1
|
Nevzorov AA, Milikisiyants S, Marek A, Kaminker I, Smirnov AI. Room-Temperature Pulsed Dynamic Nuclear Polarization at 7 T. J Phys Chem Lett 2025:5321-5326. [PMID: 40394453 DOI: 10.1021/acs.jpclett.5c00737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Pulsed dynamic nuclear polarization (DNP) can enhance NMR signals by more than 2 orders of magnitude and is applicable to spin systems with short-lived electronic polarization. Recently, several pulsed DNP sequences were demonstrated at low magnetic fields. However, pulsed DNP at magnetic fields of modern NMR spectrometers (7 T and above) necessitates addressing major technical challenges for generating sufficiently high mm-wave B1e amplitudes to match the nuclear Larmor frequencies. Here we describe a first-of-its-kind ESR/NMR spectrometer for pulsed DNP and phase-sensitive electronic detection operating at 7 T magnetic field. Generation of B1e fields with amplitudes of ca. 75 MHz was made possible by employing a pulsed extended interaction klystron and piezo-tunable photonic-band gap resonators with unloaded quality factors Q ≈ 1500. Room-temperature NOVEL DNP yielded natural-abundance 13C NMR signal gains of up to 800 for a 30 μm thick crystal of a synthetic diamond. Simultaneous coherent manipulation of the electronic and nuclear spins was demonstrated by 13C-detected electron Rabi nutations.
Collapse
Affiliation(s)
- Alexander A Nevzorov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States
| | - Sergey Milikisiyants
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States
| | - Antonin Marek
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States
| | - Ilia Kaminker
- School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Alex I Smirnov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
2
|
Carvalho JP, Goodwin DL, Wili N, Nielsen AB, Nielsen NC. Optimal control design strategies for pulsed dynamic nuclear polarization. J Chem Phys 2025; 162:054111. [PMID: 39902705 DOI: 10.1063/5.0244723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/23/2024] [Indexed: 02/06/2025] Open
Abstract
We present optimal control methods for the optimization of periodic pulsed dynamic nuclear polarization (DNP) sequences. Specifically, we address the challenge of the optimization of a basic and repeated pulse sequence element which, apart from being easily adaptable to spin systems with different coupling interaction sizes, also proves beneficial in terms of performance. It is demonstrated that matrix power and matrix logarithm functions combined with an auxiliary matrix formalism can be used to derive expressions for gradient ascent pulse engineering (GRAPE) optimization. We illustrate how different implementations provide effective and intuitive control of DNP experiments by tailoring the effective Hamiltonian governing polarization transfer and, in this manner, addressing some of the limitations of prevailing optimal control based pulse design strategies.
Collapse
Affiliation(s)
- José P Carvalho
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - David L Goodwin
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Nino Wili
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Anders Bodholt Nielsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Niels Chr Nielsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| |
Collapse
|
3
|
Palani RS, Mardini M, Quan Y, Ouyang Y, Mishra A, Griffin RG. Dynamic Nuclear Polarization with P1 Centers in Diamond. J Phys Chem Lett 2024; 15:11504-11509. [PMID: 39514770 PMCID: PMC12065642 DOI: 10.1021/acs.jpclett.4c02612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Substitutional nitrogen impurities within the diamond lattice, known as P1 centers, have unpaired electrons that can mediate microwave driven dynamic nuclear polarization (DNP). In this paper we explore DNP of the bulk 13C spins in micrometer-sized P1 diamond particles and demonstrate a 550-fold DNP enhancement of the bulk 13C spins at room temperature in a 9 T magnetic field or 250 GHz for g ≈ 2 electrons. We study the DNP mechanisms, exploring their dependence on sample spinning frequency and microwave irradiation frequency using both continuous wave and frequency swept microwave irradiation, and discuss the results alongside recent DNP studies in the literature. Even with a modest microwave irradiation power of 160 mW from our frequency swept solid-state microwave source, we achieve a significant 13C signal enhancement, ε = 270 at room temperature. The enhancements were found to increase with the magic angle spinning (MAS) frequency, ωr/2π, and the results provide mechanistic insights into how different electron populations contribute to the observed DNP efficiency. These findings are inherently interesting and of practical importance in view of the recently reported diamond rotors fabricated from P1 high-pressure, high-temperature (HPHT) diamond.
Collapse
Affiliation(s)
- Ravi Shankar Palani
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Mardini
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yifan Quan
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yifu Ouyang
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Aditya Mishra
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Nielsen AB, Carvalho JPA, Goodwin DL, Wili N, Nielsen NC. Dynamic nuclear polarization pulse sequence engineering using single-spin vector effective Hamiltonians. Phys Chem Chem Phys 2024; 26:28208-28219. [PMID: 39498786 DOI: 10.1039/d4cp03041a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Dynamic nuclear polarization (DNP) has proven to be a powerful technique to enhance nuclear spin polarization by transferring the much higher electron spin polarization to nuclear spins prior to detection. While major attention has been devoted to high-field applications with continuous microwave irradiation, the introduction of fast arbitrary waveform generators is gradually increasing opportunities for the realization of pulsed DNP. Here, we describe how static-powder DNP pulse sequences may systematically be designed using single-spin vector effective Hamiltonian theory. Particular attention is devoted to the intricate interplay between two important parts of the effective first-order Hamiltonian, namely, linear field (single-spin) terms and Fourier coefficients determining scaling of the bilinear coupling terms mediating polarization transfer. We address two cases. The first case operates in the regime, where the microwave field amplitude is lower than the nuclear Larmor frequency. Here, we illustrate the predictive strength of a single-spin vector model by comparing analytical calculations with experimental DNP results at 9.8 GHz/15 MHz on trityl radicals at 80 K. The second case operates in the high-power regime, where we combine the underlying single-spin vector design principles with numerical non-linear optimization to optimize the balance between the linear terms and the bilinear Fourier coefficients in a figure of merit function. We demonstrate, numerically and experimentally, a broadband DNP pulse sequence PLATO (PoLarizAtion Transfer via non-linear Optimization) with a bandwidth of 80 MHz and optimized for a microwave field with a maximum (peak) amplitude of 32 MHz.
Collapse
Affiliation(s)
- A B Nielsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.
| | - J P A Carvalho
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.
| | - D L Goodwin
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.
| | - N Wili
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.
| | - N C Nielsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
5
|
Wili N, Nielsen AB, Carvalho JP, Nielsen NC. Observation of dynamic nuclear polarization echoes. SCIENCE ADVANCES 2024; 10:eadr2420. [PMID: 39423270 PMCID: PMC11488531 DOI: 10.1126/sciadv.adr2420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
It is demonstrated that the time evolution of the electron-nuclear polarization transfer process during pulsed dynamic nuclear polarization (DNP) can be reversed on a microsecond timescale, leading to the observation of DNP echoes. The DNP echoes are induced by consecutive application of two pulse trains that produce effective Hamiltonians that differ only in the sign of the effective hyperfine coupling. The experiments have been performed on a frozen solution of trityl radicals in water/glycerol on a homebuilt X-band electron paramagnetic resonance/DNP spectrometer at 80 kelvins. We envisage that DNP echoes will play an important role in future development of pulsed DNP for sensitivity-enhanced nuclear magnetic resonance, hyperfine spectroscopy, and quantum sensing.
Collapse
Affiliation(s)
- Nino Wili
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Anders B. Nielsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - José P. Carvalho
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Niels Chr. Nielsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| |
Collapse
|
6
|
Nir-Arad O, Fialkov AB, Shlomi DH, Manukovsky N, Mentink-Vigier F, Kaminker I. High-field pulsed EPR spectroscopy under magic angle spinning. SCIENCE ADVANCES 2024; 10:eadq6073. [PMID: 39213356 PMCID: PMC11364107 DOI: 10.1126/sciadv.adq6073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
In this work, we demonstrate the first pulsed electron paramagnetic resonance (EPR) experiments performed under magic angle spinning (MAS) at high magnetic field. Unlike nuclear magnetic resonance (NMR) and dynamic nuclear polarization (DNP), commonly performed at high magnetic fields and under MAS to maximize sensitivity and resolution, EPR is usually measured at low magnetic fields and, with the exception of the Spiess group work in the late 1990s, never under MAS, due to great instrumentational challenges. This hampers the investigation of DNP mechanisms, in which electron spin dynamics play a central role, because no experimental data about the latter under DNP-characteristic conditions are available. We hereby present our dedicated, homebuilt MAS-EPR probehead and show the pulsed MAS-EPR spectra of P1 center diamond defect recorded at 7 tesla. Our results reveal unique effects of MAS on EPR line shape, intensity, and signal dephasing. Time-domain simulations reproduce the observed changes in the line shapes and the trends in the signal intensity.
Collapse
Affiliation(s)
- Orit Nir-Arad
- School of Chemistry, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| | | | - David H. Shlomi
- School of Chemistry, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| | - Nurit Manukovsky
- School of Chemistry, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Ilia Kaminker
- School of Chemistry, Tel-Aviv University, 6997801 Tel-Aviv, Israel
| |
Collapse
|
7
|
Scott FJ, Dubroca T, Schurko RW, Hill S, Long JR, Mentink-Vigier F. Characterization of dielectric properties and their impact on MAS-DNP NMR applications. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 365:107742. [PMID: 39116460 DOI: 10.1016/j.jmr.2024.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/17/2024] [Accepted: 07/13/2024] [Indexed: 08/10/2024]
Abstract
The dielectric properties of materials play a crucial role in the propagation and absorption of microwave beams employed in Magic Angle Spinning - Dynamic Nuclear Polarization (MAS-DNP) NMR experiments. Despite ongoing optimization efforts in sample preparation, routine MAS-DNP NMR applications often fall short of theoretical sensitivity limits. Offering a different perspective, we report the refractive indices and extinction coefficients of diverse materials used in MAS-DNP NMR experiments, spanning a frequency range from 70 to 960 GHz. Knowledge of their dielectric properties enables the accurate simulation of electron nutation frequencies, thereby guiding the design of more efficient hardware and sample preparation of biological or material samples. This is illustrated experimentally for four different rotor materials (sapphire, yttria-stabilized zirconia (YSZ), aluminum nitride (AlN), and SiAlON ceramics) used for DNP at 395 GHz/1H 600 MHz. Finally, electromagnetic simulations and state-of-the-art MAS-DNP numerical simulations provide a rational explanation for the observed magnetic field dependence of the enhancement when using nitroxide biradicals, offering insights that will improve MAS-DNP NMR at high magnetic fields.
Collapse
Affiliation(s)
- Faith J Scott
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr., Tallahassee, FL 32310, USA
| | - Thierry Dubroca
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr., Tallahassee, FL 32310, USA
| | - Robert W Schurko
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr., Tallahassee, FL 32310, USA; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Stephen Hill
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr., Tallahassee, FL 32310, USA; Department of Physics, Florida State University, Tallahassee, FL 32306, USA
| | - Joanna R Long
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr., Tallahassee, FL 32310, USA; Department of Biochemistry and Molecular Biology, University of Florida, PO Box 100245, Gainesville, FL 32610, USA.
| | - Frédéric Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr., Tallahassee, FL 32310, USA.
| |
Collapse
|
8
|
Millen M, Alaniva N, Saliba EP, Overall SA, Däpp A, Pagonakis IG, Sigurdsson ST, Björgvinsdóttir S, Barnes AB. Frequency-Chirped Magic Angle Spinning Dynamic Nuclear Polarization Combined with Electron Decoupling. J Phys Chem Lett 2024; 15:7228-7235. [PMID: 38975905 PMCID: PMC11261599 DOI: 10.1021/acs.jpclett.4c01075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Abstract
Magic angle spinning (MAS) dynamic nuclear polarization (DNP) increases the signal intensity of solid-state nuclear magnetic resonance. DNP typically uses continuous wave (CW) microwave irradiation close to the resonance frequency of unpaired electron spins. In this study, we demonstrate that frequency-chirped microwaves improve DNP performance under MAS. By modulating the gyrotron anode potential, we generate a train of microwave chirps with a maximum bandwidth of 310 MHz and a maximum incident power on the spinning sample of 18 W. We characterize the efficiency of chirped DNP using the following polarizing agents: TEMTriPol-1, AsymPolPOK, AMUPol, and Finland trityl. The effects of different chirp widths and periods are analyzed at different MAS frequencies and microwave powers. Furthermore, we show that chirped DNP can be combined with electron decoupling to improve signal intensity by 59%, compared to CW DNP without electron decoupling, using Finland trityl as a polarizing agent.
Collapse
Affiliation(s)
- Marthe Millen
- Institute
of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Nicholas Alaniva
- Institute
of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Edward P. Saliba
- Institute
of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Sarah A. Overall
- Institute
of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Alexander Däpp
- Institute
of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Ioannis Gr. Pagonakis
- Institute
of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | | | - Snædís Björgvinsdóttir
- Institute
of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Alexander B. Barnes
- Institute
of Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
9
|
Korzeczek MC, Dagys L, Müller C, Tratzmiller B, Salhov A, Eichhorn T, Scheuer J, Knecht S, Plenio MB, Schwartz I. Towards a unified picture of polarization transfer - pulsed DNP and chemically equivalent PHIP. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 362:107671. [PMID: 38614057 DOI: 10.1016/j.jmr.2024.107671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/15/2024]
Abstract
Nuclear spin hyperpolarization techniques, such as dynamic nuclear polarization (DNP) and parahydrogen-induced polarization (PHIP), have revolutionized nuclear magnetic resonance and magnetic resonance imaging. In these methods, a readily available source of high spin order, either electron spins in DNP or singlet states in hydrogen for PHIP, is brought into close proximity with nuclear spin targets, enabling efficient transfer of spin order under external quantum control. Despite vast disparities in energy scales and interaction mechanisms between electron spins in DNP and nuclear singlet states in PHIP, a pseudo-spin formalism allows us to establish an intriguing equivalence. As a result, the important low-field polarization transfer regime of PHIP can be mapped onto an analogous system equivalent to pulsed-DNP. This establishes a correspondence between key polarization transfer sequences in PHIP and DNP, facilitating the transfer of sequence development concepts. This promises fresh insights and significant cross-pollination between DNP and PHIP polarization sequence developers.
Collapse
Affiliation(s)
- Martin C Korzeczek
- Institute of Theoretical Physics and IQST, Albert-Einstein Allee 11, Ulm University, 89081, Ulm, Germany
| | | | | | - Benedikt Tratzmiller
- Institute of Theoretical Physics and IQST, Albert-Einstein Allee 11, Ulm University, 89081, Ulm, Germany; Carl Zeiss MultiSEM GmbH, 73447, Oberkochen, Germany
| | - Alon Salhov
- NVision Imaging Technologies GmbH, 89081, Ulm, Germany; Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, 91904, Givat Ram, Israel
| | - Tim Eichhorn
- NVision Imaging Technologies GmbH, 89081, Ulm, Germany
| | | | | | - Martin B Plenio
- Institute of Theoretical Physics and IQST, Albert-Einstein Allee 11, Ulm University, 89081, Ulm, Germany.
| | - Ilai Schwartz
- NVision Imaging Technologies GmbH, 89081, Ulm, Germany.
| |
Collapse
|
10
|
Zhao Y, El Mkami H, Hunter RI, Casano G, Ouari O, Smith GM. Large cross-effect dynamic nuclear polarisation enhancements with kilowatt inverting chirped pulses at 94 GHz. Commun Chem 2023; 6:171. [PMID: 37607991 PMCID: PMC10444895 DOI: 10.1038/s42004-023-00963-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
Dynamic nuclear polarisation (DNP) is a process that transfers electron spin polarisation to nuclei by applying resonant microwave radiation, and has been widely used to improve the sensitivity of nuclear magnetic resonance (NMR). Here we demonstrate new levels of performance for static cross-effect proton DNP using high peak power chirped inversion pulses at 94 GHz to create a strong polarisation gradient across the inhomogeneously broadened line of the mono-radical 4-amino TEMPO. Enhancements of up to 340 are achieved at an average power of a few hundred mW, with fast build-up times (3 s). Experiments are performed using a home-built wideband kW pulsed electron paramagnetic resonance (EPR) spectrometer operating at 94 GHz, integrated with an NMR detection system. Simultaneous DNP and EPR characterisation of other mono-radicals and biradicals, as a function of temperature, leads to additional insights into limiting relaxation mechanisms and give further motivation for the development of wideband pulsed amplifiers for DNP at higher frequencies.
Collapse
Affiliation(s)
- Yujie Zhao
- School of Physics and Astronomy, University of St Andrews, KY16 9SS, Fife, Scotland
| | - Hassane El Mkami
- School of Physics and Astronomy, University of St Andrews, KY16 9SS, Fife, Scotland
| | - Robert I Hunter
- School of Physics and Astronomy, University of St Andrews, KY16 9SS, Fife, Scotland
| | - Gilles Casano
- Aix Marseille University, CNRS, ICR, UMR 7273, F-13013, Marseille, France
| | - Olivier Ouari
- Aix Marseille University, CNRS, ICR, UMR 7273, F-13013, Marseille, France
| | - Graham M Smith
- School of Physics and Astronomy, University of St Andrews, KY16 9SS, Fife, Scotland.
| |
Collapse
|
11
|
Mardini M, Palani RS, Ahmad IM, Mandal S, Jawla SK, Bryerton E, Temkin RJ, Sigurdsson ST, Griffin RG. Frequency-swept dynamic nuclear polarization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 353:107511. [PMID: 37385067 PMCID: PMC11549732 DOI: 10.1016/j.jmr.2023.107511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023]
Abstract
Dynamic nuclear polarization (DNP) improves the sensitivity of NMR spectroscopy by the transfer of electron polarization to nuclei via irradiation of electron-nuclear transitions with microwaves at the appropriate frequency. For fields > 5 T and using g ∼ 2 electrons as polarizing agents, this requires the availability of microwave sources operating at >140 GHz. Therefore, microwave sources for DNP have generally been continuous-wave (CW) gyrotrons, and more recently solid state, oscillators operating at a fixed frequency and power. This constraint has limited the DNP mechanisms which can be exploited, and stymied the development of new time domain mechanisms. We report here the incorporation of a microwave source enabling facile modulation of frequency, amplitude, and phase at 9 T (250 GHz microwave frequency), and we have used the source for magic-angle spinning (MAS) NMR experiments. The experiments include investigations of CW DNP mechanisms, the advantage of frequency-chirped irradiation, and a demonstration of an Overhauser enhancement of ∼25 with a recently reported water-soluble BDPA radical, highlighting the potential for affordable and compact microwave sources to achieve significant enhancement in aqueous samples, including biological macromolecules. With the development of suitable microwave amplifiers, it should permit exploration of multiple new avenues involving time domain experiments.
Collapse
Affiliation(s)
- Michael Mardini
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Ravi Shankar Palani
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Iram M Ahmad
- Department of Chemistry, Science Institute, University of Iceland, Reykjavik, Iceland
| | - Sucharita Mandal
- Department of Chemistry, Science Institute, University of Iceland, Reykjavik, Iceland
| | - Sudheer K Jawla
- Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Eric Bryerton
- Virginia Diodes Corporation, Charlottesville, VA 22902, United States
| | - Richard J Temkin
- Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Snorri Th Sigurdsson
- Department of Chemistry, Science Institute, University of Iceland, Reykjavik, Iceland
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
12
|
Quan Y, Subramanya MVH, Ouyang Y, Mardini M, Dubroca T, Hill S, Griffin RG. Coherent Dynamic Nuclear Polarization using Chirped Pulses. J Phys Chem Lett 2023; 14:4748-4753. [PMID: 37184391 DOI: 10.1021/acs.jpclett.3c00726] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This paper presents a study of coherent dynamic nuclear polarization (DNP) using frequency swept pulses at 94 GHz which optimize the polarization transfer efficiency. Accordingly, an enhancement ε ∼ 496 was observed using 10 mM trityl-OX063 as the polarizing agent in a standard 6:3:1 d8-glycerol/D2O/H2O glassing matrix at 70 K. At present, this is the largest DNP enhancement reported at this microwave frequency and temperature. Furthermore, the frequency swept pulses enhance the nuclear magnetic resonance (NMR) signal and reduce the recycle delay, accelerating the NMR signal acquisition.
Collapse
Affiliation(s)
- Yifan Quan
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Manoj V H Subramanya
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
- Department of Physics, Florida State University, Tallahassee, Florida 32310, United States
| | - Yifu Ouyang
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Mardini
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Thierry Dubroca
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Stephen Hill
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
- Department of Physics, Florida State University, Tallahassee, Florida 32310, United States
| | - Robert G Griffin
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Shankar Palani R, Mardini M, Quan Y, Griffin RG. Dynamic nuclear polarization with trityl radicals. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 349:107411. [PMID: 36893654 DOI: 10.1016/j.jmr.2023.107411] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Despite the expanding applications of dynamic nuclear polarization (DNP) to problems in biological and materials science, there remain unresolved questions concerning DNP mechanisms. In this paper, we investigate the Zeeman DNP frequency profiles obtained with trityl radicals, OX063 and its partially deuterated analog OX071, in two commonly used glassing matrices based on glycerol and dimethyl sulfoxide (DMSO). When microwave irradiation is applied in the neighborhood of the narrow EPR transition, we observe a dispersive shape in the 1H Zeeman field and the effects are larger in DMSO than in glycerol. With the help of direct DNP observations on 13C and 2H nuclei, we investigate the origin of this dispersive field profile. In particular, we observe a weak nuclear Overhauser effect between 1H and 13C in the sample, which, when irradiating at the positive 1H solid effect (SE) condition, results in a negative enhancement of 13C spins. This observation is not consistent with thermal mixing (TM) being the mechanism responsible for the dispersive shape in the 1H DNP Zeeman frequency profile. Instead, we propose a new mechanism, resonant mixing, involving mixing of nuclear and electron spin states in a simple two-spin system without invoking electron-electron dipolar interactions.
Collapse
Affiliation(s)
- Ravi Shankar Palani
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Michael Mardini
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Yifan Quan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Robert G Griffin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
14
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
15
|
Nishimura K, Yabuki R, Hamachi T, Kimizuka N, Tateishi K, Uesaka T, Yanai N. Dynamic Electron Polarization Lasting More Than 10 μs by Hybridizing Porphyrin and TEMPO with Flexible Linkers. J Phys Chem B 2023; 127:1219-1228. [PMID: 36717096 DOI: 10.1021/acs.jpcb.2c07936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Dynamic electron polarization (DEP), induced by quenching of photoexcited species by stable radicals, can hyperpolarize electron spins in solution at room temperature. Recently, development of technologies based on electron spin polarization such as dynamic nuclear polarization (DNP) has been progressing, where it is important to design molecules that achieve long-lasting DEP in addition to high DEP. Hybridization by linking dyes and radicals is a promising approach for efficient DEP, but strong interactions between neighboring dyes and radicals often result in the rapid decay of DEP. In this study, we introduce a flexible linker into the hybrid system of porphyrin and TEMPO to achieve both efficient DEP and long-lasting DEP. The structural flexibility of the linker switches the interaction between the radical and the triplet, which promotes the DEP process by bringing the radical and the triplet into close proximity, while avoiding abrupt relaxation due to strong interactions. As a result, the new hybridized system exhibits a larger DEP than the unlinked system, while at the same time achieving a DEP lasting more than 10 μs.
Collapse
Affiliation(s)
- Koki Nishimura
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka819-0395, Japan
| | - Reiya Yabuki
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka819-0395, Japan
| | - Tomoyuki Hamachi
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka819-0395, Japan
| | - Nobuo Kimizuka
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka819-0395, Japan
| | - Kenichiro Tateishi
- Cluster for Pioneering Research, RIKEN, RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama351-0198, Japan
| | - Tomohiro Uesaka
- Cluster for Pioneering Research, RIKEN, RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama351-0198, Japan
| | - Nobuhiro Yanai
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka819-0395, Japan
| |
Collapse
|
16
|
Tagami K, Thicklin R, Jain S, Equbal A, Li M, Zens T, Siaw A, Han S. Design of a cryogen-free high field dual EPR and DNP probe. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 347:107351. [PMID: 36599253 DOI: 10.1016/j.jmr.2022.107351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
We present the design and construction of a cryogen free, dual electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) probe for novel dynamic nuclear polarization (DNP) experiments and concurrent "in situ" analysis of DNP mechanisms. We focus on the probe design that meets the balance between EPR, NMR, and low temperature performance, while maintaining a high degree of versatility: allowing multi-nuclear NMR detection as well as broadband DNP/EPR excitation/detection. To accomplish high NMR/EPR performance, we implement a novel inductively coupled double resonance NMR circuit (1H-13C) in a solid state probe operating at cryogenic temperatures. The components of the circuit were custom built to provide maximum NMR performance, and the physical layout of this circuit was numerically optimized via magnetic field simulations to allow maximum microwave transmission to the sample for optimal EPR performance. Furthermore this probe is based around a cryogen free gas exchange cryostat and has been designed to allow unlimited experiment times down to 8.5 Kelvin with minimal cost. The affordability of EPR/DNP experiment is an extremely important aspect for broader impact with magnetic resonance measurements. The purpose of this article is to provide as complete information as we have available for others with interest in building a dual DNP/EPR instrument based around a cryogen-free cryostat.
Collapse
Affiliation(s)
- Kan Tagami
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Raymond Thicklin
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Sheetal Jain
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Asif Equbal
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Miranda Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Toby Zens
- JEOL USA, Inc., 11 Dearborn Road, Peabody, MA 01960, United States
| | - Anthony Siaw
- JEOL USA, Inc., 11 Dearborn Road, Peabody, MA 01960, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States; Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, United States.
| |
Collapse
|
17
|
Tan KO, Yang L, Mardini M, Boon Cheong C, Driesschaert B, Dincă M, Griffin RG. Observing Nearby Nuclei on Paramagnetic Trityls and MOFs via DNP and Electron Decoupling. Chemistry 2022; 28:e202202556. [PMID: 36089532 PMCID: PMC9795816 DOI: 10.1002/chem.202202556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 12/30/2022]
Abstract
Dynamic nuclear polarization (DNP) is an NMR sensitivity enhancement technique that mediates polarization transfer from unpaired electrons to NMR-active nuclei. Despite its success in elucidating important structural information on biological and inorganic materials, the detailed polarization-transfer pathway from the electrons to the nearby and then the bulk solvent nuclei, and finally to the molecules of interest-remains unclear. In particular, the nuclei in the paramagnetic polarizing agent play significant roles in relaying the enhanced NMR polarizations to more remote nuclei. Despite their importance, the direct NMR observation of these nuclei is challenging because of poor sensitivity. Here, we show that a combined DNP and electron decoupling approach can facilitate direct NMR detection of these nuclei. We achieved an ∼80 % improvement in NMR intensity via electron decoupling at 0.35 T and 80 K on trityl radicals. Moreover, we recorded a DNP enhancement factor ofϵ ${\varepsilon{} }$ ∼90 and ∼11 % higher NMR intensity using electron decoupling on paramagnetic metal-organic framework, magnesium hexaoxytriphenylene (MgHOTP MOF).
Collapse
Affiliation(s)
- Kong Ooi Tan
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMA-02139USA
- Francis Bitter Magnet LaboratoryMassachusetts Institute of TechnologyCambridgeMA-02139USA
- Laboratoire des BiomoléculesLBMDépartement de ChimieÉcole Normale SupérieurePSL UniversitySorbonne Université, CNRS75005ParisFrance
| | - Luming Yang
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMA-02139USA
- Research Group EPR SpectroscopyMax Planck Institute for Multidisciplinary SciencesGöttingen37077Germany
| | - Michael Mardini
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMA-02139USA
- Francis Bitter Magnet LaboratoryMassachusetts Institute of TechnologyCambridgeMA-02139USA
| | - Choon Boon Cheong
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMA-02139USA
- Francis Bitter Magnet LaboratoryMassachusetts Institute of TechnologyCambridgeMA-02139USA
- Institute of Sustainability for ChemicalsEnergy and Environment1 Pesek Road, Jurong IslandSingapore627833Singapore
| | - Benoit Driesschaert
- Department of Pharmaceutical SciencesSchool of PharmacyWest Virginia UniversityMorgantownWV-2650USA
| | - Mircea Dincă
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMA-02139USA
| | - Robert G. Griffin
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMA-02139USA
- Francis Bitter Magnet LaboratoryMassachusetts Institute of TechnologyCambridgeMA-02139USA
| |
Collapse
|
18
|
Wili N, Ardenkjær-Larsen J, Jeschke G. Reverse dynamic nuclear polarisation for indirect detection of nuclear spins close to unpaired electrons. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2022; 3:161-168. [PMID: 37904869 PMCID: PMC10539835 DOI: 10.5194/mr-3-161-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/01/2023]
Abstract
Polarisation transfer schemes and indirect detection are central to magnetic resonance. Using the trityl radical OX063 and a pulse electron paramagnetic resonance spectrometer operating in the Q-band (35 GHz, 1.2 T), we show here that it is possible to use pulsed dynamic nuclear polarisation (DNP) to transfer polarisation from electrons to protons and back. The latter is achieved by first saturating the electrons and then simply using a reverse DNP step. A variable mixing time between DNP and reverse DNP allows us to investigate the decay of polarisation on protons in the vicinity of the electrons. We qualitatively investigate the influence of solvent deuteration, temperature, and electron concentration. We expect reverse DNP to be useful in the investigation of nuclear spin diffusion and envisage its use in electron-nuclear double-resonance (ENDOR) experiments.
Collapse
Affiliation(s)
- Nino Wili
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Jan Henrik Ardenkjær-Larsen
- Department of Health Technology, Center for Hyperpolarization in Magnetic Resonance, Technical University of Denmark, Building 349, 2800 Kgs Lyngby, Denmark
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
19
|
Wili N, Nielsen AB, Völker LA, Schreder L, Nielsen NC, Jeschke G, Tan KO. Designing broadband pulsed dynamic nuclear polarization sequences in static solids. SCIENCE ADVANCES 2022; 8:eabq0536. [PMID: 35857520 PMCID: PMC9286509 DOI: 10.1126/sciadv.abq0536] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/25/2022] [Indexed: 05/28/2023]
Abstract
Dynamic nuclear polarization (DNP) is a nuclear magnetic resonance (NMR) hyperpolarization technique that mediates polarization transfer from unpaired electrons with large thermal polarization to NMR-active nuclei via microwave (mw) irradiation. The ability to generate arbitrarily shaped mw pulses using arbitrary waveform generators allows for remarkable improvement of the robustness and versatility of DNP. We present here novel design principles based on single-spin vector effective Hamiltonian theory to develop new broadband DNP pulse sequences, namely, an adiabatic version of XiX (X-inverse X)-DNP and a broadband excitation by amplitude modulation (BEAM)-DNP experiment. We demonstrate that the adiabatic BEAM-DNP pulse sequence may achieve a 1H enhancement factor of ∼360, which is better than ramped-amplitude NOVEL (nuclear spin orientation via electron spin locking) at ∼0.35 T and 80 K in static solids doped with trityl radicals. In addition, the bandwidth of the BEAM-DNP experiments (~50 MHz) is about three times the 1H Larmor frequency. The generality of our theoretical approach will be helpful in the development of new pulsed DNP sequences.
Collapse
Affiliation(s)
- Nino Wili
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Anders Bodholt Nielsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Laura Alicia Völker
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Lukas Schreder
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Niels Chr. Nielsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Kong Ooi Tan
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
20
|
Hilty C, Kurzbach D, Frydman L. Hyperpolarized water as universal sensitivity booster in biomolecular NMR. Nat Protoc 2022; 17:1621-1657. [PMID: 35546640 DOI: 10.1038/s41596-022-00693-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 02/25/2022] [Indexed: 11/09/2022]
Abstract
NMR spectroscopy is the only method to access the structural dynamics of biomolecules at high (atomistic) resolution in their native solution state. However, this method's low sensitivity has two important consequences: (i) typically experiments have to be performed at high concentrations that increase sensitivity but are not physiological, and (ii) signals have to be accumulated over long periods, complicating the determination of interaction kinetics on the order of seconds and impeding studies of unstable systems. Both limitations are of equal, fundamental relevance: non-native conditions are of limited pharmacological relevance, and the function of proteins, enzymes and nucleic acids often relies on their interaction kinetics. To overcome these limitations, we have developed applications that involve 'hyperpolarized water' to boost signal intensities in NMR of proteins and nucleic acids. The technique includes four stages: (i) preparation of the biomolecule in partially deuterated buffers, (ii) preparation of 'hyperpolarized' water featuring enhanced 1H NMR signals via cryogenic dynamic nuclear polarization, (iii) sudden melting of the cryogenic pellet and dissolution of the protein or nucleic acid in the hyperpolarized water (enabling spontaneous exchanges of protons between water and target) and (iv) recording signal-amplified NMR spectra targeting either labile 1H or neighboring 15N/13C nuclei in the biomolecule. Water in the ensuing experiments is used as a universal 'hyperpolarization' agent, rendering the approach versatile and applicable to any biomolecule possessing labile hydrogens. Thus, questions can be addressed, ranging from protein and RNA folding problems to resolving structure-function relationships of intrinsically disordered proteins to investigating membrane interactions.
Collapse
Affiliation(s)
- Christian Hilty
- Chemistry Department, Texas A&M University, College Station, TX, USA.
| | - Dennis Kurzbach
- Faculty of Chemistry, Institute for Biological Chemistry, University of Vienna, Vienna, Austria.
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
21
|
Tan KO, Griffin RG. Observation of a Four-Spin Solid Effect. J Chem Phys 2022; 156:174201. [PMID: 35525661 PMCID: PMC9068241 DOI: 10.1063/5.0091663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The two-spin solid effect (2SSE) is one of the established continuous wave dynamic nuclear polarization mechanisms that enables enhancement of nuclear magnetic resonance signals. It functions via a state-mixing mechanism that mediates the excitation of forbidden transitions in an electron–nuclear spin system. Specifically, microwave irradiation at frequencies ωμw ∼ ω0S ± ω0I, where ω0S and ω0I are electron and nuclear Larmor frequencies, respectively, yields enhanced nuclear spin polarization. Following the recent rediscovery of the three-spin solid effect (3SSE) [Tan et al., Sci. Adv. 5, eaax2743 (2019)], where the matching condition is given by ωμw = ω0S ± 2ω0I, we report here the first direct observation of the four-spin solid effect (4SSE) at ωμw = ω0S ± 3ω0I. The forbidden double- and quadruple-quantum transitions were observed in samples containing trityl radicals dispersed in a glycerol–water mixture at 0.35 T/15 MHz/9.8 GHz and 80 K. We present a derivation of the 4SSE effective Hamiltonian, matching conditions, and transition probabilities. Finally, we show that the experimental observations agree with the results from numerical simulations and analytical theory.
Collapse
Affiliation(s)
| | - Robert G. Griffin
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, United States of America
| |
Collapse
|
22
|
Biedenbänder T, Aladin V, Saeidpour S, Corzilius B. Dynamic Nuclear Polarization for Sensitivity Enhancement in Biomolecular Solid-State NMR. Chem Rev 2022; 122:9738-9794. [PMID: 35099939 DOI: 10.1021/acs.chemrev.1c00776] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Solid-state NMR with magic-angle spinning (MAS) is an important method in structural biology. While NMR can provide invaluable information about local geometry on an atomic scale even for large biomolecular assemblies lacking long-range order, it is often limited by low sensitivity due to small nuclear spin polarization in thermal equilibrium. Dynamic nuclear polarization (DNP) has evolved during the last decades to become a powerful method capable of increasing this sensitivity by two to three orders of magnitude, thereby reducing the valuable experimental time from weeks or months to just hours or days; in many cases, this allows experiments that would be otherwise completely unfeasible. In this review, we give an overview of the developments that have opened the field for DNP-enhanced biomolecular solid-state NMR including state-of-the-art applications at fast MAS and high magnetic field. We present DNP mechanisms, polarizing agents, and sample constitution methods suitable for biomolecules. A wide field of biomolecular NMR applications is covered including membrane proteins, amyloid fibrils, large biomolecular assemblies, and biomaterials. Finally, we present perspectives and recent developments that may shape the field of biomolecular DNP in the future.
Collapse
Affiliation(s)
- Thomas Biedenbänder
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Victoria Aladin
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Siavash Saeidpour
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Björn Corzilius
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
23
|
Redrouthu VS, Mathies G. Efficient Pulsed Dynamic Nuclear Polarization with the X-Inverse-X Sequence. J Am Chem Soc 2022; 144:1513-1516. [PMID: 35076217 DOI: 10.1021/jacs.1c09900] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pulsed dynamic nuclear polarization (DNP) is a promising new approach to enhancing the sensitivity of high-resolution magic-angle spinning (MAS) NMR. In pulsed DNP, the transfer of polarization from unpaired electrons to nuclei (usually 1H) is induced by a sequence of microwave pulses. Enhancement factors of the thermal 1H polarization are expected to be independent of the magnetic field, and sample heating by absorption of microwave irradiation will be strongly reduced. The development of DNP pulse sequences is still in its infancy. Of the two basic sequences in existence, NOVEL and TOP DNP, the former is, due to an extremely high power requirement, incompatible with high-resolution MAS NMR, while the latter displays a relatively slow transfer of polarization from electrons to 1H. We introduce here a new pulse sequence for DNP of solids, termed X-inverse-X (XiX) DNP. In experiments at 1.2 T, XiX DNP produces, compared to TOP DNP, a 2-fold higher gain in sensitivity. Our data suggest that a faster transfer of polarization from electrons to 1H is behind the superior performance of XiX DNP. Numerical simulations and experiments indicate that microwave pulse lengths can be chosen across a broad range, without loss of efficiency. These findings are a substantial step toward the implementation of pulsed DNP at high magnetic fields.
Collapse
Affiliation(s)
| | - Guinevere Mathies
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| |
Collapse
|
24
|
Meriles CA, Zangara PR. Microwave-Free Dynamic Nuclear Polarization via Sudden Thermal Jumps. PHYSICAL REVIEW LETTERS 2022; 128:037401. [PMID: 35119891 DOI: 10.1103/physrevlett.128.037401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Dynamic nuclear polarization (DNP) presently stands as the preferred strategy to enhance the sensitivity of nuclear magnetic resonance measurements, but its application relies on the use of high-frequency microwave to manipulate electron spins, an increasingly demanding task as the applied magnetic field grows. Here we investigate the dynamics of a system hosting a polarizing agent formed by two distinct paramagnetic centers near a level anticrossing. We theoretically show that nuclear spins polarize efficiently under a cyclic protocol that combines alternating thermal jumps and radio-frequency pulses connecting hybrid states with opposite nuclear and electronic spin alignment. Central to this process is the difference between the spin-lattice relaxation times of either electron spin species, transiently driving the electronic spin bath out of equilibrium after each thermal jump. Without the need for microwave excitation, this route to enhanced nuclear polarization may prove convenient, particularly if the polarizing agent is designed to feature electronic level anticrossings at high magnetic fields.
Collapse
Affiliation(s)
- Carlos A Meriles
- Department. of Physics, CUNY-City College of New York, New York, New York 10031, USA
- CUNY-Graduate Center, New York, New York 10016, USA
| | - Pablo R Zangara
- Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, X5000HUA Córdoba, Argentina
- CONICET, Instituto de Física Enrique Gaviola (IFEG), X5000HUA Córdoba, Argentina
| |
Collapse
|
25
|
Yang C, Ooi Tan K, Griffin RG. DNPSOUP: A simulation software package for dynamic nuclear polarization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 334:107107. [PMID: 34894420 PMCID: PMC8819672 DOI: 10.1016/j.jmr.2021.107107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 06/01/2023]
Abstract
Dynamic Nuclear Polarization Simulation Optimized with a Unified Propagator (DNPSOUP) is an open-source numerical software program that models spin dynamics for dynamic nuclear polarization (DNP). The software package utilizes a direct numerical approach using the inhomogeneous master equation to treat the time evolution of the spin density operator under coherent Hamiltonians and stochastic relaxation effects. Here we present the details of the theory behind the software, starting from the master equation, and arriving at characteristic operators for any section of density operator time-evolution. We then provide an overview of the DNPSOUP software architecture. The efficacy of the program is demonstrated by simulating DNP field profiles on small spin systems exploiting both continuous wave and time-domain DNP mechanisms. Examples include Zeeman field profiles for the solid effect, Overhauser effect, and cross effect, and microwave field profiles for NOVEL, off-resonance NOVEL, the integrated solid effect, the stretched solid effect, and TOP-DNP. The software should facilitate a better understanding of the DNP process, aid in the design of optimized DNP polarizing agents, and allow us to examine new pulsed DNP methods at conditions that are not currently experimentally accessible, especially at high magnetic fields with high-power microwave pulses.
Collapse
Affiliation(s)
- Chen Yang
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Aspen Technology, Inc., 20 Crosby Drive, Bedford, MA 01730, United States
| | - Kong Ooi Tan
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
26
|
Ivanov KL, Mote KR, Ernst M, Equbal A, Madhu PK. Floquet theory in magnetic resonance: Formalism and applications. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 126-127:17-58. [PMID: 34852924 DOI: 10.1016/j.pnmrs.2021.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/30/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Floquet theory is an elegant mathematical formalism originally developed to solve time-dependent differential equations. Besides other fields, it has found applications in optical spectroscopy and nuclear magnetic resonance (NMR). This review attempts to give a perspective of the Floquet formalism as applied in NMR and shows how it allows one to solve various problems with a focus on solid-state NMR. We include both matrix- and operator-based approaches. We discuss different problems where the Hamiltonian changes with time in a periodic way. Such situations occur, for example, in solid-state NMR experiments where the time dependence of the Hamiltonian originates either from magic-angle spinning or from the application of amplitude- or phase-modulated radiofrequency fields, or from both. Specific cases include multiple-quantum and multiple-frequency excitation schemes. In all these cases, Floquet analysis allows one to define an effective Hamiltonian and, moreover, to treat cases that cannot be described by the more popularly used and simpler-looking average Hamiltonian theory based on the Magnus expansion. An important example is given by spin dynamics originating from multiple-quantum phenomena (level crossings). We show that the Floquet formalism is a very general approach for solving diverse problems in spectroscopy.
Collapse
Affiliation(s)
- Konstantin L Ivanov
- International Tomographic Center, Institutskaya 3A, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 1, Novosibirsk 630090, Russia
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Hyderabad 500046, India
| | - Matthias Ernst
- ETH Zurich, Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Asif Equbal
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, United States
| | - Perunthiruthy K Madhu
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Hyderabad 500046, India.
| |
Collapse
|
27
|
Equbal A, Jain SK, Li Y, Tagami K, Wang X, Han S. Role of electron spin dynamics and coupling network in designing dynamic nuclear polarization. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 126-127:1-16. [PMID: 34852921 DOI: 10.1016/j.pnmrs.2021.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/22/2021] [Indexed: 06/13/2023]
Abstract
Dynamic nuclear polarization (DNP) has emerged as a powerful sensitivity booster of nuclear magnetic resonance (NMR) spectroscopy for the characterization of biological solids, catalysts and other functional materials, but is yet to reach its full potential. DNP transfers the high polarization of electron spins to nuclear spins using microwave irradiation as a perturbation. A major focus in DNP research is to improve its efficiency at conditions germane to solid-state NMR, at high magnetic fields and fast magic-angle spinning. In this review, we highlight three key strategies towards designing DNP experiments: time-domain "smart" microwave manipulation to optimize and/or modulate electron spin polarization, EPR detection under operational DNP conditions to decipher the underlying electron spin dynamics, and quantum mechanical simulations of coupled electron spins to gain microscopic insights into the DNP mechanism. These strategies are aimed at understanding and modeling the properties of the electron spin dynamics and coupling network. The outcome of these strategies is expected to be key to developing next-generation polarizing agents and DNP methods.
Collapse
Affiliation(s)
- Asif Equbal
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Sheetal Kumar Jain
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Yuanxin Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Kan Tagami
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Xiaoling Wang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States; Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, United States; Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, United States.
| |
Collapse
|
28
|
Can TV, Tan KO, Yang C, Weber RT, Griffin RG. Time domain DNP at 1.2 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 329:107012. [PMID: 34186299 PMCID: PMC9148420 DOI: 10.1016/j.jmr.2021.107012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 05/28/2023]
Abstract
We present the results of an experimental pulsed DNP study at 1.2 T (33.5 GHz/51 MHz electron and 1H Larmor frequencies, respectively). The results include a comparison of constant-amplitude NOVEL (CA-NOVEL), ramped-amplitude NOVEL (RA-NOVEL) and the frequency-swept integrated solid effect (FS-ISE) experiments all of which were performed at the NOVEL matching condition, ω1S=ω0I, where ω1S is the electron Rabi frequency andω0I the proton Larmor frequency. To the best of our knowledge, this is the first pulsed DNP study carried out at field higher than X-band (0.35 T) using the NOVEL condition. A combination of high microwave power (∼150 W) and a microwave cavity with a high Q (∼500) allowed us to satisfy the NOVEL matching condition. We also observed stretched solid effect (S2E) contributions in the Zeeman field profiles when chirped pulses are applied. Furthermore, the high quality factor of the cavity limits the concentration of the radical to ∼5 mM and generates a hysteresis in the FS-ISE experiments. Nevertheless, we observe very high DNP enhancements that are comparable to the results at X-band. These promising outcomes suggest the importance of further studies at even higher fields that delineate the instrumentation and methods required for time domain DNP.
Collapse
Affiliation(s)
- T V Can
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - K O Tan
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - C Yang
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - R T Weber
- Bruker BioSpin Corporation, Billerica, MA 01821, United States
| | - R G Griffin
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
29
|
Nevzorov AA, Marek A, Milikisiyants S, Smirnov AI. Characterization of photonic band resonators for DNP NMR of thin film samples at 7 T magnetic field. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 323:106893. [PMID: 33418455 PMCID: PMC8362290 DOI: 10.1016/j.jmr.2020.106893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Polarization of nuclear spins via Dynamic Nuclear Polarization (DNP) relies on generating sufficiently high mm-wave B1e fields over the sample, which could be achieved by developing suitable resonance structures. Recently, we have introduced one-dimensional photonic band gap (1D PBG) resonators for DNP and reported on prototype devices operating at ca. 200 GHz electron resonance frequency. Here we systematically compare the performance of five (5) PBG resonators constructed from various alternating dielectric layers by monitoring the DNP effect on natural-abundance 13C spins in synthetic diamond microparticles embedded into a commercial polyester-based lapping film of just 3 mil (76 μm) thickness. An odd-numbered configuration of dielectric layers for 1D PBG resonator was introduced to achieve further B1e enhancements. Among the PBG configurations tested, combinations of high-ε perovskite LiTaO3 together with AlN as well as AlN with optical quartz wafers have resulted in ca. 40 to over 50- fold gains in the average mm-wave power over the sample vs. the mirror-only configuration. The results are rationalized in terms of the electromagnetic energy distribution inside the resonators obtained analytically and from COMSOL simulations. It was found that average of B1e2 over the sample strongly depends on the arrangement of the dielectric layers that are the closest to the sample, which favors odd-numbered PBG resonator configurations for their use in DNP.
Collapse
Affiliation(s)
- Alexander A Nevzorov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, United States.
| | - Antonin Marek
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, United States
| | - Sergey Milikisiyants
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, United States
| | - Alex I Smirnov
- Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, United States.
| |
Collapse
|
30
|
Heiliger J, Matzel T, Çetiner EC, Schwalbe H, Kuenze G, Corzilius B. Site-specific dynamic nuclear polarization in a Gd(III)-labeled protein. Phys Chem Chem Phys 2020; 22:25455-25466. [PMID: 33103678 DOI: 10.1039/d0cp05021k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dynamic nuclear polarization (DNP) of a biomolecule tagged with a polarizing agent has the potential to not only increase NMR sensitivity but also to provide specificity towards the tagging site. Although the general concept has been often discussed, the observation of true site-specific DNP and its dependence on the electron-nuclear distance has been elusive. Here, we demonstrate site-specific DNP in a uniformly isotope-labeled ubiquitin. By recombinant expression of three different ubiquitin point mutants (F4C, A28C, and G75C) post-translationally modified with a Gd3+-chelator tag, localized metal-ion DNP of 13C and 15N is investigated. Effects counteracting the site-specificity of DNP such as nuclear spin-lattice relaxation and proton-driven spin diffusion have been attenuated by perdeuteration of the protein. Particularly for 15N, large DNP enhancement factors on the order of 100 and above as well as localized effects within side-chain resonances differently distributed over the protein are observed. By analyzing the experimental DNP built-up dynamics combined with structural modeling of Gd3+-tags in ubiquitin supported by paramagnetic relaxation enhancement (PRE) in solution, we provide, for the first time, quantitative information on the distance dependence of the initial DNP transfer. We show that the direct 15N DNP transfer rate indeed linearly depends on the square of the hyperfine interaction between the electron and the nucleus following Fermi's golden rule, however, below a certain distance cutoff paramagnetic signal bleaching may dramatically skew the correlation.
Collapse
Affiliation(s)
- Jörg Heiliger
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
The solid effect (SE) is a two spin dynamic nuclear polarization (DNP) mechanism that enhances the sensitivity in NMR experiments by irradiation of the electron-nuclear spin transitions with continuous wave (CW) microwaves at ω0S ± ω0I, where ω0S and ω0I are electron and nuclear Larmor frequencies, respectively. Using trityl (OX063), dispersed in a 60/40 glycerol/water mixture at 80 K, as a polarizing agent, we show here that application of a chirped microwave pulse, with a bandwidth comparable to the EPR line width applied at the SE matching condition, improves the enhancement by a factor of 2.4 over the CW method. Furthermore, the chirped pulse yields an enhancement that is ∼20% larger than obtained with the ramped-amplitude NOVEL (RA-NOVEL), which to date has achieved the largest enhancements in time domain DNP experiments. Numerical simulations suggest that the spins follow an adiabatic trajectory during the polarization transfer; hence, we denote this sequence as an adiabatic solid effect (ASE). We foresee that ASE will be a practical pulsed DNP experiment to be implemented at higher static magnetic fields due to the moderate power requirement. In particular, the ASE uses only 13% of the maximum microwave power required for RA-NOVEL.
Collapse
Affiliation(s)
- Kong Ooi Tan
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ralph T Weber
- Bruker BioSpin Corporation, Billerica, Massachusetts 01821, United States
| | - Thach V Can
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert G Griffin
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
32
|
Lim BJ, Ackermann BE, Debelouchina GT. Targetable Tetrazine-Based Dynamic Nuclear Polarization Agents for Biological Systems. Chembiochem 2020; 21:1315-1319. [PMID: 31746101 PMCID: PMC7445144 DOI: 10.1002/cbic.201900609] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Indexed: 12/13/2022]
Abstract
Dynamic nuclear polarization (DNP) has shown great promise as a tool to enhance the nuclear magnetic resonance signals of proteins in the cellular environment. As sensitivity increases, the ability to select and efficiently polarize a specific macromolecule over the cellular background has become desirable. Herein, we address this need and present a tetrazine-based DNP agent that can be targeted selectively to proteins containing the unnatural amino acid (UAA) norbornene-lysine. This UAA can be introduced efficiently into the cellular milieu by genetic means. Our approach is bio-orthogonal and easily adaptable to any protein of interest. We illustrate the scope of our methodology and investigate the DNP transfer mechanisms in several biological systems. Our results shed light on the complex polarization-transfer pathways in targeted DNP and ultimately pave the way to selective DNP-enhanced NMR spectroscopy in both bacterial and mammalian cells.
Collapse
Affiliation(s)
- Byung Joon Lim
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bryce E. Ackermann
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Galia T. Debelouchina
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
33
|
Ramirez Cohen M, Feintuch A, Goldfarb D, Vega S. Study of electron spectral diffusion process under DNP conditions by ELDOR spectroscopy focusing on the 14N solid effect. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2020; 1:45-57. [PMID: 37904885 PMCID: PMC10500736 DOI: 10.5194/mr-1-45-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/26/2020] [Indexed: 11/01/2023]
Abstract
Electron spectral diffusion (eSD) plays an important role in solid-state, static dynamic nuclear polarization (DNP) with polarizers that have inhomogeneously broadened EPR spectra, such as nitroxide radicals. It affects the electron spin polarization gradient within the EPR spectrum during microwave irradiation and thereby determines the effectiveness of the DNP process via the so-called indirect cross-effect (iCE) mechanism. The electron depolarization profile can be measured by electron-electron double resonance (ELDOR) experiments, and a theoretical framework for deriving eSD parameters from ELDOR spectra and employing them to calculate DNP profiles has been developed. The inclusion of electron depolarization arising from the 14 N solid effect (SE) has not yet been taken into account in this theoretical framework and is the subject of the present work. The 14 N SE depolarization was studied using W-band ELDOR of a 0.5 mM TEMPOL solution, where eSD is negligible, taking into account the hyperfine interaction of both 14 N and 1 H nuclei, the long microwave irradiation applied under DNP conditions, and electron and nuclear relaxation. The results of this analysis were then used in simulations of ELDOR spectra of 10 and 20 mM TEMPOL solutions, where eSD is significant using the eSD model and the SE contributions were added ad hoc employing the 1 H and 14 N frequencies and their combinations, as found from the analysis of the 0.5 mM sample. This approach worked well for the 20 mM solution, where a good fit for all ELDOR spectra recorded along the EPR spectrum was obtained and the inclusion of the 14 N SE mechanism improved the agreement with the experimental spectra. For the 10 mM solution, simulations of the ELDOR spectra recorded along the g z position gave a lower-quality fit than for spectra recorded in the center of the EPR spectrum. This indicates that the simple approach we used to describe the 14 N SE is limited when its contribution is relatively high as the anisotropy of its magnetic interactions was not considered explicitly.
Collapse
Affiliation(s)
- Marie Ramirez Cohen
- Department of Chemical and Biological Physics, Weizmann Institute of Science,
Rehovot, Israel
| | - Akiva Feintuch
- Department of Chemical and Biological Physics, Weizmann Institute of Science,
Rehovot, Israel
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science,
Rehovot, Israel
| | - Shimon Vega
- Department of Chemical and Biological Physics, Weizmann Institute of Science,
Rehovot, Israel
| |
Collapse
|
34
|
Judge PT, Sesti EL, Alaniva N, Saliba EP, Price LE, Gao C, Halbritter T, Sigurdsson ST, Kyei GB, Barnes AB. Characterization of frequency-chirped dynamic nuclear polarization in rotating solids. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 313:106702. [PMID: 32203923 DOI: 10.1016/j.jmr.2020.106702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/18/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
Continuous wave (CW) dynamic nuclear polarization (DNP) is used with magic angle spinning (MAS) to enhance the typically poor sensitivity of nuclear magnetic resonance (NMR) by orders of magnitude. In a recent publication we show that further enhancement is obtained by using a frequency-agile gyrotron to chirp incident microwave frequency through the electron resonance frequency during DNP transfer. Here we characterize the effect of chirped MAS DNP by investigating the sweep time, sweep width, center-frequency, and electron Rabi frequency of the chirps. We show the advantages of chirped DNP with a trityl-nitroxide biradical, and a lack of improvement with chirped DNP using AMUPol, a nitroxide biradical. Frequency-chirped DNP on a model system of urea in a cryoprotecting matrix yields an enhancement of 142, 21% greater than that obtained with CW DNP. We then go beyond this model system and apply chirped DNP to intact human cells. In human Jurkat cells, frequency-chirped DNP improves enhancement by 24% over CW DNP. The characterization of the chirped DNP effect reveals instrument limitations on sweep time and sweep width, promising even greater increases in sensitivity with further technology development. These improvements in gyrotron technology, frequency-agile methods, and in-cell applications are expected to play a significant role in the advancement of MAS DNP.
Collapse
Affiliation(s)
- Patrick T Judge
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, United States; Department of Biochemistry, Biophysics & Structural Biology, Washington University in St. Louis, St. Louis, MO 63110, United States
| | - Erika L Sesti
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Nicholas Alaniva
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Edward P Saliba
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Lauren E Price
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Chukun Gao
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Thomas Halbritter
- Department of Chemistry, University of Iceland, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland
| | - Snorri Th Sigurdsson
- Department of Chemistry, University of Iceland, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland
| | - George B Kyei
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, United States; Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Alexander B Barnes
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland; Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, United States.
| |
Collapse
|
35
|
Abstract
Dynamic nuclear polarization (DNP) is one of the most prominent methods of sensitivity enhancement in nuclear magnetic resonance (NMR). Even though solid-state DNP under magic-angle spinning (MAS) has left the proof-of-concept phase and has become an important tool for structural investigations of biomolecules as well as materials, it is still far from mainstream applicability because of the potentially overwhelming combination of unique instrumentation, complex sample preparation, and a multitude of different mechanisms and methods available. In this review, I introduce the diverse field and history of DNP, combining aspects of NMR and electron paramagnetic resonance. I then explain the general concepts and detailed mechanisms relevant at high magnetic field, including solution-state methods based on Overhauser DNP but with a greater focus on the more established MAS DNP methods. Finally, I review practical considerations and fields of application and discuss future developments.
Collapse
Affiliation(s)
- Björn Corzilius
- Institute of Chemistry and Department of Life, Light and Matter, University of Rostock, 18059 Rostock, Germany;
| |
Collapse
|
36
|
Abstract
Malaria is major public health concerns which continues to claim the lives of more than 435,000 people each year. The challenges with anti-malarial drug resistance and detection of low parasitaemia forms an immediate barrier to achieve the fast-approaching United Nations Sustainable Development Goals of ending malaria epidemics by 2030. In this Opinion article, focusing on the recent published technologies, in particularly the nuclear magnetic resonance (NMR)-based diagnostic technologies, the authors offer their perspectives and highlight ways to bring these point-of-care technologies towards personalized medicine. To this end, they advocate an open sourcing initiative to rapidly close the gap between technological innovations and field implementation.
Collapse
Affiliation(s)
- Maria Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Weng Kung Peng
- Precision Medicine-Engineering Group, International Iberian Nanotechnology Laboratory, Braga, Portugal.
| |
Collapse
|
37
|
Equbal A, Tagami K, Han S. Pulse-Shaped Dynamic Nuclear Polarization under Magic-Angle Spinning. J Phys Chem Lett 2019; 10:7781-7788. [PMID: 31790265 DOI: 10.1021/acs.jpclett.9b03070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dynamic nuclear polarization (DNP) under magic-angle spinning (MAS) is transforming the scope of solid-state NMR by enormous signal amplification through transfer of polarization from electron spins to nuclear spins. Contemporary MAS-DNP exclusively relies on monochromatic continuous-wave (CW) irradiation of the electron spin resonance. This limits control on electron spin dynamics, which renders the DNP process inefficient, especially at higher magnetic fields and non cryogenic temperatures. Pulse-shaped microwave irradiation of the electron spins is predicted to overcome these challenges but hitherto has never been implemented under MAS. Here, we debut pulse-shaped microwave irradiation using arbitrary-waveform generation (AWG) which allows controlled recruitment of a greater number of electron spins per unit time, favorable for MAS-DNP. Experiments and quantum mechanical simulations demonstrate that pulse-shaped DNP is superior to CW-DNP for mixed radical system, especially when the electron spin resonance is heterogeneously broadened and/or when its spin-lattice relaxation is fast compared to the MAS rotor period, opening new prospects for MAS-DNP.
Collapse
Affiliation(s)
- Asif Equbal
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , United States
| | - Kan Tagami
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , United States
| | - Songi Han
- Department of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106 , United States
- Department of Chemical Engineering , University of California , Santa Barbara , California 93106 , United States
| |
Collapse
|
38
|
Lang JE, Broadway DA, White GAL, Hall LT, Stacey A, Hollenberg LCL, Monteiro TS, Tetienne JP. Quantum Bath Control with Nuclear Spin State Selectivity via Pulse-Adjusted Dynamical Decoupling. PHYSICAL REVIEW LETTERS 2019; 123:210401. [PMID: 31809126 DOI: 10.1103/physrevlett.123.210401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Dynamical decoupling (DD) is a powerful method for controlling arbitrary open quantum systems. In quantum spin control, DD generally involves a sequence of timed spin flips (π rotations) arranged to either average out or selectively enhance coupling to the environment. Experimentally, errors in the spin flips are inevitably introduced, motivating efforts to optimize error-robust DD. Here we invert this paradigm: by introducing particular control "errors" in standard DD, namely, a small constant deviation from perfect π rotations (pulse adjustments), we show we obtain protocols that retain the advantages of DD while introducing the capabilities of quantum state readout and polarization transfer. We exploit this nuclear quantum state selectivity on an ensemble of nitrogen-vacancy centers in diamond to efficiently polarize the ^{13}C quantum bath. The underlying physical mechanism is generic and paves the way to systematic engineering of pulse-adjusted protocols with nuclear state selectivity for quantum control applications.
Collapse
Affiliation(s)
- J E Lang
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - D A Broadway
- School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
- Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - G A L White
- School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
- Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - L T Hall
- School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - A Stacey
- Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
- Melbourne Centre for Nanofabrication, Clayton, Victoria 3168, Australia
| | - L C L Hollenberg
- School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
- Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - T S Monteiro
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - J-P Tetienne
- School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
39
|
Saliba EP, Barnes AB. Fast electron paramagnetic resonance magic angle spinning simulations using analytical powder averaging techniques. J Chem Phys 2019; 151:114107. [PMID: 31542017 PMCID: PMC7043854 DOI: 10.1063/1.5113598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/27/2019] [Indexed: 11/14/2022] Open
Abstract
Simulations describing the spin physics underpinning nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy play an important role in the design of new experiments. When experiments are performed in the solid state, samples are commonly composed of powders or glasses, with molecules oriented at a large number of angles with respect to the laboratory frame. These powder angles must be represented in simulations to account for anisotropic interactions. Numerical techniques are typically used to accurately compute such powder averages. A large number of Euler angles are usually required, leading to lengthy simulation times. This is particularly true in broad spectra, such as those observed in EPR. The combination of the traditionally separate techniques of EPR and magic angle spinning (MAS) NMR could play an important role in future electron detected experiments, combined with dynamic nuclear polarization, which will allow for exceptional detection sensitivity of NMR spin coherences. Here, we present a method of reducing the required number of Euler angles in magnetic resonance simulations by analytically performing the powder average over one of the Euler angles in the static and MAS cases for the TEMPO nitroxide radical in a 7 T field. In the static case, this leads to a 97.5% reduction in simulation time over the fully numerical case and reproduces the expected spinning sideband manifold when simulated with a MAS frequency of 150 kHz. This technique is applicable to more traditional NMR experiments as well, such as those involving quadrupolar nuclei or multiple dimensions.
Collapse
Affiliation(s)
- Edward P Saliba
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Alexander B Barnes
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| |
Collapse
|
40
|
Carnahan SL, Venkatesh A, Perras FA, Wishart JF, Rossini AJ. High-Field Magic Angle Spinning Dynamic Nuclear Polarization Using Radicals Created by γ-Irradiation. J Phys Chem Lett 2019; 10:4770-4776. [PMID: 31347850 DOI: 10.1021/acs.jpclett.9b01655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
High-field magic angle spinning dynamic nuclear polarization (MAS DNP) is often used to enhance the sensitivity of solid-state nuclear magnetic resonance experiments by transferring spin polarization from electron spins to nuclear spins. Here, we demonstrate that γ-irradiation induces the formation of stable radicals in inorganic solids, such as fused quartz and borosilicate glasses, as well as organic solids, such as glucose, cellulose, and a urea/polyethylene polymer. The radicals were then used to polarize 29Si or 1H spins in the core of some of these materials. Significant MAS DNP enhancements (ε) of more than 400 and 30 were obtained for fused quartz and glucose, respectively. For other samples, negligible values of ε were obtained, likely due to low concentrations of radicals or the presence of abundant quadrupolar spins. These results demonstrate that ionizing radiation is a promising alternative method for generating stable radicals that are suitable for high-field MAS DNP experiments.
Collapse
Affiliation(s)
- Scott L Carnahan
- U.S. Department of Energy Ames Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Amrit Venkatesh
- U.S. Department of Energy Ames Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Frédéric A Perras
- U.S. Department of Energy Ames Laboratory, Ames, Iowa 50011, United States
| | - James F Wishart
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Aaron J Rossini
- U.S. Department of Energy Ames Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
41
|
Rankin AGM, Trébosc J, Pourpoint F, Amoureux JP, Lafon O. Recent developments in MAS DNP-NMR of materials. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 101:116-143. [PMID: 31189121 DOI: 10.1016/j.ssnmr.2019.05.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 05/03/2023]
Abstract
Solid-state NMR spectroscopy is a powerful technique for the characterization of the atomic-level structure and dynamics of materials. Nevertheless, the use of this technique is often limited by its lack of sensitivity, which can prevent the observation of surfaces, defects or insensitive isotopes. Dynamic Nuclear Polarization (DNP) has been shown to improve by one to three orders of magnitude the sensitivity of NMR experiments on materials under Magic-Angle Spinning (MAS), at static magnetic field B0 ≥ 5 T, conditions allowing for the acquisition of high-resolution spectra. The field of DNP-NMR spectroscopy of materials has undergone a rapid development in the last ten years, spurred notably by the availability of commercial DNP-NMR systems. We provide here an in-depth overview of MAS DNP-NMR studies of materials at high B0 field. After a historical perspective of DNP of materials, we describe the DNP transfers under MAS, the transport of polarization by spin diffusion and the various contributions to the overall sensitivity of DNP-NMR experiments. We discuss the design of tailored polarizing agents and the sample preparation in the case of materials. We present the DNP-NMR hardware and the influence of key experimental parameters, such as microwave power, magnetic field, temperature and MAS frequency. We give an overview of the isotopes that have been detected by this technique, and the NMR methods that have been combined with DNP. Finally, we show how MAS DNP-NMR has been applied to gain new insights into the structure of organic, hybrid and inorganic materials with applications in fields, such as health, energy, catalysis, optoelectronics etc.
Collapse
Affiliation(s)
- Andrew G M Rankin
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - Julien Trébosc
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France; Univ. Lille, CNRS-FR2638, Fédération Chevreul, F-59000 Lille, France
| | - Frédérique Pourpoint
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France; Bruker Biospin, 34 rue de l'industrie, F-67166, Wissembourg, France
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France; Institut Universitaire de France, 1 rue Descartes, F-75231, Paris, France.
| |
Collapse
|
42
|
Griffin RG, Swager TM, Temkin RJ. High frequency dynamic nuclear polarization: New directions for the 21st century. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:128-133. [PMID: 31327537 PMCID: PMC6703937 DOI: 10.1016/j.jmr.2019.07.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/03/2019] [Accepted: 07/08/2019] [Indexed: 05/03/2023]
Affiliation(s)
- Robert G Griffin
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Dept. of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| | - Timothy M Swager
- Dept. of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Richard J Temkin
- Plasma Science and Fusion Center and Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
43
|
Tan KO, Mardini M, Yang C, Ardenkjær-Larsen JH, Griffin RG. Three-spin solid effect and the spin diffusion barrier in amorphous solids. SCIENCE ADVANCES 2019; 5:eaax2743. [PMID: 31360772 PMCID: PMC6660209 DOI: 10.1126/sciadv.aax2743] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 06/20/2019] [Indexed: 05/18/2023]
Abstract
Dynamic nuclear polarization (DNP) has evolved as the method of choice to enhance NMR signal intensities and to address a variety of otherwise inaccessible chemical, biological and physical questions. Despite its success, there is no detailed understanding of how the large electron polarization is transferred to the surrounding nuclei or where these nuclei are located relative to the polarizing agent. To address these questions we perform an analysis of the three-spin solid effect, and show that it is exquisitely sensitive to the electron-nuclear distances. We exploit this feature and determine that the size of the spin diffusion barrier surrounding the trityl radical in a glassy glycerol-water matrix is <6 Å, and that the protons involved in the initial transfer step are on the trityl molecule. 1H ENDOR experiments indicate that polarization is then transferred in a second step to glycerol molecules in intimate contact with the trityl.
Collapse
Affiliation(s)
- Kong Ooi Tan
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael Mardini
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chen Yang
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jan Henrik Ardenkjær-Larsen
- Department of Electrical Engineering, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
- GE Healthcare, Brøndby 2605, Denmark
| | - Robert G. Griffin
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Corresponding author.
| |
Collapse
|
44
|
Purea A, Reiter C, Dimitriadis AI, de Rijk E, Aussenac F, Sergeyev I, Rosay M, Engelke F. Improved waveguide coupling for 1.3 mm MAS DNP probes at 263 GHz. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 302:43-49. [PMID: 30953925 DOI: 10.1016/j.jmr.2019.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
We consider the geometry of a radially irradiated microwave beam in MAS DNP NMR probes and its impact on DNP enhancement. Two related characteristic features are found to be relevant: (i) the focus of the microwave beam on the DNP MAS sample and (ii) the microwave magnetic field magnitude in the sample. We present a waveguide coupler setup that enables us to significantly improve beam focus and field magnitude in 1.3 mm MAS DNP probes at a microwave frequency of 263 GHz, which results in an increase of the DNP enhancement by a factor of 2 compared to previous standard hardware setups. We discuss the implications of improved coupling and its potential to enable cutting-edge applications, such as pulsed high-field DNP and the use of low-power solid-state microwave sources.
Collapse
|