng L, Liu R. Nonradioactive direct telomerase activity detection using biotin-labeled primers. J Clin Lab Anal 2021; 35:e23800. [PMID: 33960443 PMCID: PMC8183940 DOI: 10.1002/jcla.23800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/05/2022] Open
Abstract
Background Telomerase is a ribonucleoprotein enzyme responsible for maintenance of telomere length which expressed in more than 85% of cancer cells but undetectable in most normal tissue cells. Therefore, telomerase serves as a diagnostic marker of cancers. Two commonly used telomerase activity detection methods, the telomerase repeated amplification protocol (TRAP) and the direct telomerase assay (DTA), have disadvantages that mainly arise from reliance on PCR amplification or the use of an isotope. A safe, low‐cost and reliable telomerase activity detection method is still lacking. Method We modified DTA method using biotin‐labeled primers (Biotin‐DTA) and optimized the method by adjusting cell culture temperature and KCl concentration. The sensitivity of the method was confirmed to detect endogenous telomerase activity. The reliability was verified by detection of telomerase activity of published telomerase regulators. The stability was confirmed by comparing the method with TRAP method. Results Cells cultured in 32°C and KCl concentration at 200 mM or 250 mM resulted in robust Biotin‐DTA signal. Endogenous telomerase activity can be detected, which suggested an similar sensitivity as DTA using radioactive isotope markers. Knockdown of telomerase assembly regulator PES1 and DKC1 efficiently reduced telomerase activity. Compared with TRAP method, Biotin‐DTA assay offers greater signal stability over a range of analyte protein amounts. Conclusion Biotin‐labeled, PCR‐free, and nonradioactive direct telomerase assay is a promising new method for the easy, low‐cost, and quantitative detection of telomerase activity.
Collapse
Affiliation(s)
- Ruiguan Wang
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Medical school of Chinese PLA, Beijing, China
| | - Jiangbo Li
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, China
| | - Rui Jin
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, China
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, China
| | - Long Cheng
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, China
| | - Rong Liu
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Medical school of Chinese PLA, Beijing, China
| |
Collapse
|
27
|
Qin Y, Yuan H, Chen X, Yang X, Xing Z, Shen Y, Dong W, An S, Qi Y, Wu H. SUMOylation Wrestles With the Occurrence and Development of Breast Cancer. Front Oncol 2021; 11:659661. [PMID: 33968766 PMCID: PMC8097099 DOI: 10.3389/fonc.2021.659661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Breast cancer has the highest incidence among cancers and is the most frequent cause of death in women worldwide. The detailed mechanism of the pathogenesis of breast cancer has not been fully elucidated, and there remains a lack of effective treatment methods for the disease. SUMOylation covalently conjugates a large amount of cellular proteins, and affects their cellular localization and biological activity to participate in numerous cellular processes. SUMOylation is an important process and imbalance of SUMOylation results in the progression of human diseases. Increasing evidence shows that numerous SUMOylated proteins are involved in the occurrence and development of breast cancer. This review summarizes a series of studies on protein SUMOylation in breast cancer in recent years. The study of SUMOylated proteins provides a comprehensive understanding of the pathophysiology of breast cancer and provides evolving therapeutic strategies for the treatment of breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
28
|
Ogrodnik M. Cellular aging beyond cellular senescence: Markers of senescence prior to cell cycle arrest in vitro and in vivo. Aging Cell 2021; 20:e13338. [PMID: 33711211 PMCID: PMC8045927 DOI: 10.1111/acel.13338] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
The field of research on cellular senescence experienced a rapid expansion from being primarily focused on in vitro aspects of aging to the vast territories of animal and clinical research. Cellular senescence is defined by a set of markers, many of which are present and accumulate in a gradual manner prior to senescence induction or are found outside of the context of cellular senescence. These markers are now used to measure the impact of cellular senescence on aging and disease as well as outcomes of anti-senescence interventions, many of which are at the stage of clinical trials. It is thus of primary importance to discuss their specificity as well as their role in the establishment of senescence. Here, the presence and role of senescence markers are described in cells prior to cell cycle arrest, especially in the context of replicative aging and in vivo conditions. Specifically, this review article seeks to describe the process of "cellular aging": the progression of internal changes occurring in primary cells leading to the induction of cellular senescence and culminating in cell death. Phenotypic changes associated with aging prior to senescence induction will be characterized, as well as their effect on the induction of cell senescence and the final fate of cells reviewed. Using published datasets on assessments of senescence markers in vivo, it will be described how disparities between quantifications can be explained by the concept of cellular aging. Finally, throughout the article the applicational value of broadening cellular senescence paradigm will be discussed.
Collapse
Affiliation(s)
- Mikolaj Ogrodnik
- Ludwig Boltzmann Research Group Senescence and Healing of Wounds Vienna Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center Vienna Austria
- Austrian Cluster for Tissue Regeneration Vienna Austria
| |
Collapse
|
29
|
Nait Slimane S, Marcel V, Fenouil T, Catez F, Saurin JC, Bouvet P, Diaz JJ, Mertani HC. Ribosome Biogenesis Alterations in Colorectal Cancer. Cells 2020; 9:E2361. [PMID: 33120992 PMCID: PMC7693311 DOI: 10.3390/cells9112361] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/24/2022] Open
Abstract
Many studies have focused on understanding the regulation and functions of aberrant protein synthesis in colorectal cancer (CRC), leaving the ribosome, its main effector, relatively underappreciated in CRC. The production of functional ribosomes is initiated in the nucleolus, requires coordinated ribosomal RNA (rRNA) processing and ribosomal protein (RP) assembly, and is frequently hyperactivated to support the needs in protein synthesis essential to withstand unremitting cancer cell growth. This elevated ribosome production in cancer cells includes a strong alteration of ribosome biogenesis homeostasis that represents one of the hallmarks of cancer cells. None of the ribosome production steps escape this cancer-specific dysregulation. This review summarizes the early and late steps of ribosome biogenesis dysregulations described in CRC cell lines, intestinal organoids, CRC stem cells and mouse models, and their possible clinical implications. We highlight how this cancer-related ribosome biogenesis, both at quantitative and qualitative levels, can lead to the synthesis of ribosomes favoring the translation of mRNAs encoding hyperproliferative and survival factors. We also discuss whether cancer-related ribosome biogenesis is a mere consequence of cancer progression or is a causal factor in CRC, and how altered ribosome biogenesis pathways can represent effective targets to kill CRC cells. The association between exacerbated CRC cell growth and alteration of specific steps of ribosome biogenesis is highlighted as a key driver of tumorigenesis, providing promising perspectives for the implementation of predictive biomarkers and the development of new therapeutic drugs.
Collapse
Affiliation(s)
- Sophie Nait Slimane
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| | - Virginie Marcel
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| | - Tanguy Fenouil
- Institute of Pathology EST, Hospices Civils de Lyon, Site-Est Groupement Hospitalier- Est, 69677 Bron, France;
| | - Frédéric Catez
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| | - Jean-Christophe Saurin
- Gastroenterology and Genetic Department, Edouard Herriot Hospital, Hospices Civils de Lyon, 69008 Lyon, France;
| | - Philippe Bouvet
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| | - Jean-Jacques Diaz
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| | - Hichem C. Mertani
- Cancer Initiation and Tumor Cell Identity, Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286 Centre Léon Bérard, 69008 Lyon, France; (S.N.S.); (V.M.); (F.C.); (P.B.)
| |
Collapse
|
30
|
Pańczyszyn A, Boniewska-Bernacka E, Goc A. The role of telomeres and telomerase in the senescence of postmitotic cells. DNA Repair (Amst) 2020; 95:102956. [PMID: 32937289 DOI: 10.1016/j.dnarep.2020.102956] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
Senescence is a process related to the stopping of divisions and changes leading the cell to the SASP phenotype. Permanent senescence of many SASP cells contributes to faster aging of the body and development of age-related diseases due to the release of pro-inflammatory factors. Both mitotically active and non-dividing cells can undergo senescence as a result of activation of different molecular pathways. Telomeres, referred to as the molecular clock, direct the dividing cell into the aging pathway when reaching a critical length. In turn, the senescence of postmitotic cells depends not on the length of telomeres, but their functionality. Dysfunctional telomeres are responsible for triggering the signaling of DNA damage response (DDR). Telomerase subunits in post-mitotic cells translocate between the nucleus, cytoplasm and mitochondria, participating in the regulation of their activity. Among other things, they contribute to the reduction of reactive oxygen species generation, which leads to telomere dysfunction and, consequently, senescence. Some proteins of the shelterin complex also play a protective role by inhibiting senescence-initiating kinases and limiting ROS production by mitochondria.
Collapse
Affiliation(s)
- Anna Pańczyszyn
- University of Opole, Institute of Medical Sciences, Department of Biology and Genetics, Opole 45-040, Pl.Kopernika 11a, Poland.
| | - Ewa Boniewska-Bernacka
- University of Opole, Institute of Medical Sciences, Department of Biology and Genetics, Opole 45-040, Pl.Kopernika 11a, Poland.
| | - Anna Goc
- University of Opole, Institute of Medical Sciences, Department of Biology and Genetics, Opole 45-040, Pl.Kopernika 11a, Poland.
| |
Collapse
|
31
|
Telomerase Biogenesis and Activities from the Perspective of Its Direct Interacting Partners. Cancers (Basel) 2020; 12:cancers12061679. [PMID: 32599885 PMCID: PMC7352425 DOI: 10.3390/cancers12061679] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Telomerase reverse transcriptase (TERT)—the catalytic subunit of telomerase—is reactivated in up to 90% of all human cancers. TERT is observed in heterogenous populations of protein complexes, which are dynamically regulated in a cell type- and cell cycle-specific manner. Over the past two decades, in vitro protein–protein interaction detection methods have discovered a number of endogenous TERT binding partners in human cells that are responsible for the biogenesis and functionalization of the telomerase holoenzyme, including the processes of TERT trafficking between subcellular compartments, assembly into telomerase, and catalytic action at telomeres. Additionally, TERT have been found to interact with protein species with no known telomeric functions, suggesting that these complexes may contribute to non-canonical activities of TERT. Here, we survey TERT direct binding partners and discuss their contributions to TERT biogenesis and functions. The goal is to review the comprehensive spectrum of TERT pro-malignant activities, both telomeric and non-telomeric, which may explain the prevalence of its upregulation in cancer.
Collapse
|
32
|
Li W, Deng G, Zhang J, Hu E, He Y, Lv J, Sun X, Wang K, Chen L. Identification of breast cancer risk modules via an integrated strategy. Aging (Albany NY) 2019; 11:12131-12146. [PMID: 31860871 PMCID: PMC6949069 DOI: 10.18632/aging.102546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/19/2019] [Indexed: 12/17/2022]
Abstract
Breast cancer is one of the most common malignant cancers among females worldwide. This complex disease is not caused by a single gene, but resulted from multi-gene interactions, which could be represented by biological networks. Network modules are composed of genes with significant similarities in terms of expression, function and disease association. Therefore, the identification of disease risk modules could contribute to understanding the molecular mechanisms underlying breast cancer. In this paper, an integrated disease risk module identification strategy was proposed according to a multi-objective programming model for two similarity criteria as well as significance of permutation tests in Markov random field module score, function consistency score and Pearson correlation coefficient difference score. Three breast cancer risk modules were identified from a breast cancer-related interaction network. Genes in these risk modules were confirmed to play critical roles in breast cancer by literature review. These risk modules were enriched in breast cancer-related pathways or functions and could distinguish between breast tumor and normal samples with high accuracy for not only the microarray dataset used for breast cancer risk module identification, but also another two independent datasets. Our integrated strategy could be extended to other complex diseases to identify their risk modules and reveal their pathogenesis.
Collapse
Affiliation(s)
- Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Gui Deng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ji Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Erqiang Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yuehan He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Junjie Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xilin Sun
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, the Fourth Hospital of Harbin Medical University, Harbin, China
| | - Kai Wang
- Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, the Fourth Hospital of Harbin Medical University, Harbin, China
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
33
|
PES1 promotes BET inhibitors resistance and cells proliferation through increasing c-Myc expression in pancreatic cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:463. [PMID: 31718704 PMCID: PMC6852745 DOI: 10.1186/s13046-019-1466-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022]
Abstract
Background Overexpressed PES1 promotes carcinogenesis in various types of malignant tumors. However, the biological role and clinical significance of PES1 in pancreatic cancer are still unexplored. Methods The expression level of PES1 in pancreatic cancer cell lines and pancreatic cancer patient samples was determined using Western Blotting analysis, RT-qPCR analysis, immunohistochemical (IHC) analysis of tissue microarray, and the GEPIA web tool. MTS assay, colony formation assay, and xenograft tumor assay were used to evaluate the tumor growth ability of pancreatic cancer cells. Results We established that the expression of PES1 was abnormally increased in pancreatic cancer tissues and led to poor prognosis of pancreatic cancer patients. We also found that PES1 was responsible for promoting cell growth and contributed to bromodomain and cancer cell resistance to extra-terminal (BET) inhibitors in pancreatic cancer. Furthermore, we showed that PES1 interacted with BRD4 to enhance c-Myc expression, which is the primary cause of cancer cell resistance to BET inhibitors in pancreatic cancer. Finally, CDK5 inhibitors were proven to destabilize PES1 and overcome cancer cell resistance to BET inhibitors in pancreatic cancer cells. Conclusions We have shown that PES1 could be one of the promoting factors of tumor growth and a prognosis-related protein of pancreatic cancer. Targeting PES1 with CDK5 inhibitors might help overcome cancer cell resistance to BET inhibitors in pancreatic cancer cells.
Collapse
|