1
|
Genkel V, Zaripova Y, Kuznetsova A, Sluchanko A, Minasova A, Zotova M, Saenko A, Savochkina A, Dolgushina A. Neutrophils at the Crossroads of Inflammatory Bowel Disease and Atherosclerosis: A State-of-the-Art Review. Cells 2025; 14:738. [PMID: 40422241 DOI: 10.3390/cells14100738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/12/2025] [Accepted: 05/16/2025] [Indexed: 05/28/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a growing global problem, particularly in regions with low sociodemographic indices and growing populations. IBD incidence is increasing among children and adolescents, leading to a growing economic burden. The prevalence of atherosclerotic cardiovascular diseases among patients with IBD is also higher than in the general population. While mortality rates have decreased, cardiovascular disease (CVD) remains a significant contributor to mortality and disability in IBD patients. According to the current understanding, neutrophils play an important role in both the atherogenesis and pathogenesis of IBD. This review addresses the state of the art of neutrophil involvement in the development of atherosclerosis and IBD. In the present review, we summarize the currently available evidence regarding neutrophils as a possible key driver of extraintestinal manifestations of IBD and cardiovascular complications. We provide a discussion on the potential role of neutrophil-derived markers in the development of new approaches for the precise diagnosis of atherosclerosis in patients with IBD, as well as new therapeutic targets.
Collapse
Affiliation(s)
- Vadim Genkel
- Department of Internal Medicine, South-Ural State Medical University, Chelyabinsk 454141, Russia
| | - Yana Zaripova
- Department of Internal Medicine, South-Ural State Medical University, Chelyabinsk 454141, Russia
| | - Alla Kuznetsova
- Department of Hospital Therapy, South-Ural State Medical University, Chelyabinsk 454141, Russia
| | - Alena Sluchanko
- Department of Hospital Therapy, South-Ural State Medical University, Chelyabinsk 454141, Russia
| | - Anna Minasova
- Research Institution of Immunology, South-Ural State Medical University, Chelyabinsk 454141, Russia
| | - Maria Zotova
- Research Institution of Immunology, South-Ural State Medical University, Chelyabinsk 454141, Russia
| | - Anna Saenko
- Department of Hospital Therapy, South-Ural State Medical University, Chelyabinsk 454141, Russia
| | - Albina Savochkina
- Research Institution of Immunology, South-Ural State Medical University, Chelyabinsk 454141, Russia
| | - Anastasiya Dolgushina
- Department of Hospital Therapy, South-Ural State Medical University, Chelyabinsk 454141, Russia
| |
Collapse
|
2
|
Huang L, Ding R, Yan K, Duan J, Sun Z. The Role of Endoplasmic Reticulum Stress in Fine Particulate Matter-Induced Phenotype Switching of Vascular Smooth Muscle Cells. Chem Res Toxicol 2025. [PMID: 40369400 DOI: 10.1021/acs.chemrestox.5c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
As a major component of air pollution, fine particulate matter (PM2.5) was the second global leading cause of death in 2021. Evidence from humans suggested that PM2.5 was associated with an enhanced coronary calcium score (CAC), and animal studies indicated that PM2.5 induced vascular calcification, while mechanisms remained largely unknown. In this study, PM2.5 enhanced the proliferative potential and migration capacity of human aortic vascular smooth muscle cells (VSMCs), as well as disturbing intracellular Ca2+ homeostasis. Subsequent transcriptomic analysis implicated that PM2.5 could influence genes involved in the IRE1α-mediated unfolded protein responses and reduce the expression of DNAJB9, a co-chaperone that formed a complex with BiP/IRE1α to inhibit the activation of endoplasmic reticulum (ER) stress. Further mechanistic investigations indicated that PM2.5 activated the IRE1α/XBP1 signaling pathway and enhanced the expression of osteogenic phenotype-related hallmarks. In contrast, pretreatment with an ER stress antagonist (4-PBA) could suppress PM2.5-associated calcium dysregulation and osteogenic transformation via alleviation of ER stress. Taken together, this study revealed the role of ER stress in the phenotype switching of VSMCs induced by PM2.5, highlighted the regulation of DNAJB9, provided insights into the mechanisms of air pollution-related vascular calcification, and pointed out molecules for future investigations.
Collapse
Affiliation(s)
- Linyuan Huang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Kanglin Yan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| |
Collapse
|
3
|
Ono M, Toyomoto M, Yamauchi M, Hagiwara M. Platelets accelerate lipid peroxidation and induce pathogenic neutrophil extracellular trap release. Cell Chem Biol 2024; 31:2085-2095.e4. [PMID: 39631397 DOI: 10.1016/j.chembiol.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 08/02/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Neutrophil extracellular traps (NETs), an important host defense mechanism, are assembled after the release of decondensed chromatin and other nuclear components by a process termed NETosis. However, excessive NET release destroys surrounding tissues, leading to conditions such as sepsis where platelets are implicated in the pathogenic switch of NETosis. Here, we show that platelets trigger iron accumulation and promote lipid peroxide production in neutrophils co-stimulated with lipopolysaccharide and platelets in vitro, resulting in the induction of NETosis. We also screened for compounds that inhibit lipid peroxidation, identified 8-methyl-N-geranyl-6-nonamide (capsaicin), and assessed its potential in suppressing platelet-mediated pathogenic NETosis. Capsaicin inhibited lipopolysaccharide/platelet-induced cellular lipid peroxidation and suppressed NETosis in vitro. Furthermore, capsaicin attenuated NETosis in a mouse model of lipopolysaccharide-induced lung inflammation. Our findings provide an original therapeutic strategy to target lipid peroxidation and pave the way for drug development for a wide range of NETosis-related diseases.
Collapse
Affiliation(s)
- Madoka Ono
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Masayasu Toyomoto
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Department of Drug Discovery for Intractable Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Momono Yamauchi
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
4
|
Fine N, Glogauer M, Chandran V, Oikonomopoulou K. Characterisation of myeloid cells in circulation and synovial fluid of patients with psoriatic arthritis. RMD Open 2024; 10:e004457. [PMID: 39438084 PMCID: PMC11499796 DOI: 10.1136/rmdopen-2024-004457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/22/2024] [Indexed: 10/25/2024] Open
Abstract
OBJECTIVE Psoriatic arthritis (PsA) is an inflammatory arthritis associated with psoriasis. Adding to studies focused on the role of T cells and macrophages, we sought to investigate the systemic activation of leukocytes in PsA. METHODS We assessed the activation state of leukocyte populations, including polymorphonuclear neutrophils (PMNs) and monocyte/macrophages, in blood and synovial fluid (SF) by multicolour flow cytometry. We also evaluated the correlation between leukocyte numbers and expression of activation markers with disease activity parameters. RESULTS SF PMNs showed an elevated activation state compared with blood PMNs, but a reduced activation state compared with oral PMNs of non-arthritic controls. In vitro stimulation caused SF PMNs to become further activated, demonstrating that they retain a reserve capacity for activation in response to specific triggers. We found significant variability between patients in the expression of SF PMN CD activation markers, indicating a range of possible activation states across patients. However, PMN CD marker expression remained consistent over two sequential visits in a subset of patients, indicating patient-specific distinct inflammatory states during flares. We further found that markers of disease activity increased with elevated SF macrophage numbers. Expression of several CD markers on blood or SF cells, for example, PMN expression of the high-affinity Fc-receptor CD64, correlated with disease activity markers, including pain score and Disease Activity in Psoriatic Arthritis score. CONCLUSION These preliminary findings support a potential role for surface antigens on PMNs and monocytes/macrophages as prognostic or disease activity monitoring tools.
Collapse
Affiliation(s)
- Noah Fine
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- University Health Network, Princess Margaret Cancer Centre, Department of Dental Oncology and Maxillofacial Prosthetics, Toronto, Ontario, Canada
| | - Vinod Chandran
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Division of Rheumatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Katerina Oikonomopoulou
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Maier-Begandt D, Alonso-Gonzalez N, Klotz L, Erpenbeck L, Jablonska J, Immler R, Hasenberg A, Mueller TT, Herrero-Cervera A, Aranda-Pardos I, Flora K, Zarbock A, Brandau S, Schulz C, Soehnlein O, Steiger S. Neutrophils-biology and diversity. Nephrol Dial Transplant 2024; 39:1551-1564. [PMID: 38115607 PMCID: PMC11427074 DOI: 10.1093/ndt/gfad266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 12/21/2023] Open
Abstract
Neutrophils, the most abundant white blood cells in the human circulation, play crucial roles in various diseases, including kidney disease. Traditionally viewed as short-lived pro-inflammatory phagocytes that release reactive oxygen species, cytokines and neutrophil extracellular traps, recent studies have revealed their complexity and heterogeneity, thereby challenging this perception. Neutrophils are now recognized as transcriptionally active cells capable of proliferation and reverse migration, displaying phenotypic and functional heterogeneity. They respond to a wide range of signals and deploy various cargo to influence the activity of other cells in the circulation and in tissues. They can regulate the behavior of multiple immune cell types, exhibit innate immune memory, and contribute to both acute and chronic inflammatory responses while also promoting inflammation resolution in a context-dependent manner. Here, we explore the origin and heterogeneity of neutrophils, their functional diversity, and the cues that regulate their effector functions. We also examine their emerging role in infectious and non-infectious diseases with a particular emphasis on kidney disease. Understanding the complex behavior of neutrophils during tissue injury and inflammation may provide novel insights, thereby paving the way for potential therapeutic strategies to manage acute and chronic conditions. By deciphering their multifaceted role, targeted interventions can be developed to address the intricacies of neutrophil-mediated immune responses and improve disease outcomes.
Collapse
Affiliation(s)
- Daniela Maier-Begandt
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Luisa Klotz
- Department of Neurology with Institute for Translational Neurology, University Hospital Münster, Münster, Germany
| | - Luise Erpenbeck
- Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK) partner site Düsseldorf/Essen, Essen, Germany
| | - Roland Immler
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anja Hasenberg
- Institute of Experimental Immunology and Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Tonina T Mueller
- Department of Medicine I, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andrea Herrero-Cervera
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Universität of Münster, Münster, Germany
| | | | - Kailey Flora
- Renal Division, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alexander Zarbock
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christian Schulz
- Department of Medicine I, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Oliver Soehnlein
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, Universität of Münster, Münster, Germany
| | - Stefanie Steiger
- Renal Division, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
6
|
Geng S, Lu R, Zhang Y, Wu Y, Xie L, Caldwell BA, Pradhan K, Yi Z, Hou J, Xu F, Chen X, Li L. Monocytes Reprogrammed by 4-PBA Potently Contribute to the Resolution of Inflammation and Atherosclerosis. Circ Res 2024; 135:856-872. [PMID: 39224974 PMCID: PMC11424066 DOI: 10.1161/circresaha.124.325023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Chronic inflammation initiated by inflammatory monocytes underlies the pathogenesis of atherosclerosis. However, approaches that can effectively resolve chronic low-grade inflammation targeting monocytes are not readily available. The small chemical compound 4-phenylbutyric acid (4-PBA) exhibits broad anti-inflammatory effects in reducing atherosclerosis. Selective delivery of 4-PBA reprogrammed monocytes may hold novel potential in providing targeted and precision therapeutics for the treatment of atherosclerosis. METHODS Systems analyses integrating single-cell RNA sequencing and complementary immunologic approaches characterized key resolving characteristics as well as defining markers of reprogrammed monocytes trained by 4-PBA. Molecular mechanisms responsible for monocyte reprogramming were assessed by integrated biochemical and genetic approaches. The intercellular propagation of homeostasis resolution was evaluated by coculture assays with donor monocytes trained by 4-PBA and recipient naive monocytes. The in vivo effects of monocyte resolution and atherosclerosis prevention by 4-PBA were assessed with the high-fat diet-fed ApoE-/- mouse model with IP 4-PBA administration. Furthermore, the selective efficacy of 4-PBA-trained monocytes was examined by IV transfusion of ex vivo trained monocytes by 4-PBA into recipient high-fat diet-fed ApoE-/- mice. RESULTS In this study, we found that monocytes can be potently reprogrammed by 4-PBA into an immune-resolving state characterized by reduced adhesion and enhanced expression of anti-inflammatory mediator CD24. Mechanistically, 4-PBA reduced the expression of ICAM-1 (intercellular adhesion molecule 1) via reducing peroxisome stress and attenuating SYK (spleen tyrosine kinase)-mTOR (mammalian target of rapamycin) signaling. Concurrently, 4-PBA enhanced the expression of resolving mediator CD24 through promoting PPARγ (peroxisome proliferator-activated receptor γ) neddylation mediated by TOLLIP (toll-interacting protein). 4-PBA-trained monocytes can effectively propagate anti-inflammation activity to neighboring monocytes through CD24. Our data further demonstrated that 4-PBA-trained monocytes effectively reduce atherosclerosis pathogenesis when administered in vivo. CONCLUSIONS Our study describes a robust and effective approach to generate resolving monocytes, characterizes novel mechanisms for targeted monocyte reprogramming, and offers a precision therapeutics for atherosclerosis based on delivering reprogrammed resolving monocytes.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Ran Lu
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Yao Zhang
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Yajun Wu
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Ling Xie
- Department of Biochemistry and Molecular Biology, University of North Carolina at Chappell Hill, NC (L.X., X.C.)
| | - Blake A Caldwell
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Kisha Pradhan
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Ziyue Yi
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Jacqueline Hou
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Feng Xu
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| | - Xian Chen
- Department of Biochemistry and Molecular Biology, University of North Carolina at Chappell Hill, NC (L.X., X.C.)
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg (S.G., R.L., Y.Z., Y.W., B.A.C., K.P., Z.Y., J.H., F.X., L.L.)
| |
Collapse
|
7
|
Las Heras K, Garcia-Orue I, Rancan F, Igartua M, Santos-Vizcaino E, Hernandez RM. Modulating the immune system towards a functional chronic wound healing: A biomaterials and Nanomedicine perspective. Adv Drug Deliv Rev 2024; 210:115342. [PMID: 38797316 DOI: 10.1016/j.addr.2024.115342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Chronic non-healing wounds persist as a substantial burden for healthcare systems, influenced by factors such as aging, diabetes, and obesity. In contrast to the traditionally pro-regenerative emphasis of therapies, the recognition of the immune system integral role in wound healing has significantly grown, instigating an approach shift towards immunological processes. Thus, this review explores the wound healing process, highlighting the engagement of the immune system, and delving into the behaviors of innate and adaptive immune cells in chronic wound scenarios. Moreover, the article investigates biomaterial-based strategies for the modulation of the immune system, elucidating how the adjustment of their physicochemical properties or their synergistic combination with other agents such as drugs, proteins or mesenchymal stromal cells can effectively modulate the behaviors of different immune cells. Finally this review explores various strategies based on synthetic and biological nanostructures, including extracellular vesicles, to finely tune the immune system as natural immunomodulators or therapeutic nanocarriers with promising biophysical properties.
Collapse
Affiliation(s)
- Kevin Las Heras
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Itxaso Garcia-Orue
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain
| | - Fiorenza Rancan
- Department of Dermatology, Venereology und Allergology,Clinical Research Center for Hair and Skin Science, Charité - Universitätsmedizin Berlin
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain.
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
8
|
Geng S, Zhang Y, Lu R, Irimia D, Li L. Resolving neutrophils through genetic deletion of TRAM attenuate atherosclerosis pathogenesis. iScience 2024; 27:110097. [PMID: 38883832 PMCID: PMC11179630 DOI: 10.1016/j.isci.2024.110097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/23/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Systemic neutrophil dysregulation contributes to atherosclerosis pathogenesis, and restoring neutrophil homeostasis may be beneficial for treating atherosclerosis. Herein, we report that a homeostatic resolving subset of neutrophils exists in mice and humans characterized by the low expression of TRAM, correlated with reduced expression of inflammatory mediators (leukotriene B4 [LTB4] and elastase) and elevated expression of anti-inflammatory resolving mediators (resolvin D1 [RvD1] and CD200R). TRAM-deficient neutrophils can potently improve vascular integrity and suppress atherosclerosis pathogenesis when adoptively transfused into recipient atherosclerotic animals. Mechanistically, we show that TRAM deficiency correlates with reduced expression of 5-lipoxygenase (LOX5) activating protein (LOX5AP), dislodges nuclear localization of LOX5, and switches the lipid mediator secretion from pro-inflammatory LTB4 to pro-resolving RvD1. TRAM also serves as a stress sensor of oxidized low-density lipoprotein (oxLDL) and/or free cholesterol and triggers inflammatory signaling processes that facilitate elastase release. Together, our study defines a unique neutrophil population characterized by reduced TRAM, capable of homeostatic resolution and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg VA 24061, USA
| | - Yao Zhang
- Department of Biological Sciences, Virginia Tech, Blacksburg VA 24061, USA
| | - Ran Lu
- Department of Biological Sciences, Virginia Tech, Blacksburg VA 24061, USA
| | - Daniel Irimia
- Center for Engineering in Medicine & Surgery, Massachusetts General Hospital, Harvard Medical School, Shriners Burns Hospital, Boston, MA 02114, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg VA 24061, USA
| |
Collapse
|
9
|
Zhu Y, Wang T, Yang Y, Wang Z, Chen X, Wang L, Niu R, Sun Z, Zhang C, Luo Y, Hu Y, Gu W. Low shear stress exacerbates atherosclerosis by inducing the generation of neutrophil extracellular traps via Piezo1-mediated mechanosensation. Atherosclerosis 2024; 391:117473. [PMID: 38412763 DOI: 10.1016/j.atherosclerosis.2024.117473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND AND AIMS Atherosclerosis is a chronic lipid-driven inflammatory disease largely influenced by hemodynamics. Neutrophil extracellular trap (NET)-mediated inflammation plays an important role in atherosclerosis. However, little is known about the relationship between low shear stress (LSS) and NET generation, as well as the underlying mechanism. METHODS We induced LSS by partial ligation of the left carotid artery in high-fat diet-fed male ApoE-/- mice. To further validate the direct relationship between LSS and NET formation invitro, differentiated human promyelocytic leukemia HL-60 cells and bone marrow-derived neutrophils were suspended in fluid flow under normal or low shear stress using a parallel-plate flow chamber system. RESULTS Four weeks after surgery, ligated carotid arteries had more lipid deposition, larger plaque area, and increased NET formation than unligated arteries. Inhibition of NETosis could significantly reduce plaque formation in ApoE-/- mice. Invitro, LSS could promote NET generation directly through downregulation of Piezo1, a mechanosensitive ion channel. Downregulation of Piezol could activate neutrophils and promote NETosis in static conditions. Conversely, Yoda1-evoked activation of Piezo1 attenuated LSS-induced NETosis. Mechanistically, downregulation of Piezo1 resulted in decreased Ca2+ influx and increased histone deacetylase 2 (HDAC2), which increased reactive oxygen species levels and led to NETosis. LSS-induced NET generation also promoted apoptosis and adherence of endothelial cells. CONCLUSION LSS directly promotes NETosis through the Piezo1-HDAC2 axis in atherosclerosis progression. This study uncovers the essential role of Piezo1-mediated mechanical signaling in NET generation and plaque formation, which provides a promising therapeutic strategy for atherosclerosis.
Collapse
Affiliation(s)
- Ying Zhu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Tian Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China; College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yan Yang
- Department of Cardiovascular Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zining Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Xiaohui Chen
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Liu Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Ruyan Niu
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Zixin Sun
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Chong Zhang
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China.
| | - Yijie Hu
- Department of Cardiovascular Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Wei Gu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
10
|
Li S, Liang S, Xie S, Chen H, Huang H, He Q, Zhang H, Wang X. Investigation of the miRNA-mRNA Regulatory Circuits and Immune Signatures Associated with Bronchopulmonary Dysplasia. J Inflamm Res 2024; 17:1467-1480. [PMID: 38476468 PMCID: PMC10929271 DOI: 10.2147/jir.s448394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Background Bronchopulmonary dysplasia (BPD) has become a major cause of morbidity and mortality in preterm infants worldwide, yet its pathogenesis and underlying mechanisms remain poorly understood. The present study sought to explore microRNA-mRNA regulatory networks and immune cells involvement in BPD through a combination of bioinformatic analysis and experimental validation. Methods MicroRNA and mRNA microarray datasets were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed microRNAs (DEMs) were identified in BPD patients compared to control subjects, and their target genes were predicted using miRWalk, miRNet, miRDB, and TargetScan databases. Subsequently, protein-protein interaction (PPI) and functional enrichment analyses were conducted on the target genes. 30 hub genes were screened using the Cytohubba plugin of the Cytoscape software. Additionally, mRNA microarray data was utilized to validate the expression of hub genes and to perform immune infiltration analysis. Finally, real-time PCR (RT-PCR), immunohistochemistry (IHC), and flow cytometry were conducted using a mouse model of BPD to confirm the bioinformatics findings. Results Two DEMs (miR-15b-5p and miR-20a-5p) targeting genes primarily involved in the regulation of cell cycle phase transition, ubiquitin ligase complex, protein serine/threonine kinase activity, and MAPK signaling pathway were identified. APP and four autophagy-related genes (DLC1, PARP1, NLRC4, and NRG1) were differentially expressed in the mRNA microarray dataset. Analysis of immune infiltration revealed significant differences in levels of neutrophils and naive B cells between BPD patients and control subjects. RT-PCR and IHC confirmed reduced expression of APP in a mouse model of BPD. Although the proportion of total neutrophils did not change appreciably, the activation of neutrophils, marked by loss of CD62L, was significantly increased in BPD mice. Conclusion Downregulation of APP mediated by miR-15b-5p and miR-20a-5p may be associated with the development of BPD. Additionally, increased CD62L- neutrophil subset might be important for the immune-mediated injury in BPD.
Collapse
Affiliation(s)
- Sen Li
- Guangzhou Women and Children’s Medical Center, State Key Laboratory of Respiratory Disease and Guangzhou Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Shuling Liang
- Guangdong Provincial Research Center for Child Health, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Shunyu Xie
- Guangzhou Women and Children’s Medical Center, State Key Laboratory of Respiratory Disease and Guangzhou Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Haixia Chen
- Guangzhou Women and Children’s Medical Center, State Key Laboratory of Respiratory Disease and Guangzhou Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Haoying Huang
- Guangzhou Women and Children’s Medical Center, State Key Laboratory of Respiratory Disease and Guangzhou Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Qixin He
- Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People’s Republic of China
| | - Huayan Zhang
- Division of Neonatology and Center for Newborn Care, Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong Province, People’s Republic of China
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Xiaohui Wang
- Guangzhou Women and Children’s Medical Center, State Key Laboratory of Respiratory Disease and Guangzhou Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| |
Collapse
|
11
|
Zhang T, Pang C, Xu M, Zhao Q, Hu Z, Jiang X, Guo M. The role of immune system in atherosclerosis: Molecular mechanisms, controversies, and future possibilities. Hum Immunol 2024; 85:110765. [PMID: 38369442 DOI: 10.1016/j.humimm.2024.110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Numerous cardiovascular disorders have atherosclerosis as their pathological underpinning. Numerous studies have demonstrated that, with the aid of pattern recognition receptors, cytokines, and immunoglobulins, innate immunity, represented by monocytes/macrophages, and adaptive immunity, primarily T/B cells, play a critical role in controlling inflammation and abnormal lipid metabolism in atherosclerosis. Additionally, the finding of numerous complement components in atherosclerotic plaques suggests yet again how heavily the immune system controls atherosclerosis. Therefore, it is essential to have a thorough grasp of how the immune system contributes to atherosclerosis. The specific molecular mechanisms involved in the activation of immune cells and immune molecules in atherosclerosis, the controversy surrounding some immune cells in atherosclerosis, and the limitations of extrapolating from relevant animal models to humans were all carefully reviewed in this review from the three perspectives of innate immunity, adaptive immunity, and complement system. This could provide fresh possibilities for atherosclerosis research and treatment in the future.
Collapse
Affiliation(s)
- Tianle Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Chenxu Pang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mengxin Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Qianqian Zhao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhijie Hu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
12
|
Abstract
Infections, cardiovascular disease, and cancer are major causes of disease and death worldwide. Neutrophils are inescapably associated with each of these health concerns, by either protecting from, instigating, or aggravating their impact on the host. However, each of these disorders has a very different etiology, and understanding how neutrophils contribute to each of them requires understanding the intricacies of this immune cell type, including their immune and nonimmune contributions to physiology and pathology. Here, we review some of these intricacies, from basic concepts in neutrophil biology, such as their production and acquisition of functional diversity, to the variety of mechanisms by which they contribute to preventing or aggravating infections, cardiovascular events, and cancer. We also review poorly explored aspects of how neutrophils promote health by favoring tissue repair and discuss how discoveries about their basic biology inform the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Alejandra Aroca-Crevillén
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain;
| | - Tommaso Vicanolo
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain;
| | - Samuel Ovadia
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University, New Haven, USA
| | - Andrés Hidalgo
- Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain;
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University, New Haven, USA
| |
Collapse
|
13
|
Lin R, Zhang Y, Geng S, Li L. A Robust In Vitro Co-culture Model for Studying the Intercellular Communication of Neutrophils. Methods Mol Biol 2024; 2782:89-95. [PMID: 38622394 DOI: 10.1007/978-1-0716-3754-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Communication among neutrophils plays critical roles during various phases of inflammatory responses, with clinical relevance to both acute and chronic inflammatory diseases. Despite its significance, underlying mechanisms are not well understood, due to the lack of an effective in vitro system to properly address this important question. Here we report a robust in vitro method to culture primary murine neutrophils derived from bone marrow, amenable for well-controlled studies of both neutrophil activation and intercellular communication among co-cultured neutrophils. This protocol can generate primary neutrophils with high purity and survival for an extended culture period, suitable for further phenotypic and functional analyses.
Collapse
Affiliation(s)
- RuiCi Lin
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Yao Zhang
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
14
|
Geng S, Wu Y, Li L. Immune Homeostasis Maintenance Through Advanced Immune Therapeutics to Target Atherosclerosis. Methods Mol Biol 2024; 2782:25-37. [PMID: 38622390 DOI: 10.1007/978-1-0716-3754-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Atherosclerosis remains the leading cause of coronary heart disease (CHD) with enormous health and societal tolls. Traditional drug development approaches have been focused on small molecule-based compounds that aim to lower plasma lipids and reduce systemic inflammation, two primary causes of atherosclerosis. However, despite the widely available lipid-lowering and anti-inflammatory small compounds and biologic agents, CHD prevalence still remains high. Based on recent advances revealing disrupted immune homeostasis during atherosclerosis pathogenesis, novel strategies aimed at rejuvenating immune homeostasis with engineered immune leukocytes are being developed. This chapter aims to assess basic and translational efforts on these emerging strategies for the effective development of atherosclerosis treatment, as well as key challenges in this important translational field.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Yajun Wu
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
15
|
Li Y, Chen Y, Cai G, Ni Q, Geng Y, Wang T, Bao C, Ruan X, Wang H, Sun W. Roles of trained immunity in the pathogenesis of periodontitis. J Periodontal Res 2023; 58:864-873. [PMID: 37424315 DOI: 10.1111/jre.13158] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
Periodontitis is a chronic, inflammatory, and destructive disease caused by the imbalance of host immune response and dental biofilm, and has strong epidemiological and pathogenesis correlations with systemic diseases. The immune response in periodontitis involves both innate and adaptive immunity, with numerous immune cells and inflammatory pathways participating in a complex network of interactions. In the past decade, the concept of "trained immunity" has emerged, which highlights the memory characteristics of innate immunity, thus opening up a new avenue of research. There is growing interest in exploring the role of trained immunity in chronic inflammatory and metabolic diseases such as atherosclerosis and diabetes mellitus. Evidence suggests that trained immunity may also regulate the onset and progression of periodontitis, serving as a bridge between periodontitis-related comorbidities. In this review, we summarize concepts related to trained immunity and its development. Furthermore, we present current evidence that endorses the notion of trained immunity in periodontitis and analyze possible roles it may assume regarding periodontitis-associated inflammatory reactions from a cellular perspective. Finally, we discuss various clinical therapeutic strategies for periodontitis and its associated comorbidities that target trained immunity. We hope that more researchers will pay attention to this emerging concept, thereby providing deeper insights into this novel field.
Collapse
Affiliation(s)
- Yingyi Li
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yue Chen
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Guanhui Cai
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Qiaoqi Ni
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Ying Geng
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Ting Wang
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Chen Bao
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xiaolei Ruan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Hua Wang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Wen Sun
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
16
|
Xie H, Qin Z, Ling Z, Ge X, Zhang H, Guo S, Liu L, Zheng K, Jiang H, Xu R. Oral pathogen aggravates atherosclerosis by inducing smooth muscle cell apoptosis and repressing macrophage efferocytosis. Int J Oral Sci 2023; 15:26. [PMID: 37380627 DOI: 10.1038/s41368-023-00232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023] Open
Abstract
Periodontitis imparting the increased risk of atherosclerotic cardiovascular diseases is partially due to the immune subversion of the oral pathogen, particularly the Porphyromonas gingivalis (P. gingivalis), by inducing apoptosis. However, it remains obscure whether accumulated apoptotic cells in P. gingivalis-accelerated plaque formation are associated with impaired macrophage clearance. Here, we show that smooth muscle cells (SMCs) have a greater susceptibility to P. gingivalis-induced apoptosis than endothelial cells through TLR2 pathway activation. Meanwhile, large amounts of miR-143/145 in P.gingivalis-infected SMCs are extracellularly released and captured by macrophages. Then, these miR-143/145 are translocated into the nucleus to promote Siglec-G transcription, which represses macrophage efferocytosis. By constructing three genetic mouse models, we further confirm the in vivo roles of TLR2 and miR-143/145 in P. gingivalis-accelerated atherosclerosis. Therapeutically, we develop P.gingivalis-pretreated macrophage membranes to coat metronidazole and anti-Siglec-G antibodies for treating atherosclerosis and periodontitis simultaneously. Our findings extend the knowledge of the mechanism and therapeutic strategy in oral pathogen-associated systemic diseases.
Collapse
Affiliation(s)
- Hanyu Xie
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Ziyue Qin
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ziji Ling
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xiao Ge
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Hang Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Shuyu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Laikui Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Kai Zheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Hongbing Jiang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.
| | - Rongyao Xu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
17
|
Cabana-Puig X, Lu R, Geng S, Michaelis JS, Oakes V, Armstrong C, Testerman JC, Liao X, Alajoleen R, Appiah M, Zhang Y, Reilly CM, Li L, Luo XM. CX 3CR1 modulates SLE-associated glomerulonephritis and cardiovascular disease in MRL/lpr mice. Inflamm Res 2023; 72:1083-1097. [PMID: 37060359 PMCID: PMC10748465 DOI: 10.1007/s00011-023-01731-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023] Open
Abstract
OBJECTIVE Patients with systemic lupus erythematosus (SLE) often develop multi-organ damages including heart and kidney complications. We sought to better define the underlying mechanisms with a focus on the chemokine receptor CX3CR1. METHODS We generated Cx3cr1-deficient MRL/lpr lupus-prone mice through backcrossing. We then employed heterozygous intercross to generate MRL/lpr littermates that were either sufficient or deficient of CX3CR1. The mice were also treated with either Lactobacillus spp. or a high-fat diet (HFD) followed by assessments of the kidney and heart, respectively. RESULTS Cx3cr1-/- MRL/lpr mice exhibited a distinct phenotype of exacerbated glomerulonephritis compared to Cx3cr1+/+ littermates, which was associated with a decrease of spleen tolerogenic marginal zone macrophages and an increase of double-negative T cells. Interestingly, upon correction of the gut microbiota with Lactobacillus administration, the phenotype of exacerbated glomerulonephritis was reversed, suggesting that CX3CR1 controls glomerulonephritis in MRL/lpr mice through a gut microbiota-dependent mechanism. Upon treatment with HFD, Cx3cr1-/- MRL/lpr mice developed significantly more atherosclerotic plaques that were promoted by Ly6C+ monocytes. Activated monocytes expressed ICOS-L that interacted with ICOS-expressing follicular T-helper cells, which in turn facilitated a germinal center reaction to produce more autoantibodies. Through a positive feedback mechanism, the increased circulatory autoantibodies further promoted the activation of Ly6C+ monocytes and their display of ICOS-L. CONCLUSIONS We uncovered novel, Cx3cr1 deficiency-mediated pathogenic mechanisms contributing to SLE-associated glomerulonephritis and cardiovascular disease.
Collapse
Affiliation(s)
- Xavier Cabana-Puig
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Ran Lu
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Jacquelyn S Michaelis
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA
| | - Vanessa Oakes
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Caitlin Armstrong
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - James C Testerman
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Xiaofeng Liao
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Razan Alajoleen
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Michael Appiah
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Yao Zhang
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| | - Xin M Luo
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
18
|
Bouissane L, Khouili M, Coudert G, Pujol MD, Guillaumet G. New and promising type of leukotriene B4 (LTB4) antagonists based on the 1,4-benzodioxine structure. Eur J Med Chem 2023; 254:115332. [PMID: 37043995 DOI: 10.1016/j.ejmech.2023.115332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
New leukotriene B4 (LTB4) antagonists have been synthesized that can be considered as potential anti-inflammatory drugs. Structures containing the dioxygenated nucleus of 1,4-benzodioxine constitute a potential group of leukotriene B4 (LTB4) antagonists. The objective of this study was to access efficient and selective LTB4 antagonists as a way to elucidate the role of LTB4 in inflammatory processes and therefore allow the development of new types of structures based on 1,4-benzodioxine. Forty-one new 1,4-benzodioxine molecules substituted at different positions of the heterocyclic nucleus were synthesized to determine the minimum structural requirements by studying structure-activity relationships. Eighteen of them were tested in vitro and in vivo for their anti-inflammatory activity related to the antagonist character of LTB4. Pharmacological tests have shown satisfactory in vitro activity for compounds 24b, 24c and 24e with IC50's of 288, 439, 477 nM respectively. The results of the in vivo tests, carried out with the compound that presented greater activity in the in vitro tests 24b, have shown significant anti-inflammatory properties.
Collapse
|
19
|
Abstract
The principle of trained immunity represents innate immune memory due to sustained, mainly epigenetic, changes triggered by endogenous or exogenous stimuli in bone marrow (BM) progenitors (central trained immunity) and their innate immune cell progeny, thereby triggering elevated responsiveness against secondary stimuli. BM progenitors can respond to microbial and sterile signals, thereby possibly acquiring trained immunity-mediated long-lasting alterations that may shape the fate and function of their progeny, for example, neutrophils. Neutrophils, the most abundant innate immune cell population, are produced in the BM from committed progenitor cells in a process designated granulopoiesis. Neutrophils are the first responders against infectious or inflammatory challenges and have versatile functions in immunity. Together with other innate immune cells, neutrophils are effectors of peripheral trained immunity. However, given the short lifetime of neutrophils, their ability to acquire immunological memory may lie in the central training of their BM progenitors resulting in generation of reprogrammed, that is, "trained", neutrophils. Although trained immunity may have beneficial effects in infection or cancer, it may also mediate detrimental outcomes in chronic inflammation. Here, we review the emerging research area of trained immunity with a particular emphasis on the role of neutrophils and granulopoiesis.
Collapse
Affiliation(s)
- Lydia Kalafati
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Aikaterini Hatzioannou
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - George Hajishengallis
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
20
|
Lin Y, Dai W, Chen Y, He X, Xu Y. Neutrophil-to-platelet ratio predicts mortality following percutaneous coronary intervention in patients with acute ST-elevation myocardial infarction. Front Physiol 2022; 13:1011048. [PMID: 36200052 PMCID: PMC9527305 DOI: 10.3389/fphys.2022.1011048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
This study aimed to evaluate the value of neutrophil-to-platelet ratio (NPR) in predicting all-cause mortality in patients with ST-elevation myocardial infarction (STEMI) after primary percutaneous coronary intervention (PCI). We enrolled 186 patients with STEMI who underwent primary PCI in the Third Affiliated Hospital of Guangzhou Medical University between January 2017 and December 2018. Based on the NPR values, the patients were divided into two groups: the NPR >0.035 group (n = 82) and the NPR ≤0.035 group (n = 104). All-cause mortality of the patients was followed up for 3 years. By the end of 3 years, 109 (58.6%) patients survived, 53 (28.5%) died, and 24 (12.9%) were lost to follow-up. Univariate analyses found that NPR was associated with all-cause mortality (p < 0.05). In COX regression analyses, patients in the high NPR group had a higher risk of all-cause death than those in the low NPR group (HR = 2.296, 95% CI: 1.150–4.582). These results indicate that NPR could predict all-cause death in 3 years after primary PCI in patients STEMI. NPR values may be useful in risk stratification and in specifying individualized treatment in patients with STEMI. In addition, NPR is a low-cost and easily accessible indicator, if its strong predictive value is confirmed in further studies of other large populations, it can be introduced into clinical practice for effective application.
Collapse
Affiliation(s)
| | | | | | | | - Yunhong Xu
- *Correspondence: Xiaoqing He, ; Yunhong Xu,
| |
Collapse
|
21
|
Peng S, Stojkov D, Gao J, Oberson K, Latzin P, Casaulta C, Yousefi S, Simon HU. Nascent RHOH acts as a molecular brake on actomyosin-mediated effector functions of inflammatory neutrophils. PLoS Biol 2022; 20:e3001794. [PMID: 36108062 PMCID: PMC9514642 DOI: 10.1371/journal.pbio.3001794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 09/27/2022] [Accepted: 08/11/2022] [Indexed: 12/22/2022] Open
Abstract
In contrast to molecular changes associated with increased inflammatory responses, little is known about intracellular counter-regulatory mechanisms that control signaling cascades associated with functional responses of neutrophils. Active RHO GTPases are typically considered as effector proteins that elicit cellular responses. Strikingly, we show here that RHOH, although being constitutively GTP-bound, limits neutrophil degranulation and the formation of neutrophil extracellular traps (NETs). Mechanistically, RHOH is induced under inflammatory conditions and binds to non-muscle myosin heavy chain IIA (NMHC IIA) in activated neutrophils in order to inhibit the transport of mitochondria and granules along actin filaments, which is partially reverted upon disruption of the interaction with NMHC IIA by introducing a mutation in RhoH at lysine 34 (RhoHK34A). In parallel, RHOH inhibits actin polymerization presumably by modulating RAC1 activity. In vivo studies using Rhoh-/- mice, demonstrate an increased antibacterial defense capability against Escherichia coli (E. coli). Collectively, our data reveal a previously undefined role of RHOH as a molecular brake for actomyosin-mediated neutrophil effector functions, which represents an intracellular regulatory axis involved in controlling the strength of an antibacterial inflammatory response.
Collapse
Affiliation(s)
- Shuang Peng
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Darko Stojkov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Kevin Oberson
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- Division of Respiratory Medicine, Department of Pediatrics, University Children’s Hospital of Bern, University of Bern, Bern, Switzerland
| | - Carmen Casaulta
- Division of Respiratory Medicine, Department of Pediatrics, University Children’s Hospital of Bern, University of Bern, Bern, Switzerland
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
- * E-mail:
| |
Collapse
|
22
|
Roczkowsky A, Doan MAL, Hlavay BA, Mamik MK, Branton WG, McKenzie BA, Saito LB, Schmitt L, Eitzen G, Di Cara F, Wuest M, Wuest F, Rachubinski R, Power C. Peroxisome Injury in Multiple Sclerosis: Protective Effects of 4-Phenylbutyrate in CNS-Associated Macrophages. J Neurosci 2022; 42:7152-7165. [PMID: 35940876 PMCID: PMC9480879 DOI: 10.1523/jneurosci.0312-22.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/14/2022] [Accepted: 07/30/2022] [Indexed: 11/21/2022] Open
Abstract
Multiple sclerosis (MS) is a progressive and inflammatory demyelinating disease of the CNS. Peroxisomes perform critical functions that contribute to CNS homeostasis. We investigated peroxisome injury and mitigating effects of peroxisome-restorative therapy on inflammatory demyelination in models of MS. Human autopsied CNS tissues (male and female), human cell cultures, and cuprizone-mediated demyelination mice (female) were examined by RT-PCR, Western blotting, and immunolabeling. The therapeutic peroxisome proliferator, 4-phenylbutyrate (4-PBA) was investigated in vitro and in vivo White matter from MS patients showed reduced peroxisomal transcript and protein levels, including PMP70, compared with non-MS controls. Cultured human neural cells revealed that human microglia contained abundant peroxisomal proteins. TNF-α-exposed microglia displayed reduced immunolabeling of peroxisomal proteins, PMP70 and PEX11β, which was prevented with 4-PBA. In human myeloid cells exposed to TNF-α or nigericin, suppression of PEX11β and catalase protein levels were observed to be dependent on NLRP3 expression. Hindbrains from cuprizone-exposed mice showed reduced Abcd1, Cat, and Pex5l transcript levels, with concurrent increased Nlrp3 and Il1b transcript levels, which was abrogated by 4-PBA. In the central corpus callosum, Iba-1 in CNS-associated macrophages and peroxisomal thiolase immunostaining after cuprizone exposure was increased by 4-PBA. 4-PBA prevented decreased myelin basic protein and neurofilament heavy chain immunoreactivity caused by cuprizone exposure. Cuprizone-induced neurobehavioral deficits were improved by 4-PBA treatment. Peroxisome injury in CNS-associated macrophages contributed to neuroinflammation and demyelination that was prevented by 4-PBA treatment. A peroxisome-targeted therapy might be valuable for treating inflammatory demyelination and neurodegeneration in MS.SIGNIFICANCE STATEMENT Multiple sclerosis (MS) is a common and disabling disorder of the CNS with no curative therapies for its progressive form. The present studies implicate peroxisome impairment in CNS-associated macrophages (CAMs), which include resident microglia and blood-derived macrophages, as an important contributor to inflammatory demyelination and neuroaxonal injury in MS. We also show that the inflammasome molecule NLRP3 is associated with peroxisome injury in vitro and in vivo, especially in CAMs. Treatment with the peroxisome proliferator 4-phenylbutyrate exerted protective effects with improved molecular, morphologic, and neurobehavioral outcomes that were associated with a neuroprotective CAM phenotype. These findings offer novel insights into the contribution of peroxisome injury in MS together with preclinical testing of a rational therapy for MS.
Collapse
Affiliation(s)
| | - Matthew A L Doan
- The Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | | | | | | | | | | | | | | | - Francesca Di Cara
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | | | | | | | - Christopher Power
- Departments of Medicine
- Medical Microbiology & Immunology
- The Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
23
|
Su H, Mei Y, Luo S, Wu H, He Y, Shiraishi Y, Hu P, Cohen RA, Tong X. Substitution of the SERCA2 Cys 674 reactive thiol accelerates atherosclerosis by inducing endoplasmic reticulum stress and inflammation. Br J Pharmacol 2022; 179:4778-4791. [PMID: 35763220 DOI: 10.1111/bph.15912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE The cysteine674 (C674) thiol of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 is easily and irreversibly oxidized under atherosclerotic conditions. However, the contribution of the C674 thiol redox status in the development of atherosclerosis remains unclear. Our goal was to elucidate the possible mechanism involved. EXPERIMENTAL APPROACH Heterozygous SERCA2 C674S knock-in mice in which half of the C674 was substituted by serine674 (S674) were used to mimic the removal of the reactive C674 thiol which occurs under pathological conditions. Bone marrow-derived macrophages (BMDMs) and cardiac endothelial cells (ECs) were used for intracellular Ca2+ , macrophage adhesion, and protein expression analysis. The whole aorta and aortic root were isolated for histological analysis. KEY RESULTS Cell culture studies suggest the partial substitution of SERCA2 C674 increased intracellular Ca2+ levels and induced ER stress in both BMDMs and ECs. The release of pro-inflammatory factors and macrophage adhesion increased in SKI BMDMs. In ECs, the overexpression of S674 induced endothelial inflammation and promoted macrophage recruitment. SKI mice developed more severe atherosclerotic plaque and macrophage accumulation. Additionally, 4-phenyl butyric acid (PBA), an ER stress inhibitor, suppressed ER stress and inflammatory responses in BMDMs and ECs, and alleviate atherosclerosis in SKI mice. CONCLUSIONS AND IMPLICATIONS The substitution of SERCA2 C674 thiol accelerates the development of atherosclerosis by inducing ER stress and inflammation. Our findings highlight the importance of SERCA2 C674 redox state in the context of atherosclerosis and open up a novel therapeutic strategy to combat atherosclerosis.
Collapse
Affiliation(s)
- Hang Su
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yu Mei
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Shuangxue Luo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Haixia Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yan He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yasumasa Shiraishi
- Department of Internal Medicine, Division of Cardiovascular Medicine, National Defense Medical College, Saitama, Japan
| | - Pingping Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China.,College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Richard A Cohen
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Xiaoyong Tong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
24
|
Venugopal D, Vishwakarma S, Kaur I, Samavedi S. Electrospun fiber-based strategies for controlling early innate immune cell responses: Towards immunomodulatory mesh designs that facilitate robust tissue repair. Acta Biomater 2022; 163:228-247. [PMID: 35675893 DOI: 10.1016/j.actbio.2022.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 12/16/2022]
Abstract
Electrospun fibrous meshes are widely used for tissue repair due to their ability to guide a host of cell responses including phenotypic differentiation and tissue maturation. A critical factor determining the eventual biological outcomes of mesh-based regeneration strategies is the early innate immune response following implantation. The natural healing process involves a sequence of tightly regulated, temporally varying and delicately balanced pro-/anti-inflammatory events which together promote mesh integration with host tissue. Matrix designs that do not account for the immune milieu can result in dysregulation, chronic inflammation and fibrous capsule formation, thus obliterating potential therapeutic outcomes. In this review, we provide systematic insights into the effects of specific fiber/mesh properties and mechanical stimulation on the responses of early innate immune modulators viz., neutrophils, monocytes and macrophages. We identify matrix characteristics that promote anti-inflammatory immune phenotypes, and we correlate such responses with pro-regenerative in vivo outcomes. We also discuss recent advances in 3D fabrication technologies, bioactive functionalization approaches and biomimetic/bioinspired immunomodulatory mesh design strategies for tissue repair and wound healing. The mechanobiological insights and immunoregulatory strategies discussed herein can help improve the translational outcomes of fiber-based regeneration and may also be leveraged for intervention in degenerative diseases associated with dysfunctional immune responses. STATEMENT OF SIGNIFICANCE: The crucial role played by immune cells in promoting biomaterial-based tissue regeneration is being increasingly recognized. In this review focusing on the interactions of innate immune cells (primarily neutrophils, monocytes and macrophages) with electrospun fibrous meshes, we systematically elucidate the effects of the fiber microenvironment and mechanical stimulation on biological responses, and build upon these insights to inform the rational design of immunomodulatory meshes for effective tissue repair. We discuss state-of-the-art fabrication methods and mechanobiological advances that permit the orchestration of temporally controlled phenotypic switches in immune cells during different phases of healing. The design strategies discussed herein can also be leveraged to target several complex autoimmune and inflammatory diseases.
Collapse
|
25
|
Ryu S, Shin JW, Kwon S, Lee J, Kim YC, Bae YS, Bae YS, Kim DK, Kim YS, Yang SH, Kim HY. Siglec-F-expressing neutrophils are essential for creating a pro-fibrotic microenvironment in the renal fibrosis. J Clin Invest 2022; 132:156876. [PMID: 35482420 PMCID: PMC9197522 DOI: 10.1172/jci156876] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
The roles of neutrophils in renal inflammation are currently unclear. On examining these cells in the unilateral ureteral obstruction murine model of chronic kidney disease, we found that the injured kidney bore a large and rapidly expanding population of neutrophils that expressed the eosinophil marker Siglec-F. We first confirmed that these cells were neutrophils. Siglec-F+ neutrophils were recently detected for the first time by several studies on other disease contexts. We then showed that (i) these cells were derived from conventional neutrophils in the renal vasculature by TGF-β1 and GM-CSF, (ii) they differed from their parent cells by more frequent hypersegmentation, higher expression of pro-fibrotic inflammatory cytokines, and, notably, expression of Collagen 1, and (iii) their depletion reduced collagen deposition and disease progression, but adoptive transfer increased renal fibrosis. These findings have thus unveiled a subtype of neutrophils that participate in renal fibrosis and maybe a new therapeutic target in chronic kidney disease.
Collapse
Affiliation(s)
- Seungwon Ryu
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Jae Woo Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Soie Kwon
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea, Republic of
| | - Jiwon Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea, Republic of
| | - Yong Chul Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea, Republic of
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea, Republic of
| | - Yong-Soo Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea, Republic of
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Seung Hee Yang
- Kidney Research Institute, Seoul National University, Seoul, Korea, Republic of
| | - Hye Young Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea, Republic of
| |
Collapse
|
26
|
Associations between Circulating VEGFR2hi-Neutrophils and Carotid Plaque Burden in Patients Aged 40-64 without Established Atherosclerotic Cardiovascular Disease. J Immunol Res 2022; 2022:1539935. [PMID: 35518568 PMCID: PMC9064511 DOI: 10.1155/2022/1539935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 12/02/2022] Open
Abstract
Background Neutrophils expressing vascular endothelial growth factor receptor (VEGFR) represent a distinct subtype of neutrophils with proangiogenic properties. The purpose of this study was to identify the interrelations between circulating CD16hiCD11bhiCD62LloCXCR2hiVEGFR2hi-neutrophils and indicators of carotid plaque burden in patients without atherosclerotic cardiovascular diseases (ASCVD). Methods The study included 145 patients, 51.7% men and 48.3% women, median age—49.0 years. All patients underwent carotid duplex ultrasound scanning. The maximal carotid plaque thickness was used as an indicator of carotid plaque burden. Also, carotid intima-media thickness (cIMT) and femoral IMT were measured. The phenotyping of neutrophil subpopulations was executed by the flow cytometry via the Navios 6/2. Results. The subpopulation of VEGFR2hi-neutrophils accounted for about 5% of the total pool of circulating neutrophils. A decrease in VEGFR2hi-neutrophils with an increase in carotid plaque burden was statistically significant (p = 0.036). A decrease in VEGFR2hi-neutrophils < 4.52% allowed to predict the presence of plaque with a maximum height > 2.1 mm (Q4), with sensitivity of 78.9% and specificity of 61.5% (AUC 0.693; 95% CI 0.575-0.811; p = 0.007). Inverse correlations were established between the carotid and femoral IMT and the absolute and relative number of VEGFR2hi-neutrophils (p < 0.01). Conclusion In patients aged 40-64 years without established ASCVD, with an increase in indicators of the carotid plaque burden, a significant decrease in the proportion of circulating VEGFR2hi-neutrophils was noticed. A decrease in the relative number of VEGFR2hi-neutrophils of less than 4.52% made it possible to predict the presence of extent carotid atherosclerosis with sensitivity of 78.9% and specificity of 61.5%.
Collapse
|
27
|
Generation of resolving memory neutrophils through pharmacological training with 4-PBA or genetic deletion of TRAM. Cell Death Dis 2022; 13:345. [PMID: 35418110 PMCID: PMC9007399 DOI: 10.1038/s41419-022-04809-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023]
Abstract
Neutrophils are the dominant leukocytes in circulation and the first responders to infection and inflammatory cues. While the roles of neutrophils in driving inflammation have been widely recognized, the contribution of neutrophils in facilitating inflammation resolution is under-studied. Here, through single-cell RNA sequencing analysis, we identified a subpopulation of neutrophils exhibiting pro-resolving characteristics with greater Cd200r and Cd86 expression at the resting state. We further discovered that 4-PBA, a peroxisomal stress-reducing agent, can potently train neutrophils into the resolving state with enhanced expression of CD200R, CD86, as well as soluble pro-resolving mediators Resolvin D1 and SerpinB1. Resolving neutrophils trained by 4-PBA manifest enhanced phagocytosis and bacterial-killing functions. Mechanistically, the generation of resolving neutrophils is mediated by the PPARγ/LMO4/STAT3 signaling circuit modulated by TLR4 adaptor molecule TRAM. We further demonstrated that genetic deletion of TRAM renders the constitutive expansion of resolving neutrophils, with an enhanced signaling circuitry of PPARγ/LMO4/STAT3. These findings may have profound implications for the effective training of resolving neutrophils with therapeutic potential in the treatment of both acute infection as well as chronic inflammatory diseases.
Collapse
|
28
|
Keeter WC, Ma S, Stahr N, Moriarty AK, Galkina EV. Atherosclerosis and multi-organ-associated pathologies. Semin Immunopathol 2022; 44:363-374. [PMID: 35238952 PMCID: PMC9069968 DOI: 10.1007/s00281-022-00914-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/13/2022] [Indexed: 12/31/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease of the vascular system that is characterized by the deposition of modified lipoproteins, accumulation of immune cells, and formation of fibrous tissue within the vessel wall. The disease occurs in vessels throughout the body and affects the functions of almost all organs including the lymphoid system, bone marrow, heart, brain, pancreas, adipose tissue, liver, kidneys, and gastrointestinal tract. Atherosclerosis and associated factors influence these tissues via the modulation of local vascular functions, induction of cholesterol-associated pathologies, and regulation of local immune responses. In this review, we discuss how atherosclerosis interferers with functions of different organs via several common pathways and how the disturbance of immunity in atherosclerosis can result in disease-provoking dysfunctions in multiple tissues. Our growing appreciation of the implication of atherosclerosis and associated microenvironmental conditions in the multi-organ pathology promises to influence our understanding of CVD-associated disease pathologies and to provide new therapeutic opportunities.
Collapse
Affiliation(s)
- W Coles Keeter
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 West Olney Rd, Norfolk, VA, 23507, USA
| | - Shelby Ma
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 West Olney Rd, Norfolk, VA, 23507, USA
| | - Natalie Stahr
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 West Olney Rd, Norfolk, VA, 23507, USA
| | - Alina K Moriarty
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 West Olney Rd, Norfolk, VA, 23507, USA
| | - Elena V Galkina
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 West Olney Rd, Norfolk, VA, 23507, USA.
| |
Collapse
|
29
|
Shen L, Zhou K, Liu H, Yang J, Huang S, Yu F, Huang D. Prediction of Mechanosensitive Genes in Vascular Endothelial Cells Under High Wall Shear Stress. Front Genet 2022; 12:796812. [PMID: 35087573 PMCID: PMC8787366 DOI: 10.3389/fgene.2021.796812] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/13/2021] [Indexed: 01/10/2023] Open
Abstract
Objective: The vulnerability of atherosclerotic plaques is among the leading cause of ischemic stroke. High wall shear stress (WSS) promotes the instability of atherosclerotic plaques by directly imparting mechanical stimuli, but the specific mechanisms remain unclear. We speculate that modulation of mechanosensitive genes may play a vital role in accelerating the development of plaques. The purpose of this study was to find mechanosensitive genes in vascular endothelial cells (ECs) through combining microarray data with bioinformatics technology and further explore the underlying dynamics–related mechanisms that cause the progression and destabilization of atherosclerotic plaques. Methods: Microarray data sets for human vascular ECs under high and normal WSS were retrieved from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified through the R language. The performance of enrichment analysis and protein–protein interaction (PPI) network presented the biological function and signaling pathways of the DEGs. Hub genes were identified based on the PPI network and validated by GEO data sets. Predicted transcription factor (TF) genes and miRNAs interaction with potential mechanosensitive genes were identified by NetworkAnalyst. Results: A total of 260 DEGs, 121 upregulated and 139 downregulated genes, were screened between high and normal WSS from GSE23289. A total of 10 hub genes and four cluster modules were filtered out based on the PPI network. The enrichment analysis showed that the biological functions of the hub genes were mainly involved in responses to unfolded protein and topologically incorrect protein, and t to endoplasmic reticulum stress. The significant pathways associated with the hub genes were those of protein processing in the endoplasmic reticulum, antigen processing, and presentation. Three out of the 10 hub genes, namely, activated transcription factor 3 (ATF3), heat shock protein family A (Hsp70) member 6 (HSPA6), and dual specificity phosphatase 1 (DUSP1, also known as CL100, HVH1, MKP-1, PTPN10), were verified in GSE13712. The expression of DUSP1 was higher in the senescent cell under high WSS than that of the young cell. The TF–miRNA–mechanosensitive gene coregulatory network was constructed. Conclusion: In this work, we identified three hub genes, ATF3, HSPA6, and DUSP1, as the potential mechanosensitive genes in the human blood vessels. DUSP1 was confirmed to be associated with the senescence of vascular ECs. Therefore, these three mechanosensitive genes may have emerged as potential novel targets for the prediction and prevention of ischemic stroke. Furthermore, the TF–miRNA–mechanosensitive genes coregulatory network reveals an underlying regulatory mechanism and the pathways to control disease progression.
Collapse
Affiliation(s)
- Lei Shen
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kaige Zhou
- School of Medicine, Tongji University, Shanghai, China
| | - Hong Liu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jie Yang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuqi Huang
- Department of Neurology, Shanghai Tianyou Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fei Yu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dongya Huang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
30
|
Inflammatory Cells in Atherosclerosis. Antioxidants (Basel) 2022; 11:antiox11020233. [PMID: 35204116 PMCID: PMC8868126 DOI: 10.3390/antiox11020233] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis is a chronic progressive disease that involves damage to the intima, inflammatory cell recruitment and the accumulation of lipids followed by calcification and plaque rupture. Inflammation is considered a key mediator of many events during the development and progression of the disease. Various types of inflammatory cells are reported to be involved in atherosclerosis. In the present paper, we discuss the involved inflammatory cells, their characteristic and functional significance in the development and progression of atherosclerosis. The detailed understanding of the role of all these cells in disease progression at different stages sheds more light on the subject and provides valuable insights as to where and when therapy should be targeted.
Collapse
|
31
|
Jiang K, Tu Z, Chen K, Xu Y, Chen F, Xu S, Shi T, Qian J, Shen L, Hwa J, Wang D, Xiang Y. Gasdermin D inhibition confers antineutrophil-mediated cardioprotection in acute myocardial infarction. J Clin Invest 2022; 132:e151268. [PMID: 34752417 PMCID: PMC8718151 DOI: 10.1172/jci151268] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Acute myocardial infarction (AMI) induces blood leukocytosis, which correlates inversely with patient survival. The molecular mechanisms leading to leukocytosis in the infarcted heart remain poorly understood. Using an AMI mouse model, we identified gasdermin D (GSDMD) in activated leukocytes early in AMI. We demonstrated that GSDMD is required for enhanced early mobilization of neutrophils to the infarcted heart. Loss of GSDMD resulted in attenuated IL-1β release from neutrophils and subsequent decreased neutrophils and monocytes in the infarcted heart. Knockout of GSDMD in mice significantly reduced infarct size, improved cardiac function, and increased post-AMI survival. Through a series of bone marrow transplantation studies and leukocyte depletion experiments, we further clarified that excessive bone marrow-derived and GSDMD-dependent early neutrophil production and mobilization (24 hours after AMI) contributed to the detrimental immunopathology after AMI. Pharmacological inhibition of GSDMD also conferred cardioprotection after AMI through a reduction in scar size and enhancement of heart function. Our study provides mechanistic insights into molecular regulation of neutrophil generation and mobilization after AMI, and supports GSDMD as a new target for improved ventricular remodeling and reduced heart failure after AMI.
Collapse
Affiliation(s)
- Kai Jiang
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zizhuo Tu
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Kun Chen
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yue Xu
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Feng Chen
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Sheng Xu
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingting Shi
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Qian
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lan Shen
- Department of Cardiology, Clinical Research Unit, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - John Hwa
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dandan Wang
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yaozu Xiang
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Geng S, Pradhan K, Li L. Signal-Strength and History-Dependent Innate Immune Memory Dynamics in Health and Disease. Handb Exp Pharmacol 2022; 276:23-41. [PMID: 34085119 DOI: 10.1007/164_2021_485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Innate immunity exhibits memory characteristics, reflected not only in selective recognition of external microbial or internal damage signals, but more importantly in history and signal-strength dependent reprogramming of innate leukocytes characterized by priming, tolerance, and exhaustion. Key innate immune cells such as monocytes and neutrophils can finely discern and attune to the duration and intensity of external signals through rewiring of internal signaling circuitries, giving rise to a vast array of discreet memory phenotypes critically relevant to managing tissue homeostasis as well as diverse repertoires of inflammatory conditions. This review will highlight recent advances in this rapidly expanding field of innate immune programming and memory, as well as its translational implication in the pathophysiology of selected inflammatory diseases.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Kisha Pradhan
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
33
|
Keeter WC, Moriarty AK, Galkina EV. Role of neutrophils in type 2 diabetes and associated atherosclerosis. Int J Biochem Cell Biol 2021; 141:106098. [PMID: 34655814 PMCID: PMC8962624 DOI: 10.1016/j.biocel.2021.106098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 01/09/2023]
Abstract
The development of cardiovascular diseases associated with Type-2 diabetes remains one of the most challenging public health burdens in the developed world. Early onset of metabolic deficiencies, namely dysregulated glucose homeostasis, peripheral insulin resistance, and impaired insulin production are accompanied by both innate and adaptive immune responses that culminate in a state of chronic, low-grade inflammation. Neutrophils are a critical component of the innate immune system which offer frontline defense against pathogens through a variety of potent effector functions. Recent data indicate an essential role of neutrophils in various disease processes that contribute to the development of Type-2 diabetes and atherosclerosis. In this brief review, we aim to distill the most relevant clinical and pre-clinical literature that investigates the role of neutrophils as an important mediator for the Type-2 diabetes/atherosclerosis connection.
Collapse
Affiliation(s)
- W Coles Keeter
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 West Olney Rd, Norfolk, VA 23507, USA
| | - Alina K Moriarty
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 West Olney Rd, Norfolk, VA 23507, USA
| | - Elena V Galkina
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 West Olney Rd, Norfolk, VA 23507, USA.
| |
Collapse
|
34
|
Vitkov L, Muñoz LE, Schoen J, Knopf J, Schauer C, Minnich B, Herrmann M, Hannig M. Neutrophils Orchestrate the Periodontal Pocket. Front Immunol 2021; 12:788766. [PMID: 34899756 PMCID: PMC8654349 DOI: 10.3389/fimmu.2021.788766] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/08/2021] [Indexed: 12/27/2022] Open
Abstract
The subgingival biofilm attached to tooth surfaces triggers and maintains periodontitis. Previously, late-onset periodontitis has been considered a consequence of dysbiosis and a resultant polymicrobial disruption of host homeostasis. However, a multitude of studies did not show "healthy" oral microbiota pattern, but a high diversity depending on culture, diets, regional differences, age, social state etc. These findings relativise the aetiological role of the dysbiosis in periodontitis. Furthermore, many late-onset periodontitis traits cannot be explained by dysbiosis; e.g. age-relatedness, attenuation by anti-ageing therapy, neutrophil hyper-responsiveness, and microbiota shifting by dysregulated immunity, yet point to the crucial role of dysregulated immunity and neutrophils in particular. Furthermore, patients with neutropenia and neutrophil defects inevitably develop early-onset periodontitis. Intra-gingivally injecting lipopolysaccharide (LPS) alone causes an exaggerated neutrophil response sufficient to precipitate experimental periodontitis. Vice versa to the surplus of LPS, the increased neutrophil responsiveness characteristic for late-onset periodontitis can effectuate gingiva damage likewise. The exaggerated neutrophil extracellular trap (NET) response in late-onset periodontitis is blameable for damage of gingival barrier, its penetration by bacteria and pathogen-associated molecular patterns (PAMPs) as well as stimulation of Th17 cells, resulting in further neutrophil activation. This identifies the dysregulated immunity as the main contributor to periodontal disease.
Collapse
Affiliation(s)
- Ljubomir Vitkov
- Vascular & Exercise Biology Unit, Department of Biosciences, University of Salzburg, Salzburg, Austria
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| | - Luis E. Muñoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Janina Schoen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christine Schauer
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Bernd Minnich
- Vascular & Exercise Biology Unit, Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| |
Collapse
|
35
|
Geng S, Zhang Y, Yi Z, Lu R, Li L. Resolving monocytes generated through TRAM deletion attenuate atherosclerosis. JCI Insight 2021; 6:e149651. [PMID: 34499622 PMCID: PMC8564896 DOI: 10.1172/jci.insight.149651] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
Polarization of low-grade inflammatory monocytes facilitates the pathogenesis of atherosclerosis. However, underlying mechanisms as well as approaches for resolving monocyte polarization conducive to the regression of atherosclerosis are not well established. In this report, we demonstrate that TRIF-related adaptor molecule (TRAM) mediated monocyte polarization in vivo and in vitro. TRAM controlled monocyte polarization through activating Src family kinase c-SRC, which not only induces STAT1/STAT5-regulated inflammatory mediators CCR2 and SIRP-α but also suppresses PPARγ-regulated resolving mediator CD200R. Enhanced PPARγ and Pex5 due to TRAM deficiency facilitated peroxisome homeostasis and reduction of cellular reactive oxygen species, further contributing to the establishment of a resolving monocyte phenotype. TRAM-deficient monocytes propagated the resolving phenotype to neighboring monocytes through CD200R-mediated intercellular communication. At the translational level, we show that TRAM-deficient mice were resistant to high-fat diet-induced pathogenesis of atherosclerosis. We further document that intravenous transfusion of TRAM-deficient resolving monocytes into atherosclerotic mice potently reduced the progression of atherosclerosis. Together, our data reveal that targeting TRAM may facilitate the effective generation of resolving monocytes conducive for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Biological Sciences and
| | - Yao Zhang
- Department of Biological Sciences and
| | - Ziyue Yi
- Graduate Program of Genetics, Biotechnology and Computational Biology, Virginia Tech, Blacksburg, Virginia, USA
| | - Ran Lu
- Department of Biological Sciences and
| | - Liwu Li
- Department of Biological Sciences and
- Graduate Program of Genetics, Biotechnology and Computational Biology, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
36
|
Geng S, Li L. Differential training of innate leukocytes getting compartmentalized. J Leukoc Biol 2021; 111:7-8. [PMID: 34636070 DOI: 10.1002/jlb.4ce0821-421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
37
|
Nolan E, Malanchi I. Connecting the dots: Neutrophils at the interface of tissue regeneration and cancer. Semin Immunol 2021; 57:101598. [PMID: 35221216 PMCID: PMC9232712 DOI: 10.1016/j.smim.2022.101598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/19/2022] [Accepted: 02/08/2022] [Indexed: 11/28/2022]
Abstract
Knowledge about neutrophil biology has exponentially grown over the past decades. A high volume of investigations focusing on the characterization of their initially unappreciated multifaceted functions have grown in parallel with the immunity and the cancer fields. This has led to a significant gain in knowledge about their functions not only in tissue defence against pathogens and the collateral damage their overactivation can cause, but also their role in tissue repair and regeneration especially in the context of sterile injuries. On the other hand, the cancer field has also intensively focused its attention on neutrophil engagement in the many steps of the tumorigenic process. This review aims to draw the readers' attention to the similar functions described for neutrophils in tissue repair and in cancer. By bridging the two fields, we provide support for the hypothesis that the underlying program driving cancer-dependent exploitation of neutrophils is rooted in their physiologic tissue protection functions. In this view, cross-fertilization between the two fields will expedite the discovery of therapeutic interventions based on neutrophil targeting or their manipulation.
Collapse
Affiliation(s)
- Emma Nolan
- Tumour Host Interaction Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, United Kingdom
| | - Ilaria Malanchi
- Tumour Host Interaction Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, United Kingdom.
| |
Collapse
|
38
|
Shanley LC, Mahon OR, Kelly DJ, Dunne A. Harnessing the innate and adaptive immune system for tissue repair and regeneration: Considering more than macrophages. Acta Biomater 2021; 133:208-221. [PMID: 33657453 DOI: 10.1016/j.actbio.2021.02.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023]
Abstract
Tissue healing and regeneration is a complex, choreographed, spatiotemporal process involving a plethora of cell types, the activity of which is stringently regulated in order for effective tissue repair to ensue post injury. A number of globally prevalent conditions such as heart disease, organ failure, and severe musculoskeletal disorders require new therapeutic strategies to repair damaged or diseased tissue, particularly given an ageing population in which obesity, diabetes, and consequent tissue defects have reached epidemic proportions. This is further compounded by the lack of intrinsic healing and poor regenerative capacity of certain adult tissues. While vast progress has been made in the last decade regarding tissue regenerative strategies to direct self-healing, for example, through implantation of tissue engineered scaffolds, several challenges have hampered the clinical application of these technologies. Control of the immune response is growing as an attractive approach in regenerative medicine and it is becoming increasingly apparent that an in depth understanding of the interplay between cells of the immune system and tissue specific progenitor cells is of paramount importance. Furthermore, the integration of immunology and bioengineering promises to elevate the efficacy of biomaterial-based tissue repair and regeneration. In this review, we highlight the role played by individual immune cell subsets in tissue repair processes and describe new approaches that are being taken to direct appropriate healing outcomes via biomaterial mediated targeting of immune cell activity. STATEMENT OF SIGNIFICANCE: It is becoming increasingly apparent that controlling the immune response is as an attractive approach in regenerative medicine. Here, we propose that an in-depth understanding of immune system and tissue specific progenitor cell interactions may reveal mechanisms by which tissue healing and regeneration takes place, in addition to identifying novel therapeutic targets that could be used to enhance the tissue repair process. To date, most reviews have focused solely on macrophage subsets. This manuscript details the role of other innate and adaptive immune cells such as innate lymphoid cells (ILCs), natural killer (NK) cells and γδT cells (in addition to macrophages) in tissue healing. We also describe new approaches that are being taken to direct appropriate healing outcomes via biomaterial mediated cytokine and drug delivery.
Collapse
|
39
|
Current Understanding of the Neutrophil Transcriptome in Health and Disease. Cells 2021; 10:cells10092406. [PMID: 34572056 PMCID: PMC8469435 DOI: 10.3390/cells10092406] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are key cells of the innate immune system. It is now understood that this leukocyte population is diverse in both the basal composition and functional plasticity. Underlying this plasticity is a post-translational framework for rapidly achieving early activation states, but also a transcriptional capacity that is becoming increasingly recognized by immunologists. Growing interest in the contribution of neutrophils to health and disease has resulted in more efforts to describe their transcriptional activity. Whilst initial efforts focused predominantly on understanding the existing biology, investigations with advanced methods such as single cell RNA sequencing to understand interactions of the entire immune system are revealing higher flexibility in neutrophil transcription than previously thought possible and multiple transition states. It is now apparent that neutrophils utilise many forms of RNA in the regulation of their function. This review collates current knowledge on the nuclei structure and gene expression activity of human neutrophils across homeostasis and disease, before highlighting knowledge gaps that are research priority areas.
Collapse
|
40
|
Lin R, Li L. Innate Neutrophil Memory Dynamics in Disease Pathogenesis. Handb Exp Pharmacol 2021; 276:43-64. [PMID: 34486096 DOI: 10.1007/164_2021_538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neutrophils, the most abundant leukocytes in circulation and the first responders to infection and inflammation, closely modulate both acute and chronic inflammatory processes. Resting neutrophils constantly patrol vasculature and migrate to tissues when challenges occur. When infection and/or inflammation recede, tissue neutrophils will be subsequently cleaned up by macrophages which collectively contribute to the resolution of inflammation. While most studies focus on the anti-microbial function of neutrophils including phagocytosis, degranulation, and neutrophil extracellular traps (NETs) formation, recent research highlighted additional contributions of neutrophils beyond simply controlling infectious agents. Neutrophils with resolving characteristics may alter the activities of neighboring cells and facilitate inflammation resolution, modulate long-term macrophage and adaptive immune responses, therefore having important impacts on host pathophysiology. The focus of this chapter is to provide an updated assessment of recent progress in the emerging field of neutrophil programming and memory in the context of both acute and chronic diseases.
Collapse
Affiliation(s)
- RuiCi Lin
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Liwu Li
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA, USA. .,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
41
|
Durán-Laforet V, Peña-Martínez C, García-Culebras A, Alzamora L, Moro MA, Lizasoain I. Pathophysiological and pharmacological relevance of TLR4 in peripheral immune cells after stroke. Pharmacol Ther 2021; 228:107933. [PMID: 34174279 DOI: 10.1016/j.pharmthera.2021.107933] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023]
Abstract
Stroke is a very common disease being the leading cause of death and disability worldwide. The immune response subsequent to an ischemic stroke is a crucial factor in its physiopathology and outcome. This response is not limited to the injury site. In fact, the immune response to the ischemic process mobilizes mainly circulating cells which upon activation will be recruited to the injury site. When a stroke occurs, molecules that are usually retained inside the cell bodies are released into the extracellular space by uncontrolled cell death. These molecules can bind to the Toll-like receptor 4 (TLR4) in circulating immune cells which are then activated, eliciting, although not exclusively, the inflammatory response to the stroke. In this review, we present an up-to-date summary of the role of the different peripheral immune cells in stroke as well as the role of TLR4 in the function of each cell type in ischemia. Also, we summarize the different antagonists developed against TLR4 and their potential as a pharmacological tool for stroke treatment.
Collapse
Affiliation(s)
- V Durán-Laforet
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital, 12 de Octubre (imas12), Madrid, Spain.
| | - C Peña-Martínez
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital, 12 de Octubre (imas12), Madrid, Spain
| | - A García-Culebras
- Neurovascular Pathophysiology Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - L Alzamora
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital, 12 de Octubre (imas12), Madrid, Spain
| | - M A Moro
- Neurovascular Pathophysiology Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - I Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Instituto de Investigación Hospital, 12 de Octubre (imas12), Madrid, Spain.
| |
Collapse
|
42
|
Han J, Zhang R, Zhang X, Dong J, Chen M, Pan Y, Liao Z, Zhong M, He J, Wang F, Yue Y, Shang J. Zebrafish Model for Screening Antiatherosclerosis Drugs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9995401. [PMID: 34257830 PMCID: PMC8245221 DOI: 10.1155/2021/9995401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/23/2021] [Indexed: 01/30/2023]
Abstract
This study is aimed at establishing a zebrafish model of AS, which can be applied for high-throughput screening anti-AS drugs. A zebrafish AS model was induced by high cholesterol diet (HCD) and lipopolysaccharide (LPS). In the early stage of modeling, HCD induced zebrafish to show some early symptoms similar to human AS, mainly cholesterol accumulation, vascular inflammation, lipid metabolism disorder, and oxidative stress. In addition to lipid metabolism disorders, LPS also induced the same symptoms. And when HCD and LPS exist at the same time, these AS symptoms in zebrafish become more severe. When the modeling time reached 45 days, HCD and LPS induce the formation of plaques in zebrafish blood vessels, and these plaques contain fibrous tissue and lipids, which are similar to human AS plaques. We also evaluated the efficacy of some anti-AS drugs (atorvastatin, aspirin, and vitamin C) through these zebrafish AS models. The results found that atorvastatin can significantly reduce the symptoms of AS induced by HCD and LPS, and aspirin and vitamins can significantly reduce the symptoms of AS induced by LPS. It is feasible to use zebrafish to establish an AS model, and the zebrafish AS model can be used for high-throughput screening of anti-AS drugs.
Collapse
Affiliation(s)
- Jichun Han
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 Jiangsu, China
| | - Rui Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 Jiangsu, China
| | - Xiaofeng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 Jiangsu, China
| | - Jing Dong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 Jiangsu, China
| | - Minghan Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 Jiangsu, China
| | - Yumin Pan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 Jiangsu, China
| | - Zixian Liao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 Jiangsu, China
| | - Min Zhong
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 Jiangsu, China
| | - Jingwen He
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 Jiangsu, China
| | - Feiqiang Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 Jiangsu, China
| | - Yunyun Yue
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 Jiangsu, China
| | - Jing Shang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198 Jiangsu, China
| |
Collapse
|
43
|
Associations between Hypertriglyceridemia and Circulating Neutrophil Subpopulation in Patients with Dyslipidemia. Int J Inflam 2021; 2021:6695468. [PMID: 34136120 PMCID: PMC8175187 DOI: 10.1155/2021/6695468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/03/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Background There is strong evidence to suggest that the negative influence of triglyceride-rich lipoproteins (TRLs) on atherosclerosis development and progression is at least partially mediated by their proinflammatory effects. However, the effect of hypertriglyceridemia (HTG) on the subpopulation composition of circulating neutrophils has not been studied so far. The aim of this study was to examine correlations between the level of triglycerides (TGs) and the subpopulation composition of circulating neutrophils in middle-aged patients with dyslipidemia without established atherosclerotic cardiovascular diseases (ASCVDs). Methods Ninety-one patients with dyslipidemia, including 22 (24.2%) patients with HTG, were enrolled in the study. Phenotying of neutrophil subpopulations was performed through flow cytometry (Navios 6/2, Beckman Coulter, USA). For phenotyping of neutrophil subpopulations, conjugated monoclonal antibodies were used: CD16, PE-Cyanine7 (Invitrogen, USA); CD11b-FITC (Beckman Coulter, USA); CD62L-PE (Beckman Coulter, USA); and CD184 (CXCR4)-PE-CF594 (BD Biosciences, USA). Results Following the correlation analysis, the TG level directly correlated with the number of circulating leukocytes (r = 0.443; p < 0.0001) and neutrophils (r = 0.311; p=0.008). HTG patients displayed a significantly high number of circulating neutrophils with CD16hiCD11bhiCD62Lhi and CD16hiCD11bloCD62Lbr phenotypes. TG levels directly correlated with the number of circulating neutrophils having CD16hiCD11bhiCD62Lhi and CD16hiCD11bloCD62Lbr phenotypes. Following the linear regression analysis, statistically significant correlations between TG levels and neutrophil subpopulations having CD16hiCD11bloCD62Lbr and CD16hiCD11bbrCD62LloCXCR4hi phenotypes were established. Changes in TG levels could explain up to 19.1% of the variability in the number of studied neutrophil subpopulations. Conclusion Among middle-aged patients without established ASCVDs, patients with HTG demonstrated a significantly higher overall number of neutrophils and neutrophils having CD16hiCD11bhiCD62Lhi (mature neutrophils) and CD16hiCD11bloCD62Lbr (immunosuppressive neutrophils) than patients with normal TG levels. The TG level was associated with an increase in the number of CD16hiCD11bloCD62Lbr and CD16hiCD11bbrCD62LloCXCR4hi (ageing neutrophils) neutrophils, adjusted for the sex and age of the patients.
Collapse
|
44
|
Vitkov L, Muñoz LE, Knopf J, Schauer C, Oberthaler H, Minnich B, Hannig M, Herrmann M. Connection between Periodontitis-Induced Low-Grade Endotoxemia and Systemic Diseases: Neutrophils as Protagonists and Targets. Int J Mol Sci 2021; 22:4647. [PMID: 33925019 PMCID: PMC8125370 DOI: 10.3390/ijms22094647] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Periodontitis is considered a promoter of many systemic diseases, but the signaling pathways of this interconnection remain elusive. Recently, it became evident that certain microbial challenges promote a heightened response of myeloid cell populations to subsequent infections either with the same or other pathogens. This phenomenon involves changes in the cell epigenetic and transcription, and is referred to as ''trained immunity''. It acts via modulation of hematopoietic stem and progenitor cells (HSPCs). A main modulation driver is the sustained, persistent low-level transmission of lipopolysaccharide from the periodontal pocket into the peripheral blood. Subsequently, the neutrophil phenotype changes and neutrophils become hyper-responsive and prone to boosted formation of neutrophil extracellular traps (NET). Cytotoxic neutrophil proteases and histones are responsible for ulcer formations on the pocket epithelium, which foster bacteremia and endoxemia. The latter promote systemic low-grade inflammation (SLGI), a precondition for many systemic diseases and some of them, e.g., atherosclerosis, diabetes etc., can be triggered by SLGI alone. Either reverting the polarized neutrophils back to the homeostatic state or attenuation of neutrophil hyper-responsiveness in periodontitis might be an approach to diminish or even to prevent systemic diseases.
Collapse
Affiliation(s)
- Ljubomir Vitkov
- Vascular & Exercise Biology Unit, Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (L.V.); (H.O.); (B.M.)
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, 66424 Homburg, Germany
| | - Luis E. Muñoz
- Department of Internal Medicine 3—Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany; (L.E.M.); (J.K.); (C.S.); (M.H.)
| | - Jasmin Knopf
- Department of Internal Medicine 3—Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany; (L.E.M.); (J.K.); (C.S.); (M.H.)
| | - Christine Schauer
- Department of Internal Medicine 3—Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany; (L.E.M.); (J.K.); (C.S.); (M.H.)
| | - Hannah Oberthaler
- Vascular & Exercise Biology Unit, Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (L.V.); (H.O.); (B.M.)
| | - Bernd Minnich
- Vascular & Exercise Biology Unit, Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (L.V.); (H.O.); (B.M.)
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, 66424 Homburg, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3—Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany; (L.E.M.); (J.K.); (C.S.); (M.H.)
| |
Collapse
|
45
|
Liu B, Hu Y, Ma G, Xiao Y, Zhang B, Liang Y, Zhong P, Zeng X, Lin Z, Kong H, Wu G, Du Z, Fang Y, Huang M, Wang L, Yang X, Yu H. Reduced Retinal Microvascular Perfusion in Patients With Stroke Detected by Optical Coherence Tomography Angiography. Front Aging Neurosci 2021; 13:628336. [PMID: 33927607 PMCID: PMC8078175 DOI: 10.3389/fnagi.2021.628336] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Currently there is a shortage of biomarkers for stroke, one of the leading causes of death and disability in aging populations. Retinal vessels offer a unique and accessible “window” to study the microvasculature in vivo. However, the relationship between the retinal microvasculature and stroke is not entirely clear. To investigate the retinal microvascular characteristics in stroke, we recruited patients with stroke and age-matched control subjects from a tertiary hospital in China. The macular vessel density (VD) in the superficial capillary plexus (SCP) and deep capillary plexus (DCP), foveal avascular zone (FAZ) metrics, and optical coherence tomography angiography (OCTA) measured optic disc VD were recorded for analysis. A total of 189 patients with stroke and 195 control subjects were included. After adjusting for sex, visual acuity, systolic and diastolic blood pressure, a history of smoking, levels of hemoglobulin (HbA1c), cholesterol, and high-density lipoprotein (HDL), the macular VD of SCP and DCP in all sectors was decreased in patients with stroke. In the stroke group, the VD around the FAZ and the VD of the optic disk were lower. Logistic regression found the parafovea-superior-hemi VD of DCP > 54.53% [odds ratio (OR): 0.169] as a protective factor of stroke. Using the integration of all OCTA parameters and traditional risk factors, the area under the receiver operating characteristic (AUC) curve of distinguishing patients with stroke was 0.962, with a sensitivity of 0.944 and a specificity of 0.871. Our study demonstrates that the retinal VD is decreased in patients with stroke independently of the traditional risk factors of stroke, which may shed light on the monitoring of stroke using the retinal microvascular parameters.
Collapse
Affiliation(s)
- Baoyi Liu
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yijun Hu
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Refractive Surgery Center, Aier Institute of Refractive Surgery, Guangzhou Aier Eye Hospital, Guangzhou, China.,Aier School of Ophthalmology, Central South University, Changsha, China
| | - Guixian Ma
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu Xiao
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Bin Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yingying Liang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Pingting Zhong
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaomin Zeng
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhanjie Lin
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Huiqian Kong
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guanrong Wu
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zijing Du
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ying Fang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Manqing Huang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Lijuan Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaohong Yang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Honghua Yu
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
46
|
Dolgushin II, Genkel VV, Baturina IL, Emelyanov IV, Savochkina AY, Shaposhnik II. Association of the increased circulating CD62LloCXCR4hi neutrophil count with carotid atherosclerosis. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2021. [DOI: 10.36233/0372-9311-67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Introduction. The role of neutrophils in the initiation and progression of atherosclerosis as well as in the development of its complications has received scientific attention only in the recent years. Today, there is growing evidence to support a role of the CXCL12/CXCR4 axis in sustained inflammation during different chronic inflammatory diseases by retaining neutrophils at inflammatory sites.The aim of the study is to assess the diagnostic and prognostic significance of circulating CD62LloCXCR4 hi neutrophils in patients with carotid atherosclerosis.Materials and methods. A total of 75 patients (52% of men and 48% of women) aged 40 to 64 years were examined. None of them were diagnosed with atherosclerotic cardiovascular diseases. All the patients underwent carotid artery duplex scanning. The flow cytometry and CD16, CD11b, CD62L, CD182 (CXCR2) and CD184 (CXCR4) conjugated monoclonal antibodies were used for phenotyping and differentiation of neutrophil subpopulations.Results. Atherosclerotic plaques in carotid arteries were detected in 72% of the patients; most of the patients were diagnosed with stenosis development in more than one of the carotid arteries (CA). The elevated levels of circulating CXCR4h neutrophils were associated with the levels of total cholesterol (r = 0.377; p = 0.001), low-density lipoprotein (LDL) cholesterol (r = 0.293; p = 0.014) and triglycerides (r = 0.388; p = 0.003). The study revealed direct correlation between the circulating CXCR4 hi neutrophil count and the cumulative percentage of CA stenosis (r = 0.300; p = 0.011), including the number of stenosed CA (r = 0.291; p = 0.034). It was also found that CXCR4 hi neutrophil counts demonstrated a statistically significant increase along with the increased number of stenosed CA (p = 0.025). The ROC analysis findings show that the elevated CXCR4 hi neutrophil counts ≥260 cells/μL made it possible to diagnose stenotic lesion of 4 CAs with a sensitivity of 71.4% and specificity reaching 76.6%.Conclusion. In patients with carotid atherosclerosis, the increased count of circulating CD62LloCXCR4 hi neutrophils was associated with the increased number of stenosed CAs, while no significant changes were observed in the other examined subpopulations of neutrophil granulocytes. The increased CD62LloCXCR4 hi neutrophil count made it possible to diagnose stenotic lesion of 4 CAs with a sufficient sensitivity and specificity.
Collapse
|
47
|
Lee J, Geng S, Li S, Li L. Single Cell RNA-Seq and Machine Learning Reveal Novel Subpopulations in Low-Grade Inflammatory Monocytes With Unique Regulatory Circuits. Front Immunol 2021; 12:627036. [PMID: 33708217 PMCID: PMC7940189 DOI: 10.3389/fimmu.2021.627036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/21/2021] [Indexed: 11/13/2022] Open
Abstract
Subclinical doses of LPS (SD-LPS) are known to cause low-grade inflammatory activation of monocytes, which could lead to inflammatory diseases including atherosclerosis and metabolic syndrome. Sodium 4-phenylbutyrate is a potential therapeutic compound which can reduce the inflammation caused by SD-LPS. To understand the gene regulatory networks of these processes, we have generated scRNA-seq data from mouse monocytes treated with these compounds and identified 11 novel cell clusters. We have developed a machine learning method to integrate scRNA-seq, ATAC-seq, and binding motifs to characterize gene regulatory networks underlying these cell clusters. Using guided regularized random forest and feature selection, our method achieved high performance and outperformed a traditional enrichment-based method in selecting candidate regulatory genes. Our method is particularly efficient in selecting a few candidate genes to explain observed expression pattern. In particular, among 531 candidate TFs, our method achieves an auROC of 0.961 with only 10 motifs. Finally, we found two novel subpopulations of monocyte cells in response to SD-LPS and we confirmed our analysis using independent flow cytometry experiments. Our results suggest that our new machine learning method can select candidate regulatory genes as potential targets for developing new therapeutics against low grade inflammation.
Collapse
Affiliation(s)
- Jiyoung Lee
- Ph.D. Program in Genetics, Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.,School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Shuo Geng
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Song Li
- Ph.D. Program in Genetics, Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.,School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Liwu Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
48
|
Vaidya K, Tucker B, Kurup R, Khandkar C, Pandzic E, Barraclough J, Machet J, Misra A, Kavurma M, Martinez G, Rye KA, Cochran BJ, Patel S. Colchicine Inhibits Neutrophil Extracellular Trap Formation in Patients With Acute Coronary Syndrome After Percutaneous Coronary Intervention. J Am Heart Assoc 2020; 10:e018993. [PMID: 33346683 PMCID: PMC7955504 DOI: 10.1161/jaha.120.018993] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Release of neutrophil extracellular traps (NETs) after percutaneous coronary intervention (PCI) in acute coronary syndrome (ACS) is associated with periprocedural myocardial infarction, as a result of microvascular obstruction via pro‐inflammatory and prothrombotic pathways. Colchicine is a well‐established anti‐inflammatory agent with growing evidence to support use in patients with coronary disease. However, its effects on post‐PCI NET formation in ACS have not been explored. Methods and Results Sixty patients (40 ACS; 20 stable angina pectoris) were prospectively recruited and allocated to colchicine or no treatment. Within 24 hours of treatment, serial coronary sinus blood samples were collected during PCI. Isolated neutrophils from 10 patients with ACS post‐PCI and 4 healthy controls were treated in vitro with colchicine (25 nmol/L) and stimulated with either ionomycin (5 μmol/L) or phorbol 12‐myristate 13‐acetate (50 nmol/L). Extracellular DNA was quantified using Sytox Green and fixed cells were stained with Hoechst 3342 and anti‐alpha tubulin. Baseline characteristics were similar across both treatment and control arms. Patients with ACS had higher NET release versus patients with stable angina pectoris (P<0.001), which was reduced with colchicine treatment (area under the curve: 0.58 versus 4.29; P<0.001). In vitro, colchicine suppressed unstimulated (P<0.001), phorbol 12‐myristate 13‐acetate–induced (P=0.009) and ionomycin‐induced (P=0.002) NET formation in neutrophils isolated from patients with ACS post‐PCI, but not healthy controls. Tubulin organization was impaired in neutrophils from patients with ACS but was restored by colchicine treatment. Conclusions Colchicine suppresses NET formation in patients with ACS post‐PCI by restoring cytoskeletal dynamics. These findings warrant further investigation in randomized trials powered for clinical end points. Registration URL: https://anzctr.org.au; Unique identifier: ACTRN12619001231134.
Collapse
Affiliation(s)
| | - Bradley Tucker
- Heart Research Institute Sydney Australia.,School of Medical Sciences UNSW Sydney Sydney Australia
| | - Rahul Kurup
- Royal Prince Alfred Hospital Sydney Australia.,Heart Research Institute Sydney Australia
| | | | - Elvis Pandzic
- Biomedical Imaging Facility Mark Wainwright Analytical CentreUNSW Sydney Sydney Australia
| | - Jennifer Barraclough
- Royal Prince Alfred Hospital Sydney Australia.,Heart Research Institute Sydney Australia
| | - Joshua Machet
- School of Medical Sciences UNSW Sydney Sydney Australia
| | | | | | - Gonzalo Martinez
- Division of Cardiovascular Diseases Pontificia Universidad Católica de Chile Santiago Chile
| | | | | | - Sanjay Patel
- Royal Prince Alfred Hospital Sydney Australia.,Heart Research Institute Sydney Australia.,Sydney Medical School University of Sydney Australia
| |
Collapse
|
49
|
Bonyek-Silva I, Nunes S, Santos RL, Lima FR, Lago A, Silva J, Carvalho LP, Arruda SM, Serezani HC, Carvalho EM, Brodskyn CI, Tavares NM. Unbalanced production of LTB 4/PGE 2 driven by diabetes increases susceptibility to cutaneous leishmaniasis. Emerg Microbes Infect 2020; 9:1275-1286. [PMID: 32525457 PMCID: PMC7473187 DOI: 10.1080/22221751.2020.1773744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 01/09/2023]
Abstract
Poorly controlled diabetes mellitus leads to several comorbidities, including susceptibility to infections. Hyperglycemia increases phagocyte responsiveness, however immune cells from people with diabetes show inadequate antimicrobial functions. We and others have shown that aberrant production of leukotriene B4 (LTB4) is detrimental to host defense in models of bacterial infection. Here, we will unveil the consequences of high glucose in the outcome of Leishmania braziliensis skin infection in people with diabetes and determine the role of LTB4 in human phagocytes. We show that diabetes leads to higher systemic levels of LTB4, IL-6 and TNF-α in cutaneous leishmaniasis. Only LTB4 correlated with blood glucose levels and healing time in diabetes comorbidity. Skin lesions of people with leishmaniasis and diabetes exhibit increased neutrophil and amastigote numbers. Monocyte-derived macrophages from these individuals showed higher L. braziliensis loads, reduced production of Reactive Oxygen Species and unbalanced LTB4/PGE2 ratio. Our data reveal a systemic inflammation driven by diabetes comorbidity in opposition to a local reduced capacity to resolve L. braziliensis infection and a worse disease outcome.
Collapse
Affiliation(s)
- Icaro Bonyek-Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Sara Nunes
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Reinan L. Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Filipe R. Lima
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | | | - Juliana Silva
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Lucas P. Carvalho
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Sergio M. Arruda
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
| | - Henrique C. Serezani
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Edgar M. Carvalho
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
- National Institute of Science and Technology (INCT) in Tropical Diseases, Salvador, Brazil
| | - Claudia I. Brodskyn
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
- National Institute of Science and Technology (INCT), Institute of Investigation in Immunology (iii), São Paulo, Brazil
| | - Natalia M. Tavares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Federal University of Bahia (UFBA), Salvador, Brazil
- National Institute of Science and Technology (INCT), Institute of Investigation in Immunology (iii), São Paulo, Brazil
| |
Collapse
|
50
|
Rubio-Ponce A, Hidalgo A, Ballesteros I. How to bridle a neutrophil. Curr Opin Immunol 2020; 68:41-47. [PMID: 33038850 DOI: 10.1016/j.coi.2020.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022]
Abstract
Recent high-dimensional technologies have enabled the characterization of heterogeneity in the neutrophil compartment at an unprecedented resolution. In this review, we discuss the emerging notion of heterogeneity within the neutrophil pool, and provide a detailed account of evolving concepts in the field. We place special focus on neutrophil differentiation in the bone marrow and plasticity in tissues, describe the limitations that arise when exploring neutrophil heterogeneity using single-cell analyses, and suggest state-of-the-art alternatives to improve their characterization. Finally, we propose strategies arising from these new concepts that may allow us to bridle neutrophil plasticity towards therapeutic benefit.
Collapse
Affiliation(s)
- Andrea Rubio-Ponce
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Andrés Hidalgo
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Iván Ballesteros
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.
| |
Collapse
|