1
|
Montagni E, Ambrosone M, Martello A, Curti L, Polverini F, Baroncelli L, Mannaioni G, Pavone FS, Masi A, Allegra Mascaro AL. Age-dependent cortical overconnectivity in Shank3 mice is reversed by anesthesia. Transl Psychiatry 2025; 15:154. [PMID: 40253406 PMCID: PMC12009330 DOI: 10.1038/s41398-025-03377-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 03/19/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025] Open
Abstract
Growing evidence points to brain network dysfunction as a central neurobiological basis for autism spectrum disorders (ASDs). As a result, studies on Functional Connectivity (FC) have become pivotal for understanding the large-scale network alterations associated with ASD. Despite ASD being a neurodevelopmental disorder, and FC being significantly influenced by the brain state, existing FC studies in mouse models predominantly focus on adult subjects under anesthesia. The differential impact of anesthesia and age on cortical functional networks in ASD subjects remains unexplored. To fill this gap, we conducted a longitudinal evaluation of FC across three brain states and three ages in the Shank3b mouse model of autism. We utilized wide-field calcium imaging to monitor cortical activity in Shank3b+/- and Shank3b+/+ mice from late development (P45) through adulthood (P90), and isoflurane anesthesia to manipulate the brain state. Our findings reveal that network hyperconnectivity, emerging from the barrel-field cortices during the juvenile stage, progressively expands to encompass the entire dorsal cortex in adult Shank3b+/- mice. Notably, the severity of FC imbalance is highly dependent on the brain state: global network alterations are more pronounced in the awake state and are strongly reduced under anesthesia. These results underscore the crucial role of anesthesia in detecting autism-related FC alterations and identify a significant network of early cortical dysfunction associated with autism. This network represents a potential target for non-invasive translational treatments.
Collapse
Affiliation(s)
- Elena Montagni
- Neuroscience Institute, National Research Council, Pisa, Italy.
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy.
| | - Manuel Ambrosone
- Neuroscience Institute, National Research Council, Pisa, Italy
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy
- Physics and Astronomy Department, University of Florence, Sesto Fiorentino, Italy
| | - Alessandra Martello
- Neuroscience Institute, National Research Council, Pisa, Italy
- Physics and Astronomy Department, University of Florence, Sesto Fiorentino, Italy
- Interdisciplinary Health Science Center, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Lorenzo Curti
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Federica Polverini
- Department of Health Sciences (DSS), University of Florence, Florence, Italy
| | - Laura Baroncelli
- Neuroscience Institute, National Research Council, Pisa, Italy
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy
- Physics and Astronomy Department, University of Florence, Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council, Sesto Fiorentino, Italy
| | - Alessio Masi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Anna Letizia Allegra Mascaro
- Neuroscience Institute, National Research Council, Pisa, Italy.
- European Laboratory for Non-Linear Spectroscopy, Sesto Fiorentino, Italy.
- Physics and Astronomy Department, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
2
|
Tamada K, Takumi T. Neurodevelopmental impact of CNV models in ASD: Recent advances and future directions. Curr Opin Neurobiol 2025; 92:103001. [PMID: 40090136 DOI: 10.1016/j.conb.2025.103001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/18/2025]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social communication impairments and restricted, repetitive behaviors. ASD exhibits a strong genetic basis, with rare and common genetic variants contributing to its etiology. Copy number variations (CNVs), deletions or duplications of chromosomal segments, have emerged as key contributors to ASD risk. Rare CNVs often demonstrate large effect sizes and can directly cause ASD, while common variants collectively exert subtle influences. Recent advances have identified numerous ASD-associated CNVs, including recurrent loci such as 1q21.1, 2p16.3, 7q11.23, 15q11.2, 15q11-q13, 16p11.2 and 22q11.2. Mouse models carrying these CNVs have provided profound insights into the underlying neurobiological mechanisms. Recent studies integrating transcriptomic, proteomic, and functional imaging approaches have revealed alterations in synaptic function, neuronal differentiation, myelination, metabolic pathways, and circuit connectivity. Notably, investigations leveraging conditional knockout models, high magnetic field MRI, and single-cell analyses highlight disruptions in excitatory-inhibitory balance, white matter integrity, and dynamic gene regulatory networks. Parallel human-based approaches, including iPSC-derived neurons, cerebral organoids, and large-scale single-nucleus sequencing, are combined with animal model data. These integrative strategies promise to refine our understanding of ASD's genetic architecture, bridging the gap between fundamental discoveries in model organisms and clinically relevant biomarkers, subtypes, and therapeutic targets in humans. This review summarizes key findings from recent CNV mouse model studies and highlights emerging technologies applied to human ASD samples. Finally, we outline prospects for translating findings from mouse studies to humans. By illuminating both unique and convergent genetic mechanisms, these advances offer a critical framework for unraveling etiological complexity in ASD.
Collapse
Affiliation(s)
- Kota Tamada
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan.
| | - Toru Takumi
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan.
| |
Collapse
|
3
|
MacKinnon MJ, Song S, Chao THH, Hsu LM, Albert ST, Ma Y, Shnitko TA, Wang TWW, Nonneman RJ, Freeman CD, Ozarkar SS, Emir UE, Shen MD, Philpot BD, Hantman AW, Lee SH, Chang WT, Shih YYI. SORDINO for Silent, Sensitive, Specific, and Artifact-Resisting fMRI in awake behaving mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642406. [PMID: 40161795 PMCID: PMC11952411 DOI: 10.1101/2025.03.10.642406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has revolutionized our understanding of the brain activity landscape, bridging circuit neuroscience in animal models with noninvasive brain mapping in humans. This immensely utilized technique, however, faces challenges such as acoustic noise, electromagnetic interference, motion artifacts, magnetic-field inhomogeneity, and limitations in sensitivity and specificity. Here, we introduce Steady-state On-the-Ramp Detection of INduction-decay with Oversampling (SORDINO), a transformative fMRI technique that addresses these challenges by maintaining a constant total gradient amplitude while acquiring data during continuously changing gradient direction. When benchmarked against conventional fMRI on a 9.4T system, SORDINO is silent, sensitive, specific, and resistant to motion and susceptibility artifacts. SORDINO offers superior compatibility with multimodal experiments and carries novel contrast mechanisms distinct from BOLD. It also enables brain-wide activity and connectivity mapping in awake, behaving mice, overcoming stress- and motion-related confounds that are among the most challenging barriers in current animal fMRI studies.
Collapse
Affiliation(s)
- Martin J. MacKinnon
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sheng Song
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tzu-Hao Harry Chao
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Li-Ming Hsu
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott T. Albert
- Neuroscience Center and Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yuncong Ma
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tatiana A. Shnitko
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tzu-Wen Winnie Wang
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Randy J. Nonneman
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Corey D. Freeman
- Neuroscience Center and Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Siddhi S. Ozarkar
- Neuroscience Center and Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Uzay E. Emir
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark D. Shen
- Neuroscience Center and Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Benjamin D. Philpot
- Neuroscience Center and Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam W. Hantman
- Neuroscience Center and Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sung-Ho Lee
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wei-Tang Chang
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Pan MT, Zhang H, Li XJ, Guo XY. Genetically modified non-human primate models for research on neurodegenerative diseases. Zool Res 2024; 45:263-274. [PMID: 38287907 PMCID: PMC11017080 DOI: 10.24272/j.issn.2095-8137.2023.197] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/25/2024] [Indexed: 01/31/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a group of debilitating neurological disorders that primarily affect elderly populations and include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). Currently, there are no therapies available that can delay, stop, or reverse the pathological progression of NDs in clinical settings. As the population ages, NDs are imposing a huge burden on public health systems and affected families. Animal models are important tools for preclinical investigations to understand disease pathogenesis and test potential treatments. While numerous rodent models of NDs have been developed to enhance our understanding of disease mechanisms, the limited success of translating findings from animal models to clinical practice suggests that there is still a need to bridge this translation gap. Old World non-human primates (NHPs), such as rhesus, cynomolgus, and vervet monkeys, are phylogenetically, physiologically, biochemically, and behaviorally most relevant to humans. This is particularly evident in the similarity of the structure and function of their central nervous systems, rendering such species uniquely valuable for neuroscience research. Recently, the development of several genetically modified NHP models of NDs has successfully recapitulated key pathologies and revealed novel mechanisms. This review focuses on the efficacy of NHPs in modeling NDs and the novel pathological insights gained, as well as the challenges associated with the generation of such models and the complexities involved in their subsequent analysis.
Collapse
Affiliation(s)
- Ming-Tian Pan
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Han Zhang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiang-Yu Guo
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China. E-mail:
| |
Collapse
|
5
|
Satake T, Taki A, Kasahara K, Yoshimaru D, Tsurugizawa T. Comparison of local activation, functional connectivity, and structural connectivity in the N-back task. Front Neurosci 2024; 18:1337976. [PMID: 38516310 PMCID: PMC10955471 DOI: 10.3389/fnins.2024.1337976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
The N-back task is widely used to investigate working memory. Previous functional magnetic resonance imaging (fMRI) studies have shown that local brain activation depends on the difficulty of the N-back task. Recently, changes in functional connectivity and local activation during a task, such as a single-hand movement task, have been reported to give the distinct information. However, previous studies have not investigated functional connectivity changes in the entire brain during N-back tasks. In this study, we compared alterations in functional connectivity and local activation related to the difficulty of the N-back task. Because structural connectivity has been reported to be associated with local activation, we also investigated the relationship between structural connectivity and accuracy in a N-back task using diffusion tensor imaging (DTI). Changes in functional connectivity depend on the difficulty of the N-back task in a manner different from local activation, and the 2-back task is the best method for investigating working memory. This indicates that local activation and functional connectivity reflect different neuronal events during the N-back task. The top 10 structural connectivities associated with accuracy in the 2-back task were locally activated during the 2-back task. Therefore, structural connectivity as well as fMRI will be useful for predicting the accuracy of the 2-back task.
Collapse
Affiliation(s)
- Takatoshi Satake
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Japan
| | - Ai Taki
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
- Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba, Japan
| | - Kazumi Kasahara
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Daisuke Yoshimaru
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
- Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
6
|
Ben Youss Z, Arefin TM, Qayyum S, Yi R, Zhang J, Zaim Wadghiri Y, Alon L, Yaghmazadeh O. Open-source versatile 3D-print animal conditioning platform design for in vivo preclinical brain imaging in awake mice and anesthetized mice and rats. Lab Anim (NY) 2024; 53:33-42. [PMID: 38279029 PMCID: PMC11095950 DOI: 10.1038/s41684-023-01320-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/14/2023] [Indexed: 01/28/2024]
Abstract
Proper animal conditioning is a key factor in the quality and success of preclinical neuroimaging applications. Here, we introduce an open-source easy-to-modify multimodal 3D printable design for rodent conditioning for magnetic resonance imaging (MRI) or other imaging modalities. Our design can be used for brain imaging in anesthetized or awake mice, and in anesthetized rats. We show ease of use and reproducibility of subject conditioning with anatomical T2-weighted imaging for both mice and rats. We also demonstrate the application of our design for awake functional MRI in mice using both visual evoked potential and olfactory stimulation paradigms. In addition, using a combined MRI, positron emission tomography and X-ray computed tomography experiment, we demonstrate that our proposed cradle design can be utilized for multiple imaging modalities.
Collapse
Affiliation(s)
- Zakia Ben Youss
- Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Tanzil Mahmud Arefin
- Center for Neurotechnology in Mental Health Research, Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Sawwal Qayyum
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| | - Runjie Yi
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Jiangyang Zhang
- Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Youssef Zaim Wadghiri
- Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, USA.
| | - Leeor Alon
- Bernard and Irene Schwartz Center for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, USA.
| | - Omid Yaghmazadeh
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Evans MM, Kim J, Abel T, Nickl-Jockschat T, Stevens HE. Developmental Disruptions of the Dorsal Striatum in Autism Spectrum Disorder. Biol Psychiatry 2024; 95:102-111. [PMID: 37652130 PMCID: PMC10841118 DOI: 10.1016/j.biopsych.2023.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Autism spectrum disorder (ASD) is an increasingly prevalent neurodevelopmental condition characterized by social and communication deficits as well as patterns of restricted, repetitive behavior. Abnormal brain development has long been postulated to underlie ASD, but longitudinal studies aimed at understanding the developmental course of the disorder have been limited. More recently, abnormal development of the striatum in ASD has become an area of interest in research, partially due to overlap of striatal functions and deficit areas in ASD, as well as the critical role of the striatum in early development, when ASD is first detected. Focusing on the dorsal striatum and the associated symptom domain of restricted, repetitive behavior, we review the current literature on dorsal striatal abnormalities in ASD, including studies on functional connectivity, morphometry, and cellular and molecular substrates. We highlight that observed striatal abnormalities in ASD are often dynamic across development, displaying disrupted developmental trajectories. Important findings include an abnormal trajectory of increasing corticostriatal functional connectivity with age and increased striatal growth during childhood in ASD. We end by discussing striatal findings from animal models of ASD. In sum, the studies reviewed here demonstrate a key role for developmental disruptions of the dorsal striatum in the pathogenesis of ASD. Directing attention toward these findings will improve our understanding of ASD and of how associated deficits may be better addressed.
Collapse
Affiliation(s)
- Maya M Evans
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Jaekyoon Kim
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Ted Abel
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa; Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
8
|
Chen Y, Fernandez Z, Scheel N, Gifani M, Zhu DC, Counts SE, Dorrance AM, Razansky D, Yu X, Qian W, Qian C. Novel inductively coupled ear-bars (ICEs) to enhance restored fMRI signal from susceptibility compensation in rats. Cereb Cortex 2024; 34:bhad479. [PMID: 38100332 PMCID: PMC10793587 DOI: 10.1093/cercor/bhad479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Functional magnetic resonance imaging faces inherent challenges when applied to deep-brain areas in rodents, e.g. entorhinal cortex, due to the signal loss near the ear cavities induced by susceptibility artifacts and reduced sensitivity induced by the long distance from the surface array coil. Given the pivotal roles of deep brain regions in various diseases, optimized imaging techniques are needed. To mitigate susceptibility-induced signal losses, we introduced baby cream into the middle ear. To enhance the detection sensitivity of deep brain regions, we implemented inductively coupled ear-bars, resulting in approximately a 2-fold increase in sensitivity in entorhinal cortex. Notably, the inductively coupled ear-bar can be seamlessly integrated as an add-on device, without necessitating modifications to the scanner interface. To underscore the versatility of inductively coupled ear-bars, we conducted echo-planner imaging-based task functional magnetic resonance imaging in rats modeling Alzheimer's disease. As a proof of concept, we also demonstrated resting-state-functional magnetic resonance imaging connectivity maps originating from the left entorhinal cortex-a central hub for memory and navigation networks-to amygdala hippocampal area, Insular Cortex, Prelimbic Systems, Cingulate Cortex, Secondary Visual Cortex, and Motor Cortex. This work demonstrates an optimized procedure for acquiring large-scale networks emanating from a previously challenging seed region by conventional magnetic resonance imaging detectors, thereby facilitating improved observation of functional magnetic resonance imaging outcomes.
Collapse
Affiliation(s)
- Yi Chen
- Department of High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tuebingen 72076, Germany
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
| | - Zachary Fernandez
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Norman Scheel
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
| | - Mahsa Gifani
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI 49503, United States
| | - David C Zhu
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Scott E Counts
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI 49503, United States
- Department of Family Medicine, Michigan State University, Grand Rapids, MI 49503, United States
- Department of Hauenstein Neurosciences Center, Mercy Health Saint Mary’s Hospital, Grand Rapids, MI 49508, United States
- Michigan Alzheimer’s Disease Research Center, Ann Arbor, MI 48105, United States
| | - Anne M Dorrance
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, United States
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich 8006, Switzerland
- Department of Information Technology and Electrical Engineering, ETH Zurich, Institute for Biomedical Engineering, , Zurich 8092, Switzerland
- Zurich Neuroscience Center, Zurich 8057, Switzerland
| | - Xin Yu
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02114, United States
| | - Wei Qian
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, United States
| | - Chunqi Qian
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, MI 48824, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
9
|
Mandino F, Vujic S, Grandjean J, Lake EMR. Where do we stand on fMRI in awake mice? Cereb Cortex 2024; 34:bhad478. [PMID: 38100331 PMCID: PMC10793583 DOI: 10.1093/cercor/bhad478] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/17/2023] Open
Abstract
Imaging awake animals is quickly gaining traction in neuroscience as it offers a means to eliminate the confounding effects of anesthesia, difficulties of inter-species translation (when humans are typically imaged while awake), and the inability to investigate the full range of brain and behavioral states in unconscious animals. In this systematic review, we focus on the development of awake mouse blood oxygen level dependent functional magnetic resonance imaging (fMRI). Mice are widely used in research due to their fast-breeding cycle, genetic malleability, and low cost. Functional MRI yields whole-brain coverage and can be performed on both humans and animal models making it an ideal modality for comparing study findings across species. We provide an analysis of 30 articles (years 2011-2022) identified through a systematic literature search. Our conclusions include that head-posts are favorable, acclimation training for 10-14 d is likely ample under certain conditions, stress has been poorly characterized, and more standardization is needed to accelerate progress. For context, an overview of awake rat fMRI studies is also included. We make recommendations that will benefit a wide range of neuroscience applications.
Collapse
Affiliation(s)
- Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Stella Vujic
- Department of Computer Science, Yale University, New Haven, CT 06520, United States
| | - Joanes Grandjean
- Donders Institute for Brain, Behaviour, and Cognition, Radboud University, Nijmegen, The Netherlands
- Department for Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, United States
| |
Collapse
|
10
|
Li R, Ohki K, Matsui T. Ketamine-induced 1-Hz oscillation of spontaneous neural activity is not directly visible in the hemodynamics. Biochem Biophys Res Commun 2023; 678:102-108. [PMID: 37625269 DOI: 10.1016/j.bbrc.2023.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
The extent to which resting-state hemodynamics reflects the underlying neural activity is still under debate. Especially in the delta frequency band (0.5-4 Hz), it is unclear whether the hemodynamics can directly track the dynamics of underlying neural activity. Based on a recent report showing that ketamine administration induced a 1-Hz neural activity oscillation in the retrosplenial cortex, we conducted simultaneous recordings of the calcium signal and hemodynamics in mice and examined whether the hemodynamics tracked the oscillatory neural activity. Although we observed that the oscillation induced by ketamine appeared in the calcium signal, no sign of oscillation was detected in the simultaneously recorded hemodynamics. Consistently, there was a notable decrease in the correlation between simultaneously recorded calcium signal and hemodynamics. However, on a much longer time scale (10-60 min), we unexpectedly observed an ultraslow increase of hemodynamic signals specifically in the same cortical region exhibiting the neural activity oscillation. These results indicated that hemodynamics cannot track the 1-Hz oscillation in neural activity, although the presence of neural activity oscillation was detectable on a longer timescale. Such ultraslow hemodynamics may be useful for detecting abnormal neural activity induced by psychotic drugs or mental disorders.
Collapse
Affiliation(s)
- Ruixiang Li
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kenichi Ohki
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, 113-0033, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Teppei Matsui
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan; Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto, 610-0394, Japan.
| |
Collapse
|
11
|
Hikishima K, Tsurugizawa T, Kasahara K, Takagi R, Yoshinaka K, Nitta N. Brain-wide mapping of resting-state networks in mice using high-frame rate functional ultrasound. Neuroimage 2023; 279:120297. [PMID: 37500027 DOI: 10.1016/j.neuroimage.2023.120297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023] Open
Abstract
Functional ultrasound (fUS) imaging is a method for visualizing deep brain activity based on cerebral blood volume changes coupled with neural activity, while functional MRI (fMRI) relies on the blood-oxygenation-level-dependent signal coupled with neural activity. Low-frequency fluctuations (LFF) of fMRI signals during resting-state can be measured by resting-state fMRI (rsfMRI), which allows functional imaging of the whole brain, and the distributions of resting-state network (RSN) can then be estimated from these fluctuations using independent component analysis (ICA). This procedure provides an important method for studying cognitive and psychophysiological diseases affecting specific brain networks. The distributions of RSNs in the brain-wide area has been reported primarily by rsfMRI. RSNs using rsfMRI are generally computed from the time-course of fMRI signals for more than 5 min. However, a recent dynamic functional connectivity study revealed that RSNs are still not perfectly stable even after 10 min. Importantly, fUS has a higher temporal resolution and stronger correlation with neural activity compared with fMRI. Therefore, we hypothesized that fUS applied during the resting-state for a shorter than 5 min would provide similar RSNs compared to fMRI. High temporal resolution rsfUS data were acquired at 10 Hz in awake mice. The quality of the default mode network (DMN), a well-known RSN, was evaluated using signal-noise separation (SNS) applied to different measurement durations of rsfUS. The results showed that the SNS did not change when the measurement duration was increased to more than 210 s. Next, we measured short-duration rsfUS multi-slice measurements in the brain-wide area. The results showed that rsfUS with the short duration succeeded in detecting RSNs distributed in the brain-wide area consistent with RSNs detected by 11.7-T MRI under awake conditions (medial prefrontal cortex and cingulate cortex in the anterior DMN, retrosplenial cortex and visual cortex in the posterior DMN, somatosensory and motor cortexes in the lateral cortical network, thalamus, dorsal hippocampus, and medial cerebellum), confirming the reliability of the RSNs detected by rsfUS. However, bilateral RSNs located in the secondary somatosensory cortex, ventral hippocampus, auditory cortex, and lateral cerebellum extracted from rsfUS were different from the unilateral RSNs extracted from rsfMRI. These findings indicate the potential of rsfUS as a method for analyzing functional brain networks and should encourage future research to elucidate functional brain networks and their relationships with disease model mice.
Collapse
Affiliation(s)
- Keigo Hikishima
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan; Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan.
| | - Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Kazumi Kasahara
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Ryo Takagi
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Kiyoshi Yoshinaka
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Naotaka Nitta
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| |
Collapse
|
12
|
Mahani FSN, Kalantari A, Fink GR, Hoehn M, Aswendt M. A systematic review of the relationship between magnetic resonance imaging based resting-state and structural networks in the rodent brain. Front Neurosci 2023; 17:1194630. [PMID: 37554291 PMCID: PMC10405456 DOI: 10.3389/fnins.2023.1194630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/05/2023] [Indexed: 08/10/2023] Open
Abstract
Recent developments in rodent brain imaging have enabled translational characterization of functional and structural connectivity at the whole brain level in vivo. Nevertheless, fundamental questions about the link between structural and functional networks remain unsolved. In this review, we systematically searched for experimental studies in rodents investigating both structural and functional network measures, including studies correlating functional connectivity using resting-state functional MRI with diffusion tensor imaging or viral tracing data. We aimed to answer whether functional networks reflect the architecture of the structural connectome, how this reciprocal relationship changes throughout a disease, how structural and functional changes relate to each other, and whether changes follow the same timeline. We present the knowledge derived exclusively from studies that included in vivo imaging of functional and structural networks. The limited number of available reports makes it difficult to draw general conclusions besides finding a spatial and temporal decoupling between structural and functional networks during brain disease. Data suggest that when overcoming the currently limited evidence through future studies with combined imaging in various disease models, it will be possible to explore the interaction between both network systems as a disease or recovery biomarker.
Collapse
Affiliation(s)
- Fatemeh S. N. Mahani
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Aref Kalantari
- Department of Neurology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Gereon R. Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Mathias Hoehn
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| | - Markus Aswendt
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| |
Collapse
|
13
|
Poplawsky AJ, Cover C, Reddy S, Chishti HB, Vazquez A, Fukuda M. Odor-evoked layer-specific fMRI activities in the awake mouse olfactory bulb. Neuroimage 2023; 274:120121. [PMID: 37080347 PMCID: PMC10240534 DOI: 10.1016/j.neuroimage.2023.120121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/22/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023] Open
Abstract
Awake rodent fMRI is increasingly common over the use of anesthesia since it permits behavioral paradigms and does not confound normal brain function or neurovascular coupling. It is well established that adequate acclimation to the loud fMRI environment and head fixation reduces stress in the rodents and allows for whole brain imaging with little contamination from motion. However, it is unknown whether high-resolution fMRI with increased susceptibility to motion and lower sensitivity can measure small, but spatially discrete, activations in awake mice. To examine this, we used contrast-enhanced cerebral blood volume-weighted (CBVw) fMRI in the mouse olfactory bulb for its enhanced sensitivity and neural specificity. We determined that activation patterns in the glomerular layer to four different odors were spatially distinct and were consistent with previously established histological patterns. In addition, odor-evoked laminar activations were greatest in superficial layers that decreased with laminar depth, similar to previous observations. Interestingly, the fMRI response strengths in the granule cell layer were greater in awake mice than our previous anesthetized rat studies, suggesting that feedback neural activities were intact with wakefulness. We finally determined that fMRI signal changes to repeated odor exposure (i.e., olfactory adaptation) attenuated relatively more in the feedback granule cell layer compared to the input glomerular layer, which is consistent with prior observations. We, therefore, conclude that high-resolution CBVw fMRI can measure odor-specific activation patterns and distinguish changes in laminar activity of head and body restrained awake mice.
Collapse
Affiliation(s)
- Alexander John Poplawsky
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States.
| | - Christopher Cover
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sujatha Reddy
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States
| | - Harris B Chishti
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alberto Vazquez
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mitsuhiro Fukuda
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States
| |
Collapse
|
14
|
Greene AS, Horien C, Barson D, Scheinost D, Constable RT. Why is everyone talking about brain state? Trends Neurosci 2023; 46:508-524. [PMID: 37164869 PMCID: PMC10330476 DOI: 10.1016/j.tins.2023.04.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 05/12/2023]
Abstract
The rapid and coordinated propagation of neural activity across the brain provides the foundation for complex behavior and cognition. Technical advances across neuroscience subfields have advanced understanding of these dynamics, but points of convergence are often obscured by semantic differences, creating silos of subfield-specific findings. In this review we describe how a parsimonious conceptualization of brain state as the fundamental building block of whole-brain activity offers a common framework to relate findings across scales and species. We present examples of the diverse techniques commonly used to study brain states associated with physiology and higher-order cognitive processes, and discuss how integration across them will enable a more comprehensive and mechanistic characterization of the neural dynamics that are crucial to survival but are disrupted in disease.
Collapse
Affiliation(s)
- Abigail S Greene
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, USA; MD/PhD program, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Corey Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, USA; MD/PhD program, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Daniel Barson
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, USA; MD/PhD program, Yale School of Medicine, New Haven, CT 06520, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA; Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT 06520, USA; Department of Statistics and Data Science, Yale University, New Haven, CT 06511, USA; Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - R Todd Constable
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA; Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT 06520, USA; Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
15
|
Kim S, Moon HS, Vo TT, Kim CH, Im GH, Lee S, Choi M, Kim SG. Whole-brain mapping of effective connectivity by fMRI with cortex-wide patterned optogenetics. Neuron 2023; 111:1732-1747.e6. [PMID: 37001524 DOI: 10.1016/j.neuron.2023.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/23/2022] [Accepted: 03/02/2023] [Indexed: 04/03/2023]
Abstract
Functional magnetic resonance imaging (fMRI) with optogenetic neural manipulation is a powerful tool that enables brain-wide mapping of effective functional networks. To achieve flexible manipulation of neural excitation throughout the mouse cortex, we incorporated spatiotemporal programmable optogenetic stimuli generated by a digital micromirror device into an MRI scanner via an optical fiber bundle. This approach offered versatility in space and time in planning the photostimulation pattern, combined with in situ optical imaging and cell-type-specific or circuit-specific genetic targeting in individual mice. Brain-wide effective connectivity obtained by fMRI with optogenetic stimulation of atlas-based cortical regions is generally congruent with anatomically defined axonal tracing data but is affected by the types of anesthetics that act selectively on specific connections. fMRI combined with flexible optogenetics opens a new path to investigate dynamic changes in functional brain states in the same animal through high-throughput brain-wide effective connectivity mapping.
Collapse
Affiliation(s)
- Seonghoon Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun Seok Moon
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Thanh Tan Vo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Chang-Ho Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Sungho Lee
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Myunghwan Choi
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea.
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
16
|
Nakai N, Sato M, Yamashita O, Sekine Y, Fu X, Nakai J, Zalesky A, Takumi T. Virtual reality-based real-time imaging reveals abnormal cortical dynamics during behavioral transitions in a mouse model of autism. Cell Rep 2023; 42:112258. [PMID: 36990094 DOI: 10.1016/j.celrep.2023.112258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
Functional connectivity (FC) can provide insight into cortical circuit dysfunction in neuropsychiatric disorders. However, dynamic changes in FC related to locomotion with sensory feedback remain to be elucidated. To investigate FC dynamics in locomoting mice, we develop mesoscopic Ca2+ imaging with a virtual reality (VR) environment. We find rapid reorganization of cortical FC in response to changing behavioral states. By using machine learning classification, behavioral states are accurately decoded. We then use our VR-based imaging system to study cortical FC in a mouse model of autism and find that locomotion states are associated with altered FC dynamics. Furthermore, we identify FC patterns involving the motor area as the most distinguishing features of the autism mice from wild-type mice during behavioral transitions, which might correlate with motor clumsiness in individuals with autism. Our VR-based real-time imaging system provides crucial information to understand FC dynamics linked to behavioral abnormality of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Nobuhiro Nakai
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan; Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan
| | - Masaaki Sato
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan; Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Kita, Sapporo 060-8638, Japan.
| | - Okito Yamashita
- RIKEN Center for Advanced Intelligence Project, Chuo, Tokyo 103-0027, Japan; Department of Computational Brain Imaging, ATR Neural Information Analysis Laboratories, Seika, Kyoto 619-0288, Japan
| | - Yukiko Sekine
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Xiaochen Fu
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Junichi Nakai
- Division of Oral Physiology, Department of Disease Management Dentistry, Tohoku University Graduate School of Dentistry, Aoba, Sendai 980-8575, Japan
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre and Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan; Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe 650-0017, Japan; RIKEN Center for Biosystems Dynamics Research, Chuo, Kobe 650-0047, Japan.
| |
Collapse
|
17
|
Xiao Y, Deng P, Zhao Y, Yang S, Li B. Three-photon excited fluorescence imaging in neuroscience: From principles to applications. Front Neurosci 2023; 17:1085682. [PMID: 36891460 PMCID: PMC9986337 DOI: 10.3389/fnins.2023.1085682] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
The development of three-photon microscopy (3PM) has greatly expanded the capability of imaging deep within biological tissues, enabling neuroscientists to visualize the structure and activity of neuronal populations with greater depth than two-photon imaging. In this review, we outline the history and physical principles of 3PM technology. We cover the current techniques for improving the performance of 3PM. Furthermore, we summarize the imaging applications of 3PM for various brain regions and species. Finally, we discuss the future of 3PM applications for neuroscience.
Collapse
Affiliation(s)
| | | | | | | | - Bo Li
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Ministry of Education (MOE), Frontiers Center for Brain Science, Institute for Translational Brain Research, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Brier LM, Culver JP. Open-source statistical and data processing tools for wide-field optical imaging data in mice. NEUROPHOTONICS 2023; 10:016601. [PMID: 36874217 PMCID: PMC9976616 DOI: 10.1117/1.nph.10.1.016601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Significance Wide-field optical imaging (WOI) can produce concurrent hemodynamic and cell-specific calcium recordings across the entire cerebral cortex in animal models. There have been multiple studies using WOI to image mouse models with various environmental or genetic manipulations to understand various diseases. Despite the utility of pursuing mouse WOI alongside human functional magnetic resonance imaging (fMRI), and the multitude of analysis toolboxes in the fMRI literature, there is not an available open-source, user-friendly data processing and statistical analysis toolbox for WOI data. Aim To assemble a MATLAB toolbox for processing WOI data, as described and adapted to combine techniques from multiple WOI groups and fMRI. Approach We outline our MATLAB toolbox on GitHub with multiple data analysis packages and translate a commonly used statistical approach from the fMRI literature to the WOI data. To illustrate the utility of our MATLAB toolbox, we demonstrate the ability of the processing and analysis framework to detect a well-established deficit in a mouse model of stroke and plot activation areas during an electrical paw stimulus experiment. Results Our processing toolbox and statistical methods isolate a somatosensory-based deficit 3 days following photothrombotic stroke and cleanly localize sensory stimulus activations. Conclusions The toolbox presented here details an open-source, user-friendly compilation of WOI processing tools with statistical methods to apply to any biological question investigated with WOI techniques.
Collapse
Affiliation(s)
- Lindsey M. Brier
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
| | - Joseph P. Culver
- Washington University School of Medicine, Department of Radiology, St. Louis, Missouri, United States
- Washington University School of Arts and Science, Department of Physics, St. Louis, Missouri, United States
- Washington University School of Engineering, Department of Biomedical Engineering, St. Louis, Missouri, United States
- Washington University School of Engineering, Department of Electrical and Systems Engineering, St. Louis, Missouri, United States
| |
Collapse
|
19
|
O'Connor D, Mandino F, Shen X, Horien C, Ge X, Herman P, Hyder F, Crair M, Papademetris X, Lake E, Constable RT. Functional network properties derived from wide-field calcium imaging differ with wakefulness and across cell type. Neuroimage 2022; 264:119735. [PMID: 36347441 PMCID: PMC9808917 DOI: 10.1016/j.neuroimage.2022.119735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 11/08/2022] Open
Abstract
To improve 'bench-to-bedside' translation, it is integral that knowledge flows bidirectionally-from animal models to humans, and vice versa. This requires common analytical frameworks, as well as open software and data sharing practices. We share a new pipeline (and test dataset) for the preprocessing of wide-field optical fluorescence imaging data-an emerging mode applicable in animal models-as well as results from a functional connectivity and graph theory analysis inspired by recent work in the human neuroimaging field. The approach is demonstrated using a dataset comprised of two test-cases: (1) data from animals imaged during awake and anesthetized conditions with excitatory neurons labeled, and (2) data from awake animals with different genetically encoded fluorescent labels that target either excitatory neurons or inhibitory interneuron subtypes. Both seed-based connectivity and graph theory measures (global efficiency, transitivity, modularity, and characteristic path-length) are shown to be useful in quantifying differences between wakefulness states and cell populations. Wakefulness state and cell type show widespread effects on canonical network connectivity with variable frequency band dependence. Differences between excitatory neurons and inhibitory interneurons are observed, with somatostatin expressing inhibitory interneurons emerging as notably dissimilar from parvalbumin and vasoactive polypeptide expressing cells. In sum, we demonstrate that our pipeline can be used to examine brain state and cell-type differences in mesoscale imaging data, aiding translational neuroscience efforts. In line with open science practices, we freely release the pipeline and data to encourage other efforts in the community.
Collapse
Affiliation(s)
- D O'Connor
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - F Mandino
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - X Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - C Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - X Ge
- Department of Physiology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - P Herman
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - F Hyder
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - M Crair
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA; Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT, USA
| | - X Papademetris
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Emr Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - R T Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA; Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
20
|
Tsurugizawa T, Kumamoto T, Yoshioka Y. Utilization of potato starch suspension for MR-microimaging in ex vivo mouse embryos. iScience 2022; 25:105694. [PMID: 36567713 PMCID: PMC9768372 DOI: 10.1016/j.isci.2022.105694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/31/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Magnetic resonance (MR) microimaging of the mouse embryo is a promising tool to noninvasively investigate the microstructure of the brain of a developing mouse. The proton-free fluid is used for the liquid surrounding the specimen in MR microimaging, but the potential issue of image quality remains due to the air bubbles on the specimen and the retained water proton in the curvature of the embryo. Furthermore, the specimen may move during the scanning, resulting in motion artifact. Here, we developed the new concept of the ex vivo microimaging protocol with the robust method using the potato starch-containing biological polymers. Potato starch suspension with PBS significantly reduced T1 and T2 signal intensity of the suspension and strongly suppressed the motion of the embryo. Furthermore, potato starch-PBS suspension is stable for long-time scanning at room temperature. These results indicate the utility of potato starch suspension for MR microimaging in mouse embryos.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8568, Japan,Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba 305-8573, Japan,Jikei University School of Medicine, 3-25-8 Nishishinbashi, Tokyo 105-8461, Japan,Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan,Center for Information and Neural Networks (CiNet), Osaka University and National Institute of Information and Communications Technology (NICT), Suita 565-0871, Japan,Corresponding author
| | - Takuma Kumamoto
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoshichika Yoshioka
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan,Center for Information and Neural Networks (CiNet), Osaka University and National Institute of Information and Communications Technology (NICT), Suita 565-0871, Japan,Corresponding author
| |
Collapse
|
21
|
Yang D, Zhao Y, Nie B, An L, Wan X, Wang Y, Wang W, Cai G, Wu S. Progress in magnetic resonance imaging of autism model mice brain. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2022; 13:e1616. [PMID: 35930672 DOI: 10.1002/wcs.1616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/11/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease characterized by social disorder and stereotypical behaviors with an increasing incidence. ASD patients are suffering from varying degrees of mental retardation and language development abnormalities. Magnetic resonance imaging (MRI) is a noninvasive imaging technology to detect brain structural and functional dysfunction in vivo, playing an important role in the early diagnosisbasic research of ASD. High-field, small-animal MRI in basic research of autism model mice has provided a new approach to research the pathogenesis, characteristics, and intervention efficacy in autism. This article reviews MRI studies of mouse models of autism over the past 20 years. Reduced gray matter, abnormal connections of brain networks, and abnormal development of white matter fibers have been demonstrated in these studies, which are present in different proportions in the various mouse models. This provides a more macroscopic view for subsequent research on autism model mice. This article is categorized under: Cognitive Biology > Genes and Environment Neuroscience > Computation Neuroscience > Genes, Molecules, and Cells Neuroscience > Development.
Collapse
Affiliation(s)
- Dingding Yang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yan Zhao
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Leiting An
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xiangdong Wan
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yazhou Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Guohong Cai
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
22
|
Challenges and Perspectives of Mapping Locus Coeruleus Activity in the Rodent with High-Resolution fMRI. Brain Sci 2022; 12:brainsci12081085. [PMID: 36009148 PMCID: PMC9405540 DOI: 10.3390/brainsci12081085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
The locus coeruleus (LC) is one of the most commonly studied brainstem nuclei when investigating brain–behavior associations. The LC serves as a major brainstem relay for both ascending bottom-up and descending top-down projections. Specifically, noradrenergic (NA) LC neurons not only connect globally to higher-order subcortical nuclei and cortex to mediate arousal and attention but also directly project to other brainstem nuclei and to the spinal cord to control autonomic function. Despite the extensive investigation of LC function using electrophysiological recordings and cellular/molecular imaging for both cognitive research and the contribution of LC to different pathological states, the role of neuroimaging to investigate LC function has been restricted. For instance, it remains challenging to identify LC-specific activation with functional MRI (fMRI) in animal models, due to the small size of this nucleus. Here, we discuss the complexity of fMRI applications toward LC activity mapping in mouse brains by highlighting the technological challenges. Further, we introduce a single-vessel fMRI mapping approach to elucidate the vascular specificity of high-resolution fMRI signals coupled to LC activation in the mouse brainstem.
Collapse
|
23
|
Hikosaka M, Kawano T, Wada Y, Maeda T, Sakurai T, Ohtsuki G. Immune-Triggered Forms of Plasticity Across Brain Regions. Front Cell Neurosci 2022; 16:925493. [PMID: 35978857 PMCID: PMC9376917 DOI: 10.3389/fncel.2022.925493] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/16/2022] [Indexed: 01/03/2023] Open
Abstract
Immune cells play numerous roles in the host defense against the invasion of microorganisms and pathogens, which induces the release of inflammatory mediators (e.g., cytokines and chemokines). In the CNS, microglia is the major resident immune cell. Recent efforts have revealed the diversity of the cell types and the heterogeneity of their functions. The refinement of the synapse structure was a hallmark feature of the microglia, while they are also involved in the myelination and capillary dynamics. Another promising feature is the modulation of the synaptic transmission as synaptic plasticity and the intrinsic excitability of neurons as non-synaptic plasticity. Those modulations of physiological properties of neurons are considered induced by both transient and chronic exposures to inflammatory mediators, which cause behavioral disorders seen in mental illness. It is plausible for astrocytes and pericytes other than microglia and macrophage to induce the immune-triggered plasticity of neurons. However, current understanding has yet achieved to unveil what inflammatory mediators from what immune cells or glia induce a form of plasticity modulating pre-, post-synaptic functions and intrinsic excitability of neurons. It is still unclear what ion channels and intracellular signaling of what types of neurons in which brain regions of the CNS are involved. In this review, we introduce the ubiquitous modulation of the synaptic efficacy and the intrinsic excitability across the brain by immune cells and related inflammatory cytokines with the mechanism for induction. Specifically, we compare neuro-modulation mechanisms by microglia of the intrinsic excitability of cerebellar Purkinje neurons with cerebral pyramidal neurons, stressing the inverted directionality of the plasticity. We also discuss the suppression and augmentation of the extent of plasticity by inflammatory mediators, as the meta-plasticity by immunity. Lastly, we sum up forms of immune-triggered plasticity in the different brain regions with disease relevance. Together, brain immunity influences our cognition, sense, memory, and behavior via immune-triggered plasticity.
Collapse
Affiliation(s)
| | | | | | | | | | - Gen Ohtsuki
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
24
|
Zeng H, Jiang Y, Beer-Hammer S, Yu X. Awake Mouse fMRI and Pupillary Recordings in the Ultra-High Magnetic Field. Front Neurosci 2022; 16:886709. [PMID: 35903811 PMCID: PMC9318598 DOI: 10.3389/fnins.2022.886709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
Awake rodent fMRI is becoming a promising non-invasive brain imaging module when investigating large-scale brain function given behavioral tasks. Previous studies have either applied sedatives during scanning or pre-treatment of anesthetics, e.g., isoflurane, to reduce the motion of animals, which could confound the brain function of "awake" states in rodents. Here, we have established a long training awake mouse fMRI-pupillometry paradigm/setup without the initial use of anesthesia. To validate the awake mouse fMRI platform, evoked BOLD-fMRI was performed to identify brain activation in the visual cortex, dorsal lateral geniculate nuclei, and superior colliculus. Furthermore, pupil signal fluctuation was investigated during scanning, showing a less dilated pupil after 5-8 weeks of intermittent training. Thus, using the awake mouse fMRI with real-time pupillometry provides a longitudinal functional mapping tool to study fully conscious mice.
Collapse
Affiliation(s)
- Hang Zeng
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tuebingen, Tuebingen, Germany
| | - Yuanyuan Jiang
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, United States
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy, and Toxicology, Interfaculty Center of Pharmacogenomics and Drug Research (ICePhA), University of Tüebingen, Tübingen, Germany
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, United States
| |
Collapse
|
25
|
Lindhardt TB, Gutiérrez-Jiménez E, Liang Z, Hansen B. Male and Female C57BL/6 Mice Respond Differently to Awake Magnetic Resonance Imaging Habituation. Front Neurosci 2022; 16:853527. [PMID: 35757553 PMCID: PMC9226328 DOI: 10.3389/fnins.2022.853527] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/18/2022] [Indexed: 01/20/2023] Open
Abstract
Traditionally, preclinical magnetic resonance imaging (MRI) has been performed in anesthetized animals. However, anesthesia has been shown to perturb normal brain function and physiology. Such effects limit our ability to detect subtle physiological alterations in disease models and treatment studies, thus hampering discovery and compromising generality of findings. Therefore, methods for awake animal MRI are needed to study the rodent brain in its natural physiological state, free of anesthetics. Current setups for awake animal MRI rely on restraining systems to avoid animal movement during scanning. To reduce restraint stress, animals are habituated to the scanner environment prior to MRI data collection. To date, however, most awake MRI studies employ male rodents only. This is a fundamental limitation as results obtained may be pertinent only to half of the population. We characterized training and habituation responses of male and female mice to provide improved, sex-dependent training procedures for awake mouse MRI. We recorded heart rate, monitored behavioral responses (body weight and fecal boli weight) and fecal corticosterone levels (FCM) as indicators of wellbeing and stress during a 14-day progressive habituation protocol. In addition, we also assessed discomfort levels and anxiety using the mouse grimace scale (MGS) and light/dark test (LDT), respectively. All scores were compared between both groups. We found that heart rate was significantly decreased after 10 and 11 days of training for both males and females, respectively. However, the specific time course for this decrease was significantly different between males and females, and females exhibited higher anxiety levels during habituation and 14 days after habituation than males. Lastly, we also found that mean FCM levels for both groups were decreased after 11 days of MRI habituation. The present work shows that mice can be successfully trained for extended MRI sessions which is necessary for many (particularly non-fMRI) studies. Importantly, we find that males and females differ in their response to awake MRI habituation, which should be considered in future awake MRI studies that aim to include male and female mice.
Collapse
Affiliation(s)
- Thomas Beck Lindhardt
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Eugenio Gutiérrez-Jiménez
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Zhifeng Liang
- CAS Center for Excellence in Brain Sciences and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Brian Hansen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
26
|
Winkelmeier L, Filosa C, Hartig R, Scheller M, Sack M, Reinwald JR, Becker R, Wolf D, Gerchen MF, Sartorius A, Meyer-Lindenberg A, Weber-Fahr W, Clemm von Hohenberg C, Russo E, Kelsch W. Striatal hub of dynamic and stabilized prediction coding in forebrain networks for olfactory reinforcement learning. Nat Commun 2022; 13:3305. [PMID: 35676281 PMCID: PMC9177857 DOI: 10.1038/s41467-022-30978-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Identifying the circuits responsible for cognition and understanding their embedded computations is a challenge for neuroscience. We establish here a hierarchical cross-scale approach, from behavioral modeling and fMRI in task-performing mice to cellular recordings, in order to disentangle local network contributions to olfactory reinforcement learning. At mesoscale, fMRI identifies a functional olfactory-striatal network interacting dynamically with higher-order cortices. While primary olfactory cortices respectively contribute only some value components, the downstream olfactory tubercle of the ventral striatum expresses comprehensively reward prediction, its dynamic updating, and prediction error components. In the tubercle, recordings reveal two underlying neuronal populations with non-redundant reward prediction coding schemes. One population collectively produces stabilized predictions as distributed activity across neurons; in the other, neurons encode value individually and dynamically integrate the recent history of uncertain outcomes. These findings validate a cross-scale approach to mechanistic investigations of higher cognitive functions in rodents. Where and how the brain learns from experience is not fully understood. Here the authors use a hierarchical approach from behavioural modelling to systems fMRI to cellular coding reveals brain mechanisms for history informed updating of future predictions.
Collapse
Affiliation(s)
- Laurens Winkelmeier
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Carla Filosa
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Renée Hartig
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Max Scheller
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Markus Sack
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Jonathan R Reinwald
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Robert Becker
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - David Wolf
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Martin Fungisai Gerchen
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Alexander Sartorius
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Wolfgang Weber-Fahr
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | | | - Eleonora Russo
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Wolfgang Kelsch
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany. .,Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany.
| |
Collapse
|
27
|
Chung C, Shin W, Kim E. Early and Late Corrections in Mouse Models of Autism Spectrum Disorder. Biol Psychiatry 2022; 91:934-944. [PMID: 34556257 DOI: 10.1016/j.biopsych.2021.07.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/18/2021] [Accepted: 07/21/2021] [Indexed: 12/18/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and repetitive symptoms. A key feature of ASD is early-life manifestations of symptoms, indicative of early pathophysiological mechanisms. In mouse models of ASD, increasing evidence indicates that there are early pathophysiological mechanisms that can be corrected early to prevent phenotypic defects in adults, overcoming the disadvantage of the short-lasting effects that characterize adult-initiated treatments. In addition, the results from gene restorations indicate that ASD-related phenotypes can be rescued in some cases even after the brain has fully matured. These results suggest that we need to consider both temporal and mechanistic aspects in studies of ASD models and carefully compare genetic and nongenetic corrections. Here, we summarize the early and late corrections in mouse models of ASD by genetic and pharmacological interventions and discuss how to better integrate these results to ensure efficient and long-lasting corrections for eventual clinical translation.
Collapse
Affiliation(s)
- Changuk Chung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea; Department of Neurosciences, University of California San Diego, La Jolla, California
| | - Wangyong Shin
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea; Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
28
|
Tsurugizawa T. Translational Magnetic Resonance Imaging in Autism Spectrum Disorder From the Mouse Model to Human. Front Neurosci 2022; 16:872036. [PMID: 35585926 PMCID: PMC9108701 DOI: 10.3389/fnins.2022.872036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/30/2022] [Indexed: 11/26/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous syndrome characterized by behavioral features such as impaired social communication, repetitive behavior patterns, and a lack of interest in novel objects. A multimodal neuroimaging using magnetic resonance imaging (MRI) in patients with ASD shows highly heterogeneous abnormalities in function and structure in the brain associated with specific behavioral features. To elucidate the mechanism of ASD, several ASD mouse models have been generated, by focusing on some of the ASD risk genes. A specific behavioral feature of an ASD mouse model is caused by an altered gene expression or a modification of a gene product. Using these mouse models, a high field preclinical MRI enables us to non-invasively investigate the neuronal mechanism of the altered brain function associated with the behavior and ASD risk genes. Thus, MRI is a promising translational approach to bridge the gap between mice and humans. This review presents the evidence for multimodal MRI, including functional MRI (fMRI), diffusion tensor imaging (DTI), and volumetric analysis, in ASD mouse models and in patients with ASD and discusses the future directions for the translational study of ASD.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Faculty of Engineering, University of Tsukuba, Tsukuba, Japan
- *Correspondence: Tomokazu Tsurugizawa,
| |
Collapse
|
29
|
Ren W, Ji B, Guan Y, Cao L, Ni R. Recent Technical Advances in Accelerating the Clinical Translation of Small Animal Brain Imaging: Hybrid Imaging, Deep Learning, and Transcriptomics. Front Med (Lausanne) 2022; 9:771982. [PMID: 35402436 PMCID: PMC8987112 DOI: 10.3389/fmed.2022.771982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/16/2022] [Indexed: 12/26/2022] Open
Abstract
Small animal models play a fundamental role in brain research by deepening the understanding of the physiological functions and mechanisms underlying brain disorders and are thus essential in the development of therapeutic and diagnostic imaging tracers targeting the central nervous system. Advances in structural, functional, and molecular imaging using MRI, PET, fluorescence imaging, and optoacoustic imaging have enabled the interrogation of the rodent brain across a large temporal and spatial resolution scale in a non-invasively manner. However, there are still several major gaps in translating from preclinical brain imaging to the clinical setting. The hindering factors include the following: (1) intrinsic differences between biological species regarding brain size, cell type, protein expression level, and metabolism level and (2) imaging technical barriers regarding the interpretation of image contrast and limited spatiotemporal resolution. To mitigate these factors, single-cell transcriptomics and measures to identify the cellular source of PET tracers have been developed. Meanwhile, hybrid imaging techniques that provide highly complementary anatomical and molecular information are emerging. Furthermore, deep learning-based image analysis has been developed to enhance the quantification and optimization of the imaging protocol. In this mini-review, we summarize the recent developments in small animal neuroimaging toward improved translational power, with a focus on technical improvement including hybrid imaging, data processing, transcriptomics, awake animal imaging, and on-chip pharmacokinetics. We also discuss outstanding challenges in standardization and considerations toward increasing translational power and propose future outlooks.
Collapse
Affiliation(s)
- Wuwei Ren
- School of Information Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Cao
- Shanghai Changes Tech, Ltd., Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zürich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Yang D, Tao H, Ge H, Li Z, Hu Y, Meng J. Altered Processing of Social Emotions in Individuals With Autistic Traits. Front Psychol 2022; 13:746192. [PMID: 35310287 PMCID: PMC8931733 DOI: 10.3389/fpsyg.2022.746192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/28/2022] [Indexed: 11/20/2022] Open
Abstract
Social impairment is a defining phenotypic feature of autism. The present study investigated whether individuals with autistic traits exhibit altered perceptions of social emotions. Two groups of participants (High-AQ and Low-AQ) were recruited based on their scores on the autism-spectrum quotient (AQ). Their behavioral responses and event-related potentials (ERPs) elicited by social and non-social stimuli with positive, negative, and neutral emotional valence were compared in two experiments. In Experiment 1, participants were instructed to view social-emotional and non-social emotional pictures. In Experiment 2, participants were instructed to listen to social-emotional and non-social emotional audio recordings. More negative emotional reactions and smaller amplitudes of late ERP components (the late positive potential in Experiment 1 and the late negative component in Experiment 2) were found in the High-AQ group than in the Low-AQ group in response to the social-negative stimuli. In addition, amplitudes of these late ERP components in both experiments elicited in response to social-negative stimuli were correlated with the AQ scores of the High-AQ group. These results suggest that individuals with autistic traits have altered emotional processing of social-negative emotions.
Collapse
Affiliation(s)
- Di Yang
- Key Laboratory of Applied Psychology, Chongqing Normal University, Chongqing, China.,School of Education, Chongqing Normal University, Chongqing, China.,Key Laboratory of Emotion and Mental Health, Chongqing University of Arts and Sciences, Chongqing, China
| | - Hengheng Tao
- Key Laboratory of Applied Psychology, Chongqing Normal University, Chongqing, China.,School of Education, Chongqing Normal University, Chongqing, China
| | - Hongxin Ge
- Key Laboratory of Applied Psychology, Chongqing Normal University, Chongqing, China.,School of Education, Chongqing Normal University, Chongqing, China
| | - Zuoshan Li
- Key Laboratory of Applied Psychology, Chongqing Normal University, Chongqing, China.,School of Education, Chongqing Normal University, Chongqing, China
| | - Yuanyan Hu
- Key Laboratory of Emotion and Mental Health, Chongqing University of Arts and Sciences, Chongqing, China
| | - Jing Meng
- Key Laboratory of Applied Psychology, Chongqing Normal University, Chongqing, China.,School of Education, Chongqing Normal University, Chongqing, China
| |
Collapse
|
31
|
Xu N, LaGrow TJ, Anumba N, Lee A, Zhang X, Yousefi B, Bassil Y, Clavijo GP, Khalilzad Sharghi V, Maltbie E, Meyer-Baese L, Nezafati M, Pan WJ, Keilholz S. Functional Connectivity of the Brain Across Rodents and Humans. Front Neurosci 2022; 16:816331. [PMID: 35350561 PMCID: PMC8957796 DOI: 10.3389/fnins.2022.816331] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/14/2022] [Indexed: 12/15/2022] Open
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI), which measures the spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signal, is increasingly utilized for the investigation of the brain's physiological and pathological functional activity. Rodents, as a typical animal model in neuroscience, play an important role in the studies that examine the neuronal processes that underpin the spontaneous fluctuations in the BOLD signal and the functional connectivity that results. Translating this knowledge from rodents to humans requires a basic knowledge of the similarities and differences across species in terms of both the BOLD signal fluctuations and the resulting functional connectivity. This review begins by examining similarities and differences in anatomical features, acquisition parameters, and preprocessing techniques, as factors that contribute to functional connectivity. Homologous functional networks are compared across species, and aspects of the BOLD fluctuations such as the topography of the global signal and the relationship between structural and functional connectivity are examined. Time-varying features of functional connectivity, obtained by sliding windowed approaches, quasi-periodic patterns, and coactivation patterns, are compared across species. Applications demonstrating the use of rs-fMRI as a translational tool for cross-species analysis are discussed, with an emphasis on neurological and psychiatric disorders. Finally, open questions are presented to encapsulate the future direction of the field.
Collapse
Affiliation(s)
- Nan Xu
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Theodore J. LaGrow
- Electrical and Computer Engineering, Georgia Tech, Atlanta, GA, United States
| | - Nmachi Anumba
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Azalea Lee
- Neuroscience Graduate Program, Emory University, Atlanta, GA, United States
- Emory University School of Medicine, Atlanta, GA, United States
| | - Xiaodi Zhang
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Behnaz Yousefi
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Yasmine Bassil
- Neuroscience Graduate Program, Emory University, Atlanta, GA, United States
| | - Gloria P. Clavijo
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | | | - Eric Maltbie
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Lisa Meyer-Baese
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Maysam Nezafati
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Wen-Ju Pan
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
| | - Shella Keilholz
- Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, United States
- Neuroscience Graduate Program, Emory University, Atlanta, GA, United States
| |
Collapse
|
32
|
Manno FAM, Kumar R, An Z, Khan MS, Su J, Liu J, Wu EX, He J, Feng Y, Lau C. Structural and Functional Hippocampal Correlations in Environmental Enrichment During the Adolescent to Adulthood Transition in Mice. Front Syst Neurosci 2022; 15:807297. [PMID: 35242015 PMCID: PMC8886042 DOI: 10.3389/fnsys.2021.807297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/14/2021] [Indexed: 01/13/2023] Open
Abstract
Environmental enrichment is known to induce neuronal changes; however, the underlying structural and functional factors involved are not fully known and remain an active area of study. To investigate these factors, we assessed enriched environment (EE) and standard environment (SE) control mice over 30 days using structural and functional MRI methods. Naïve adult male mice (n = 30, ≈20 g, C57BL/B6J, postnatal day 60 initial scan) were divided into SE and EE groups and scanned before and after 30 days. Structural analyses included volumetry based on manual segmentation as well as diffusion tensor imaging (DTI). Functional analyses included seed-based analysis (SBA), independent component analysis (ICA), the amplitude of low-frequency fluctuation (ALFF), and fractional ALFF (fALFF). Structural results indicated that environmental enrichment led to an increase in the volumes of cornu ammonis 1 (CA1) and dentate gyrus. Structural results indicated changes in radial diffusivity and mean diffusivity in the visual cortex and secondary somatosensory cortex after EE. Furthermore, SBA and ICA indicated an increase in resting-state functional MRI (rsfMRI) functional connectivity in the hippocampus. Using parallel structural and functional analyses, we have demonstrated coexistent structural and functional changes in the hippocampal subdivision CA1. Future research should map alterations temporally during environmental enrichment to investigate the initiation of these structural and functional changes.
Collapse
Affiliation(s)
- Francis A M Manno
- Center for Imaging Science, Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States.,Department of Physics, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Rachit Kumar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Medical Scientist Training Program, University of Pennsylvania, Philadelphia, PA, United States
| | - Ziqi An
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Muhammad Shehzad Khan
- Department of Physics, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Junfeng Su
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Jiaming Liu
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Ed X Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong SAR, China.,Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jufang He
- Department of Neuroscience, City University of Hong Kong, Hong Kong, Hong Kong SAR, China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yanqiu Feng
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Condon Lau
- Department of Physics, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
33
|
Ni R. Magnetic Resonance Imaging in Tauopathy Animal Models. Front Aging Neurosci 2022; 13:791679. [PMID: 35145392 PMCID: PMC8821905 DOI: 10.3389/fnagi.2021.791679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
The microtubule-associated protein tau plays an important role in tauopathic diseases such as Alzheimer's disease and primary tauopathies such as progressive supranuclear palsy and corticobasal degeneration. Tauopathy animal models, such as transgenic, knock-in mouse and rat models, recapitulating tauopathy have facilitated the understanding of disease mechanisms. Aberrant accumulation of hyperphosphorylated tau contributes to synaptic deficits, neuroinflammation, and neurodegeneration, leading to cognitive impairment in animal models. Recent advances in molecular imaging using positron emission tomography (PET) and magnetic resonance imaging (MRI) have provided valuable insights into the time course of disease pathophysiology in tauopathy animal models. High-field MRI has been applied for in vivo imaging in animal models of tauopathy, including diffusion tensor imaging for white matter integrity, arterial spin labeling for cerebral blood flow, resting-state functional MRI for functional connectivity, volumetric MRI for neurodegeneration, and MR spectroscopy. In addition, MR contrast agents for non-invasive imaging of tau have been developed recently. Many preclinical MRI indicators offer excellent translational value and provide a blueprint for clinical MRI in the brains of patients with tauopathies. In this review, we summarized the recent advances in using MRI to visualize the pathophysiology of tauopathy in small animals. We discussed the outstanding challenges in brain imaging using MRI in small animals and propose a future outlook for visualizing tau-related alterations in the brains of animal models.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
34
|
Piszczek L, Constantinescu A, Kargl D, Lazovic J, Pekcec A, Nicholson JR, Haubensak W. Dissociation of impulsive traits by subthalamic metabotropic glutamate receptor 4. eLife 2022; 11:62123. [PMID: 34982027 PMCID: PMC8803315 DOI: 10.7554/elife.62123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/31/2021] [Indexed: 11/17/2022] Open
Abstract
Behavioral strategies require gating of premature responses to optimize outcomes. Several brain areas control impulsive actions, but the neuronal basis of natural variation in impulsivity between individuals remains largely unknown. Here, by combining a Go/No-Go behavioral assay with resting-state (rs) functional MRI in mice, we identified the subthalamic nucleus (STN), a known gate for motor control in the basal ganglia, as a major hotspot for trait impulsivity. In vivo recorded STN neural activity encoded impulsive action as a separable state from basic motor control, characterized by decoupled STN/substantia nigra pars reticulata (SNr) mesoscale networks. Optogenetic modulation of STN activity bidirectionally controlled impulsive behavior. Pharmacological and genetic manipulations showed that these impulsive actions are modulated by metabotropic glutamate receptor 4 (mGlu4) function in STN and its coupling to SNr in a behavioral trait-dependent manner, and independently of general motor function. In conclusion, STN circuitry multiplexes motor control and trait impulsivity, which are molecularly dissociated by mGlu4. This provides a potential mechanism for the genetic modulation of impulsive behavior, a clinically relevant predictor for developing psychiatric disorders associated with impulsivity.
Collapse
Affiliation(s)
- Lukasz Piszczek
- The Research Institute of Molecular Pathology (IMP), Department of Neuroscience, Vienna Biocenter, Vienna, Austria
| | - Andreea Constantinescu
- The Research Institute of Molecular Pathology (IMP), Department of Neuroscience, Vienna Biocenter, Vienna, Austria
| | - Dominic Kargl
- The Research Institute of Molecular Pathology (IMP), Department of Neuroscience, Vienna Biocenter, Vienna, Austria.,Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Jelena Lazovic
- Preclinical Imaging Facility, Vienna BioCenter Core Facilities (VBCF), Vienna, Austria
| | - Anton Pekcec
- Div Research Germany, Boehringer Ingelheim, Biberach an der Riss, Germany
| | - Janet R Nicholson
- Div Research Germany, Boehringer Ingelheim, Biberach an der Riss, Germany
| | - Wulf Haubensak
- The Research Institute of Molecular Pathology (IMP), Department of Neuroscience, Vienna Biocenter, Vienna, Austria.,Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
35
|
Van der Linden A, Hoehn M. Monitoring Neuronal Network Disturbances of Brain Diseases: A Preclinical MRI Approach in the Rodent Brain. Front Cell Neurosci 2022; 15:815552. [PMID: 35046778 PMCID: PMC8761853 DOI: 10.3389/fncel.2021.815552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Functional and structural neuronal networks, as recorded by resting-state functional MRI and diffusion MRI-based tractography, gain increasing attention as data driven whole brain imaging methods not limited to the foci of the primary pathology or the known key affected regions but permitting to characterize the entire network response of the brain after disease or injury. Their connectome contents thus provide information on distal brain areas, directly or indirectly affected by and interacting with the primary pathological event or affected regions. From such information, a better understanding of the dynamics of disease progression is expected. Furthermore, observation of the brain's spontaneous or treatment-induced improvement will contribute to unravel the underlying mechanisms of plasticity and recovery across the whole-brain networks. In the present review, we discuss the values of functional and structural network information derived from systematic and controlled experimentation using clinically relevant animal models. We focus on rodent models of the cerebral diseases with high impact on social burdens, namely, neurodegeneration, and stroke.
Collapse
Affiliation(s)
- Annemie Van der Linden
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Mathias Hoehn
- Research Center Jülich, Institute 3 for Neuroscience and Medicine, Jülich, Germany
- *Correspondence: Mathias Hoehn
| |
Collapse
|
36
|
Maly IV, Morales MJ, Pletnikov MV. Astrocyte Bioenergetics and Major Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:173-227. [PMID: 34888836 DOI: 10.1007/978-3-030-77375-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ongoing research continues to add new elements to the emerging picture of involvement of astrocyte energy metabolism in the pathophysiology of major psychiatric disorders, including schizophrenia, mood disorders, and addictions. This review outlines what is known about the energy metabolism in astrocytes, the most numerous cell type in the brain, and summarizes the recent work on how specific perturbations of astrocyte bioenergetics may contribute to the neuropsychiatric conditions. The role of astrocyte energy metabolism in mental health and disease is reviewed on the organism, organ, and cell level. Data arising from genomic, metabolomic, in vitro, and neurobehavioral studies is critically analyzed to suggest future directions in research and possible metabolism-focused therapeutic interventions.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Michael J Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
37
|
Potential of Multiscale Astrocyte Imaging for Revealing Mechanisms Underlying Neurodevelopmental Disorders. Int J Mol Sci 2021; 22:ijms221910312. [PMID: 34638653 PMCID: PMC8508625 DOI: 10.3390/ijms221910312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/18/2023] Open
Abstract
Astrocytes provide trophic and metabolic support to neurons and modulate circuit formation during development. In addition, astrocytes help maintain neuronal homeostasis through neurovascular coupling, blood-brain barrier maintenance, clearance of metabolites and nonfunctional proteins via the glymphatic system, extracellular potassium buffering, and regulation of synaptic activity. Thus, astrocyte dysfunction may contribute to a myriad of neurological disorders. Indeed, astrocyte dysfunction during development has been implicated in Rett disease, Alexander's disease, epilepsy, and autism, among other disorders. Numerous disease model mice have been established to investigate these diseases, but important preclinical findings on etiology and pathophysiology have not translated into clinical interventions. A multidisciplinary approach is required to elucidate the mechanism of these diseases because astrocyte dysfunction can result in altered neuronal connectivity, morphology, and activity. Recent progress in neuroimaging techniques has enabled noninvasive investigations of brain structure and function at multiple spatiotemporal scales, and these technologies are expected to facilitate the translation of preclinical findings to clinical studies and ultimately to clinical trials. Here, we review recent progress on astrocyte contributions to neurodevelopmental and neuropsychiatric disorders revealed using novel imaging techniques, from microscopy scale to mesoscopic scale.
Collapse
|
38
|
Impact of anesthesia on static and dynamic functional connectivity in mice. Neuroimage 2021; 241:118413. [PMID: 34293463 DOI: 10.1016/j.neuroimage.2021.118413] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022] Open
Abstract
A few studies have compared the static functional connectivity between awake and lightly anesthetized states in rodents by resting-state fMRI. However, impact of light anesthesia on static and dynamic fluctuations in functional connectivity has not been fully understood. Here, we developed a resting-state fMRI protocol to perform awake and anesthetized functional MRI in the same mice. Static functional connectivity showed a widespread decrease under light anesthesia, such as when under isoflurane or a mixture of isoflurane and medetomidine. Several interhemispheric and subcortical connections were key connections for anesthetized condition from awake state. Dynamic functional connectivity demonstrates the shift from frequent broad connections across the cortex, the hypothalamus, and the auditory-visual cortex to frequent local connections within the cortex only under light anesthesia compared with awake state. Fractional amplitude of low frequency fluctuation in the thalamic nuclei decreased under both anesthesia. These results indicate that typical anesthetics for functional MRI alters the spatiotemporal profile of the dynamic brain network in subcortical regions, including the thalamic nuclei and limbic system.
Collapse
|
39
|
Tamada K, Fukumoto K, Toya T, Nakai N, Awasthi JR, Tanaka S, Okabe S, Spitz F, Saitow F, Suzuki H, Takumi T. Genetic dissection identifies Necdin as a driver gene in a mouse model of paternal 15q duplications. Nat Commun 2021; 12:4056. [PMID: 34210967 PMCID: PMC8249516 DOI: 10.1038/s41467-021-24359-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Maternally inherited duplication of chromosome 15q11-q13 (Dup15q) is a pathogenic copy number variation (CNV) associated with autism spectrum disorder (ASD). Recently, paternally derived duplication has also been shown to contribute to the development of ASD. The molecular mechanism underlying paternal Dup15q remains unclear. Here, we conduct genetic and overexpression-based screening and identify Necdin (Ndn) as a driver gene for paternal Dup15q resulting in the development of ASD-like phenotypes in mice. An excess amount of Ndn results in enhanced spine formation and density as well as hyperexcitability of cortical pyramidal neurons. We generate 15q dupΔNdn mice with a normalized copy number of Ndn by excising its one copy from Dup15q mice using a CRISPR-Cas9 system. 15q dupΔNdn mice do not show ASD-like phenotypes and show dendritic spine dynamics and cortical excitatory-inhibitory balance similar to wild type animals. Our study provides an insight into the role of Ndn in paternal 15q duplication and a mouse model of paternal Dup15q syndrome.
Collapse
Affiliation(s)
- Kota Tamada
- grid.474690.8RIKEN Brain Science Institute, Wako, Saitama, Japan ,grid.257022.00000 0000 8711 3200Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan ,grid.31432.370000 0001 1092 3077Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, Japan
| | - Keita Fukumoto
- grid.474690.8RIKEN Brain Science Institute, Wako, Saitama, Japan ,grid.257022.00000 0000 8711 3200Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan
| | - Tsuyoshi Toya
- grid.474690.8RIKEN Brain Science Institute, Wako, Saitama, Japan ,grid.26091.3c0000 0004 1936 9959Graduate School of Pharmaceutical Sciences, Keio University, Minato, Tokyo, Japan
| | - Nobuhiro Nakai
- grid.474690.8RIKEN Brain Science Institute, Wako, Saitama, Japan ,grid.257022.00000 0000 8711 3200Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan ,grid.31432.370000 0001 1092 3077Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, Japan
| | - Janak R. Awasthi
- grid.474690.8RIKEN Brain Science Institute, Wako, Saitama, Japan ,grid.263023.60000 0001 0703 3735Graduate School of Science and Engineering, Saitama University, Sakura, Saitama, Japan
| | - Shinji Tanaka
- grid.26999.3d0000 0001 2151 536XDepartment of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Shigeo Okabe
- grid.26999.3d0000 0001 2151 536XDepartment of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - François Spitz
- grid.170205.10000 0004 1936 7822Department of Human Genetics, University of Chicago, Chicago, IL USA
| | - Fumihito Saitow
- grid.410821.e0000 0001 2173 8328Department of Pharmacology, Garduate School of Medicine, Nippon Medical School, Bunkyo, Tokyo, Japan
| | - Hidenori Suzuki
- grid.410821.e0000 0001 2173 8328Department of Pharmacology, Garduate School of Medicine, Nippon Medical School, Bunkyo, Tokyo, Japan
| | - Toru Takumi
- grid.474690.8RIKEN Brain Science Institute, Wako, Saitama, Japan ,grid.257022.00000 0000 8711 3200Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan ,grid.31432.370000 0001 1092 3077Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, Japan ,grid.263023.60000 0001 0703 3735Graduate School of Science and Engineering, Saitama University, Sakura, Saitama, Japan
| |
Collapse
|
40
|
Tsurugizawa T, Tamada K, Debacker C, Zalesky A, Takumi T. Cranioplastic Surgery and Acclimation Training for Awake Mouse fMRI. Bio Protoc 2021; 11:e3972. [PMID: 33889666 DOI: 10.21769/bioprotoc.3972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/02/2022] Open
Abstract
MRI is a promising tool for translational research to link brain function and structure in animal models of disease to patients with neuropsychiatric disorders. However, given that mouse functional MRI (fMRI) typically relies on anesthetics to suppress head motion and physiological noise, it has been difficult to directly compare brain fMRI in anesthetized mice with that in conscious patients. Here, we developed a new system to acquire fMRI in awake mice, which includes a head positioner and dedicated radio frequency coil. The system was used to investigate functional brain networks in conscious mice, with the goal of enabling future studies to bridge fMRI of disease model animals with human fMRI. Cranioplastic surgery was performed to affix the head mount and the cupped-hand handling method was performed to minimize stress during MRI scanning. Here we describe the new mouse fMRI system, cranioplastic surgery and acclimation protocol. Graphic abstract: Awake fMRI system to investigate the neuronal activity in awaked mice.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba-City, Ibaraki, Japan.,NeuroSpin/CEA-Saclay, Gif-sur-Yvette, France
| | - Kota Tamada
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, Japan.,RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Clement Debacker
- Université de Paris, Sorbonne Paris Cité, Paris, France.,Inserm, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre and Department of Biomedical Engineering, The University of Melbourne, Victoria, Australia
| | - Toru Takumi
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, Japan.,RIKEN Brain Science Institute, Wako, Saitama, Japan
| |
Collapse
|
41
|
Claron J, Hingot V, Rivals I, Rahal L, Couture O, Deffieux T, Tanter M, Pezet S. Large-scale functional ultrasound imaging of the spinal cord reveals in-depth spatiotemporal responses of spinal nociceptive circuits in both normal and inflammatory states. Pain 2021; 162:1047-1059. [PMID: 32947542 PMCID: PMC7977620 DOI: 10.1097/j.pain.0000000000002078] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/28/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
Despite a century of research on the physiology/pathophysiology of the spinal cord in chronic pain condition, the properties of the spinal cord were rarely studied at the large-scale level from a neurovascular point of view. This is mostly due to the limited spatial and/or temporal resolution of the available techniques. Functional ultrasound imaging (fUS) is an emerging neuroimaging approach that allows, through the measurement of cerebral blood volume, the study of brain functional connectivity or functional activations with excellent spatial (100 μm) and temporal (1 msec) resolutions and a high sensitivity. The aim of this study was to increase our understanding of the spinal cord physiology through the study of the properties of spinal hemodynamic response to the natural or electrical stimulation of afferent fibers. Using a combination of fUS and ultrasound localization microscopy, the first step of this study was the fine description of the vascular structures in the rat spinal cord. Then, using either natural or electrical stimulations of different categories of afferent fibers (Aβ, Aδ, and C fibers), we could define the characteristics of the typical hemodynamic response of the rat spinal cord experimentally. We showed that the responses are fiber-specific, located ipsilaterally in the dorsal horn, and that they follow the somatotopy of afferent fiber entries in the dorsal horn and that the C-fiber response is an N-methyl-D-aspartate receptor-dependent mechanism. Finally, fUS imaging of the mesoscopic hemodynamic response induced by natural tactile stimulations revealed a potentiated response in inflammatory condition, suggesting an enhanced response to allodynic stimulations.
Collapse
Affiliation(s)
- Julien Claron
- Laboratory of Brain Plasticity, ESPCI Paris, PSL Research University, CNRS UMR 8249, Paris, France
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research, University, Paris, France
| | - Vincent Hingot
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research, University, Paris, France
| | - Isabelle Rivals
- Equipe de Statistique Appliquée, ESPCI Paris, PSL Research University, CNRS UMRS 1158, Paris, France
| | - Line Rahal
- Laboratory of Brain Plasticity, ESPCI Paris, PSL Research University, CNRS UMR 8249, Paris, France
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research, University, Paris, France
| | - Olivier Couture
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research, University, Paris, France
| | - Thomas Deffieux
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research, University, Paris, France
| | - Mickael Tanter
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research, University, Paris, France
| | - Sophie Pezet
- Laboratory of Brain Plasticity, ESPCI Paris, PSL Research University, CNRS UMR 8249, Paris, France
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research, University, Paris, France
| |
Collapse
|
42
|
Cover CG, Kesner AJ, Ukani S, Stein EA, Ikemoto S, Yang Y, Lu H. Whole brain dynamics during optogenetic self-stimulation of the medial prefrontal cortex in mice. Commun Biol 2021; 4:66. [PMID: 33446857 PMCID: PMC7809041 DOI: 10.1038/s42003-020-01612-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/01/2020] [Indexed: 11/08/2022] Open
Abstract
Intracranial self-stimulation, in which an animal performs an operant response to receive regional brain electrical stimulation, is a widely used procedure to study motivated behavior. While local neuronal activity has long been measured immediately before or after the operant, imaging the whole brain in real-time remains a challenge. Herein we report a method that permits functional MRI (fMRI) of brain dynamics while mice are cued to perform an operant task: licking a spout to receive optogenetic stimulation to the medial prefrontal cortex (MPFC) during a cue ON, but not cue OFF. Licking during cue ON results in activation of a widely distributed network consistent with underlying MPFC projections, while licking during cue OFF (without optogenetic stimulation) leads to negative fMRI signal in brain regions involved in acute extinction. Noninvasive whole brain readout combined with circuit-specific neuromodulation opens an avenue for investigating adaptive behavior in both healthy and disease models.
Collapse
Affiliation(s)
- Christopher G Cover
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, NIH, Baltimore, MD, 21224, USA
| | - Andrew J Kesner
- Behavioral Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, NIH, Baltimore, MD, 21224, USA
| | - Shehzad Ukani
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, NIH, Baltimore, MD, 21224, USA
| | - Elliot A Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, NIH, Baltimore, MD, 21224, USA
| | - Satoshi Ikemoto
- Behavioral Neuroscience Research Branch, National Institute on Drug Abuse, Intramural Research Program, NIH, Baltimore, MD, 21224, USA
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, NIH, Baltimore, MD, 21224, USA.
| | - Hanbing Lu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, NIH, Baltimore, MD, 21224, USA.
| |
Collapse
|
43
|
Bergmann E, Gofman X, Kavushansky A, Kahn I. Individual variability in functional connectivity architecture of the mouse brain. Commun Biol 2020; 3:738. [PMID: 33277621 PMCID: PMC7718219 DOI: 10.1038/s42003-020-01472-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years precision fMRI has emerged in human brain research, demonstrating characterization of individual differences in brain organization. However, mechanistic investigations to the sources of individual variability are limited in humans and thus require animal models. Here, we used resting-state fMRI in awake mice to quantify the contribution of individual variation to the functional architecture of the mouse cortex. We found that the mouse connectome is also characterized by stable individual features that support connectivity-based identification. Unlike in humans, we found that individual variation is homogeneously distributed in sensory and association networks. Finally, connectome-based predictive modeling of motor behavior in the rotarod task revealed that individual variation in functional connectivity explained behavioral variability. Collectively, these results establish the feasibility of precision fMRI in mice and lay the foundation for future mechanistic investigations of individual brain organization and pre-clinical studies of brain disorders in the context of personalized medicine.
Collapse
Affiliation(s)
- Eyal Bergmann
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Xenia Gofman
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alexandra Kavushansky
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Itamar Kahn
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
44
|
Kawamura A, Abe Y, Seki F, Katayama Y, Nishiyama M, Takata N, Tanaka KF, Okano H, Nakayama KI. Chd8 mutation in oligodendrocytes alters microstructure and functional connectivity in the mouse brain. Mol Brain 2020; 13:160. [PMID: 33228730 PMCID: PMC7686671 DOI: 10.1186/s13041-020-00699-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/13/2020] [Indexed: 12/24/2022] Open
Abstract
CHD8 encodes a chromatin-remodeling factor and is one of the most recurrently mutated genes in individuals with autism spectrum disorder (ASD). Although we have recently shown that mice heterozygous for Chd8 mutation manifest myelination defects and ASD-like behaviors, the detailed mechanisms underlying ASD pathogenesis have remained unclear. Here we performed diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (rsfMRI) in oligodendrocyte lineage-specific Chd8 heterozygous mutant mice. DTI revealed that ablation of Chd8 specifically in oligodendrocytes of mice was associated with microstructural changes of specific brain regions including the cortex and striatum. The extent of these changes in white matter including the corpus callosum and fornix was correlated with total contact time in the reciprocal social interaction test. Analysis with rsfMRI revealed changes in functional brain connectivity in the mutant mice, and the extent of such changes in the cortex, hippocampus, and amygdala was also correlated with the change in social interaction. Our results thus suggest that changes in brain microstructure and functional connectivity induced by oligodendrocyte dysfunction might underlie altered social interaction in mice with oligodendrocyte-specific CHD8 haploinsufficiency.
Collapse
Affiliation(s)
- Atsuki Kawamura
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Yoshifumi Abe
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Fumiko Seki
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
- Live Imaging Center, Central Institute for Experimental Animals, Kawasaki, Kanagawa, 210-0821, Japan
| | - Yuta Katayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Masaaki Nishiyama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Norio Takata
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan.
| |
Collapse
|
45
|
Dinh TNA, Jung WB, Shim HJ, Kim SG. Characteristics of fMRI responses to visual stimulation in anesthetized vs. awake mice. Neuroimage 2020; 226:117542. [PMID: 33186719 DOI: 10.1016/j.neuroimage.2020.117542] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 01/26/2023] Open
Abstract
The functional characteristics of the mouse visual system have not previously been well explored using fMRI. In this research, we examined 9.4 T BOLD fMRI responses to visual stimuli of varying pulse durations (1 - 50 ms) and temporal frequencies (1 - 10 Hz) under ketamine and xylazine anesthesia, and compared fMRI responses of anesthetized and awake mice. Under anesthesia, significant positive BOLD responses were detected bilaterally in the major structures of the visual pathways, including the dorsal lateral geniculate nuclei, superior colliculus, lateral posterior nucleus of thalamus, primary visual area, and higher-order visual area. BOLD responses increased slightly with pulse duration, were maximal at 3 - 5 Hz stimulation, and significantly decreased at 10 Hz, which were all consistent with previous neurophysiological findings. When the mice were awake, the BOLD fMRI response was faster in all active regions and stronger in the subcortical areas compared with the anesthesia condition. In the V1, the BOLD response was biphasic for 5 Hz stimulation and negative for 10 Hz stimulation under wakefulness, whereas prolonged positive BOLD responses were observed at both frequencies under anesthesia. Unexpected activation was detected in the extrastriate postrhinal area and non-visual subiculum complex under anesthesia, but not under wakefulness. Widespread positive BOLD activity under anesthesia likely results from the disinhibition and sensitization of excitatory neurons induced by ketamine. Overall, fMRI can be a viable tool for mapping brain-wide functional networks.
Collapse
Affiliation(s)
- Thi Ngoc Anh Dinh
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Won Beom Jung
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Hyun-Ji Shim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea.
| |
Collapse
|
46
|
MIURA I, OVERTON ET, NAKAI N, KAWAMATA T, SATO M, TAKUMI T. Imaging the Neural Circuit Basis of Social Behavior: Insights from Mouse and Human Studies. Neurol Med Chir (Tokyo) 2020; 60:429-438. [PMID: 32863321 PMCID: PMC7490602 DOI: 10.2176/nmc.ra.2020-0088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/21/2020] [Indexed: 11/20/2022] Open
Abstract
Social behavior includes a variety of behaviors that are expressed between two or more individuals. In humans, impairment of social function (i.e., social behavior and social cognition) is seen in neurodevelopmental and neurological disorders including autism spectrum disorders (ASDs) and stroke, respectively. In basic neuroscience research, fluorescence monitoring of neural activity, such as immediate early gene (IEG)-mediated whole-brain mapping, fiber photometry, and calcium imaging using a miniaturized head-mounted microscope or a two-photon microscope, and non-fluorescence imaging such as functional magnetic resonance imaging (fMRI) are increasingly used to measure the activity of many neurons and multiple brain areas in animals during social behavior. In this review, we overview recent rodent studies that have investigated the dynamics of brain activity during social behavior at the whole-brain and local circuit levels and studies that explored the neural basis of social function in healthy, in brain-injured, and in autistic human subjects. A synthesis of such findings will advance our understanding of brain mechanisms underlying social behavior and facilitate the development of pharmaceutical and functional neurosurgical interventions for brain disorders affecting social function.
Collapse
Affiliation(s)
- Isamu MIURA
- RIKEN Center for Brain Science, Wako, Saitama, Japan
- Department of Neurosurgery, Tokyo Women’s Medical University, Tokyo, Japan
| | | | - Nobuhiro NAKAI
- RIKEN Center for Brain Science, Wako, Saitama, Japan
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Hyogo, Japan
| | - Takakazu KAWAMATA
- Department of Neurosurgery, Tokyo Women’s Medical University, Tokyo, Japan
| | - Masaaki SATO
- RIKEN Center for Brain Science, Wako, Saitama, Japan
- Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Toru TAKUMI
- RIKEN Center for Brain Science, Wako, Saitama, Japan
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Hyogo, Japan
- Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan
| |
Collapse
|
47
|
Osborne B, Bakula D, Ben Ezra M, Dresen C, Hartmann E, Kristensen SM, Mkrtchyan GV, Nielsen MH, Petr MA, Scheibye-Knudsen M. New methodologies in ageing research. Ageing Res Rev 2020; 62:101094. [PMID: 32512174 DOI: 10.1016/j.arr.2020.101094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023]
Abstract
Ageing is arguably the most complex phenotype that occurs in humans. To understand and treat ageing as well as associated diseases, highly specialised technologies are emerging that reveal critical insight into the underlying mechanisms and provide new hope for previously untreated diseases. Herein, we describe the latest developments in cutting edge technologies applied across the field of ageing research. We cover emerging model organisms, high-throughput methodologies and machine-driven approaches. In all, this review will give you a glimpse of what will be pushing the field onwards and upwards.
Collapse
Affiliation(s)
- Brenna Osborne
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Daniela Bakula
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael Ben Ezra
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Dresen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Esben Hartmann
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Stella M Kristensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Garik V Mkrtchyan
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Malte H Nielsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael A Petr
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
48
|
Morphofunctional Alterations of the Hypothalamus and Social Behavior in Autism Spectrum Disorders. Brain Sci 2020; 10:brainsci10070435. [PMID: 32650534 PMCID: PMC7408098 DOI: 10.3390/brainsci10070435] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/21/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
An accumulating body of evidence indicates a tight relationship between the endocrine system and abnormal social behavior. Two evolutionarily conserved hypothalamic peptides, oxytocin and arginine-vasopressin, because of their extensively documented function in supporting and regulating affiliative and socio-emotional responses, have attracted great interest for their critical implications for autism spectrum disorders (ASD). A large number of controlled trials demonstrated that exogenous oxytocin or arginine-vasopressin administration can mitigate social behavior impairment in ASD. Furthermore, there exists long-standing evidence of severe socioemotional dysfunctions after hypothalamic lesions in animals and humans. However, despite the major role of the hypothalamus for the synthesis and release of oxytocin and vasopressin, and the evident hypothalamic implication in affiliative behavior in animals and humans, a rather small number of neuroimaging studies showed an association between this region and socioemotional responses in ASD. This review aims to provide a critical synthesis of evidences linking alterations of the hypothalamus with impaired social cognition and behavior in ASD by integrating results of both anatomical and functional studies in individuals with ASD as well as in healthy carriers of oxytocin receptor (OXTR) genetic risk variant for ASD. Current findings, although limited, indicate that morphofunctional anomalies are implicated in the pathophysiology of ASD and call for further investigations aiming to elucidate anatomical and functional properties of hypothalamic nuclei underlying atypical socioemotional behavior in ASD.
Collapse
|